【区级联考】2021年陕西省宝鸡市金台区中考二模数学试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:
类别
家庭藏书m本
学生人数
A
0≤m≤25
20
B
26≤m≤100
a
C
101≤m≤200
50
D
m≥201
66
根据以上信息,解答下列问题:
(1)该调查的样本容量为,a=;
(2)在扇形统计图中,“A”对应扇形的圆心角为°;
(1)两地相距千米,当货车司机拿到清单时,距出发地千米.
(2)试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?
22.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
3.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为( )
A.30°B.50°C.80°D.100°
4.下列运算中,计算正确的是( )
A.(3a2)3=27a6B.(a2b)3=a5b3
C.x6+x2=x3D.(a+b)2=a2+b2
5.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为( )
A. B.3 C.5 D.7
10.若将二次函数y=x2﹣4x+3的图象绕着点(﹣1,0)旋转180°,得到新的二次函数y=ax2+bx+c(a≠0),那么c的值为( )
A.﹣15B.15C.17D.﹣17
二、填空题
11.不等式组 的解集为_____.
12.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过菱形OABC中心E点,则k的值为_____.
14.如图,正方形ABCD的边长为2 ,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最大值是_____.
三、解答题
(2)如果确定小亮做裁判,用“手心、手背”的方法决wk.baidu.com其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
23.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
A.30°B.15°C.45°D.25°
6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()
A.x>2B.x<2C.x>﹣1D.x<﹣1
7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()
25.问题探究:
(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为.
(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE= BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.
21.为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单,途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程s(km)与行驶时间t(h)的函数图象如图所示.
A.(3,2)B.(3,1)C.(2,2)D.(4,2)
8.如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是( )
A.y=x+1B. C.y=3x﹣3D.y=x﹣1
9.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4 ,则⊙O的直径等于( )
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.
24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
(1)求抛物线C1,C2的函数表达式;
(2)求A、B两点的坐标;
(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
15.计算:| |﹣(π﹣3.14)0+tan60°+( )﹣2+(﹣1)2019
16.解分式方程: =1.
17.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BPA∽△BAC(保留作图痕迹,不写作法).
18.如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.
求证:BC=DE.
(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.
20.2021年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?( ≈1.73, ≈1.41).
【区级联考】2021年陕西省宝鸡市金台区中考二模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的绝对值是()
A.3B. C. D.
2.如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是()
A. B. C. D.
类别
家庭藏书m本
学生人数
A
0≤m≤25
20
B
26≤m≤100
a
C
101≤m≤200
50
D
m≥201
66
根据以上信息,解答下列问题:
(1)该调查的样本容量为,a=;
(2)在扇形统计图中,“A”对应扇形的圆心角为°;
(1)两地相距千米,当货车司机拿到清单时,距出发地千米.
(2)试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?
22.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
3.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为( )
A.30°B.50°C.80°D.100°
4.下列运算中,计算正确的是( )
A.(3a2)3=27a6B.(a2b)3=a5b3
C.x6+x2=x3D.(a+b)2=a2+b2
5.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为( )
A. B.3 C.5 D.7
10.若将二次函数y=x2﹣4x+3的图象绕着点(﹣1,0)旋转180°,得到新的二次函数y=ax2+bx+c(a≠0),那么c的值为( )
A.﹣15B.15C.17D.﹣17
二、填空题
11.不等式组 的解集为_____.
12.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过菱形OABC中心E点,则k的值为_____.
14.如图,正方形ABCD的边长为2 ,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最大值是_____.
三、解答题
(2)如果确定小亮做裁判,用“手心、手背”的方法决wk.baidu.com其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
23.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
A.30°B.15°C.45°D.25°
6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()
A.x>2B.x<2C.x>﹣1D.x<﹣1
7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()
25.问题探究:
(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为.
(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE= BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.
21.为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单,途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程s(km)与行驶时间t(h)的函数图象如图所示.
A.(3,2)B.(3,1)C.(2,2)D.(4,2)
8.如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是( )
A.y=x+1B. C.y=3x﹣3D.y=x﹣1
9.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4 ,则⊙O的直径等于( )
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.
24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
(1)求抛物线C1,C2的函数表达式;
(2)求A、B两点的坐标;
(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
15.计算:| |﹣(π﹣3.14)0+tan60°+( )﹣2+(﹣1)2019
16.解分式方程: =1.
17.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BPA∽△BAC(保留作图痕迹,不写作法).
18.如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.
求证:BC=DE.
(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.
20.2021年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?( ≈1.73, ≈1.41).
【区级联考】2021年陕西省宝鸡市金台区中考二模数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1. 的绝对值是()
A.3B. C. D.
2.如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是()
A. B. C. D.