陕西省商洛市中考数学总复习:二次函数
完整版)二次函数知识点复习
完整版)二次函数知识点复习二次函数知识点一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax²的性质:a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值。
a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值。
2.y=ax²+c的性质:上加下减。
a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。
性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值c。
a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值c。
3.y=a(x-h)²的性质:左加右减。
a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。
性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值。
ah时,y减小;当x<h时,y增大;当x=h时,y有最大值。
4.y=a(x-h)²+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。
性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值k。
ah时,y减小;当x<h时,y增大;当x=h时,y有最大值k。
三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)²+k,确定其顶点坐标(h,k),具体平移方法如下:保持抛物线y=ax²的形状不变,将其顶点平移到(h,k)处,向上(k>0)或向下(k<0)平移|k|个单位。
中考数学复习专项知识总结—二次函数(中考必备)
中考数学复习专项知识总结—二次函数(中考必备)1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。
其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。
2、二次函数的图象是一条抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。
3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;(2)抛物线与x轴的交点和一元二次方程的根的关系1、通过对实际问题的分析,体会二次函数的意义。
2、会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
3、会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。
4、会利用二次函数的图象求一元二次方程的近似解。
1、二次函数的基本概念。
2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。
3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。
4、二次函数图象的平移。
5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。
1、下列各点中,在函数y =-x 2图象上的点是( )A 、(-2,4)B 、(2,-4)C 、(-4,2)D 、(4,-2)2、二次函数y =(3m -2)x 2+mx +1的图象开口向上,则m 的取值范围是 。
3、抛物线21(3)52y x =---的开口方向 ,对称轴是 ,顶点坐标是 ,与x 轴的交点个数是 个。
4、二次函数21522y x x =+-的图象的顶点坐标是 。
5、二次函数y =2(x -1)2+5图象的对称轴和顶点P 的坐标分别是( ) A 、直线x =-1,P(-1,5) B 、直线x =-1,P(1,5) C 、直线x =1,P(1,5) D 、直线x =1,P(-1,5) 6、把抛物线y =-4x 2向上平移2个单位,再向左平移3个单位,得到的抛物线是( )A 、y =-4(x +3)2+2B 、y =-4(x +3)2-2C 、y =-4(x -3)2+2D 、y =-4(x -3)2-27、在平面直角坐标系中,将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点变为( )A 、(0,0)B 、(1,-2)C 、(0,-1)D 、(-2,1)8、二次函数y=(x-1)2+2的最小值是()A、2B、1C、-1D、-29、已知二次函数y=3x2+2x+a与x轴没有交点,则a的取值范围是。
陕西中考数学第24题二次函数专题整理
24.(本题满分10分)(2007陕西)如图,在直角梯形OBCD 中,8110OB BC CD ===,,. (1)求C D ,两点的坐标;(2)若线段OB 上存在点P ,使PD PC ⊥,求过D P C ,, 三点的抛物线的表达式.24.(本题满分10分)(2008陕西副题)如图,在Rt △ABC 中,∠A=90°,∠ABC=60°,OB=1,OC=5. (1)求经过B 、A 、C 三点的抛物线的表达式; (2)作出△ABC 关于y 轴对称的△C B A ''';(3)经过B '、A '、C '三点的抛物线能否由(1)中的抛物线平移得到?若能,怎样得到?若不能,请说明理由.DCB P O yx(第24题图)24、(本题满分10分)(2008陕西) 如图,矩形ABCD 的长、宽分别为32和1,且OB =1,点E (32,2),连接AE 、ED 。
(1)求经过A 、E 、D 三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB 放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A ′E ′D ′C ′B ′;(3)经过A ′、E ′、D ′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由。
24.(本题满分10分)(2009陕西副)如图,一条抛物线经过原点,且顶点B 的坐标(1,-1). (1)求这个抛物线的解析式;(2)设该抛物线与x 轴正半轴的交点为A ,求证:△OBA 为等腰直角三角形;(3)设该抛物线的对称轴与x 轴的交点为C ,请你在抛物线位于x 轴上方的图象上求两点E 、F ,使△ECF 为等腰直角三角形,且∠EOF=90°1 2 3 4 5 6 7AB CE DOxy16 4 2 3 57 (第24题图)24.(本题满分10分)(2009陕西)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.24.(本题满分10分)(2010陕西副)如图,在平面直角坐标系中,△ABC 是直角三角形,且∠BAC=90°,∠ACB=30°,点A 的坐标为(0,3).(1)求点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角形,求点P 、Q 的坐标.yOB Ax1 1(第24题图)(第24题图)24.(本题满分10分)(2009陕西)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.24.(本题满分10分)(2010陕西副)如图,在平面直角坐标系中,△ABC 是直角三角形,且∠BAC=90°,∠ACB=30°,点A 的坐标为(0,3).(1)求点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角形,求点P 、Q 的坐标.yOB Ax1 1(第24题图)(第24题图)(2010陕西)24.如图,在平面直角坐标系中,抛物线A (-1,0),B (3,0)C (0,-1)三点。
《二次函数》知识点知识点总结
《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
中考备考数学总复习第12讲二次函数(含解析)
第12讲 二次函数[锁定目标考试]考标要求考查角度1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 二次函数是中考考查的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.[导学必备知识]知识梳理一、二次函数的概念一般地,形如y =______________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的两种形式:(1)一般形式:____________________________;(2)顶点式:y =a (x -h )2+k (a ≠0),其中二次函数的顶点坐标是________.二、二次函数的图象及性质二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0) 图象(a >0)(a <0) 开口方向 开口向上 开口向下对称轴 直线x =-b 2a 直线x =-b 2a顶点坐标 ⎝⎛⎭⎫-b 2a ,4ac -b 24a ⎝⎛⎭⎫-b 2a ,4ac -b 24a增减性 当x <-b 2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大 当x <-b 2a时,y 随x 的增大而增大;当x >-b 2a时,y 随x 的增大而减小最值 当x =-b 2a 时,y 有最______值4ac -b 24a 当x =-b 2a 时,y 有最______值4ac -b 24a三、二次函数图象的特征与a ,b ,c 及b 2-4ac 的符号之间的关系四、二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的________和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.3.设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式.六、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A (x 1,0),B (x 2,0),则x 1+x 2=________,x 1·x 2=________.自主测试1.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-32. 如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四个结论:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )A .2个B .3个C .4个D .1个3.当m =__________时,函数y =(m -3)xm 2-7+4是二次函数.4.(上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________.5.(广东珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.[探究重难方法]考点一、二次函数的图象及性质【例1】 (1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b 2a=--62×(-3)=-1, 4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A .(2)点(-1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y3),∵抛物线对称轴为直线x=1,∴点(0,y3)与点(2,y2)关于直线x=1对称.∴y3=y2.∵a>0,∴当x<1时,y随x的增大而减小.∴y1>y3.∴y1>y2.答案:(1)A(2)>方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应用对称轴公式x=-b2a ,顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法:(1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;(3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根考点二、利用二次函数图象判断a,b,c的符号【例2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a +b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a+b+c=0;根据-b2a=-1,推出b=2a;根据图象关于对称轴对称,得出与x轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.答案:①③方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个C.4个 D.5个考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y=-2x2+4x+1=-2(x-1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y=-2x2的图象.答案:C方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.解:(1)由抛物线的对称性可知AE=BE.∴△AOD≌△BEC.∴OA=EB=EA.设菱形的边长为2m,在Rt△AOD中,m2+(3)2=(2m)2,解得m=1.∴DC=2,OA=1,OB=3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3). (2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧ a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧ a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标.考点五、二次函数的实际应用【例5】 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少;(3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通5一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.[品鉴经典考题]1.(湖南株洲)如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是( )A .(-3,0)B .(-2,0)C .x =-3D .x =-2 2.(湖南郴州)抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3. (湖南娄底)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1x 2=12.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.4.(湖南长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x ,25≤x ≤30,25-0.5x ,30<x ≤35(年获利=年销售收入-生产成本-成本).(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.5. (湖南湘潭)如图,抛物线y =ax 2-32x -2(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.[研习预测试题]1.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( )A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由. 参考答案【知识梳理】一、ax 2+bx +c (1)y =ax 2+bx +c (a ,b ,c 是常数,a ≠0) (2)(h ,k )二、小 大三、y 轴 左 右四、形状六、2.横坐标 4.-b a c a导学必备知识自主测试1.C2.D ∵抛物线与x 轴有两个交点,∴b 2-4ac >0;与y 轴交点在(0,0)与(0,1)之间,∴0<c <1,∴(2)错;∵-b 2a >-1,∴b 2a<1,∵a <0,∴2a <b ,∴2a -b <0; 当x =1时,y =a +b +c <0,故选D.3.-3 由题意,得m 2-7=2且m -3≠0,解得m =-3.4.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3).∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎪⎨⎪⎧ 0=k +b ,3=4k +b ,解得⎩⎪⎨⎪⎧ k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.探究考点方法触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0;∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0.由题图知当x =-1时,y >0,即a -b +c >0.对称轴是直线x =13, ∴-b 2a =13,即2a +3b =0; 由⎩⎪⎨⎪⎧a -b +c >0,2a +3b =0,得c -52b >0. 又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0. ∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3. ∴m =6.(2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3). 触类旁通5.解:(1)(10+7x ) (12+6x )(2)y =(12+6x )-(10+7x )=2-x .(3)∵w =2(1+x )(2-x )=-2x 2+2x +4,∴w =-2(x -0.5)2+4.5.∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元. 品鉴经典考题1.A 点A 到对称轴的距离为2,由抛物线的对称性知,另一个交点的横坐标为-3,所以另一个交点坐标为(-3,0).2.D3.解:(1)由已知得x 1+x 2=m 2-2,x 1x 2=-2m .∵1x 1+1x 2=12,即x 1+x 2x 1x 2=12, ∴m 2-2-2m =12, 解得m =1或m =-2.当m =1时,y =x 2+x -2,得A (-2,0),B (1,0);当m =-2时,y =x 2-2x +4,与x 轴无交点,舍去.∴这个二次函数的解析式为y =x 2+x -2.(2)由(1)得A (-2,0),B (1,0),C (0,-2).假设存在一点P ,使四边形P ACB 是平行四边形,则PB ∥AC 且PB =AC ,根据平移知识可得P (-1,2),经验证P (-1,2)在直线y =x +3上,故在直线y =x +3上存在一点P (-1,2),使四边形P ACB 为平行四边形.4.解:(1)当x =28时,y =40-28=12.所以,产品的年销售量为12万件.(2)①当25≤x ≤30时,W =(40-x )(x -20)-25-100=-x 2+60x -925=-(x -30)2-25,故当x =30时,W 最大为-25,即公司最少亏损25万元;②当30<x ≤35时,W =(25-0.5x )(x -20)-25-100=-12x 2+35x -625=-12(x -35)2-12.5,故当x =35时,W 最大为-12.5,及公司最少亏损12.5万元,综上所述,的第一年,公司亏损,最少亏损是12.5万元;(3)①当25≤x ≤30时,W =(40-x )(x -20-1)-12.5-10=-x 2+61x -862.5, 令W =67.5,则-x 2+61x -862.5=67.5,化简得x 2-61x +930=0,x 1=30,x 2=31,此时,当两年的总盈利不低于6.75万元时,x =30.②当30<x ≤35时,W =(25-0.5x )(x -20-1)-12.5-10=-12x 2+35.5x -547.5, 令W =67.5,则-12x 2+35.5x -547.5=67.5, 化简得x 2-71x +1 230=0,x 1=30,x 2=41,此时,当两年的总盈利不低于67.5万元时,30<x ≤35.所以,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x ≤35.5.解:(1)将点B (4,0)代入y =ax 2-32x -2(a ≠0)中,得a =12.∴抛物线的解析式为y =12x 2-32x -2. (2)∵当12x 2-32x -2=0时,解得x 1=4,x 2=-1, ∴A 点坐标为(-1,0),则OA =1.∵当x =0时,y =12x 2-32x -2=-2,∴C 点坐标为(0,-2),则OC =2.在Rt △AOC 与Rt △COB 中,OA OC =OC OB =12, ∴Rt △AOC ∽Rt △COB .∴∠ACO =∠CBO .∴∠ACB =∠ACO +∠OCB =∠CBO +∠OCB =90°.∴△ABC 为直角三角形.∴△ABC 的外接圆的圆心为AB 中点,其坐标为⎝⎛⎭⎫32,0.(3)连接OM .设M 点坐标为⎝⎛⎭⎫x ,12x 2-32x -2,则S △MBC =S △OBM +S △OCM -S △OBC =12×4×⎝⎛⎭⎫-12x 2+32x +2+12×2×x -12×2×4 =-(x -2)2+4.∴当x =2时,△MBC 的面积有最大值为4,点M 的坐标为(2,-3).研习预测试题1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D.4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎪⎨⎪⎧1-b +c =0,1+b +c =-2,解得⎩⎪⎨⎪⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2, ∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y 取得最大值,②错误. 7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b -2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎪⎨⎪⎧ 4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧ a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t . ∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295. ∴10-t =7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L 2与L 1有关图象的两条相同的性质:对称轴为直线x =2或顶点的横坐标为2;都经过A (1,0),B (3,0)两点.②线段EF 的长度不会发生变化.∵直线y =8k 与抛物线L 2交于E ,F 两点,∴kx 2-4kx +3k =8k ,∵k ≠0,∴x 2-4x +3=8,解得x 1=-1,x 2=5.∴EF =x 2-x 1=6,∴线段EF 的长度不会发生变化.。
初三二次函数总结归纳
初三二次函数总结归纳哎呀,今天咱们来聊聊二次函数,真是个既简单又复杂的话题,听起来就像一碗杂烩,有点什么都有。
想想看,二次函数其实就是形如 (y = ax^2 + bx + c) 的那种方程。
哇,里面的字母可真多,不过别紧张,其实就像咱们平时说的,东西放在哪里,位置不一样,结果也不一样,简单得很。
先说说这个“a”,如果“a”是个正数,那这个抛物线就像微笑的脸,张着嘴,弯弯的;要是“a”是负数,那就变成了愁眉苦脸,头低着,弯曲得跟个香蕉似的。
看吧,数学也可以有情绪,挺有意思的吧?然后我们就得聊聊顶点了。
顶点就是抛物线最高点或最低点,真是个神奇的地方,像宝藏一样藏在里面。
这个顶点的坐标怎么找呢?别担心,公式简单得跟小学生的数学题一样,顶点的横坐标 (x) 可以用 (frac{b{2a) 来算。
你可能会想,怎么就这么简单呢?哈哈,数学就是这样,有时候看起来复杂,其实背后是一片平静的湖水,轻轻一抚,就能看到底下的秘密。
再来聊聊这个“b”,它决定了抛物线的位置。
你想啊,假如你在大街上走,突然发现一辆车停在你面前,那个车的方向就是“b”的感觉。
它让抛物线往左或往右移动。
更有趣的是,常常有人把“c”看作是起点的高度。
比如说,抛物线的起点在天空中飞,可能就是“c”给它的。
好了,咱们再聊聊二次函数的图像吧。
大家都知道,图像就像是二次函数的名片,画得好,别人一眼就能认出你。
抛物线的开口朝上或者朝下,完全取决于“a”的符号。
要是“a”是正的,抛物线就开口朝上,想想,像一朵盛开的花,给人一种温暖的感觉。
反之,开口朝下,就像阴天的乌云,给人一种压抑的感觉。
再说到二次函数的零点,哎呀,这个可真有意思。
零点就是函数值为零的点,简单来说,就是抛物线和x轴的交点。
找零点的方式有很多,最常见的就是使用求根公式,或者直接把 (ax^2 + bx + c = 0) 给它解决掉。
这就像是解密游戏,一层一层拨开,最后找到那把钥匙,打开宝藏。
九年级二次函数所有知识点
九年级二次函数所有知识点九年级二次函数是数学课程中的重要内容,掌握好二次函数的知识,对于解决实际问题和进一步学习高中数学都具有重要意义。
接下来,我们将逐一介绍九年级二次函数的所有知识点。
一、二次函数的定义二次函数是形如y = ax²+ bx + c的函数,其中a、b、c为常数,a ≠ 0。
其中,a为二次函数的二次项系数,b为一次项系数,c为常数项。
二、二次函数的图像特点1. 凹凸性:当a>0时,二次函数的图像开口朝上,凹;当a<0时,二次函数的图像开口朝下,凸。
2. 对称轴:二次函数的图像关于直线x = -b/2a 对称。
3. 最值点:当a>0时,二次函数的最值点为最低点,最小值为c-b²/4a;当a<0时,二次函数的最值点为最高点,最大值为c-b²/4a。
三、二次函数的零点1. 零点定义:二次函数的零点是函数曲线与x轴的交点,即求解方程ax² + bx + c = 0。
2. 判别式:二次函数零点的判别式Δ = b²-4ac,当Δ>0时,有两个不同的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实数根。
3. 求根公式:根据判别式Δ的值,可以使用求根公式x = (-b±√Δ)/2a 求得二次函数的零点。
四、二次函数的图像与系数的关系1. a的取值:当a>0时,二次函数图像开口朝上,a的绝对值越大,图像越扁平;当a<0时,二次函数图像开口朝下,a的绝对值越大,图像越陡峭。
2. b的取值:b的正负决定了二次函数对称轴与y轴的位置关系,当b>0时,对称轴在y轴右侧;当b<0时,对称轴在y轴左侧。
3. c的取值:c的值决定了二次函数图像与y轴的位置关系,当c>0时,图像在y轴上方;当c<0时,图像在y轴下方。
五、二次函数的应用1. 最值问题:通过求二次函数的最值点,可以解决最值问题,如最大值、最小值的求解。
二次函数知识点复习
二次函数知识点复习二次函数是数学中重要的一类函数,由形如y=ax^2+bx+c的表达式表示,其中a、b、c为常数且a不为0。
本文将从函数图像、性质、方程、最值等几个方面对二次函数进行全面复习。
首先,我们来看二次函数的图像特点。
二次函数的函数图像是一条抛物线,具体形状取决于a的正负和大小。
当a>0时,抛物线开口向上,称为正抛物线;当a<0时,抛物线开口向下,称为负抛物线。
二次函数的图像关于与抛物线的对称轴对称,对称轴的x坐标为-x轴的系数的一半,即x=-b/2a。
通过对称轴可以确定抛物线的对称中心。
其次,我们来了解一些二次函数的性质。
首先是定义域和值域。
对于所有的实数x,二次函数的定义域为实数集R。
对于正抛物线,其值域为二次函数的最低点(即最小值)到正无穷大的开区间;对于负抛物线,其值域为负无穷大到二次函数的最高点(即最大值)的开区间。
其次是奇偶性。
二次函数关于y轴是对称的,所以它具有关于y轴对称的特点,即二次函数为偶函数。
最后是单调性。
对于正抛物线,它在抛物线的两侧是递减的,在对称轴两侧是递增的;对于负抛物线,它在对称轴两侧是递减的,在抛物线的两侧是递增的。
接下来,我们来看二次函数的方程。
二次函数的方程一般有三种形式:一元二次方程、一次二次方程和二次二次方程。
一元二次方程是最常见的形式,由ax^2+bx+c=0表示,其中a、b、c为常数且a不为0。
一元二次方程的求解可以利用因式分解、配方法、求根公式等方法。
一次二次方程和二次二次方程是根据实际问题的特点而表示的方程形式。
例如,一次二次方程可能表示一些物理量与时间的关系,二次二次方程可能表示一些函数与另一个函数的复合关系。
最后,我们来讨论二次函数的最值问题。
对于任意的二次函数y=ax^2+bx+c,其中a不为0,其最值和最值点的求解需要根据a的正负情况进行讨论。
当a>0时,函数的最小值为c-a^2/(4a),其最小值点的x 坐标为-x轴的系数的一半,即x=-b/2a。
中考数学总复习之 二次函数综合
连接 BC,如图①,∵B(5,0),C0,-52,∴设直线 BC 的解
析式为 y=kx+b(k≠0),∴5bk=+-b2= 5,0,
解得k=21, b=-52,
∴直线 BC 的解析式为 y=21x-52,当 x=2 时,y=1-52=-23, ∴P2,-32.
(3)存在,如图②. ①当点 N 在 x 轴下方时,∵抛物线的对称轴为直线 x=2, C0,-52,∴N14,-52. ②当点 N 在 x 轴上方时,如图②,过点 N2 作 N2D⊥x 轴于点 D,
解:(1)已知抛物线 y=21x2-32x-9,当 x=0 时,y=-9,则 C(0,-9),当 y=0 时,12x2-32x-9=0,得 x1=-3,x2=6, 则 A(-3,0),B(6,0),∴AB=9,OC=9.
(2)∵ED∥BC,∴△AED∽△ABC,
∴SS△△AAEBDC=AABE2,即12×S9×9=m9 2,得 S=21m2(0<m<9).
2.如图,抛物线 y=12x2-32x-9 与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,连接 B C ,A C .
(1)求 AB 和 OC 的长; (2)点 E 从点 A 出发,沿 x 轴向点 B 运动(点 E 与点 A,B 不重 合),过点 E 作直线 l 平行于 BC,交 AC 于点 D.设 AE 的长为 m,△ADE 的面积为 S,求 S 关于 m 的函数关系式,并写出自 变量 m 的取值范围; (3)在(2)的条件下,连接 CE,求△CDE 面积的最大值;此时, 求出以点 E 为圆心,与 BC 相切的圆的面积(结果保留 π).
在 △AN2D
与 △M2CO
∠N2AD=∠CM2O, 中 , A∠NA2N=2CDM=2∠,M2CO,
中考数学考点17二次函数综合题总复习(原卷版)
二次函数综合题【命题趋势】在中考中.二次函数综合题每年必考点.特别是跟几何结合.经常在压轴题中出现。
【中考考查重点】一、线段问题二、面积问题三、等腰、直角三角形问题四、特殊四边形问题五、相似三角形问题六、与角度有关问题考点一:线段问题1.(2021秋•龙沙区期末)如图.抛物线y=ax2+bx+c与x轴交于A(﹣1.0).B(3.0)两点.与y轴交于点C(0.3).抛物线的顶点为D.连接BC.P为线段BC上的一个动点(P 不与B、C重合).过点P作PF∥y轴.交抛物线于点F.交x轴于点G.(1)求抛物线的解析式;(2)当PG=2PF时.求点P的坐标;考点二:面积问题2.(2021秋•梅里斯区期末节选)如图.在平面直角坐标系中.已知直线y=x﹣2与x轴交于点A.与y轴交于点B.过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1.0).(1)求抛物线的解析式和顶点坐标;(2)探究:在抛物线上直线AB下方是否存在一点P.使△ABP面积最大?若存在.请求出点P的坐标.若不存在.请说明理由;考点三:等腰、直角三角形问题3.(2021秋•龙凤区校级期末)如图.已知抛物线y=ax2+bx﹣8的图象与x轴交于A(2.0)和B(﹣8.0).与y轴交于点C.(1)求该抛物线的解析式;(2)点F是直线BC下方抛物线上的一点.当△BCF的面积最大时.在抛物线的对称轴上找一点P.使得△BFP的周长最小.请求出点F的坐标和点P的坐标;(3)在(2)的条件下.是否存在这样的点Q(0.m).使得△BFQ为等腰三角形?如果有.请直接写出点Q的坐标;如果没有.请说明理由.4.(2021秋•黄埔区期末)如图.抛物线y=mx2﹣4mx﹣5m(m>0)与x轴交于A、B两点.与y轴交于C点.(1)求抛物线顶点M的坐标(用含m的代数式表示).A.B两点的坐标;(2)是否存在使△BCM为直角三角形的抛物线?若存在.请求出;若不存在.请说明理由.特考点四:特殊四边形问题5.(2021秋•龙江县期末节选)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1.0).与y轴交于点C.连接AC.有一动点D在线段AC上运动.过点D作x轴的垂线.交抛物线于点E.交x轴于点F.AB=4.设点D的横坐标为m.(1)求抛物线的解析式;(2)当m=﹣2时.在平面内是否存在点Q.使以B.C.E.Q为顶点的四边形为平行四边形?若存在.请直接写出点Q的坐标;若不存在.请说明理由.6.(2021秋•江西月考)如图.抛物线y=﹣x2+3x+m与x轴的一个交点为A(4.0).另一交点为B.且与y轴交于点C.连接AC.(1)求m的值及该抛物线的对称轴;(2)若点P在直线AC上.点Q是平面内一点.是否存在点Q.使以点A、点B、点P、点Q为顶点的四边形为正方形?若存在.请直接写出Q点的坐标;若不存在.请说明理由.考点五:相似三角形问题7.(2021秋•建华区期末节选)抛物线y=x2+bx+c经过A、B(1.0)、C(0.﹣3)三点.点D为抛物线的顶点.连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在线段AC上找一点M.使△AOM∽△ABC.请你直接写出点M的坐标;考点六:与角度有关的问题8.(2021秋•郧西县期末)如图.抛物线y=ax2+bx﹣3与x轴交于点A(1.0)、B(3.0).与y轴交于点C.连接AC.BC.(1)求抛物线的函数解析式;(2)Q为抛物线上一点.若∠ACQ=45°.求点Q的坐标.3.(2021•郴州)将抛物线y=ax2(a≠0)向左平移1个单位.再向上平移4个单位后.得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A.B.与y轴交于点C.已知A(﹣3.0).点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图1.点P在线段AC上方的抛物线H上运动(不与A.C重合).过点P作PD ⊥AB.垂足为D.PD交AC于点E.作PF⊥AC.垂足为F.求△PEF的面积的最大值;(3)如图2.点Q是抛物线H的对称轴l上的一个动点.在抛物线H上.是否存在点P.使得以点A.P.C.Q为顶点的四边形是平行四边形?若存在.求出所有符合条件的点P 的坐标;若不存在.说明理由.1.(2021秋•长兴县月考)如图.在平面直角坐标系xOy中.抛物线y=﹣x2+bx+c与x轴交于A(1.0)和B(3.0).点D为线段BC上一点.过点D作y轴的平行线交抛物线于点E.连结BE.(1)求抛物线的解析式;(2)当△BDE为直角三角形时.求线段DE的长度;(3)在抛物线上是否存在这样的点P.使得∠ACP=45°.若存在.求出点P的坐标;若不存在.请说明理由.2.(2021秋•新荣区月考)如图1.在平面直角坐标系中.二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1.0).B(4.0).与y轴交于C(0.4).(1)求该二次函数的解析式.(2)二次函数位于x轴上方的图象上是否存在点P.使得S△BOP=6S△AOC?如果存在.请求出点P的坐标;若不存在.请说明理由.(3)如图2.D为线段BC上的一个动点.过点D作DE∥y轴.交二次函数的图象于点E.求线段DE长度的最大值.1.(2021•内江)如图.抛物线y=ax2+bx+c与x轴交于A(﹣2.0)、B(6.0)两点.与y 轴交于点C.直线l与抛物线交于A、D两点.与y轴交于点E.点D的坐标为(4.3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方.连接P A、PD.求当△P AD面积最大时点P的坐标及该面积的最大值;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.2.(2021•西藏)在平面直角坐标系中.抛物线y=﹣x2+bx+c与x轴交于A.B两点.与y 轴交于点C.且点A的坐标为(﹣1.0).点C的坐标为(0.5).(1)求该抛物线的解析式;(2)如图(甲).若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时.求点P的坐标;(3)图(乙)中.若点M是抛物线上一点.点N是抛物线对称轴上一点.是否存在点M 使得以B.C.M.N为顶点的四边形是平行四边形?若存在.请求出点M的坐标;若不存在.请说明理由.3.(2021•湘潭)如图.一次函数y=x﹣图象与坐标轴交于点A、B.二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C.点P是对称轴上一动点.在抛物线上是否存在点Q.使得以B、C、P、Q为顶点的四边形是菱形?若存在.求出Q点坐标;若不存在.请说明理由.4.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1.0).点B(3.0).顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1.点P在抛物线上.连接CP并延长交x轴于点D.连接AC.若△DAC是以AC为底的等腰三角形.求点P的坐标;(3)如图2.在(2)的条件下.点E是线段AC上(与点A.C不重合)的动点.连接PE.作∠PEF=∠CAB.边EF交x轴于点F.设点F的横坐标为m.求m的取值范围.1.(2021•宝鸡模拟)如图.已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1.0)和B.与y 轴交于点C(0.3).(1)求此抛物线的解析式及点B的坐标;(2)设抛物线的顶点为D.连接CD、DB、CB、AC.①求证:△AOC∽△DCB;②在坐标轴上是否存在与原点O不重合的点P.使以P、A、C为顶点的三角形与△DCB相似?若存在.请直接写出点P的坐标;若不存在.请说明理由.2.(2021•中山市模拟)如图.抛物线y=﹣x﹣3与x轴交于A.B两点(点A在点B 的左侧).与y轴交于点C.直线l与抛物线交于A.D两点.与y轴交于点E.点D的坐标为(4.﹣3).(1)请直接写出A.B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点.点P的横坐标为m(m≥0).过点P作PM⊥x轴.垂足为M.PM与直线l交于点N.当点N是线段PM的三等分点时.求点P的坐标;(3)若点Q是y轴上的点.且∠ADQ=45°.求点Q的坐标.3.(2020•长春模拟)如图.抛物线y=﹣x2+bx+c与x轴交于点A(1.0)、B(3.0)(点A 在点B的左边).与y轴交于点C.过点C作CD∥x轴.交抛物线于点D.过点D作DE ∥y轴.交直线BC于点E.点P在抛物线上.过点P作PQ∥y轴交直线CE于点Q.连接PB.设点P的横坐标为m.PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时.求d关于m的函数关系式;(4)当△PQB是等腰三角形时.直接写出m的值.4.(2021•黄冈二模)如图.抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1.0)和点B (2.0).与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1.连接BC.点D是直线BC上方抛物线上的点.连接OD、CD.OD交BC于点F.当S△COF:S△CDF=2:1时.求点D的坐标;(3)如图2.点E的坐标为(0.﹣1).在抛物线上是否存在点P.使∠OBP=2∠OBE?若存在.请直接写出符合条件的点P的坐标;若不存在.请说明理由.5.(2021•阳东区模拟)如图.已知抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1.0).与y 轴相交于点N(0.3).抛物线的顶点为D.经过点A的直线y=kx+1与抛物线y=﹣x2+bx+c相交于点C.(1)求抛物线的解析式;(2)若P是抛物线上位于直线AC上方的一个动点.设点P的横坐标为t.过点P作y 轴的平行线交AC于M.当t为何值时.线段PM的长最大.并求其最大值;(3)若抛物线的对称轴与直线AC相交于点B.E为直线AC上的任意一点.过点E作EF∥BD交抛物线于点F.以B.D.E.F为顶点的四边形能否为平行四边形?若能.请直接写出点E的坐标;若不能.请说明理由.。
中考数学二次函数章节总结与复习.doc
二次函数思维导图
一、二次函数的定义:
1.一般地,如果y=ax_+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=c=0时,y=ax_是二次函数的特殊形式。
2.二次函数的三种基本形式:
(1)一般式:y=ax_+bx+c(a,b,c是常数,a≠0);
六、二次函数与一元二次方程的关系:
二次函数y=ax_+bx+c的图象和x轴交点有三种情况:
有两个交点,有一个交点,没有交点;
当二次函数y=ax_+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,
即一元二次方程ax2+bx+c=0的根。
二次函数与一元二次方程的关系
七、二次函数的应用:
(2)顶点式:y=a(x-h)_+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);
(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标。
二、二次函数的图象和性质:
二次函数的图像和性质
三、二次函数y=ax_+bx+c(a ≠ 0)的图象特征与系数a,b,c的关系:
2.顶点式:y=a(x-h)_+k(a≠0)
若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式y=a(x-h)_+k(a≠0),将已知条件代入,求出待定系数的值,最后将解析式化为一般式。
3.交点式:y=a(x-x1)(x-x2)(a≠0)
若已知二次函数图象与x轴的两个交点的坐标,则设交点式y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a的值,最后将解析式化为一般式。
1.二次函数的应用包括以下两个方面:
2025年中考数学总复习+题型7 二次函数的综合应用++++课件+
将点B的坐标代入上式得2 =3 (2-m),
解得m= ,
则点F'( ,3
),点D( ,0),则BD+BF最小值为DF'=
+ ( ) =2 .
30
6.(2024·德阳中考)如图,抛物线y=x2-x+c与x轴交于点A(-1,0)和点B,与y轴交于点C.
15
【针对训练】
3.(2024·广元中考)在平面直角坐标系xOy中,已知抛物线F:y=-x2+bx+c经过点
A(-3,-1),与y轴交于点B(0,2).
(1)求抛物线的函数解析式;
(2)在直线AB上方抛物线上有一动点C,连接OC交
AB于点D,求 的最大值及此时点C的坐标;
(3)作抛物线F关于直线y=-1上一点的对称图象F',抛物线F与F'只有一个公共点E(点
(2)如图2,在BC上方的抛物线上有一动点P(不与B,C重合),过点P作PD∥AC,交BC
于点D,过点P作PE∥y轴,交BC于点E.在点P运动的过程中,请求出△PDE周长的最
大值及此时点P的坐标.
10
【解析】(1)将点A(-1,0),B(3,0)代入y=ax2+bx+3,
= −
−+=
2
(3)如图②,M是点B关于抛物线的对称轴的对称点,Q是抛物线上的动点,它的横坐
标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E,设△BEQ和△BEM的面积分别为
1
S1和S2,求 的最大值.
中考数学重点专题复习 考点11 二次函数-备战2022年中考数学必考点与题型全归纳(原卷版)
考点11 二次函数二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2022年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查。
1、二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0. 3、二次函数的图象及性质解析式 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴 x =–2ba 顶点 (–2b a ,244ac b a-)a 的符号a >0a<0图象开口方向 开口向上 开口向下最值 当x =–2b a 时,y 最小值=244ac b a- 当x =–2b a 时,y 最大值=244ac b a- 最点抛物线有最低点抛物线有最高点增减性当x <–2ba 时,y 随x 的增大而减小;当x >–2b a 时,y 随x 的增大而增大当x <–2ba 时,y 随x 的增大而增大;当x >–2b a时,y 随x 的增大而减小4二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.5、二次函数与一元二次方程的关系1)二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0). 2)ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3)(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点; (2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点; (3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点. 6、二次函数的综合 1)函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在. 2)函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案. (3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向1 二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零. 2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·甘肃兰州·中考真题)二次函数222=++y x x 的图象的对称轴是( ) A .1x =- B .2x =- C .1x = D .2x =2.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A (2,0). (1)求的值和抛物线顶点的坐标;(2)求直线的解析式.1.(2020·江苏无锡·中考真题)请写出一个函数表达式,使其图象的对称轴为y 轴:__________.2.(2021·安徽·淮北市中考模拟)若221()3m y m m x x +=+-+是关于x 的二次函数,则m =_______.考向2 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·湖北襄阳市·中考真题)一次函数y ax b =+的图象如图所示,则二次函数2y ax bx =+的图象可能是( )A .B .C .D .2.(2021·江西中考真题)在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A .B .C .D .1.(2021·山东聊城市·中考真题)已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =的图象在同一坐标系中大致为() 22y x mx =+x m MAM 2y ax =y bx c =+2y ax bx c =++a b cx++A.B.C.D.2.(2021·湖北黄冈市·中考真题)如图,为矩形的对角线,已知,.点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.考向3 二次函数的图象与字母系数的关系1.(2021·山东日照·中考真题)抛物线()20y ax bx c a=++≠的对称轴是直线1x=-,其图象如图所示.下列结论:①0abc<;②()()2242a c b+<;③若()11,x y和()22,x y是抛物线上的两点,则当1211x x+>+时,12y y<;④抛物线的顶点坐标为()1,m-,则关于x的方程21ax bx c m++=-无实数根.其中正确结论的个数是()A.4B.3C.2D.12.(2021·四川遂宁市·中考真题)已知二次函数2(0)y ax bx c a=++≠的图象如图所示,有下列5个结论:①0abc>;②24b ac<;③23c b<;④2()a b m am b+>+(1m≠);⑤若方程2ax bx c++=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个1.(2021·湖北恩施土家族苗族自治州·中考真题)如图,已知二次函数的图象与轴交于,顶点是,则以下结论:①;②;③若,则或;④.其中正确的有()个.A.1 B.2 C.3 D.42.(2021·黑龙江齐齐哈尔市·中考真题)如图,二次函数2(0)y ax bx c a=++≠图象的一部分与x轴的一个交点坐标为()1,0,对称轴为1x=-,结合图象给出下列结论:①0a b c++=;②20a b c-+<;③关于x的一元二次方程20(a0)++=≠ax bx c的两根分别为-3和1;④若点()14,y-,()22,y-,()33,y均在二次函数图象上,则123y y y<<;⑤()a b m am b-<+(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个考向4 二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.AC ABCD3AD=4CD=C A D--PE BC⊥CPE△2y ax bx c=++x()3,0-()1,m-0abc>420a b c++>y c≥2x-≤0x≥12b c m+=1.(2021·内蒙古赤峰市·中考真题)已知抛物线2上的部分点的横坐标x 与纵坐标y 的对应值如表:x … -1 0 1 2 3 … y…3-1m3…A .抛物线2y ax bx c =++的开口向下B .当3x <时,y 随x 增大而增大C .方程20ax bx c ++=的根为0和2D .当0y >时,x 的取值范围是02x <<2.(2021·山东菏泽市·中考真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.3.(2021·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.1.(2021·江苏泰州市·中考真题)在函数2(1)y x =-中,当x >1时,y 随x 的增大而 ___.(填“增大”或“减小”) 2.(2021·山东中考真题)在直角坐标系中,若三点A (1,﹣2),B (2,﹣2),C (2,0)中恰有两点在抛物线y =ax 2+bx ﹣2(a >0且a ,b 均为常数)的图象上,则下列结论正确是_______.A .抛物线的对称轴是直线12x = B .抛物线与x 轴的交点坐标是(﹣12,0)和(2,0)C .当t >94-时,关于x 的一元二次方程ax 2+bx ﹣2=t 有两个不相等的实数根 D .若P (m ,n )和Q (m +4,h )都是抛物线上的点且n <0,则0h > .3.(2021·浙江嘉兴市·中考真题)已知二次函数. (1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少? (3)当时,函数的最大值为,最小值为,m -n=3求的值.考向5 二次函数的平移1.抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. 2.涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x –h )2+k 的形式.3.抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =a (x –h )2+k 的顶点是(h ,k ). 4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.1.(2021·山西中考真题)抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .()2313y x =++B .()2353y x =-+ C .()2351y x =--D .()2311y x =+-2.(2021·江苏盐城市·中考真题)已知抛物线经过点和.(1)求、的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.xOy ()1,m ()3n ,()20y ax bx a =+>3,15m n ==()()()1231,,2,,4,y y y -0mn <123,,y y y 265y x x =-+-14x ≤≤3t x t +≤≤m n t 2(1)y a x h =-+(0,3)-(3,0)a h1.(2021·江苏苏州市·中考真题)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2- 2.(2021·西藏·中考真题)将抛物线y =(x ﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( ) A .y =x 2﹣8x +22 B .y =x 2﹣8x +14 C .y =x 2+4x +10 D .y =x 2+4x +2考向6 二次函数与一元二次方程、不等式的综合抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点个数及相应的一元二次方程根的情况都由Δ=b 2–4ac 决定.1.当Δ>0,即抛物线与x 轴有两个交点时,方程ax 2+bx +c =0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x 轴有一个交点(即顶点)时,方程ax 2+bx +c =0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x 轴无交点时,方程ax 2+bx +c =0无实数根,此时抛物线在x 轴的上方(a >0时)或在x 轴的下方(a <0时).1.(2021·山东淄博市·中考真题)对于任意实数a ,抛物线22y x ax a b =+++与x 轴都有公共点.则b 的取值范围是_______.2.(2021·广西贺州市·中考真题)如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +≥-+的解集是( )A .3x ≤-或1≥xB .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤3.(2021·湖北宜昌市·中考真题)在平面直角坐标系中,抛物线()()14y x x n =-+-与x 轴交于点A 和点()(),04B n n ≥-,顶点坐标记为()11,h k .抛物线()222229y x n n n =-+-++的顶点坐标记为()22,h k .(1)写出A 点坐标;(2)求1k ,2k 的值(用含n 的代数式表示);(3)当44n -≤≤时,探究1k 与2k 的大小关系;(4)经过点()229,5M n n+-和点()22,95N n n -的直线与抛物线()()14y x x n =-+-,()222229y x n n n =-+-++的公共点恰好为3个不同点时,求n 的值.1.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根; ③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.2.(2021·四川南充市·中考真题)关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________. 3.(2021·四川乐山市·中考真题)已知关于的一元二次方程. (1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解.x 20x x m +-=m 2y x x m =+-20x x m +-=考向7 二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等1.(2021·浙江杭州市·中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )A .B .C .D .2.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示. (1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式; (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?3.(2021·辽宁盘锦·中考真题)某工厂生产并销售A ,B 两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B 型车床,则每台B 型车床可以获利17万元,如果超出4台B 型车床,则每超出1台,每台B 型车床获利将均减少1万元.设生产并销售B 型车床台. (1)当时,完成以下两个问题:A 型B 型车床数量/台 ________每台车床获利/万元10________B 型车床多少台?(2)当0<≤14时,设生产并销售A ,B 两种型号车床获得的总利润为W 万元,如何分配生产并销售A ,B 两种车床的数量,使获得的总利润W 最大?并求出最大利润.2y ax bx c =++a b c ()0,2A ()10B ,()3,1C ()2,3D a 52325612x 4x >x x1.(2021·江苏连云港市·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元. 2.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.3.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少? (2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?考向8 二次函数与几何图形(选填题)1.(2021·广东中考真题)设O 为坐标原点,点A 、B 为抛物线2y x 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( ) A .12B 2C 3D .12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .41.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,点(2,4)A 在抛物线2y ax =上,过点A 作y 轴的垂线,交抛物线于另一点B ,点C 、D 在线段AB 上,分别过点C 、D 作x 轴的垂线交抛物线于E 、F 两点.当四边形CDFE 为正方形时,线段CD 的长为_________.2.(2021·湖北武汉市·中考真题)如图(1),在ABC 中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点()0,2,则图象最低点的横坐标是__________.3.(2021·浙江柯桥·九年级阶段练习)如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.考向9 存在性问题与动态问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.1.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.(1)求,,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.21262y x x =+-x A B A B y C AC BC A B C AC BC P AC P BC l AC D l E D C B E E l M AC N DMN AOC S S =△△DM2.(2021·湖南岳阳市·中考真题)如图,抛物线经过,两点,与轴交于点,连接.(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A ,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值; (3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.1.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x ,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++交x 轴于点A 和()1,0C ,交y 轴于点()0,3B ,抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点О沿顺时针方向旋转得到线段'OE ,旋转角为()090αα︒<<︒,连接'AE ,'BE ,求13''BE AE +的最小值.(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由;1.(2021·贵州·峰林学校九年级期中)已知二次函数()2113my m x m +=-+,下列说法正确的是( )A .图象开口向上B .图象的顶点坐标为()2,3-C .图象的对称轴是直线3x =-D .有最大值,为-32.(2021·湖南张家界市·中考真题)若二次函数的图象如图所示,则一次函数与反比例函数在同一个坐标系内的大致图象为( ) 22y ax bx =++()1,0A -()4,0B y C BC l 3y kx =+P l x Q //PQ y QM PQ ⊥M M Q PQ QM PQMN D PQMN F CBF =∠DQM ∠F 2y ax bx c =++()1,0-22412286x ax bx c x x -≤++≤-+2(0)y ax bx c a =++≠y ax b =+cy x=-A .B .C .D .3.(2021·广西河池·中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法中,错误的是( )A .对称轴是直线12x =B .当12x -<<时,0y <C .a c b +=D .a b c +>- 4.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:22=的两根为=﹣,=;④<.其中正确的有( )x … ﹣3 ﹣2 ﹣1 1 2 … y…1.8753m1.875…5.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量与函数y 的几组对应值:x… -2 0 1 3 … y…6-4-6-4…A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大6.(2021·江苏常州市·中考真题)已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a > B .1a > C .1a ≠ D .1a <7.(2021·江苏徐州市·中考真题)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+ B .()221y x =++ C .()221y x =+- D .()221y x =--8.(2021·贵州铜仁市·中考真题)已知直线过一、二、三象限,则直线与抛物线的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个9.(2021·山东淄博市·中考真题)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S SSm ===,则m 的值是( )A .1B .32C .2D .410.(2021·四川雅安市·中考真题)定义:{}()min ,()a ab a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( ) A .0 B .2 C .3 D .4 11.(2021·辽宁盘锦·中考真题)如图,四边形ABCD 是菱形,BC =2,∠ABC =60°,对角线AC 与BD 相交于点O ,线段BD 沿射线AD 方向平移,平移后的线段记为PQ ,射线PQ 与射线AC 交于点M ,连结PC ,设OM 长为x ,△PMC 面积为y .下列图象能正确反映出y 与x 的函数关系的是( )2y kx =+2y kx =+223y x x =-+A.B.C.D.12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,二次函数()2=++0y ax bx c a≠的函数图像经过点(1,2),且与x轴交点的横坐标分别为1x、2x,其中-1<1x<0,1<2x<2,下列结论:①0abc>;②20a b+<;③420a b c-+>;④当()12x m m=<<时,22am bm c<+-;⑤1b>,其中正确的有___________.(填写正确的序号)13.(2021·黑龙江中考真题)二次函数232y x=-的最小值为________.14.(2021·青海西宁·中考真题)从12-,-1,1,2,-5中任取一个数作为a,则抛物线2y ax bx c=++的开口向上的概率是______.15.(2021·江苏无锡市·中考真题)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数的图象交于A、B两点,且,P为的中点,设点P的坐标为,写出y关于x的函数表达式为:________.16.(2021·四川成都市·中考真题)在平面直角坐标系xOy中,若抛物线22y x x k=++与x轴只有一个交点,则k=_______.17.(2021·湖北襄阳市·中考真题)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式2241y x x=-++,喷出水珠的最大高度是______m.18.(2020·山东临沂·中考真题)已知抛物线22232(0)y ax ax a a=--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;19.(2021·安徽中考真题)已知抛物线221(0)y ax x a=-+≠的对称轴为直线1x=.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且110x-<<,212x<<.比较y1与y2的大小,并说明理由;(3)设直线(0)y m m=>与抛物线221y ax x=-+交于点A、B,与抛物线23(1)y x=-交于点C,D,求线段AB与线段CD的长度之比.20.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.2y x3CB AC CB(,)(0)P x y x>()()1y x x a=--2x=21.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t ,加工过程中原料的质量有20%的损耗,加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x ,销售价y (万元/t )与原料的质量x (t )之间的关系如图所示. (1)求y 与x 之间的函数关系式;(2)设销售收入为P (万元),求P 与x 之间的函数关系式;(3)原料的质量x 为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).22.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.23.(2021·黑龙江中考真题)如图,抛物线()230y axbx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式;(2)求BOC ∆的面积.24.(2021·河南中考真题)如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.25.(2021·江苏徐州市·中考真题)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB .(1)求直线AB 的函数表达式;(2)求AOB ∆的面积;(3)若函数A B A B A B 100kg A 2kg B 4kg x x w wx a a214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.26.(2021·黑龙江鹤岗市·中考真题)如图,抛物线2()30y ax bx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D . (1)求抛物线的解析式;(2)点P 是对称轴左侧抛物线上的一个动点,点Q 在射线ED 上,若以点P 、Q 、E 为顶点的三角形与BOC 相似,请直接写出点P 的坐标.27.(2021·黑龙江大庆市·中考真题)如图,抛物线2y ax bx c =++与x 轴交于除原点O 和点A ,且其顶点B 关于x 轴的对称点坐标为()2,1.(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F ,使得抛物线2y ax bx c =++上的任意一点G 到定点F 的距离与点G 到直线2y =-的距离总相等.①证明上述结论并求出点F 的坐标;②过点F 的直线l 与抛物线2y ax bx c =++交于,M N 两点.证明:当直线l 绕点F旋转时,11MF NF+是定值,并求出该定值;(3)点()3,C m 是该抛物线上的一点,在x 轴,y 轴上分别找点,P Q ,使四边形PQBC 周长最小,直接写出,P Q 的坐标.28.(2021·贵州毕节市·中考真题)如图,抛物线2y x bx c =++与x 轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,项点为D ,点B 的坐标为3,0.(1)填空:点A 的坐标为_________,点D 的坐标为_________,抛物线的解析式为_________; (2)当二次函数2y x bx c =++的自变量:满足2m x m ≤≤+时,函数y 的最小值为54,求m 的值;(3)P 是抛物线对称轴上一动点,是否存在点P ,使PAC △是以AC 为斜边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。
2021年陕西省商洛市中考数学总复习:二次函数(附答案解析)
第 1 页 共
211 页 2021年陕西省商洛市中考数学总复习:二次函数
一.选择题(共50小题)
1.关于x 的一元二次方程ax 2+bx +12=0有一个根是﹣1,若二次函数y =ax 2+bx +12的图象
的顶点在第一象限,设t =2a +b ,则t 的取值范围是( )
A .14<t <12
B .﹣1<t ≤14
C .−12≤t <12
D .﹣1<t <12 2.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≤﹣2时,y 随x 的增大而减
小,且﹣2≤x ≤1时,y 的最大值为9,则a 的值为( )
A .1或﹣2
B .1
C .√2
D .−√2或√2
3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列说法:①a >0;②b >0;③c
<0;④b 2﹣4ac >0,其中正确的个数是( )
A .1
B .2
C .3
D .4
4.抛物线y =﹣2(x +2)2﹣5的顶点坐标是( )
A .(2,﹣5)
B .(2,5)
C .(﹣2,﹣5)
D .(﹣2,5)
5.关于二次函数y =﹣2x 2+1,则下列说法正确的是( )
A .开口方向向上
B .当x <0时,y 随x 的增大而增大
C .顶点坐标是(﹣2,1)
D .当x =0时,y 有最大值−12
6.如图在平面直角坐标系中,一次函数y =mx +n 与x 轴的轴交于点A ,与二次函数交于点
B 、点
C ,点A 、B 、C 三点的横坐标分别是a 、b 、c ,则下面四个等式中不一定成立的是( )。
二次函数中考复习题型总结归纳
中考专题之二次函数考点一:二次函数解析式【知识点】三种解析式形式 1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式. 【经典例题】例1 已知一条抛物线经过点 (0,0),(2,4),(4,0),求这个函数关系式。
【变式练习】1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。
2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。
3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。
4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。
5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。
考点二:二次函数图像【知识点】一、各种形式的二次函数的图像性质如下表:1.抛物线c bx ax y ++=2中的系数c b a ,,(1)a 决定开口方向,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当0>a 时,抛物线开口向上,顶点为其最低点;当0<a 时,抛物线开口向下,顶点为其最高点. (2)b 和a 共同决定抛物线对称轴的位置:当0=b 时,对称轴为y 轴;当a 、b 同号时,对称轴在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点位置:当0=c 时,抛物线经过原点; 当0>c 时,相交于y 轴的正半轴;当0<c 时,则相交于y 轴的负半轴. (4).抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定: (1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上); (3)240b ac -<⇔抛物线与x 轴没有交点. 要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ; 当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方. 2.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,顶点是),(ab ac a b 4422--,对称轴是直线ab x 2-=。
(完整版)初中二次函数知识点详解最新助记口诀
1、二次函数的性质
函数
二次函数
图像
a>0
a<0
y
0 x
y
0 x
性质
(1)抛物线开口向上,并向上无限延伸;
(2)对称轴是xΒιβλιοθήκη ,顶点坐标是( , );(3)在对称轴的左侧,即当x< 时,y随x的增大而减小;在对称轴的右侧,即当x> 时,y随x的增大而增大,简记左减右增;
(4)抛物线有最低点,当x= 时,y有最小值,
知识点一、二次函数的概念和图像
1、二次函数的概念
一般地,如果特 ,特别注意a不为零
那么y叫做x的二次函数。
叫做二次函数的一般式。
2、二次函数的图像
二次函数的图像是一条关于 对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
(2)求抛物线 与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。
中考数学考点16二次函数实际应用总复习(解析版)
二次函数实际应用【命题趋势】在中考中.二次函数的实际应用是中考必考考点.常以解答题形式考查.往往会结合方程(组)与一次函数考查。
【中考考查重点】一、二次函数的实际应用-运动类型二、二次函数的实际应用-经济类型三、二次函数的实际应用-面积类型四、二次函数的实际应用-拱桥类型考点一:运动类型考向1 落地模型1.(2021秋•松江区期末)一位运动员投掷铅球.如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+.那么铅球运动过程中最高点离地面的距离为米.【答案】3【解答】解:由题意可得:y=﹣=﹣(x2﹣8x)+=﹣(x﹣4)2+3.故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.考向2 最值模型2.(2021秋•信阳期中)烟花厂为建党成立100周年特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+8t.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣=﹣=6.∴从点火升空到引爆需要的时间为6s.故选:D.3.(2021秋•越秀区期末)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2.则飞机停下前最后10秒滑行的距离是米.【答案】15【解答】解:∵s=60t﹣1.5t2=﹣(t﹣20)2+600.﹣<0.抛物线开口向下.∴当t=20时.s有最大值.此时s=600.∴飞机从落地到停下来共需20秒.飞机前10秒滑行的距离为:s1=60×10﹣1.5×102=585(米).∴飞机停下前最后10秒滑行的距离为:600﹣585=15(米).故答案为:15.考点二:经济类型4.(2021秋•克东县期末)某水果商场经销一种高档水果.原价每千克50元.连续两次降价后每千克32元.若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元.每天可售出500千克.经市场调查发现.在进货价不变的情况下商场决定采取适当的涨价措施.若每千克涨价1元.日销售量将减少20千克.现该商场要保证每天盈利6000元.且要尽快减少库存.那么每千克应涨价多少元?(3)若使商场每天的盈利达到最大值.则应涨价多少元?此时每天的最大盈利是多少?【答案】(1)20% (2)涨价5元(3)涨价7.5元.6125元【解答】解:(1)设每次下降的百分率为a.根据题意.得:50(1﹣a)2=32.解得:a=1.8(舍)或a=0.2.答:每次下降的百分率为20%;(2)设每千克应涨价x元.由题意.得:(10+x)(500﹣20x)=6000.整理.得x2﹣15x+50=0.解得:x1=5.x2=10.因为要尽快减少库存.所以x=5符合题意.答:该商场要保证每天盈利6000元.那么每千克应涨价5元;(3)设商场每天的盈利为y元.由(2)可知:y=(10+x)(500﹣20x)=﹣20x2+300x+5000.∵﹣20<0.∴当x=﹣=7.5时.y取最大值.∴当x=7.5时.y最大值=(10+7.5)×(500﹣20×7.5)=6125(元).答:应涨价7.5元.每天的盈利达到最大值.为6125元.5.(2021秋•郧西县期末)根据对某市相关的市场物价调研.预计进入夏季后的某一段时间.某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示.乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1.y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨.设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大.最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在什么范围内合适?【答案】(1)y1=0.6x .y2=﹣0.2x2+2.2x(2)2≤t≤6【解答】解:(1)由题意得:5k=3.解得k=0.6.∴y1=0.6x;由.解得:.∴y2=﹣0.2x2+2.2x;(2)①W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.当t=4时.W有最大值9.2.答:甲种蔬菜进货量为6吨.乙种蔬菜进货量为4吨时.获得的销售利润之和最大.最大利润是9200元;②当W=8.4=﹣0.2(t﹣4)2+9.2.∴t1=2.t2=6.∵a=﹣2<0.∴当2≤t≤6时.W≥8.4.答:为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在2≤t≤6范围内合适.考点三:面积类型6.(2021秋•西湖区校级期中)在校园嘉年华中.九年级同学将对一块长20m.宽10m的场地进行布置.设计方案如图所示.阴影区域为绿化区(四块全等的矩形).空白区域为活动区.且4个出口宽度相同.其宽度不小于4m.不大于8m.设出口长均为x(m).活动区面积为y(m2).(1)求y关于x的函数表达式;(2)当x取多少时.活动区面积最大?最大面积是多少?(3)若活动区布置成本为10元/m2.绿化区布置成本为8元/m2.布置场地的预算不超过1850元.当x为整数时.请求出符合预算且使活动区面积最大的x值及此时的布置成本.【答案】(1)y=﹣x2+30x(4≤x≤8)(2)x取8m时.最大面积是176m2(3)x=5时.活动区面积最大.此时的布置成本为1850元【解答】解:(1)根据题意得:y=20×10﹣4××=200﹣(20﹣x)(10﹣x)=200﹣200+30x﹣x2=﹣x2+30x.∴y与x的函数关系式为y=﹣x2+30x(4≤x≤8);(2)由(1)知:y=﹣x2+30x=﹣(x﹣15)2+225.∵﹣1<0.∵当x<15时.y随x的增大而增大.∵4≤x≤8.∴当x=8时.y有最大值.最大值为176.∴当x取8m时.活动区面积最大.最大面积是176m2;(3)设布置场地所用费用为w元.则w=10(﹣x2+30x)+8[200﹣(﹣x2+30x)]=﹣10x2+300x+1600+8x2﹣240x=﹣2x2+60x+1600.令w=1850.﹣2x2+60x+1600=1850.解得:x=25或x=5.∵4≤x≤8.∴4≤x≤5.∵活动区域面积为y=﹣x2+30x.﹣1<0.对称轴为直线x=15.∴当x=5时.活动区面积最大.此时的布置成本为1850元.考点三:拱桥类型7.(2021秋•建华区期末)如图(1)是一个横断面为抛物线形状的拱桥.水面在l时.拱顶(拱桥洞的最高点)离水面3米.水面宽4米.如果按图(2)建立平面直角坐标系.那么抛物线的解析式是.【答案】【解答】解:设出抛物线方程y=ax2(a≠0).由图象可知该图象经过(﹣2.﹣3)点.故﹣3=4a.a=﹣.故y=﹣x2.故答案为.8.(2021秋•绿园区期末)一座石拱桥的桥拱是近似的抛物线形.建立如图所示的平面直角坐标系.其函数关系为.当水面的宽度AB为16米时.水面离桥拱顶的高度OC为m.【答案】4【解答】解:∵水面的宽度AB为16米∴B的横坐标为8.把x=8代入y=﹣x2.得y=﹣4.∴B(8.﹣4).∴OC=4m.水面离桥拱顶的高度OC为4m.故答案为:4.9.(2021秋•营口期末)如图①.桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).【答案】(1)y=﹣x2+2x(0≤x≤8)(2)不会碰到头【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵小船距O点0.4m.小船宽1.2m.工人直立在小船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将=1代入y=﹣x2+2x.解得:y==1.75∵1.75m>1.68m.∴此时工人不会碰到头.1.(2021秋•房山区期末)从地面竖直向上抛出一小球.小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是s时.小球最高;小球运动中的最大高度是m.【答案】3.45.【解答】解:h=30t﹣5t2=﹣5(t﹣3)2+45.∵﹣5<0.0≤t≤6.∴当t=3时.h有最大值.最大值为45.故答案为:3.45.2.(2021秋•龙凤区期末)飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t﹣0.5t2.飞机着陆后滑行m才能停下来.【答案】200【解答】解:s=20t﹣0.5t2=﹣0.5(t﹣20)2+200当t=20时.s有最大值为200.即飞机着陆后滑行200m才能停下来.故答案为200.3.(2021秋•黔西南州期末)中国贵州省省内的射电望远镜(F AST)是目前世界上口径最大.精度最高的望远镜.根据有关资料显示.该望远镜的轴截面呈抛物线状.口径AB 为500米.最低点P到口径面AB的距离是100米.若按如图(2)所示建立平面直角坐标系.则抛物线的解析式是.【答案】y=x2﹣100【解答】解:由题意可得:A(﹣250.0).P(0.﹣100).设抛物线解析式为:y=ax2﹣100.则0=62500a﹣100.解得:a=.故抛物线解析式为:y=x2﹣100.故答案为:y=x2﹣100.4.(2021秋•和平区期末)如图.小明父亲想用长为100m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m.设矩形ABCD的边AB=xm.面积为Sm2.(1)请直接写出S与x之间的函数表达式为.并直接写出x的取值范围是;(2)求当x为多少m时.面积S为1050m2;(3)当AB.BC分别为多少米时.羊圈的面积最大?最大面积是多少?【答案】(1)S=﹣2x2+100x.30≤x<50 (2)x为35m时.面积S为1050m2(3)AB=30m.BC=40m时.面积S有最大值为1200m2【解答】解:(1)∵AB=CD=xm.则BC=(100﹣2x)m.∴S=x(100﹣2x)=﹣2x2+100x.∵0<100﹣2x≤40.∴30≤x<50.∴S与x之间的函数表达式为S=﹣2x2+100x.自变量x的取值范围是30≤x<50.故答案安为:S=﹣2x2+100x.30≤x<50;(2)令S=1050.则﹣2x2+100x=1050.解得:x1=15.x2=35.∵30≤x<50.∴x=35.∴当x为35m时.面积S为1050m2;(3)∵S=﹣2(x2﹣50x+625﹣625)=﹣2(x﹣25)2+1250.∵﹣2<0.∴当x>25时.S随着x的增大而减小.∵30≤x<50.∴当x=30时.S有最大值为1200.∴当AB=30m.BC=40m时.面积S有最大值为1200m2.5.(2021秋•龙江县校级期末)某超市销售一种商品.每件成本为50元.销售人员经调查发现.销售单价为100元时.每月的销售量为50件.而销售单价每降低2元.则每月可多售出10件.且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元.并使顾客获得更多的实惠.销售单价应定为多少元?(3)为了每月所获利润最大.该商品销售单价应定为多少元?【答案】(1) y=﹣5x+550 (2)70元(3)80元【解答】解:(1)依题意得:y=50+(100﹣x)××10=﹣5x+550.∴y与x的函数关系式为y=﹣5x+550;(2)依题意得:y(x﹣50)=4000.即(﹣5x+550)(x﹣50)=4000.解得:x1=70.x2=90.∵70<90.∴当该商品每月销售利润为4000.为使顾客获得更多实惠.销售单价应定为70元;(3)设每月总利润为w元.依题意得w=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500.∵﹣5<0.此图象开口向下.∴当x=80时.w有最大值为4500元.∴为了每月所获利润最大.该商品销售单价应定为80元.6.(2021秋•宽城区期末)某商场以每件20元的价格购进一种商品.经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系.其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价.又不高于36元.当每件商品的售价定为多少元时.每天销售利润最大?最大利润是多少?【答案】(1)y=﹣2x+120 (2)w=﹣2x2+160x﹣2400(3)售价定为36元时.每天销售利润最大.最大利润是768元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知:.解得.故y与x的函数关系式为y=﹣2x+120;(2)∵y=﹣2x+120.∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400.即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;(3)w=﹣2x2+160x﹣2400=﹣2(x﹣40)2+800.∵﹣2<0.20≤x≤36<40.∴当x=36时.w取得最大值.w最大=﹣2×(36﹣40)2+800=768.答:当每件商品的售价定为36元时.每天销售利润最大.最大利润是768元.1.(2020•长沙)“闻起来臭.吃起来香”的臭豆腐是长沙特色小吃.臭豆腐虽小.但制作流程却比较复杂.其中在进行加工煎炸臭豆腐时.我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下.“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0.a.b.c是常数).如图记录了三次实验的数据.根据上述函数关系和实验数据.可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟【答案】C【解答】解:将图象中的三个点(3.0.8)、(4.0.9)、(5.0.6)代入函数关系P=at2+bt+c 中..解得.所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9.由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=﹣=﹣=3.75.则当t=3.75分钟时.可以得到最佳时间.故选:C.2.(2021•黔西南州)小华酷爱足球运动.一次训练时.他将足球从地面向上踢出.足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t.则足球距地面的最大高度是m.【答案】7.2【解答】解:∵h=﹣5t2+12t.a=﹣5.b=12.c=0.∴足球距地面的最大高度是:=7.2m.故答案为:7.2.3.(2020•日照)如图.某小区有一块靠墙(墙的长度不限)的矩形空地ABCD.为美化环境.用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆.篱笆的厚度不计).(1)若四块矩形花圃的面积相等.求证:AE=3BE;(2)在(1)的条件下.设BC的长度为xm.矩形区域ABCD的面积为ym2.求y与x之间的函数关系式.并写出自变量x的取值范围.【答案】(1)AE=3BE(2)(0<x<)【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等.∴ME=BE.AM=GH.∵四块矩形花圃的面积相等.即S矩形AMND=2S矩形MEFN.∴AM=2ME.∴AE=3BE;(2)∵篱笆总长为100m.∴2AB+GH+3BC=100.即.∴.设BC的长度为xm.矩形区域ABCD的面积为ym2.则.∵.∴BE=10﹣x>0.解得x<.∴(0<x<).4.(2020•呼伦贝尔)某商店销售一种销售成本为每件40元的玩具.若按每件50元销售.一个月可售出500件.销售价每涨1元.月销量就减少10件.设销售价为每件x元(x ≥50).月销量为y件.月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下.使月销售利润达到8000元.销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.【答案】(1)y= ﹣10x2+1400x﹣40000 (2)8元(3)70元时会获得最大利润9000【解答】解:(1)由题意得:y=500﹣10(x﹣50)=1000﹣10x.w=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000;(2)由题意得:﹣10x2+1400x﹣40000=8000.解得:x1=60.x2=80.当x=60时.成本=40×[500﹣10(60﹣50)]=16000>10000不符合要求.舍去.当x=80时.成本=40×[500﹣10(80﹣50)]=8000<10000符合要求.∴销售价应定为每件80元;(3)∵w=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.又∵﹣10<0.当x=70时.w取最大值9000.故销售价定为每件70元时会获得最大利润9000元.5.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①.甲秀楼的桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).(3)如图③.桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0).该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度.平移后的函数图象在8≤x≤9时.y的值随x值的增大而减小.结合函数图象.求m的取值范围.【答案】(1)y=﹣x2+2x(0≤x≤8)(2)工人不会碰到头(3)5≤m≤8【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵打捞船距O点0.4m.打捞船宽1.2m.工人直立在打捞船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将x=1代入y=﹣x2+2x.解得:y==1.75.∵1.75m>1.68m.∴此时工人不会碰到头;(3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.如图所示.新函数图象的对称轴也是直线x=4.此时.当0≤x≤4或x≥8时.y的值随x值的增大而减小.将新函数图象向右平移m个单位长度.可得平移后的函数图象.如图所示.∵平移不改变图形形状和大小.∴平移后函数图象的对称轴是直线x=4+m.∴当m≤x≤4+m或x≥8+m时.y的值随x值的增大而减小.∴当8≤x≤9时.y的值随x值的增大而减小.结合函数图象.得m的取值范围是:①m≤8且4+m≥9.得5≤m≤8.②8+m≤8.得m≤0.由题意知m>0.∴m≤0不符合题意.舍去.综上所述.m的取值范围是5≤m≤8.1.(2021•晋中模拟)在中考体育训练期间.小宇对自己某次实心球训练的录像进行分析.发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=﹣x2+x+.由此可知小宇此次实心球训练的成绩为()A.米B.8米C.10米D.2米【答案】B【解答】解:当y=0时.即y=﹣x2+x+=0.解得:x1=﹣2(舍去).x2=8.所以小宇此次实心球训练的成绩为8米.故选:B.2.(2021•温州模拟)烟花厂为成都春节特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣==6(s).故选:D.3.(2021秋•岳池县期末)赵州桥的桥拱横截面是近似的抛物线形.其示意图如图所示.其解析式为y=﹣x2.当水面离桥拱顶的高度DO为4m时.水面宽度AB为m.【答案】20【解答】解:由题意得.﹣4=﹣x2.解得x=±10.即点A的坐标为(﹣10.﹣4).点B的坐标为(10.﹣4).这时水面宽度AB为20m.故答案为:20.4.(2021秋•朝阳区期末)一名运动员在平地上推铅球.铅球出手时离地面的高度为米.出手后铅球离地面的高度y(米)与水平距离x(米)之间的函数关系式为.当铅球离地面的高度最大时.与出手点水平距离为5米.则该运动员推铅球的成绩为米.【答案】12【解答】解:设铅球出手点为点A.根据题意建立平面直角坐标系.如图:∵当铅球离地面的高度最大时.与出手点水平距离为5米.∴抛物线的对称轴为直线x=5.∴﹣=﹣==5.则b=.又∵抛物线经过(0.).∴c=.∴y=﹣x2+x+.当y=0时.﹣x2+x+=0.整理得:x2﹣10x﹣24=0.解得:x1=﹣2(舍去).x2=12.故答案安为:12.5.(2021•连云港模拟)汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t.汽车从刹车到停下来所用时间是秒.【答案】【解答】解:∵s=﹣3t2+8t.=﹣3(t﹣)2+.∴当t=秒时.s取得最大值.即汽车停下来.故答案为:.6.(2021•金堂县模拟)如图.有长为24m的篱笆.一面利用墙(墙的最大可用长度为11m)围成中间隔有一道篱笆的矩形花圃.并且预留两个各1m的门.设花圃的宽AB为xm.面积为Sm2.(1)请用含x的代数式表示BC并求S与x的函数关系式;(2)若4<x<7.则S的最大值是多少?请说明理由.【答案】(1)S=﹣3x2+26x(5≤x<)(2)55m2【解答】解:(1)由题可知.花圃的宽AB为x米.则BC为(24﹣3x+2)米=(26﹣3x)米.则S=x(26﹣3x)=﹣3x2+26x.∵BC=26﹣3x≤11.3x<24+2.∴5≤x.∴S=﹣3x2+26x(5≤x<);(2))解不等式组.解得:5≤x<7.∵S=﹣3x2+26x=﹣3(x﹣)2+.∵﹣3<0.∴x>时.S随x的增大而减小.∴x=5时.S的最大值=﹣3×52+26×5=55m2.7.(2021•盐城二模)疫情期间.某销售商在网上销售A、B两种型号的电脑“手写板”.其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400600200B型8001200400根据市场行情.该销售商对A型手写板降价销售.同时对B型手写板提高售价.此时发现A型手写板每降低5元就可多卖1个.B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变.设其中A型手写板每天多销售x个.每天获得的总利润为y元.(1)求y与x之间的函数关系式.并直接写出x的取值范围;(2)要使每天的利润不低于212000元.求出x的取值范围;(3)该销售商决定每销售一个B型手写板.就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生.若当30≤x≤40时.每天的最大利润为203400元.求a的值.【答案】(1)y=﹣10x2+800x+200000.(0≤x≤40且x为整数)(2)20≤x≤40 (3)a=35【解答】解:(1)由题意得.y=(600﹣400﹣5x)(200+x)+(1200﹣800+5x)(400﹣x)=﹣10x2+800x+200000.(0≤x≤40且x为整数).即y与x之间的函数关系式是y=﹣10x2+800x+200000.(0≤x≤40且x为整数);(2)∵y=﹣10x2+800x+200000=﹣10(x﹣40)2+216000.∴当y=212000时.﹣10(x﹣40)2+216000=212000.解得:x1=20.x2=60.要使y≥212000.则20≤x≤60.∵0≤x≤40.∴20≤x≤40.即x的取值范围是:20≤x≤40;(3)设捐款后每天的利润为w元.则w=﹣10x2+800x+200000﹣(400﹣x)a=﹣10x2+(800+a)x+200000﹣400a.对称轴为.∵0<a≤100.∴.∵抛物线开口向下.当30≤x≤40时.w随x的增大而增大.∴当x=40时.w最大.∴﹣10×402+40(800+a)+200000﹣400a=203400.解得.a=35.8.(2021•即墨区一模)即墨古城某城门横断面分为两部分.上半部分为抛物线形状.下半部分为正方形(OMNE为正方形).已知城门宽度为4米.最高处离地面6米.如图1所示.现以O点为原点.OM所在的直线为x轴.OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式.并写出其自变量的取值范围;(2)有一辆宽3米.高4.5米的消防车需要通过该城门进入古城.请问该消防车能否正常进入?(3)为营造节日气氛.需要临时搭建一个矩形“装饰门”ABCD.该“装饰门”关于抛物线对称轴对称.如图2所示.其中AB.AD.CD为三根承重钢支架.A、D在抛物线上.B.C 在地面上.已知钢支架每米50元.问搭建这样一个矩形“装饰门”.仅钢支架一项.最多需要花费多少元?【答案】(1)(0≤x≤4)(2)消防车能正常进入(3)650元【解答】解:(1)由题意知.抛物线的顶点为(2.6).∴设抛物线的表达式为y=a(x﹣2)2+6.又∵抛物线经过点E(0.4).∴4=4a+6.∴a=.∴抛物线的表达式为.即(0≤x≤4);(2)由题意知.当消防车走最中间时.进入的可能性最大.即当x=时.=4.875>4.5.∴消防车能正常进入;(3)设B点的横坐标为m.AB+AD+CD的长度为L.由题意知BC=4﹣2m.即AD=4﹣2m.CD=AB=.∴L=2×()+(4﹣2m)=﹣m2+2m+12.∵0≤x≤4.当m==1时.L最大.L最大=﹣12+2×1+12=13.∴费用为13×50=650(元).答:仅钢支架一项.最多需要花费650元.9.(2021•路南区一模)某园林专业户计划投资种植树木及花卉.根据市场调查与预测.图1是种植树木的利润y与投资量x成正比例关系.图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1、l2.求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉.其中投入x(x>0)万元种植花卉.那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上.该园林专业户应怎样投资?【答案】(1)y=x2(x≥0)(2)18万元(3)该园林专业户应投资花卉种植超过4万元【解答】解:(1)设l1:y=kx.∵函数y=kx的图象过(1.2).∴2=k⋅1.k=2.故l1中y与x的函数关系式是y=2x(x≥0).∵该抛物线的顶点是原点.∴设l2:y=ax2.由图2.函数y=ax2的图象过(2.2).∴2=a⋅22.解得:a=.故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉.则投入(10﹣x)万元种植树木..∵a=>0.0<x≤10.∴当x=2时.w的最小值是18.他至少获得18万元的利润.(3)根据题意.当w=20时..解得:x=0(不合题意舍).x=4.∴至少获得20万元利润.则x=4.∵在2≤x≤10的范图内w随x的增大而增大.∴w>20.只需要x>4.所以保证获利在20万元以上.该园林专业户应投资花卉种植超过4万元.。
2022年陕西省商洛市中考数学总复习:二次函数
2022年陕西省商洛市中考数学总复习:二次函数1.如图,抛物线y 1=ax 2+bx +c (a ≠0)的顶点坐标A (﹣1,3),与x 轴的一个交点B (﹣4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点,下列结论:①2a ﹣b =0;②抛物线与x 轴的另一个交点坐标是(2,0);③7a +c >0;④方程ax 2+bx +c ﹣2=0有两个不相等的实数根;⑤当﹣4<x <﹣1时,则y 2<y 1.其中正确结论的个数为( )A .2B .3C .4D .5【解答】解:①由抛物线对称轴知,x =−b2a =−1, ∴2a ﹣b =0,则此小题结论正确;②设抛物线与x 轴的另一个交点坐标是(m ,0),根据题意得,−4+m 2=−1,∴m =2,则此小题结论正确;③把(2,0)代入y =ax 2+bx +c 得,4a +2b +c =0, ∵x =−b2a=−1, ∴b =2a ,∴4a +2×2a +c =0, ∴8a +c =0,∴7a +c =﹣a >0,则此小题结论正确;④由函数图象可知,直线y =2与抛物线y =ax 2+bx +c 有两个交点,∴ax 2+bx +c =2有两个不相等的实数根,即ax 2+bx +c ﹣2=0有两个不相等的实数根,则此小题结论正确;⑤由函数图象可知,当﹣4<x <﹣1时,抛物线在直线上方,于是y 2<y 1.则此小题结论正确. 故选:D .2.对于二次函数y =kx 2﹣(4k +1)x +3k +3.下列说法正确的是( )①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④【解答】解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x ﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x=−−(4k+1)2k=2+12k,∴若k<0,则2+12k<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=1k+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.3.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵(3,0)关于直线x=1的对称点坐标为(﹣1,0)∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b﹣c=0,故②错误;∵−b2a=1,∴b=﹣2a∴a+2a﹣c=0,∴c=3a,故③正确;∵b=﹣2a,c=3a,a<0,∴4a+2b﹣c=4a﹣4a﹣3a=﹣3a>0,即4a+2b﹣c>0,故①正确;∵4a+2b﹣c>0,a﹣b﹣c=0,两式相加:5a+b﹣2c>0,故④正确,故选:C.4.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A .1个B .2个C .3个D .4个【解答】解:①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间. ∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =−b2a =1,即b =﹣2a , ∴3a +b =3a ﹣2a =a ,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴4ac−b 24a=n ,∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点, ∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意. 故选:B .5.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出下列结论:①abc >0;②9a+3b+c=0;③b2﹣4ac<0;④5a+b+c>0.其中正确结论的是()A.①②B.①②③C.①②④D.①②③④【解答】解:①由图象可知:a>0,c<0,∴由于对称轴−b2a>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③如图所示,抛物线与x轴有两个交点,则b2﹣4ac>0,故③错误;④由图象可知:−b2a>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.6.抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①abc>0;②2c<3b;③当m≠1时,a+b>am2+bm;④当△ABD是等腰直角三角形时,则a=12;⑤若x1,x2是一元二次方程a(x+1)(x﹣3)=4的两个根,且x1<x2,则x1<﹣1<x2<3.其中正确的有()个.A.5B.4C.3D.2【解答】解:①∵a>0,抛物线对称轴在y轴的右侧,则a、b异号,即b<0.抛物线与y轴交于负半轴,则c<0.∴abc>0.则此小题的结论正确;②∵抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),∴对称轴为:x=−1+32=1=−b2a,∴a=−12b,把A(﹣1,0)代入y=ax2+bx+c得,a﹣b+c=0,∴−12b﹣b+c=0,∴3b=2c,则此小题的结论错误;③∵当x=1时,y min=a+b+c,∴当m≠1时,am2+bm+c>a+b+c,于是a+b<am2+bm,则此小题的结论错误;④∵AD=BD,AB=4,△ABD是等腰直角三角形.∴AD 2+BD 2=42.解得,AD 2=8. 设点D 坐标为(1,y ).则[1﹣(﹣1)]2+y 2=AD 2.解得y =±2. ∵点D 在x 轴下方. ∴点D 为(1,﹣2).∵二次函数的顶点D 为(1,﹣2),过点A (﹣1,0). 设二次函数解析式为y =a (x ﹣1)2﹣2.∴0=a (﹣1﹣1)2﹣2.解得a =12,则此小题的结论正确;⑤∵若x 1,x 2是一元二次方程a (x +1)(x ﹣3)=4的两个根,且x 1<x 2, ∴抛物线y =a (x +1)(x ﹣3)与直线y =4的两交点是(x 1,4)和(x 2,4), ∵抛物线y =a (x +1)(x ﹣3)与x 交点为(﹣1,0)和(3,0), ∴根据二次函数的性质知,x 1<﹣1<3<x 2,此小题错误. 故选:D .7.如图,抛物线y =x 2﹣8x +15与x 轴交于A 、B 两点,对称轴与x 轴交于点C ,点D (0,﹣2),点E (0,﹣6),点P 是平面内一动点,且满足∠DPE =90°,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( )A .3B .√412C .72D .5【解答】解:解方程x 2﹣8x +15=0得x 1=3,x 2=5,则A (3,0), ∵抛物线的对称轴与x 轴交于点C , ∴C 点为AB 的中点,∵∠DPE =90°,∴点P 在以DE 为直径的圆上,圆心Q 点的坐标为(﹣4,0), AQ =√32+42=5,⊙Q 的半径为2,延长AQ 交⊙Q 于F ,此时AF 最大,最大值为2+5=7, 连接AP ,∵M 是线段PB 的中点, ∴CM 为△ABP 为中位线, ∴CM =12AP , ∴CM 的最大值为72.故选:C .8.2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神.如图是某次比赛中垫球时的动作.若将垫球后排球的运动路线近似的看作抛物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( )A .y =−1475x 2−815x +52 B .y =−1475x 2+815x +52 C .y =1475x 2−815x +52D .y =1475x 2+815x +52【解答】解;由题意可知点A 坐标为(﹣5,0.5),点B 坐标为(0,2.5),点C 坐标为(2.5,0)设排球运动路线的函数解析式为:y =ax 2+bx +c ∵排球经过A 、B 、C 三点 ∴{0.5=(−5)2a −5b +c 2.5=c 0=2.52×a +2.5b +c解得:{ a =−1475b =−815c =2.5∴排球运动路线的函数解析式为y =−1475x 2−815x +52故选:A .9.关于x 的方程x 2+2mx +m ﹣4=0(m 为常数)有两个不相等的实数根,若y =x 2+2mx +n 与x 轴有两个交点,且交点横坐标的值介于上述方程的两根之间,则n 的取值范围是( ) A .n <m 2B .﹣4<n <m 2C .m ﹣4<n ≤m 2D .m ﹣4<n <m 2【解答】解:∵y =x 2+2mx +n 与x 轴有两个交点,∴△=4m 2﹣4n >0,且两交点的横坐标x 1=−2m−√4m 2−4n 2=−m −√m 2−n ,x 2=−2m+√4m 2−4n2=−m +√m 2−n ∴n <m 2,解方程x 2+2mx +m ﹣4=0(m 为常数)得,x 3=−2m−√4m 2−4m+162=−m −√m 2−m +4,x 4=−2m+√4m 2−4m+162=−m +√m 2−m +4,∵若y =x 2+2mx +n 与x 轴有两个交点,且交点横坐标的值介于上述方程的两根之间, ∴−m −√m 2−m +4<−m −√m 2−n ,−m +√m 2−n <−m +√m 2−m +4, ∴m ﹣4<n ,综上,m ﹣4<n <m 2. 故选:D .10.对于每个非零自然数n ,抛物线y =x 2−2n+1n(n+1)x −1n+1+1n 与x 轴交于A n ,B n 两点,以A n B n 表示这两点之间的距离,则A 2B 2+…+A 2019B 2019的值是( ) A .10081009B .10092020C .20192020D .1【解答】解:将n =2,3,4…分别代入抛物线y =x 2−2n+1n(n+1)x −1n+1+1n得:y =x 2−56x +16 y =x 2−712x +112 y =x 2−920x +120 …分别解得:x 1=12,x 2=13;x 3=13,x 4=14;x 5=14,x 6=15⋯ ∴A 2B 2=12−13 A 3B 3=13−14 A 4B 4=14−15 …∴A 2019B 2019=12019−12020∴A 2B 2+…+A 2019B 2019=12−13+13−14+14−15+⋯+12019−12020 =12−12020 =10092020 故选:B .第11页共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年陕西省商洛市中考数学总复习:二次函数解析版
一.选择题(共50小题)
1.关于x 的一元二次方程ax 2+bx +12=0有一个根是﹣1,若二次函数y =ax 2+bx +12的图象
的顶点在第一象限,设t =2a +b ,则t 的取值范围是( )
A .14<t <12
B .﹣1<t ≤14
C .−12≤t <12
D .﹣1<t <12 【解答】解:∵关于x 的一元二次方程ax 2+bx +12=0有一个根是﹣1,
∴二次函数y =ax 2+bx +12的图象过点(﹣1,0),
∴a ﹣b +12=0,
∴b =a +12,
而t =2a +b ,
则a =2t−16,b =2t+26
, ∵二次函数y =ax 2+bx +12的图象的顶点在第一象限,
∴−b 2a >0,12−b 24a
>0, 将a =2t−16,b =2t+26
代入上式得: −2t+262×2t−16>0,解得:﹣1<t <12,
12−(
2t+26)24(2t−16)>0,解得:t ≠12, 故:﹣1<t <12,
故选:D .
2.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≤﹣2时,y 随x 的增大而减
小,且﹣2≤x ≤1时,y 的最大值为9,则a 的值为( )
A .1或﹣2
B .1
C .√2
D .−√2或√2 【解答】解:∵二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),
∴对称轴是直线x =−2a 2a =−1,
∵当x≤﹣2时,y随x的增大而减小,
∴a>0,
∵﹣2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a﹣6=0,
∴a=1,或a=﹣2(不合题意舍去).
故选:B.
3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列说法:①a>0;②b>0;③c <0;④b2﹣4ac>0,其中正确的个数是()
A.1B.2C.3D.4
【解答】解:∵抛物线开口向上,
∴a>0,故①正确;
∵对称轴为x=﹣1,
∴−b
2a<0,且a>0,
∴b>0,故②正确;
∵抛物线与y轴的交点在x轴的上方,
∴c>0,故③不正确;
∵抛物线与x轴有一个交点,
∴方程ax2+bx+c=0有两个相等的实数根,
∴b2﹣4ac=0,故④不正确;
综上可知正确的只有2个,
故选:B.
4.抛物线y=﹣2(x+2)2﹣5的顶点坐标是()
A.(2,﹣5)B.(2,5)C.(﹣2,﹣5)D.(﹣2,5)【解答】解:∵抛物线y=﹣2(x+2)2﹣5,。