整体法在牛顿第二定律中的应用

合集下载

牛顿第二定律应用方法

牛顿第二定律应用方法
方法一: 方法一: 整体法和隔离法的应用 1、如图,光滑水平地面上有两个木块 、B,质量分 、如图,光滑水平地面上有两个木块A、 , 别为M和 ,在水平推力F作用下 作用下, 别为 和m,在水平推力 作用下,求AB间的相互作用 间的相互作用 力。 若地面不光滑呢? 若地面不光滑呢? A B N 的大小与 无关 的大小与µ无关 变形:、如图所示,置于水平面上的相同材料的m和 变形 、如图所示,置于水平面上的相同材料的 和M 用轻绳连接, 上施一水平力F(恒力 用轻绳连接 , 在 M上施一水平力 恒力 使两物体作 上施一水平力 恒力)使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A B ) (A)水平面光滑时,绳拉力等于 水平面光滑时, 水平面光滑时 绳拉力等于mF/(M+m); + ; (B)水平面不光滑时,绳拉力等于 F/(M+m); 水平面不光滑时, 水平面不光滑时 绳拉力等于m + ; (C)水平面不光滑时,绳拉力大于 水平面不光滑时, 水平面不光滑时 绳拉力大于mF/(M+m); + ; (D)水平面不光滑时,绳拉力小于 水平面不光滑时, 水平面不光滑时 绳拉力小于mF/(M+m)。 + 。 F m M
练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )

牛顿第二定律难题例题及解答

牛顿第二定律难题例题及解答

1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。

(取)求:(1)该火箭启动后获得的加速度。

(2)该火箭启动后脱离发射塔所需要的时间。

5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。

(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。

牛顿第二定律的应用--整体法与隔离法

牛顿第二定律的应用--整体法与隔离法
第三章 牛顿运动定律
3.3 牛顿第二定律的应用
——整体法与隔离法
整体法与隔离法 • 在求解连接体问题时常常用到整体法与隔 离法.所谓“连接体”问题,是指运动中 的几个物体或上下叠放在一起、或前后挤 靠在一起、或通过轻绳、轻杆、轻弹簧连 在一起、或由间接的场力作用在一起的物 体组. • 内力:各物体间存在相互作用力.
m1 F 联立以上各式得: FBA m1 m2
知识梳理
一、整体法:在研究物理问题时,把所研究 的对象作为一个整体(不考虑内力)来处理 的方法称为整体法。 采用整体法时不仅可以把几个物体作为 整体,也可以把几个物理过程作为一个整体。
采用整体法可以避免对整体内部 进行繁锁的分析,常常使问题解答更 简便、明了。
对B受力分析: 水平方向:
FAB m2 g m2a
m2 F m1 m2
联立以上各式得: FAB
思考:用水平推力F向左推,A、B间的作用 力与原来相同吗?
没有摩擦力时:
解:对整体,根据牛顿第二定律得
F (m1 m2 )a
对 A 受力分析根据牛顿第二定律得:
FBA m1a
例3.如图所示,质量M=60kg的人通过光滑的定 滑轮用绳拉着m= 20kg的物体,当物体以加速度 a=5 m/s2上升时,人在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面 上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2, 三木块均处于静止,则粗糙地面对于三角形木块( ) A.有摩擦力作用,摩擦力的方向水平向右 B.有摩擦力作用,摩擦力的方向水平向左 C.有摩擦力作用,但摩擦力的方向不能确定 D.没有摩擦力的作用
(1)当地面光滑时,A,B作为一个整体,根据牛顿第二定律得:

牛顿第二定律连接体问题(整体法与隔离法)

牛顿第二定律连接体问题(整体法与隔离法)

牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。

要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。

f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。

牛顿第二定律的应用-整体法与隔离法

牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。

高中物理-系统牛顿第二定律与整体法

高中物理-系统牛顿第二定律与整体法

系统的牛顿第二定律与整体法在静力学、动力学问题中,涉及到系统外力时,我们往往采用整体法处理,但是很多资料并没有讲清楚整体法的适用条件,以及背后的理论基础,甚至限定只允许在几个物体相对静止时使用整体法,使得整体法的适用范围大大缩小。

本文则从系统的牛顿第二定律入手,奠定整体法解决静力学、动力学问题的理论基础,并通过实例展示整体法的广阔应用空间。

一、系统的牛顿第二定律 1、推导如图所示,两个物体组成一个系统,外界对系统内物体有力的作用(系统外力),系统内物体之间也有相互作用(系统内力),则对1:12111F F m a += 对2:21222F F m a += 其中,2112F F =-联立,得:121122F F m a m a +=+这个方程中,等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。

上述推导中,研究对象只有两个,但是很容易将上述结论推广到任意多个研究对象,方法仍然是分别对各个物体列动力学方程,然后相加——由于内力总是成对出现,且每对内力总是等大反向,因此相加的结果仍然是:等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。

这个结论就是系统的牛顿第二定律,其通式为:112233...Fm a m a m a =+++∑外或者:112233...x x x xFm a m a m a =+++∑外,112233...y y y y F m a m a m a =+++∑外2、理解系统的牛顿第二定律表达式左边只有系统外力,因此它只适用于处理系统外力相关问题,一旦涉及系统内力,则只能用隔离法。

系统的牛顿第二定律表达式右边为“各个部分的质量乘以相应的加速度然后矢量相加”,因此并不要求各个部分相对静止——各个部分有相对速度、相对加速度时,仍然可以选系统为研究对象,使用整体法处理问题。

如果系统内各个部分是相对静止的——即各个部分的加速度、速度均相同,则系统的牛顿第二定律方 程可以简化为:123(...)Fm m m a =+++∑外,这就是我们熟悉的几个物体相对静止时的整体动力学方程。

18正交分解法整体法和隔离法 知识讲解 基础

18正交分解法整体法和隔离法 知识讲解 基础

物理总复习:正交分解法、整体法和隔离法【考纲要求】1、理解牛顿第二定律,并会解决应用问题;2、掌握应用整体法与隔离法解决牛顿第二定律问题的基本方法;3、掌握应用正交分解法解决牛顿第二定律问题的基本方法;4、掌握应用合成法解决牛顿第二定律问题的基本方法。

【考点梳理】要点一、整体法与隔离法1、连接体:由两个或两个以上的物体组成的物体系统称为连接体。

2、隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。

3、整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。

要点诠释: 处理连接体问题通常是整体法与隔离法配合使用。

作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。

处理连接体问题的关键是整体法与隔离法的配合使用。

隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。

要点二、正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有:x F ma =(沿加速度方向) 0y F = (垂直于加速度方向)特殊情况下分解加速度比分解力更简单。

要点诠释:正确画出受力图;建立直角坐标系,特别要注意把力或加速度分解在x 轴和y 轴上;分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程。

一般沿x 轴方向(加速度方向)列出合外力等于ma 的方程,沿y 轴方向求出支持力,再列出f N μ=的方程,联立解这三个方程求出加速度。

要点三、合成法若物体只受两个力作用而产生加速度时,这是二力不平衡问题,通常应用合成法求解。

要点诠释:根据牛顿第二定律,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。

特别是两个力相互垂直或相等时,应用力的合成法比较简单。

整体法和隔离法在牛顿运动定律中的应用

整体法和隔离法在牛顿运动定律中的应用

隔离法和整体法在牛顿运动定律中的应用整体法与隔离法是在高中物理学习中常用到的基本方法之一,特别是在力学部分,巧妙地选择研究对象会使问题变得简单,明了。

整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。

方法选择:所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简化,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

有时在一个问题中需要整体法与隔离法交替使用。

一、在平衡状态下的应用当几个相互连系的物体都处于静止或匀速直线运动状态时,可以把这些物体视为一个整体,由于每一个独立的物体都处于平衡状态,所以整体也处于平衡状态。

即不管是独立的物体还是整体,受力都要满足平衡条件。

【例1】如图所示,放置在水平地面上的直角劈M上有一个质量为m的物体,若m在其上方匀速下滑,M仍保持静止,那么下列说法中正确的是:()A.M对地面的压力等于(M+m)gB.M对地面的压力大于(M+m)gC.地面对M没有摩擦力D.地面对M有向左的摩擦力〖解析〗M对地面的压力、地面对M的摩擦力,都是直角劈和物体m作为一个整体与外界的作用力,故用整体法来分析求解较为方便。

这一整体在竖直方向上受到向下的重力(M+m)g和向上的支持力F N,由平衡条件得F N =(M+m)g,做A正确,B错误。

这一整体在水平方向上平衡,因此水平方向合力为零,由此可推知地面对M没有摩擦力。

故C正确,D错误。

【例2】如图所示,用水平力F,将质量为m的三块砖压在竖直墙上,静止不动,A与F接触面光滑不受摩擦力,则下列叙述正确的是:()A.墙壁施给C的摩擦力为mg,方向竖直向上B.墙壁施给C的弹力为FC.A施给B的摩擦力大小为mg,方向竖直向下D.C施给B的摩擦力大小为2mg,方向竖直向上〖解析〗A、B、C均处于静止状态,将三者视为一个整体来研究,受力分析如图a所示,可知墙壁施给C的摩擦力为3mg,方向竖直向上,墙壁施给C的弹力为F。

系统牛顿第二定律与整体法详解

系统牛顿第二定律与整体法详解

F 2F 12F 1F 21 211 2 3...)a 系统的牛顿第二定律与整体法详解在静力学、动力学问题中,涉及到系统外力时,我们往往采用整体法处理,但是很多资料并没有讲清 楚整体法的适用条件,以及背后的理论基础,甚至限定只允许在几个物体相对静止时使用整体法,使得整 体法的适用范围大大缩小。

本文则从系统的牛顿第二定律入手,奠定整体法解决静力学、动力学问题的理 论基础,并通过实例展示整体法的广阔应用空间。

一、系统的牛顿第二定律 1、推导如图所示,两个物体组成一个系统,外界对系统内物体有力的作用(系统外力),系统内物体之间也 有相互作用(系统内力),则对 1: F 1 + F 21 m 1a 1 对 2: F + F =2 12m 2a 2其中, F 21 = -F 12联立,得: F 1 + F 2= m 1a 1 +m 2a 2这个方程中,等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相 加。

上述推导中,研究对象只有两个,但是很容易将上述结论推广到任意多个研究对象,方法仍然是分别 对各个物体列动力学方程,然后相加——由于内力总是成对出现,且每对内力总是等大反向,因此相加的结果仍然是:等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。

这个结论就是系统的牛顿第二定律,其通式为:或者: ∑ F = ∑ F 外 = m 1a 1 + m 2a 2 + m 3a 3 + ..., ∑2、理解外xm 1a 1x + m 2a 2 x + m 3a 3 x + ... F 外y = m 1a 1 y + m 2a 2 y + m 3a 3 y + ... 系统的牛顿第二定律表达式左边只有系统外力,因此它只适用于处理系统外力相关问题,一旦涉及系 统内力,则只能用隔离法。

系统的牛顿第二定律表达式右边为“各个部分的质量乘以相应的加速度然后矢 量相加”,因此并不要求各个部分相对静止——各个部分有相对速度、相对加速度时,仍然可以选系统为 研究对象,使用整体法处理问题。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

N-mg=may
ay=0.25g
N
ay a
f = max = m ay / tg θ = 0.25mg×4/3 = mg/3
fθ ax
mg
例1、如图示,倾斜索道与水平方向夹角为θ,已知
tg θ=3/4,当载人车厢匀加速向上运动时,人对厢
底的压力为体重的1.25倍,这时人与车厢相对静止,
则车厢对人的摩擦力是体重的 ( ) A
a
A. 1/3倍
B.4/3倍
C. 5/4倍
D.1/4倍
解:将加速度分解如图示,
θ
由a与合力同向关系,分析人的受力如图示:
什么是整体法?什么情况下可用整体法?
• 整体法就是对物理问题的整个系统或整个过 程进行研究的方法。
• 如果由几个物体组成的系统具有相同的加速度,一般 用整体法求加速度。(但整体法不能求出系统内力)
• 如果求解的物理问题仅涉及某过程的始末两状态,一 般可以把整个过程作为研究对象用整体法求解。(但 整体法不能求出此过程中间的状态量)
• 审题:这里由于木块与小车 在运动过程中相对静止,它 们具有相同的加速度,所以 先采用整体分析法,求出木 块和小车这个系统的整体加 速度,a=gsinθ,这样M的 加速度就求出。由于木块所 受的弹力和摩擦力对小车和 木块这个系统来说是内力, 所以必须将木块从系统中隔 离出来分析。
思路点拨与技巧训练
思路点拨
盘静止时KL=(M+m)g 放手时先研究整体K(L+ Δ L) -(M+m)g= (M+m)a
再研究盘中物体m N-mg=ma N=mg(L+ Δ L)/L
习题一
• 右示图中人的质量 为50kg,直杆的质 量为100kg,人与 杆均静止。若系杆 的绳断了,人为了 保持自已的高度不 变,必须使杆具有 多大的加速度?

整体法牛顿第二定律

整体法牛顿第二定律

整体法是牛顿第二定律的一种特殊情况,它的基本思想是将多个物体视为一个整体,从而简化力的分析和计算。

在具体应用时,只有当两个或多个物体具有相同的加速度时,才能够使用整体法。

举例来说,假设我们有一个斜面和一个滑块。

如果我们考虑两者的运动状态—包括速度和加速度—相同,那么我们就可以将它们看作一个整体来进行受力分析。

这就是所谓的整体法。

然而,如果两者的运动状态不同,就需要按照接触面等条件进行隔离,分开进行受力分析。

需要注意的是,整体法本质上是不考虑系统内力,从而忽略了系统内部的加速度;而系统牛顿第二定律是整体法的扩展,当物体间存在相互作用力影响运动状态时,需要用到系统牛顿第二定律。

因此,整体法适用范围较小,对于某些运动的细节无法描述。

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..

牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。

2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。

进而求出某些未知力。

求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。

利用整体法巧解牛顿第二定律

利用整体法巧解牛顿第二定律

利用整体法巧解牛顿第二定律
(1)牛顿第二定律:物体受到外力作用时,它的加速度是受外力大小和其方向所决定的,而且该加速度与外力大小成正比,与其施加点到受力物体上的距离成反比。

(2)整体法巧解:从物理定律的整体性出发,以力的原理来解决牛顿第二定律的加速度问题。

假定一个受力的物体处于静止状态,据牛顿第二定律可知,外力大小和其方向决定了加速度的大小和方向,即外力大小与加速度成正比,施加点到受力物体上的距离与受力产生的加速度成反比。

为了计算加速度,可以从力的原理出发,把外力作用的施加点到受力物体形成的力矢量的模和受力物体的质量来计算,即:加速度=F/m,其中F为外力的大小,m为物体的质量。

高中物理-系统牛顿第二定律与整体法

高中物理-系统牛顿第二定律与整体法

系统的牛顿第二定律与整体法在静力学、动力学问题中,涉及到系统外力时,我们往往采用整体法处理,但是很多资料并没有讲清楚整体法的适用条件,以及背后的理论基础,甚至限定只允许在几个物体相对静止时使用整体法,使得整体法的适用范围大大缩小。

本文则从系统的牛顿第二定律入手,奠定整体法解决静力学、动力学问题的理论基础,并通过实例展示整体法的广阔应用空间。

一、系统的牛顿第二定律 1、推导如图所示,两个物体组成一个系统,外界对系统内物体有力的作用(系统外力),系统内物体之间也有相互作用(系统内力),则对1:12111F F m a += 对2:21222F F m a += 其中,2112F F =-联立,得:121122F F m a m a +=+这个方程中,等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。

上述推导中,研究对象只有两个,但是很容易将上述结论推广到任意多个研究对象,方法仍然是分别对各个物体列动力学方程,然后相加——由于内力总是成对出现,且每对内力总是等大反向,因此相加的结果仍然是:等式左边只剩下系统外力,等式右边则是各个部分的质量乘以相应的加速度然后矢量相加。

这个结论就是系统的牛顿第二定律,其通式为:112233...Fm a m a m a =+++∑外或者:112233...x x x xFm a m a m a =+++∑外,112233...y y y y F m a m a m a =+++∑外2、理解系统的牛顿第二定律表达式左边只有系统外力,因此它只适用于处理系统外力相关问题,一旦涉及系统内力,则只能用隔离法。

系统的牛顿第二定律表达式右边为“各个部分的质量乘以相应的加速度然后矢量相加”,因此并不要求各个部分相对静止——各个部分有相对速度、相对加速度时,仍然可以选系统为研究对象,使用整体法处理问题。

如果系统内各个部分是相对静止的——即各个部分的加速度、速度均相同,则系统的牛顿第二定律方 程可以简化为:123(...)Fm m m a =+++∑外,这就是我们熟悉的几个物体相对静止时的整体动力学方程。

正交分解法整体法和隔离法 知识讲解 提高

正交分解法整体法和隔离法 知识讲解 提高

物理总复习:正交分解法、整体法和隔离法编稿:李传安 审稿:张金虎【考纲要求】1、理解牛顿第二定律,并会解决应用问题;2、掌握应用整体法与隔离法解决牛顿第二定律问题的基本方法;3、掌握应用正交分解法解决牛顿第二定律问题的基本方法;4、掌握应用合成法解决牛顿第二定律问题的基本方法。

【考点梳理】要点一、整体法与隔离法1、连接体:由两个或两个以上的物体组成的物体系统称为连接体。

2、隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。

3、整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。

要点诠释: 处理连接体问题通常是整体法与隔离法配合使用。

作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。

处理连接体问题的关键是整体法与隔离法的配合使用。

隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。

要点二、正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有:x F ma =(沿加速度方向) 0y F = (垂直于加速度方向)特殊情况下分解加速度比分解力更简单。

要点诠释:正确画出受力图;建立直角坐标系,特别要注意把力或加速度分解在x 轴和y 轴上;分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程。

一般沿x 轴方向(加速度方向)列出合外力等于ma 的方程,沿y 轴方向求出支持力,再列出f N μ=的方程,联立解这三个方程求出加速度。

要点三、合成法若物体只受两个力作用而产生加速度时,这是二力不平衡问题,通常应用合成法求解。

要点诠释:根据牛顿第二定律,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。

特别是两个力相互垂直或相等时,应用力的合成法比较简单。

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程:F 合 = (m 1+m 2+……)a分量表达式: F x = (m 1+m 2+……)a xF y = (m 1+m 2+……)a y2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。

例1、如图,在水平面上有一个质量为M 的楔形木块A ,其斜面倾角为α,一质量为m 的木块B 放在A 的斜面上。

现对A 施以水平推力F , 恰使B 与A 不发生相对滑动,忽略一切摩擦,则B 对 A 的压力大小为( BD )A 、 mgcos αB 、mg/cos αC 、FM/(M+m)cos αD 、Fm/(M+m)sin α★题型特点:隔离法与整体法的灵活应用。

★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B 受力分析得出A 、B 之间的压力。

省去了对木楔受力分析(受力较烦),达到了简化问题的目的。

例2.质量分别为m 1、m 2、m 3、m 4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F 1、F 2分别水平地加在m 1、m 4上,如图所示。

求物体系的加速度a 和连接m 2、m 3轻绳的张力F 。

(F 1>F 2)例3、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对B 的作用力等于 ( ) A .F FαABFF F3、B 解析:首先确定研究对象,先选整体,求出A 、B 共同的加速度,再单独研究B ,B 在A 施加的弹力作用下加速运动,根据牛顿第二定律列方程求解.将m 1、m 2看做一个整体,其合外力为F ,由牛顿第二定律知,F=(m 1+m 2)a ,再以m 2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F 12=m 2a ,以上两式联立可得:F 12= ,B 正确.例4、在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m 1和m 2的两个木块b 和c ,如图1所示,已知m 1>m 2,三木块均处于静止,则粗糙地面对于三角形木块( D ) A .有摩擦力作用,摩擦力的方向水平向右。

牛顿第二定律的应用之整体法与隔离法

牛顿第二定律的应用之整体法与隔离法

碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整体法在牛顿第二定律中的应用
例题1.质量为m 、长度为L 且质量分布均匀的软绳放在光滑水平面上,在绳的右端所施加的水平拉力为F ,如图所示.设离软绳左端距离为x 的A 处内部张力为T ,则
(1) 绳中A 处张力T 的大小;
(2)假若水平面粗糙,则绳中A 处张力T 的大小如何?
例题2、一质量为M 、倾角为θ的楔形木块静置在水平桌面上,与桌面间的动摩擦因数为μ;另一物块质量为m 置于楔形木块的斜面上,物块与斜面的接触是光滑的。

为了保持物块相对于斜面静止,可用一水平力推楔形木块,求此水平力F 的大小?
例3:如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,则小球在下滑过程中,木箱对地面的压力为多少?
一、选择题:
1.如图所示,质量为M=60kg 的人站在水平地面上,用定滑轮装置将质量为m =40kg 的重物送到井中,当重物以2m/s 2的加速度加速下落时,忽略绳子和定滑轮的质量及定滑轮的摩擦,则人对地面的压力大小为( ) g 取10 m/s 2
A .200N
B .280N
C .320N
D .1000N
2.如图4-1所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( )
A .方向向左,大小不变
B .方向向左,逐渐减小
C .方向向右,大小不变
D .方向向右,逐渐减小
3、.(多选题)如图所示,在光滑水平面上有一质量为M 的斜劈,其斜面倾角为θ,一质量为m 的物体放在其光滑斜面上,现用一水平力F 推斜劈,恰使物体m 与斜劈间无相对滑动,则斜劈对物块m 的弹力大小为 ( )
4.(多选题)两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图4-7所示,滑块A 、B 的质量分别为M 、m ,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力( )
A .静摩擦力
B .方向沿斜面向上
C .大小等于μ1mgcos θ
D .大小等于μ2mgcos θ
5、(多选题)如图,物块A 、B 质量相等,在恒力F 作用下,在水平面上做匀加速直线运动。

若物块与水平面间接触面光滑,物块A 的加速度大小为a 1,物块A 、B 间相互作用力大小为N 1;若物块与水平面间接触粗糙,且物块A 、B 与水平面间的动摩擦因数相同,物块B 的加速度大小a 2,物块A 、B 间相互作用力大小为N 2,则以下判断正确的是( )
A 、a 1=a 2
B 、a 1>a 2
C 、N 1=N 2
D 、N 1
<F
模型:合外力不为零
........
......的滑块与滑板模型
例4如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。

变式1例4中若拉力F作用在A上呢?如图2所示。

求拉力F的最大值。

例5如图(甲)所示,静止在光滑水平面上的长木板B(长木板足够长)的左端放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图(乙)所示,即F=kt,其中k为已知常数.若物体之间的滑动摩擦力的大小等于最大静摩擦力,动摩擦因数为μ,且A、B的质量相等,求
(1)木板与物块一起滑行时间。

(2)木板做何种运动(定性说明)?简要画出木板
B速度时间图象。

例题6.图(甲)中,质量为m的物块叠放在质量为2m的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为μ=0.2.在木板上施加一水平向右的拉力F,在0~3 s内F的变化如图(乙)所示,图中F以mg为单位,重力加速度g=10 m/s2.
整个系统开始时静止.求:
(1)1 s、1.5 s末木板的速度分别为多大;
(2)3 s末木板和物块的速度各为多大。

相关文档
最新文档