电磁学(地物)课件 第六章-3
电磁学PPT课件-2024鲜版
1 2
麦克斯韦方程组的构成
四个基本方程,描述电场、磁场、电荷和电流之 间的关系。
物理意义
揭示了电磁场的基本规律,预测了电磁波的存在 ,为电磁学的发展奠定了基础。
方程组中各量的含义及相互关系
3
E(电场强度)、B(磁感应强度)、D(电位移 矢量)、H(磁场强度)、J(电流密度)、ρ( 电荷密度)等。
2024/3/28
且电流大小和方向均不随时间变化。
欧姆定律的内容
02
介绍欧姆定律,即在同一电路中,通过导体的电流与导体两端
的电压成正比,与导体的电阻成反比。
欧姆定律的应用
03
列举欧姆定律在电路分析中的广泛应用,如计算电阻、电压和
电流等。
14
稳恒磁场产生条件及描述方法
稳恒磁场的定义和产生条件
阐述稳恒磁场的概念,即由恒定电流产生的磁场,其磁场强度和 方向均不随时间变化。
霍尔效应的原理
介绍霍尔效应的原理,即在通电的半导体薄片上施加一个与电流方 向垂直的磁场,会在半导体两侧产生电势差的现象。
霍尔效应的应用
列举霍尔效应在测量磁场、制作霍尔元件等方面的应用。
2024/3/28
16
磁路定理及其在工程中应用
磁路定理的内容
介绍磁路定理,即在磁路 中,磁通量总是沿着磁阻 最小的路径闭合。
配电网
将电能从变电站输送到用户端,包括架空线路、电缆、配 电变压器等设施。
2024/3/28
26
工业自动化领域传感器技术应用
位移传感器
利用电磁感应原理测量 物体位移或位置变化, 广泛应用于机床、自动 化生产线等领域。
2024/3/28
压力传感器
将压力转换为电信号输 出,用于测量气体或液 体的压力,常见于工业 控制、航空航天等领域 。
电磁学(地物)课件 第六章-1
i e ve
T 2r
磁矩为:
m ir2 el
电子轨道运动的角动量为:
L mvr el
电子带负电,电子轨道运动的磁矩与电子轨 道运动角动量方向相反,两者的关系为:
e
m L
el
2m el
电子除轨道运动外,还作自旋运动,电子自 旋磁矩与电子自旋角动量的关系为:
e
m L
§6.2 磁介质及其磁化强度
寻求磁介质的方程
B dS 0
S
B dl 0 I
B 0
B 0
j
+ 边界条件
1. 磁性的起源
原子内部的电子绕原子核运动,运动轨道尤如一 闭合圆电流。因而具有一定的磁矩,称轨道磁矩, 另一方面,电子具有质量,因而做轨道运动时具有 一定的轨道角动量。
B Bt B1
B1为受力体电流的贡献,由力学的质点系知,系统 的内力与内力矩总是相互抵消的,其和为零。
所以计算面电流和体电流受力或力矩时,不必用 Bt-B1代替B,仅需用Bt-dB代替B,不会影响结果。
体电流:
dV dB ~ ~ r
r2 r 0, dB 0
即仅需用Bt代替B
面电流:
大多数原子或分子的合磁矩为零。有一部分原子或 分子的电子合磁矩不为零,因而这种原子或分子就 具有固有磁矩。
S
S
非均匀外磁场
B(x)
B(x0
)
x
B(x)
x
1 x2 2B(x)
2! x2
x x0
x x0
忽略高阶项,则
B( x)
Box
x
B x
B(
y)
Boy
y
B y
大学物理电磁学第六章教学课件——麦克斯韦电磁理论
两件事情使他重新考虑研究方法
法拉第力线与流体两者不宜简单类比
法拉第的力线有纵向收缩、横向扩张的趋势,力 线越密,应力越大
流体力学中流线越密的地方压力越小,流速越快
电的运动与磁的运动也无法简单类比
从电解质现象中知道电的运动是平移的 从偏振光在透明晶体中旋转动现象看,磁的运动
好像是介质中分子的旋转运动
问题
Weber的公式只涉及动生电动势无法解释感生电动势; Weber的运动电荷相互作用力定律是否与能量守恒原
理协调一致 ?这个问题曾经在Weber和 Helmholtz 之间产生激烈的争论。所以公式建立以后很快遭到了批 评,最终被抛弃了
Maxwell对上述工作的评价
“由Weber和Neumann发展起来的这种 理论是极为精巧的,它令人惊叹地广泛应 用于静电现象、电磁吸引、电流感应及抗 磁现象;并且,由于在电测量中引入自洽 的单位制和实际上迄今尚未知祥的精度确 定了电学量,它适宜于指导人们作出种种 推测,从而在电科学实用方面取得重大进 展,因此它对于我们而言更具有权威性。”
把感应电动势用电动力学势a表示出来
a 只是运算中代替一积分的辅助量,没有明确的 物理意义
理论中,无须考虑线圈周围的情况,把感应电动 势归结为两个电流相互作用时电动力学势变化率 的积分,这样他就把电磁感应定律纳入了超距作 用的电动力学体系。
引入电动力学势是一个重要的贡献,在电磁学理 论中起着重要的作用
他在纪念Maxwell 诞辰100周年的文集 中写道:
“自从牛顿奠定理论物理学的基础以来,物理 学的公理基础的最伟大的变革是由法拉第和 麦克斯韦在电磁现象方面的工作所引起的”。 “这样一次伟大的变革是同法拉第、麦克斯韦 和赫兹的名字永远联在一起的。这次变革的 最大部分出自麦克斯韦。”
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
电磁场理论基础 第6章PPT课件
Ex(t)R
2 et2
(Exejt
)R
e[2Exejt]
t
Ex(t)jEx
这就是说, Ex(t)对时间t的微分运算可化为对复振幅 E x 乘以jω的 代数运算。这正是采用复数表示的一个方便之处。
8
第六章 时变电磁场和平面电磁波 设时谐电场E(t)除了分量Ex(t)外, 还有分量Ey(t)和Ez(t) 。将这3
(1)求磁场强度瞬时值H(t); (2)求电场强度瞬时值E(t)。
15
第六章 时变电磁场和平面电磁波 [解] (1)
H(t)Reyˆ0[.0e1j(100/3)zej25190t]
yˆ0.01co1s1 0[0t(100/3)z] (A/m)
16
第六章 时变电磁场和平面电磁波
(2)由 H j0E 知
10
第六章 时变电磁场和平面电磁波 由表2-1中式(b)、 (c)、 (d)分别得
H J j D D v
B 0
其复数形式为
Jjv
11
第六章 时变电磁场和平面电磁波
6.2.2 复数形式的本构关系和边界条件
在简单媒质中, 电磁场复矢量的关系为
D E
B H
J E
利用这些关系后, 复麦氏方程组(6-12)化为
第六章 时变电磁场和平面电磁波
§6.3 复坡印廷矢量和复坡印廷定理
6.3.1 复坡印廷矢量
由复数公式(6-5a)知,
E(t)ReE[ejt]1[Eejt E*ejt] 2
第六章 时变电磁场和平面电磁波
第六章 时变电磁场和平面电磁波
§6.1 时谐电磁场的复数表示 §6.2 复数形式麦克斯韦方程组 §6.3 复坡印廷矢量和复坡印廷定理 §6.4 理想介质中的平面波 §6.5 导电媒质中的平面波 §6.6 等离子体中的平面坡 §6.7 电磁波的色散和群速 §6.8 电磁波的极化
电磁学(地物)课件 第六章-2
B (H M ) ( 1) H H
0
m
0
r0
r 1 m 为相对磁导率或介质磁导率
r 0 为绝对磁导率
• 求的:无一 限电 均流 匀为 磁介I0的质无中限的长磁直场导。线在磁导率为
• 解:
B
r 0 H
H
I0 2 r
r B0
• 原因在于,出现了与传导电流同向的磁化电流, 使总电流增加到原传导电流的
注意: 对顺磁质, 上面讲的抗磁效应存在,但顺磁质的抗磁效应 远远小于顺磁效应.
电子轨道平面的进动产生一附加磁矩△me() 与 反向,亦与B反向
me
()
1 3
er
2
1 3
er
2
电子的总磁矩
m me me me me
对抗磁性物质
me 0
但 me 0 且与磁场反向,呈现抗磁性.
H : H 的环路积分与传导电流有关,与磁化电流无关。
真空中, M
0, B
B
,则H
B
0
0
0
B 0
dl
0
I 0
回到真空中磁场环路定律
H
dl
H
ds
s
H j
0
3.讨论
H物H 理 意B义不M是是很两明矢确量。的迭加。
0
H的环流与I0有关,表明H矢量有一定的物理意义, 但H并不能反映磁场对运动电荷或电流的作用力的 强弱,只有B才可以。
B 或H与M方向相同,B与H线性关系, 对铁磁质,B与H 的线性关系不成立。
顺磁性
锰,铬,锂, 钠等
0 m
10-4~10-
M与H同向
5
磁化机制
M H m
电磁学全套ppt课件
由于磁场变化而产生的感应电动势。 其大小与磁通量变化的快慢有关,即 与磁通量对时间的导数成正比。
自感和互感现象在生活生产中应用
自感现象
当一个线圈中的电流发生变化时,它所产生的磁通量也会发生变化,从而在线圈自身中 产生感应电动势。自感现象在电子线路中有着广泛的应用,如振荡电路、延时电路等。
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
电流产生条件
导体两端存在电压差,形成电场 ,使自由电子定向移动形成电流
。
电流方向规定
正电荷定向移动的方向为电流方向 ,负电荷定向移动方向与电流方向 相反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
联系专业电工进行处理。
THANKS
感谢观看
特点介绍
正弦交流电具有周期性、连续性、可变性等 特点。其电压和电流的大小和方向都随时间 作周期性变化,且波形为正弦曲线。
三相交流电传输优势分析
传输效率高
三相交流电采用三根导线 同时传输电能,相比单相 交流电,其传输效率更高 ,线路损耗更小。
大学物理电磁学课件PPT
0I2 0I1I2 = ————————I1Rd cos(/2) = ———cot(/2)d 2[2Rsin(/2)] 4
df
N
俯视图
力偶矩
dM= ——— cot(—)d 2Rsin( ) = ——— 4 2 I I R 0I1I2R 2 0 1 2 M cos d = ———— 0 2 2
L
例1.在匀强磁场中,有一长为 L 的载流直导线,其与磁场夹角 I 为 ,求磁场对它的作用力 f 。 I dl 解:任取一 I d l d f BI d l sin B
方向: 垂直纸面向里。各 d f 同向
f BI d l sin BI L sin
f
f d f I dl B
L L
(6-39)
求
的思路: 1) 求任一 I d l 的d f ;
I dl
I
2) 分解 d f
3) 合成
f f xi f y j
d fx d f y fx d fx
L
B
fy d fy
I
L
dfx
B
R
4 B I
f x BI d y =0 f y BI d x = BI l
0
3
(6-J3)
若为通电闭合回路?
结论:在稳恒的均匀磁场中,任意形状的通电导线所受的磁力
等效为连接该导线两端点的直线电流所受的磁力。 f I d l B
L
例3.求载流直导线在非匀强磁场中所受安培力。
B
电磁场与电磁波_第六章PPT课件
S1av S2av
第19页/共67页
6.2 均匀平面波对多层分界平面的 垂直入射
• 设有三层不同的无损耗媒质,两个分界面相互平行。媒质1与媒质2的分界面位
于 ,而媒质2厚度为d,与媒质3交界面为 • 电磁波从媒质1垂直入射,在两个分界面都要发生反射和透射
z0
z d • 媒质1与媒质2中都存在沿正z与负z方向传播的行波。媒质3中只存在沿+z方向
第27页/共67页
• 如果取媒质2的本征阻抗为
2 13
• 则:
ef 1
第28页/共67页
• 由此得媒质1和媒质2的分界面的反射数:
1 0
• 表明,只要插入四分之一波长厚度之媒质,且 媒质本征阻抗满足特定关系,则可以消除媒质1 的表面上的反射。
• 这种插入的媒质称为四分之一波长匹配层
第29页/共6r
(z)
ex
[
Eim
e
1
z
Erme1z
]
H• 媒1(质z2)中只有H透射i (波z,)其电场H和r磁(场z分) e 别为:y
1
1c
[ Eim e 1z
Erme1z ]
E2
(z)
Et
(z)
ex
Etme 2z
H2(z)
Ht (z)
ez
1
2c
Et (z)
• 合成波在空间没有移动,只是在原来的位置振动,故称这种波为驻波。
•在
的位置,电场振幅始终为0,故称这些点为电场的波节点
z n • 相对应振幅最大的位置,称为波腹点: 1
1z
n
z
n
2
(n
0,1,2,....)
1z
(2n
大学物理电磁学PPT课件
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
电磁场与电磁波(第6章)
面天线
由金属面或金属网构成的天线,具有增益高、方向性强等优点,常 用于卫星通信等领域。
阵列天线
由多个天线单元组成的阵列,通过相位和振幅的调整实现定向辐射 和接收,具有较高的增益和方向性。
天线接收原理
电磁波接收
天线通过感应电磁场中的变化,将电磁波转化为电流或电压信号。
波的极化
电磁波的极化是指电场矢量的方向随时间变化的方式,可以分为线极化、圆极化和 椭圆极化等类型。
极化的方向和方式由波源和传播介质共同决定,不同的极化方式会导致电磁波与物 质的相互作用方式不同。
在某些情况下,极化方式的变化可以用于信息传输和信号处理等领域,例如在雷达、 卫星通信和无线通信等领域的应用。
屏蔽是利用导电或导磁材料将需要保 护的电子设备或系统包围起来,以减 少外界电磁场对它们的干扰。
接地是将电子设备或系统的接地端子 与大地连接起来,以减少外界电磁场 对它们的干扰。
THANKS FOR WATCHING
感谢您的观看
电磁场与电磁波(第6 章
目录
• 电磁场的基本性质 • 电磁波的传播 • 电磁波的应用 • 电磁波的吸收与散射 • 电磁波的辐射与接收 • 电磁波的干扰与防护
01
电磁场的基本性质
电场与磁场的关系
电场与磁场是电磁场的两个基本组成部 分,它们之间存在相互依存的关系。变 化的电场会产生磁场,变化的磁场又会 产生电场,它们相互激发,形成电磁波
反射等。
05
电磁波的辐射与接收
天线辐射原理
电磁波辐射
天线通过电流在空间中产生变化的磁场,进而产生电 磁波辐射。
辐射效率
《电磁学》PPT课件
新型电磁材料与技术
超构材料、拓扑电磁学、量子电磁学等
电磁学与其它学科的交叉融合
电磁生物学、电磁化学、电磁信息学等
电磁学在高新技术领域的应用
5G/6G通信、太空探测、新能源技术等
未来电磁学技术发展趋势展望
高性能计算与仿真技术、智能电磁感知与 调控技术等
感谢您的观看
THANKS
正弦交流电路基本概念
1
正弦交流电路是指电流和电压随时间按正弦规律 变化的电路。正弦交流电具有周期性、连续性和 可叠加性等特点。
2
正弦交流电的基本参数包括振幅、频率、相位和 初相位等,这些参数决定了正弦交流电的性质和 特征。
3
正弦交流电路的分析方法包括时域分析法和频域 分析法,其中频域分析法在复杂交流电路分析中 具有重要意义。
处于静电平衡状态的导体,其内部电场被屏蔽,使得外部电场无法对 导体内部产生影响。
电介质极化现象及机理
1 2 3
电介质极化
电介质在静电场作用下,其内部正负电荷中心发 生相对位移,形成电偶极子,这种现象称为电介 质极化。
极化机理
电介质极化的机理包括电子极化、原子极化和取 向极化等。不同电介质在静电场中的极化程度不 同,这与其内部结构有关。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性
02
超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
大学物理《电磁学》PPT课件
大学物理《电磁学》PPT课件•电磁学基本概念与原理•静电场中的导体和电介质•恒定电流及其应用•磁场性质与描述方法•电磁感应原理及技术应用•电磁波传播特性及技术应用目录CONTENTS01电磁学基本概念与原理电场强度描述电场强弱的物理量,其大小与试探电荷所受电场力成正比,与试探电荷的电荷量成反比。
静电场由静止电荷产生的电场,其电场线不随时间变化。
电势与电势差电势是描述电场中某点电势能的物理量,电势差则是两点间电势的差值,反映了电场在这两点间的做功能力。
欧姆定律描述导体中电流、电压和电阻之间关系的定律。
恒定电流电流大小和方向均不随时间变化的电流。
静电场与恒定电流磁场磁感应强度磁性材料磁路与磁路定律磁场与磁性材料由运动电荷或电流产生的场,其对放入其中的磁体或电流有力的作用。
能够被磁场磁化并保留磁性的材料,分为永磁材料和软磁材料。
描述磁场强弱的物理量,其大小与试探电流所受磁场力成正比,与试探电流的电流强度和长度成反比。
磁路是磁性材料构成的磁通路径,磁路定律描述了磁路中磁通、磁阻和磁动势之间的关系。
描述变化的磁场产生感应电动势的定律。
法拉第电磁感应定律描述感应电流方向与原磁场变化关系的定律。
楞次定律描述磁场与变化电场之间关系的定律。
麦克斯韦-安培环路定律由变化的电场和磁场相互激发而产生的在空间中传播的电磁振荡。
电磁波电磁感应与电磁波麦克斯韦方程组及物理意义麦克斯韦方程组由四个基本方程构成的描述电磁场基本规律的方程组,包括高斯定理、高斯磁定理、法拉第电磁感应定律和麦克斯韦-安培环路定律。
物理意义麦克斯韦方程组揭示了电磁现象的统一性,预测了电磁波的存在,为电磁学的发展奠定了基础。
同时,该方程组在物理学、工程学等领域具有广泛的应用价值。
02静电场中的导体和电介质导体在静电场中的性质静电感应当导体置于外电场中时,导体内的自由电子受到电场力的作用,将重新分布,使得导体内部电场为零。
静电平衡当导体内部和表面的电荷分布不再随时间变化时,称导体达到了静电平衡状态。
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
大学物理《电磁学》课件
电磁场能量守恒定律表明,在电磁场的演化过程中,电磁场的能量不能被创造或消失,只能被转移或转化。这个 定律可以通过麦克斯韦方程组进行描述,并且在许多物理现象中都有应用,例如电磁波的传播、电磁能的转换等 。
电磁场动量守恒定律及其应用
总结词
电磁场动量守恒定律是电磁学中的另一个基本定律,它描述了电磁场动量在空间中的转移和转化,对 于理解电磁波的传播和散射等现象具有重要意义。
电磁学实验设计思路与方法论介绍
实验目的与背景
明确实验的意义和工程应用背 景,有助于学生更好地理解实
验的设计思路。
实验器材与设备
列出所需的实验器材和设备, 并简要介绍其功能和使用方法 。
实验原理与公式
详细阐述实验的基本原理和相 关的公式,为学生后续理解和 应用实验数据打下基础。
实验步骤与流程
清晰地列出实验的操作步骤和 流程,确保学生能够按照规定
的步骤进行实验。
电磁学实验操作技巧与注意事项分享
01
操作技巧
02
正确使用实验器材:熟悉各种实验器材的使用方法 和注意事项,如电源、电阻器、电感器等。
03
准确测量数据:在实验过程中,要按照规定的步骤 准确测量数据,避免误差的产生。
电磁学实验操作技巧与注意事项分享
• 保持实验安全:在实验过程中,要注意安全,避免触电、 烫伤等事故的发生。
大学物理《电磁学 》课件
汇报人: 202X-12-20
目录
• 电磁学概述 • 电场与电势 • 磁场与磁感应强度 • 电磁感应现象与麦克斯韦方程组 • 电磁场能量与动量守恒定律 • 电磁学实验设计与操作技巧
01
电磁学概述
电磁学定义与基本概念
电磁学定义
电磁学是研究电荷、电流、电场、磁 场以及它们之间相互作用相互影响的 学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B0 0nI0
H B0 0
B 0H 0M B0 0M
• [例题6-2]中子星是超新星爆发所产生的一种天体,
具的有磁很场强来的自磁中场子的.假磁设矩中子 n星, 是由n 都中沿子同密一集方构向成排的列球.体己,知它 中子的半径为 a 8 1016m ,中子磁矩为 n 9.66 1027 A m2 试求中子星的表面磁场最强处磁感强度的值.
[例题6-1]在均匀密绕的螺绕环内充满均匀的磁介质,已
知螺绕环 中的磁感应强度为
B0
,
介质的磁化强度为M
,求
环内的 B 和 H 。
[解]设螺绕环内平均半径为R,线圈
总匝数为N,取与环同心的园形积分
环路L,传导电流 I0 共穿过此环N次,
则
r
H L
dl
2RH
NI0
而B0是空心螺绕环的磁感应强度
无限长同轴圆柱面,两者之间充满着磁导率为 r2
r的1 均匀磁介质,在圆柱面上通有相反方向的电
流I。
试求:1) B和H的分布;
k
2) 在半径为R1 的界面上磁化
电流的大小.
r2
[解]⑴ 分析对称性,在环内任取一点,
作同向圆,应用安培环路定理
LH dl I0
I
II
r1
当 r R1
H1 dl H1 2r
铁磁质的磁滞及剩磁原因:用于磁畴的转向需要克服阻力 (来自磁畴间的摩擦),因此当外磁场减弱或消失时磁畴并 不按原来的变化规律退回原状,因而表现磁滞现象。当外磁 场停止作用后,磁畴的某种排列被保留下来,使得铁磁质仍 能保留磁性。
存在居里点原因:铁磁质中的自发磁化区域磁畴受到剧烈 的分子热运动的破坏,磁畴被瓦解,铁磁质的特性消失,过渡 到顺磁质.不同的铁磁质居里温度亦不同.
抗磁质(削B与弱原B反0磁向场,
r<1 )
软磁材料(B与 B同0 向,r>>1
矫顽力很小< )102
硬磁材料(B与 B同0 向,r>>1
矫顽力很大 10)2 ~ 104
弱磁介质的磁化机理
顺磁质:磁矩在外磁场作用下转向外磁场方向排列,宏观 上表现了沿外磁场方向产生附加磁场.
抗磁质:分子固有磁矩为零,附加磁矩是抗磁质产生磁效应 的唯一原因.附加磁场与外磁场相反。
度 Bmax .已知半径为R的圆电流I在轴线上离圆心为r处产生的
磁感强度为
B
2
0 IR 2
r2 R2
3 2
Rd
如图所示,中子星表面 处的 环带 Rd 上磁化电流为
N
0
dIm imRd MR sind
故这环形磁化电流在N点产生的磁感强度的大小为
dBmax
0 R sin 2 MR sin d 2 R R cos 2 R sin 2
到B、H、M三者的方向一致,故它们之间关系式可写成标量
关系,故
M1
B1
0
H1
r1
1H1
r1 1Ir
2R12
M2
B2
0
H2
r 2
1H2
r2 1I
2r
磁介质在半径为R1的界面内外两侧的磁化
•
M并不沿原M- H线返回,而是沿SRC’变化;
• (2) 当H=0时,M不等于0, 剩余磁化强度;
• (3) 将H反向增加,M=0,退磁,娇顽力;
• (4) 娇顽力大小, 硬磁/软磁;
• (5) 对铁磁质, 给定H值,并不能由此定B值,B不仅与H有关,也与材料是 否已磁化,如何磁化有关;
• (6) 去磁, 逐渐减小H值;
z
进动
m
L L
mi
mi
m
O
尽管每个分子的分子固有磁矩为零,但分子中电子的运 动相当一个磁矩 .在外磁场作用下,电子受到洛仑兹力作用 产生进动,从而产生附加磁矩 .由于电子带负电,附加磁矩 总是与外磁场相反,即产生了抗磁性.
铁磁质: 磁畴: 自发磁化的小区,内磁矩排列整齐; 无外场:许多磁畴的磁矩杂乱无章。
[解]将中子星看作一个磁化球,由于中子
星内的中子是密集的,故磁化是均匀的,其磁
化强度为
M nma nn
式中n是单位体积(1立方米)内的中子数
n 1 4 a3
3
由于是均匀磁化,故中子星内的磁化电流密度为
jm M 0
中子星表面的磁化面电流密度为
im
M
n
中子星表面磁场最强处在N,S两极.下面由 im 求N极的磁感强
I0i
I
R12
r
2
H1
Ir
2R12
B1
r10 H1
r10 Ir 2R12
当 R1 r R2
H2 dl H2 2r I0i I
H2
I
2r
B2
r20H2
r20I 2r
当
r
R2
H
H3 dl H3 2r I0i I I 0
H3 0
B3 0H3 0
O
R1 R2 r
⑵ 设 r R1 和 R1 r R2 时的磁化强度为 M1、M2 ,考虑
• (7) 磁滞损耗,一个周期消耗的能量由磁滞回线的面积确定.
不加外磁场:每一磁畴中,各原子的排列很整齐,因此具有很 强的磁性.但不同的磁畴排列方向彼此不同,所以没有外磁场时, 各磁畴磁矩相互抵消,对外不显磁性.
加上外磁场 :各磁畴磁矩取向趋于一致,且与外磁场方向相同, 所以在不强的外磁场下,铁磁质会表现出很强的磁性.通常铁磁质 产生的附加磁场要比外磁场要大好几个数量级。
有外场:磁畴的磁矩若与外场同方向,则磁畴扩 大; 磁畴的磁矩若与外场反方向,则磁畴缩小。
最终完全转向磁化方向即饱和。这是一种纯量子 力学效应。
M s :饱和磁化强度 OABDS:起始磁化曲线
Ms-饱和磁化 强度
MR-剩余 磁化强度
Hc- 矫顽力
SRC’S’R’C S—磁滞回
线
磁滞现象:
• (1). 当铁磁质磁化到饱和状态s点,如减小H,
归纳:弱磁质,各向同性磁介质时的磁场各量计算
• • • •
已由由由知HMi代传 入导M电求求mB流Hn的求分H布iMH,用安B 培环路定理求
区分三个概念:
磁感强度 磁场强度 磁化强度
B H
0
B
H
M M
M
0
B
H
0
弱磁性物质
顺磁质(B与 B同0向, r>1
增强原磁场)
磁介质 分类
强磁性物质 (铁磁质)
32
20M sin 3 d
8 1 cos 3 2
积分便得N点的磁感强度为
Bmax
20 M
8
0
sin3 d
1 cos 3 2
2 3
0
M
Bmax
2 3
4
107 3 9.66 1027
4 8 1016 3
4R1的无限长的充满相对磁导 率为 r1 圆柱体中通有电流I,在它外面有半径R2的