高中数学必修一函数的性质单调性测试题含答案解析

合集下载

新教材人教B版高中数学必修第一册练习-函数的单调性答案含解析

新教材人教B版高中数学必修第一册练习-函数的单调性答案含解析

3.1.2函数的单调性第三章函数3.1函数的概念与性质3.1.2函数的单调性考点1函数单调性的定义1.(2019·山东栖霞二中高一月考)下列命题正确的是()。

A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数C.若函数f(x)在区间I1上为减函数,在区间I2上也为减函数,那么f(x)在区间I1∪I2上一定是减函数D.若函数f(x)是区间I上的增函数,且f(x1)<f(x2)(x1,x2∈I),则x1<x2答案:D解析:A项中,并不是对任意x1,x2都成立,故A错;B项中,虽然有无穷多对,但也不能代表“所有”“任意”,为例,虽然在(-∞,0)及(0,+∞)上均为减函数,但在整个定义域上却不具有单调性,故C错。

故B错;C项中,以f(x)=1x故选D。

2.若函数f(x)在R上是减函数,则下列关系式一定成立的是()。

A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a2)答案:D解析:因为f(x)是R上的减函数,且a2+1>a2,所以f(a2+1)<f(a2)。

故选D。

3.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不一定正确的是()。

>0A.f(x1)-f(x2)x1-x2B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)≤f(x1)<f(x2)≤f(b)D.f(x1)≠f(x2)答案:C解析:由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B,D中结论正确;对于C,若x1>x2,则f(x1)>f(x2),故C中结论不一定正确。

必修一函数的单调性1(含答案)

必修一函数的单调性1(含答案)

函数(一)单调性一、 基础知识1、 增函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 叫做函数的增区间。

2、 减函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 叫做函数的减区间。

3、 单调性:如果函数()f x 在区间D 上式增函数或者减函数,那么就是函数()f x 在这一区间上具有单调性,区间D 叫做函数的单调区间。

4、 单调区间:指的是函数具有单调性的最大取值区间。

5、证明单调性的步骤:做差→变形→判号→得结论。

6、单调函数的组合:某两个单调函数在同一区间内的加减后所得函数单调性增函数+ 增函数=增函数,减函数+减函数=减函数,增函数—减函数=增函数,减函数—增函数=减函数奇函数⨯奇函数=偶函数,偶函数⨯偶函数=偶函数奇函数⨯偶函数=奇函数二、习题精练1、(1)证明函数2()f x x x =+在)+∞上递增 (2)证明函数2()f x x x=-在()0,+∞上递增。

2、(1)找出函数223y x x =-++的增区间 (2)找出223y x x =-++的减区间3、(1)函数[)2()485,f x x kx =--+∞在区间上单调递增,求实数k 的取值范围。

(2)函数[)2()485,f x x kx =--+∞的增区间为,求实数k 的取值范围。

4、(1)已知函数{22,12,1()x ax x ax x f x -+<+≥=是R 上的增函数,求a 的范围 (2)已知函数{2(4),2416,2()x a x x ax x f x -<+-≥=是R 上的增函数,求a 的范围5、求函数21y x =-6、 已知函数()y f x =在区间(0,)+∞单调递减,请填空。

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。

它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。

为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。

一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。

2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。

3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。

4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。

人教版高中数学必修第一册第三单元《函数概念与性质》检测题(含答案解析)

人教版高中数学必修第一册第三单元《函数概念与性质》检测题(含答案解析)

一、选择题1.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-132.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<3.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭6.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .37.函数()21x f x x-=的图象大致为( )A .B .C .D .8.函数()22368f x x x x =---+-的值域是( )A .35,5⎡⎤-⎣⎦B .[]1,5C .2,35⎡⎤+⎣⎦D .35,35⎡⎤-+⎣⎦9.函数f (x )=211x --的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 10.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( ) A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A.0,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞12.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞14.下列各组函数表示同一函数的是( ) A.()f x =2()f x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()f x =()g x =.()1f x x 与2()1x g x x=-15.现有下列四个结论中,其中正确结论的个数是( )①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知a R ∈,函数229()f x x a a x =++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.18.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.19.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.20.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.21.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________.22.函数()ln f x x x x =+的单调递增区间是_______. 23.已知函数2421()349x x f x +-=-+,则(21)(2)8f x f x -++>的解集为__.24.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x )的解集为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.2.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=,()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 3.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数, 所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫ ⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.6.B解析:B 【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()212421,x x x M x x x ⎧⎡⎤---+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎪∈-∞⋃+∞ ⎪ ⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x > 当0x <时,()224g x x x x =--+≤-,得117x --≤即当117x --≤时,()()f x g x >,当1170x --<<时,()()f x g x <所以()()211724,1117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x =时,()M x 有最小值1 故选:B7.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-,函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.8.A解析:A 【详解】由()()2223682x 31x 3f x x x x =---+-=----,知2680x x -+-≥,解得[]2,4.x ∈令()2t 231x 3x =----,则()21x 323x t --=--.,即为()2y 1x 3=--和y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大. 3t 114-=+,解得35t =±35t =-当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 35,5⎡⎤∈⎣⎦,即() 35,5f x ⎡⎤∈⎣⎦.故选A.9.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合. 10.B解析:B【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.11.C解析:C【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10t t ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10t t ++-<,所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++, 所以90t >,所以'()0g t >,所以()g t 在3[,)4+∞单调递增,所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)t g t t =++,利用函数的单调性解不等式.12.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确;()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解.【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C .【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意:(1)对数要求真数大于0;(2)分式要求分母不等于0;(3)偶次根式要求被开方式大于等于0.14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数()f x =R,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.A解析:A【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真;④将函数变形,由均值不等式的性质可得最小值,可得命题为假.【详解】解:①取幂函数2y x ,显然与1y x =仅有一个交点,所以①不正确; ②函数()30x y k k =⋅>(k 为常数)的图象可由函数3x y =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231x x x x f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x x x x x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确.故选:A .【点睛】本题考查指对幂函数的性质,属于基础题.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果.令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-, 所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<, 综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞ 【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键. 17.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】 [3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x +≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-. 故答案为:[8,)-+∞.关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.18.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.19.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令 解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =, 令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠; 所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】 关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 20.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注 解析:1(,)4-+∞ 【解析】由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.21.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值.【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--.故答案为:{2,1,0}--.【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解. 22.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.23.【分析】根据题意设则原不等式变形为分析函数的奇偶性以及单调性可得原不等式等价于解可得的取值范围即可得答案【详解】根据题意函数设则变形可得即;对于其定义域为则有即函数为奇函数;函数在上为增函数在上为减 解析:1(,)3-+∞ 【分析】根据题意,设2442()()433x x g x f x +-=-=-,则原不等式变形为(21)(2)0g x g x -++>,分析函数()g x 的奇偶性以及单调性可得原不等式等价于212x x ->--,解可得x 的取值范围,即可得答案.【详解】根据题意,函数 24244221()343349x x x x f x ++--=-+=-+,设2442()()433x x g x f x +-=-=-,则(21)(2)8f x f x -++>,变形可得(21)4(2)40f x f x --++->,即(21)(2)0g x g x -++>;对于2442()()433x x g x f x +-=-=-,其定义域为R , 则有24422442()33(33)()x x x x g x g x -+++--=-=--=-,即函数()g x 为奇函数; 函数243x y +=在R 上为增函数,423x y -=在R 上为减函数, 故函数2442()33x x g x +-=-在R 上为增函数,故(21)(2)0(21)(2)(21)(2)212g x g x g x g x g x g x x x -++>⇒->-+⇒->--⇒->--, 解可得13x >-, 即不等式的解集为1(3-,)+∞. 故答案为:1(3-,)+∞. 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析函数()g x 的奇偶性与单调性,属于中档题.24.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题.【详解】解:由题意可设()x f x e x t -+=,则()xf x e x t =-+, ∵()xf f x e x e ⎡⎤-+=⎣⎦, ∴()t tf t e t t e e =-+==, ∴1t =,∴()1xf x e x =-+, ∴()1xf x e '=-, 由()()f x f x ax '+≥得11x x e x e ax -++-≥, ∴21x e a x≤-对()0,x ∈+∞恒成立, 令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增,∴()()121g x g e ≥=-,∴21a e ≤-,故答案为:(],21e -∞-.【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数和的解析式在同一坐标系中做出和的图像求出交点的坐标根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的 解析:{23}x x -<<【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数()f x 和()1f x -的解析式,在同一坐标系中做出()f x 和()1f x -的图像,求出交点的坐标,根据不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当0x <时, 0x ->,所以 ()()22()55f x x x x x -=--⨯-=+,又f (x )是R 上的奇函数,所以 2()()5f x f x x x =--=--,所以225,0()5,0x x x f x x x x ⎧-≥=⎨--<⎩, 所以()()()()22151,1(1)151,1x x x f x x x x ⎧---≥⎪-=⎨----<⎪⎩,即2276,1(1)34,1x x x f x x x x ⎧-+≥-=⎨--+<⎩, 做出()f x 和()1f x -的图像如下图所示,不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合, 由22576,x x x x -=-+得3,x =所以()3,6A -, 由22534x x x x --=--+得2x =-,所以()2,6B -,所以不等式(1)()f x f x ->的解集为{23}x x -<<. 故答案为:{23}x x -<<.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.。

湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练【含解析】

湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练【含解析】

湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练(原卷版)A组夯基精练一、单项选择题1.函数g(x)=x|x-1|+1的单调递减区间为()A∞,12B.12,1C.[1,+∞)D∞,12∪[1,+∞)2.若函数f(x)=2x2+31+x2,则f(x)的最大值为()A.1B.2C.3D.43.已知函数f(x)=30+ax2+a在区间[-10,-3]上单调递增,则实数a的取值范围是()A.(-∞,-2)∪(0,3)B.(-∞,-2)∪(0,3]C.(-∞,-2)∪(0,10)D.(-∞,-2)∪(0,10]4.已知函数f(x)+1,x<0,x2,x≥0,则不等式f(2a2-1)>f(3a+4)的解集为()A.(-∞,-1)BC.(-∞,-1)D1二、多项选择题5.已知函数f(x)=x-ax(a≠0),下列说法正确的是() A.当a>0时,f(x)在定义域上单调递增B.当a=-4时,f(x)的单调递增区间为(-∞,-2),(2,+∞) C.当a=-4时,f(x)的值域为(-∞,-4]∪[4,+∞)D.当a>0时,f(x)的值域为R6.已知函数f(x),x≤a,2+2x+1,x>a,则下列结论正确的是()A.当a=0时,函数f(x)的单调递增区间为(0,1)B.不论a为何值,函数f(x)既没有最小值,也没有最大值C.不论a为何值,函数f(x)的图象与x轴都有交点D.存在实数a,使得函数f(x)为R上的减函数三、填空题7.若函数f(x)=2x+mx+1在区间[0,1]上的最大值为3,则实数m=____.8.已知函数f(x)=x-8,g(x)=3x-x2,x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},则函数m(x)的最大值为____.9.已知f(x)a-1)x+2a,x<1,x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0恒成立,那么实数a的取值范围是__.四、解答题10.已知函数f(x)=2x-1x+1.(1)判断f(x)在[0,+∞)上的单调性,并证明你的判断;(2)若x∈[1,m],f(x)的最大值与最小值的差为12,求m的值.11.已知函数f(x)=xx2+1.(1)根据定义证明函数f(x)在(1,+∞)上单调递减;所以f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在(1,+∞)上单调递减.(2)若不等式f(x)<b对一切实数x都成立,求b的取值范围.B组滚动小练12.若函数y=f(2x)的定义域是[0,1012],则函数g(x)=f(x+1)x-1的定义域是()A.[-1,2023]B.[-1,1)∪(1,2023]C.[0,2024]D.[-1,1)∪(1,2024]13.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或都为正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=8}中的元素个数是()A.10B.9C.8D.714.已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x -c.(1)求证:方程f(x)=0必有两个不相同的根;(2)若方程f(x)=0的两个根分别为x1,x2,求|x2-x1|的取值范围.湘教版高中数学必修第一册-3.2.1函数的单调性与最值-专项训练(解析版)A 组夯基精练一、单项选择题1.函数g (x )=x |x -1|+1的单调递减区间为(B )A ∞,12B .12,1C .[1,+∞)D ∞,12∪[1,+∞)【解析】g (x )=x |x -1|+12-x +1,x ≥1,x 2+x +1,x <1,画出函数图象如图所示,根据图象知函数g (x )的单调递减区间为12,1.2.若函数f (x )=2x 2+31+x 2,则f (x )的最大值为(C )A .1B .2C .3D .4【解析】f (x )=2x 2+31+x 2=2+1x 2+1,因为x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,所以f (x )∈(2,3],故f (x )的最大值为3.3.已知函数f (x )=30+ax2+a在区间[-10,-3]上单调递增,则实数a 的取值范围是(B)A .(-∞,-2)∪(0,3)B .(-∞,-2)∪(0,3]C .(-∞,-2)∪(0,10)D .(-∞,-2)∪(0,10]【解析】因为函数f (x )=30+ax2+a在[-10,-3]上单调递增,所以a (2+a )>0,且30+ax ≥0在[-10,-3]上恒成立,(2+a )>0,-10a ≥0,-3a ≥0,解得a <-2或0<a ≤3.4.已知函数f (x )+1,x <0,x 2,x ≥0,则不等式f (2a 2-1)>f (3a +4)的解集为(D )A .(-∞,-1)BC .(-∞,-1)D 1【解析】函数f (x )+1,x <0,x 2,x ≥0中,y+1在(-∞,0)上单调递减,y =2-x 2在[0,+∞)+1=2-02,则函数f (x )=+1,x <0,x 2,x ≥0在定义域R 上单调递减.因为f (2a 2-1)>f (3a +4),所以2a 2-1<3a +4,解得-1<a <52,即不等式f (2a 2-1)>f (3a +4)1二、多项选择题5.已知函数f (x )=x -ax (a ≠0),下列说法正确的是(BCD )A .当a >0时,f (x )在定义域上单调递增B .当a =-4时,f (x )的单调递增区间为(-∞,-2),(2,+∞)C .当a =-4时,f (x )的值域为(-∞,-4]∪[4,+∞)D .当a >0时,f (x )的值域为R【解析】当a >0时,f (x )=x -ax ,定义域为(-∞,0)∪(0,+∞),则f (x )在(-∞,0),(0,+∞)上单调递增,当x →+∞时,f (x )→+∞,当x →0时,f (x )→-∞,故f(x)的值域为R,故A错误,D正确;当a=-4时,f(x)=x+4x为对勾函数,其单调递增区间为(-∞,-2),(2,+∞),故B正确;当x>0时,x+4x≥2x·4x=4(当且仅当x=2时取等号),当x<0时,x+4x=-(-x)-4(当且仅当x=-2时取等号),故f(x)的值域为(-∞,-4]∪[4,+∞),故C正确.6.已知函数f(x),x≤a,2+2x+1,x>a,则下列结论正确的是(ABD) A.当a=0时,函数f(x)的单调递增区间为(0,1)B.不论a为何值,函数f(x)既没有最小值,也没有最大值C.不论a为何值,函数f(x)的图象与x轴都有交点D.存在实数a,使得函数f(x)为R上的减函数【解析】对于A,当a=0时,函数f(x),x≤0,2+2x+1,x>0,当x≤0时,f(x)为减函数,当x>0时,f(x)=-x2+2x+1的单调递增区间为(0,1),故A正确;对于B,当x≤a时,f(x)为减函数,所以不论a为何值,当x趋近于负无穷时,f(x)趋近于正无穷,即f(x)没有最大值,当x>a时,f(x)=-x2+2x+1的图象是开口向下的抛物线的一部分,所以不论a为何值,当x趋近于正无穷时,f(x)趋近于负无穷,即f(x)没有最小值,故B正确;对于C,当x≤a时,函数f(x)的图象与x轴没有交点,当x>a时,由-x2+2x+1=0得x =1+2或x=1-2,所以当a≥1+2时,函数f(x)=-x2+2x+1(x>1+2)的图象与x轴没有交点,故C错误;对于D,当a≥1+2时,函数f(x)在(-∞,a]上为减函数,函数f(x)=-x2+2x+1在(a,+∞)>0,-a2+2a+1=-(a-1)2+2≤0>-a2+2a+1,所以此时函数f(x)为R上的减函数,故D正确.三、填空题7.若函数f(x)=2x+mx+1在区间[0,1]上的最大值为3,则实数m=__3__.【解析】因为函数f(x)=2x+mx+1=2+m-2x+1,由复合函数的单调性知,当m>2时,f(x)=2x+mx+1在[0,1]上单调递减,最大值为f(0)=m=3;当m<2时,f(x)=2x+mx+1在[0,1]上单调递增,最大值为f(1)=2+m2=3,即m=4,与m<2矛盾,舍去.故实数m=3.8.已知函数f(x)=x-8,g(x)=3x-x2,x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},则函数m(x)的最大值为__-4__.【解析】在同一平面直角坐标系中作出两函数图象如图所示.由图可得,函数f(x)=x-8与g(x)=3x-x2的交点为(4,-4),(-2,-10),所以m(x)=min{f(x),g(x)}x-x2,x∈(-∞,-2]∪[4,+∞),-8,x∈(-2,4),故m(x)max=m(4)=-4.9.已知f(x)a-1)x+2a,x<1,x,x≥1满足对任意x1≠x2,都有f(x1)-f(x2)x1-x2<0恒成立,那么实数a的取值范围是.【解析】由函数单调性定义可得函数f(x)在R上单调递减,则根据分段函数a-1<0,<a<1,a-1+2a≥a,解得13a<12四、解答题10.已知函数f(x)=2x-1x+1.(1)判断f (x )在[0,+∞)上的单调性,并证明你的判断;【解答】f (x )在[0,+∞)上单调递增.证明如下:设0≤x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3(x 1-x 2)(x 1+1)(x 2+1).因为0≤x 1<x 2,所以x 1-x 2<0,(x 1+1)(x 2+1)>0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在[0,+∞)上单调递增.(2)若x ∈[1,m ],f (x )的最大值与最小值的差为12,求m 的值.【解答】由(1)可知f (x )在[1,m ]上为增函数,故f (x )min =f (1)=12,f (x )max =f (m )=2m -1m +1,所以2m -1m +1-12=12,故m =2,此时m >1,符合题意.11.已知函数f (x )=xx 2+1.(1)根据定义证明函数f (x )在(1,+∞)上单调递减;【解答】任取x 1>x 2>1,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(x 1x 2-1)(x 2-x 1)(x 21+1)(x 22+1).因为x 1>x 2>1,所以(x 21+1)(x 22+1)>0,x 1x 2-1>0,x 2-x 1<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )在(1,+∞)上单调递减.(2)若不等式f (x )<b 对一切实数x 都成立,求b 的取值范围.【解答】因为函数f (x )=xx 2+1的定义域为R ,所以f (-x )=-x x 2+1=-f (x ),故f (x )为奇函数.由(1)知函数f (x )在(1,+∞)上单调递减,任取0≤x 1<x 2<1,则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 2x 21-x 2(x 21+1)(x 22+1)=(x 1x 2-1)(x 2-x 1)(x 21+1)(x 22+1).因为0≤x 1<x 2<1,所以(x 21+1)(x 22+1)>0,x 1x 2-1<0,x 2-x 1>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )在[0,1)上单调递增,所以f (x )max =f (1)=12.又f (0)=0,且x =0是方程f (x )=0唯一的根,所以当x ∈[0,+∞)时,f (x )∈0,12,又f (x )为奇函数,所以f (x )∈-12,12.不等式f (x )<b 对一切实数x 都成立,则b >f (x )max=12,即b B 组滚动小练12.若函数y =f (2x )的定义域是[0,1012],则函数g (x )=f (x +1)x -1的定义域是(B)A .[-1,2023]B .[-1,1)∪(1,2023]C .[0,2024]D .[-1,1)∪(1,2024]【解析】函数y =f (2x )的定义域是[0,1012],即x ∈[0,1012],则2x ∈[0,2024],所以函数y =f (x )的定义域是[0,2024],从而函数g (x )=f (x +1)x -1的定义域≤x +1≤2024,-1≠0,解得-1≤x ≤2023且x ≠1,故g (x )的定义域是[-1,1)∪(1,2023].13.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或都为正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn ,则在此定义下,集合M ={(a ,b )|a ※b =8}中的元素个数是(B)A .10B .9C .8D .7【解析】由定义知,当a ,b 都为正偶数或都为正奇数时,a ※b =a +b =8,故(a ,b )是(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1);当a ,b 中一个为正偶数,另一个为正奇数时,a ※b =ab =8,故(a ,b )是(1,8),(8,1),故共有9个元素.14.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c .(1)求证:方程f (x )=0必有两个不相同的根;【解答】由题意知ca =1·t >0,所以ac >0.对于方程f (x )=ax 2+(a -b )x -c =0,因为Δ=(a -b )2+4ac >0恒成立,所以方程f (x )=ax 2+(a -b )x -c =0必有两个不相同的根.(2)若方程f(x)=0的两个根分别为x1,x2,求|x2-x1|的取值范围.【解答】因为ax2+bx+c>0的解集为(1,t),所以1和t为方程ax2+bx+c=0的两个根,且a<0,t>10,b+c=0,t,<0,=-a-c,=at,所以|x2-x1|2=(x2+x1)2-4x2x1+4ca=+4ca =+8·ca+4.又ca=t(t>1),则|x2-x1|2=t2+8t+4=(t+4)2-12.因为t>1,所以(t+4)2-12>13,所以|x2-x1|∈(13,+∞。

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(包含答案解析)

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(包含答案解析)

一、选择题1.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞2.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32 D .523.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-14.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 5.已知()f x 是定义在R 上的奇函数,若12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,则不等式()()2120x f x x -->的解集是( )A .()(),11,2-∞B .()()0,11,+∞C .()(),01,2-∞D .()()0,12,⋃+∞6.函数()ln x xxf x e e -=-的大致图象是( )A .B .C .D .7.已知函数f (x )=|x |+ln|x |,若f (3a -1)>f (1),则实数a 的取值范围是( ) A .a <0B .23a >C .023a <<D .a <0或23a >8.设函数()()1xf x x R x=-∈+,区间[,]M a b =,集合{(),}N y y f x x M ==∈,则使MN 成立的实数对(,)a b 有( )A .0个B .1个C .2个D .无数个9.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞10.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数11.函数1()2lg f x x x=+- ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃ D .(,2]-∞12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-2018 13.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( )A .2x y =B .2y xC .2log y x =D .21y x =+14.现有下列四个结论中,其中正确结论的个数是( ) ①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个15.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______. 17.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________.18.设函数()()333f x x x x R =-+∈.已知0a >,且()()()()2f x f a x b x a -=--,b R ∈,则ab =______.19.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.20.记号{}max ,m n 表示m ,n 中取较大的数,如{}max 1,22=.已知函数()f x 是定义域为R 的奇函数,且当0x >时,()222max ,4x f x x x a a ⎧⎫=-+-⎨⎬⎩⎭.若0x <时,()f x 的最大值为1,则实数a 的值是_________.21.已知函数y =f (x )和y =g (x )在[-2,2]的图像如图所示,给出下列四个命题:①方程f [g (x )]=0有且仅有6个根 ②方程g [f (x )]=0有且仅有3个根 ③方程f [f (x )]=0有且仅有5个根 ④方程g [g (x )]=0有且仅有4个根 其中正确的命题是___22.定义在()1,1-上的函数()3sin f x x x =--,如果()()2110f a f a -+->,则实数a 的取值范围为______.23.函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-,若对任意的(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是_______参考答案24.函数()22f x x x =-,[]2,2x ∈-的最大值为________.25.已知函数()()11xf x x x =>-,())2g x x x ≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是_________.26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.2.C解析:C 【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.3.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.4.A解析:A 【分析】由图象知函数的定义域排除选项选项B 、D ,再根据()01f =-不成立排除选项C ,即可得正确选项. 【详解】由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C , 故选:A 【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.5.C解析:C 【分析】根据条件先判断出()f x 的单调性,根据单调性得到()f x 取值的特点,根据1x -与0的关系,采用分类讨论的方法解不等式,从而求解出解集. 【详解】因为12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,所以()f x 为R 上增函数,又因为()f x 为R 上奇函数,所以0x <时,()0f x <;0x >时,()0f x >;0x =时,()0f x =;当10x -=时,1x =,此时()()2012x f x x --=,不符合条件;当10x ->时,因为()()2120x f x x -->,所以22010x x x ⎧->⎨->⎩,解得0x <;当10x -<时,因为()()2120x f x x -->,所以22010x x x ⎧-<⎨-<⎩,解得12x <<;所以()()2120x f x x -->的解集为()(),01,2-∞,故选:C. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.6.C解析:C 【分析】结合选项中函数图象的特征,利用函数的性质,采用排除法求解即可. 【详解】由题可知,函数()f x 的定义域为()(),00,-∞⋃+∞,()()ln ln x x x xx xf x f x e e e e----==-=---, 所以函数()f x 为奇函数,所以排除选项BD ;又()10f =,所以排除选项A. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.7.D解析:D 【分析】根据函数为偶函数可转化为(|31|)(1)f a f ->,利用单调性求解即可.【详解】()||ln ||f x x x =+的定义域为(,0)(0,)-∞+∞,关于原点对称,又()||ln ||()f x x x f x -=-+-=, 所以()||ln ||f x x x =+为偶函数, 当0x >时,()ln f x x x =+为增函数, 又(31)(1)f a f ->可化为(|31|)(1)f a f ->, 所以|31|1a ->,所以311a ->或311a -<-, 解得23a >或0a <, 故选:D 【点睛】本题主要考查了函数的奇偶性,函数的单调性,绝对值不等式的解法,属于中档题.8.A解析:A 【分析】 由已知中函数()()1||xf x x R x =-∈+,我们可以判断出函数的奇偶性及单调性,再由区间[M a =,]()b a b <,集合{|()N y y f x ==,}x M ∈,我们可以构造满足条件的关于a ,b 的方程组,解方程组,即可得到答案.【详解】x R ∈,()()1xf x f x x-==-+,()f x ∴为奇函数, 0x 时,1()111x f x x x -==-++,0x <时,1()111x f x x x-==--- ()f x ∴在R 上单调递减函数在区间[a ,]b 上的值域也为[a ,]b ,则()(),f a b f b a ==, 即1a b a -=+,1ba b-=+,解得0a =,0b = a b <,使M N 成立的实数对(,)a b 有0对 故选:A 【点睛】本题考查的知识点是集合相等,函数奇偶性与单调性的综合应用,其中根据函数的性质,构造出满足条件的关于a ,b 的方程组,是解答本题的关键.9.A解析:A 【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围. 【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩,当()212f x x ax a =+-在[)2,+∞上单调递增时,22a-≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-, 故选:A. 【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤: (1)先分析每一段函数的单调性并确定出参数的初步范围; (2)根据单调性确定出分段点处函数值的大小关系; (3)结合(1)(2)求解出参数的最终范围.10.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()|3|3f x x =+-所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x x-==-=-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;11.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.12.B解析:B 【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=, 所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=.故选:B . 【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.13.D解析:D 【解析】根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.14.A解析:A 【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真; ④将函数变形,由均值不等式的性质可得最小值,可得命题为假. 【详解】 解:①取幂函数2y x ,显然与1y x=仅有一个交点,所以①不正确;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231xxxx f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x xxx x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确. 故选:A . 【点睛】本题考查指对幂函数的性质,属于基础题.15.C解析:C 【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑. 【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C. 【点睛】本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.17.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3-【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-.故答案为:(3,0)(1,3)-18.【分析】先将进行因式分解再与比较利用对应系数相等可得关于的方程即可得的值即可求解【详解】因为所以因为所以对任意的恒成立所以不恒为所以展开整理可得:所以解得:或(舍)所以故答案为:【点睛】关键点点睛: 解析:2-【分析】先将()()f x f a -进行因式分解再与()()2x b x a --比较,利用对应系数相等可得关于,a b 的方程,即可得,a b 的值,即可求解.【详解】因为()()333f x x x x R =-+∈,所以()()()()333333333f x f a x x a a x a x a -=-+----=-+,()()()()222233x ax a x ax x a x a x a a ⎡⎤---==+-++-⎣+⎦,因为()()()()2f x f a x b x a -=--,所以()()()2223x ax a x b x x a a ⎡⎤-=⎣-⎦++--,对任意的x 恒成立, 所以x a -不恒为0,所以()()223x ax a x b x a ++-=--展开整理可得:()23ax a a b x ab +-=-++,所以()23a a b a ab⎧=-+⎨-=⎩ 解得:12a b =⎧⎨=-⎩或12a b =-⎧⎨=⎩(舍),所以()122ab =⨯-=-, 故答案为:2-. 【点睛】关键点点睛:本题解题的关键是将()()f x f a -进行因式分解,由x a -不恒为0,得出()()223x ax a x b x a ++-=--利用待定系数法可求,a b 的值.19.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案 【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =,令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠;所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 20.【分析】首先将时函数写成分段函数的形式并求函数的最小值根据奇函数的性质可知时的最小值是建立方程求【详解】当时解得:此时令解得此时所以时函数又因为此时是定义在上的奇函数所以图象关于原点对称时函数的最小解析:2±【分析】首先将0x >时,函数()f x 写成分段函数的形式,并求函数的最小值,根据奇函数的性质可知0x >时的最小值是1-,建立方程求a 【详解】当0x >时,22240x x x a a -+-+≥,解得:202x a <≤,此时()22x f x x a =-+,令22240x x x a a-+-+<,解得22x a >,此时()24f x x a =-, 所以0x >时,函数()222224,2,02x a x a f x x x x a a⎧-≥⎪=⎨-<≤⎪⎩,又因为此时()f x 是定义在R 上的奇函数,所以图象关于原点对称,0x ∴>时,函数的最小值是-1, 当22x a ≥时,函数单调递增,()222min 242f x a a a =-=-,当202x a <≤时,()222222124x a af x x x a a ⎛⎫=-=--+ ⎪⎝⎭,函数的()()22min 22f x f aa==-,所以0x >时,函数的最小值是22a -,即221a -=-,解得:a =故答案为:2± 【点睛】思路点睛:本题主要考查分段函数与函数性质的综合应用,首先根据新定义,正确写出函数()f x 的表达式,这是本题最关键的一点,然后就转化为分段函数求最值问题.21.①③④【分析】根据函数图像逐一判断即可【详解】对于①令结合图象可得有三个不同的解从图象上看有两个不同的解有两个不同的解有两个不同的解故有6个不同解故①正确对于②令结合图象可得有两个不同的解从图象上看解析:①③④ 【分析】根据函数图像逐一判断即可. 【详解】对于①,令()t x g =,结合图象可得()0f t =有三个不同的解12321,0,12t t t -<<-=<<,从图象上看()1g x t =有两个不同的解,()2g x t =有两个不同的解,()3g x t =有两个不同的解,故[()]0f g x =有6个不同解,故①正确.对于②,令()t f x =,结合图象可得()0g t =有两个不同的解1221,01t t -<<-<<, 从图象上看()1f x t =的有一个解,()2f x t =有三个不同的解, 故[()]0g f x =有4个不同解,故②错误. 对于③,令()t f x =,结合图象可得()0f t =有三个不同的解12321,0,12t t t -<<-=<<, 从图象上看()1f x t =有一个解,()2f x t =有三个不同的解,()3f x t =有一个解,故[()]0f f x =有5个不同解,故③正确.对于④,令()t x g =,结合图象可得()0g t =有两个不同的解1221,01t t -<<-<<, 从图象上看()1g x t =有两个不同的解,()2g x t =有两个不同的解, 故[()]0g g x =有4个不同解,故④正确. 故答案为①③④. 【点睛】本题考查了函数图像的应用,考查了数学结合思想,属于中档题.22.【分析】先得出函数是奇函数且是减函数从而得到结合函数的定义域从而求出的范围【详解】解:是奇函数又是减函数若则则解得:或由解得:综上:故答案为:【点睛】本题考查了函数的奇偶性函数的单调性的应用属于中档题解析:(【分析】先得出函数是奇函数且是减函数,从而得到211a a -<-,结合函数的定义域,从而求出a 的范围. 【详解】 解:()3sin (3sin )()f x x x x x f x -=-=-+=-,是奇函数,又()3cos 0f x x '=-+<,是减函数, 若2(1)(1)0f a f a -+->, 则2((1))1f a f a -->,则211a a -<-,解得:1a >或2a <-,由2111111a a -<-<⎧⎨-<-<⎩,解得:0a <<,综上:12a <<,故答案为:()1,2. 【点睛】本题考查了函数的奇偶性,函数的单调性的应用,属于中档题.23.【分析】首先根据已知条件依次得到在附近的区间对应的函数解析式然后按其规律画出函数的图像再根据不等式恒成立的意义与函数图像即可求得实数m 的取值范围【详解】当时则当时则当时则由此作出图象如图所示由图知当解析:7,3⎛⎤-∞ ⎥⎝⎦【分析】首先根据已知条件依次得到在(0,1]x ∈附近的区间,(1,2]x ∈、(2,3]x ∈对应的函数解析式,然后按其规律画出函数的图像,再根据不等式恒成立的意义与函数图像即可求得实数m 的取值范围 【详解】当10-<≤x 时,011x <+≤,则11()(1)(1)22f x f x x x =+=+, 当12x <≤时,011x <-≤,则()2(1)2(1)(2)f x f x x x =-=--,当23x <≤时,021x <-≤,则22()2(1)2(2)2(2)(3)f x f x f x x x =-=-=--,由此作出()f x 图象如图所示,由图知当23x <≤时,令282(2)(3)9x x --=-, 整理得:(37)(38)0x x --=, 解得:73x =或83x =,要使对任意的(,]x m ∈-∞,都有8()9f x ≥-,必有73m ≤, 所以m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦,故答案为:7,3⎛⎤-∞ ⎥⎝⎦【点睛】本题主要考查函数的解析式,函数的图象,不等式恒成立问题,考查分类讨论,数形结合的思想,属于中档题.24.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8 【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.25.甲【分析】由题意求出的解析式依据两函数为同一函数的条件:定义域和对应关系相同即可得出结论【详解】解得所以故答案为:甲【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析:甲 【分析】由题意求出()(),F x G x 的解析式,依据两函数为同一函数的条件:定义域和对应关系相同,即可得出结论. 【详解】()()11xf x x x =>-,())2g x x x =≥, ()()11xf x x x ∴=>-, ())21x F x x x x x∴==≥-, ()()()G x g x f x =,())21G x x x x ∴=≥-, 解得())2G x x =≥,所以()())2F x G x x ==≥.故答案为:甲 【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析式和定义域是求解本题的关键;属于易错题;26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确; 由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。

必修一函数的单调性1(含答案)

必修一函数的单调性1(含答案)

函数(一)单调性一、 基础知识1、 增函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 叫做函数的增区间。

2、 减函数:设函数()f x 的定义域为I,如果对于I 内某个区间D 的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 叫做函数的减区间。

3、 单调性:如果函数()f x 在区间D 上式增函数或者减函数,那么就是函数()f x 在这一区间上具有单调性,区间D 叫做函数的单调区间。

4、 单调区间:指的是函数具有单调性的最大取值区间。

5、证明单调性的步骤:做差→变形→判号→得结论。

6、单调函数的组合:某两个单调函数在同一区间内的加减后所得函数单调性增函数+ 增函数=增函数,减函数+减函数=减函数,增函数—减函数=增函数,减函数—增函数=减函数奇函数⨯奇函数=偶函数,偶函数⨯偶函数=偶函数奇函数⨯偶函数=奇函数二、习题精练1、(1)证明函数2()f x x x =+在)+∞上递增 (2)证明函数2()f x x x=-在()0,+∞上递增。

2、(1)找出函数223y x x =-++的增区间 (2)找出223y x x =-++的减区间3、(1)函数[)2()485,f x x kx =--+∞在区间上单调递增,求实数k 的取值范围。

(2)函数[)2()485,f x x kx =--+∞的增区间为,求实数k 的取值范围。

4、(1)已知函数{22,12,1()x ax x ax x f x -+<+≥=是R 上的增函数,求a 的范围 (2)已知函数{2(4),2416,2()x a x x ax x f x -<+-≥=是R 上的增函数,求a 的范围5、求函数21y x =-6、 已知函数()y f x =在区间(0,)+∞单调递减,请填空。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

(必考题)高中数学必修一第二单元《函数》测试(有答案解析)(4)

(必考题)高中数学必修一第二单元《函数》测试(有答案解析)(4)

一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .42.若关于x 的不等式342xx a +-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞3.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11284.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R5.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1- D .()(),13,-∞+∞6.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <7.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个8.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-9.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞10.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .4 11.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .712.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3二、填空题13.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.14.已知函数()31f x ax bx =-+,若()25f =,则()2f -=______.15.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.16.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i A B ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.17.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 18.已知函数()f x 的值域为[]0,4(2,2x),函数()1=-g x ax ,2,2x ,[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立,则实数a 的取值范围为________________.19.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.20.已知函数22, 1()+1, 1x ax x f x ax x ⎧-+≤=⎨>⎩,若()f x 在定义域上不是单调函数,则实数a 的取值范围是_______.三、解答题21.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围. 22.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <⋅,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--,且()F x 在[0,1]上单调递增,求实数m 的取值范围. 23.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.24.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值. 25.已知函数()()90f x x x x=+≠. (1)当()3,x ∈+∞时,判断并证明()f x 的单调性; (2)求不等式()()2330f xf x +≤的解集.26.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥, 即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.D解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n nf f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,12231011111111232232232232n n n n nf f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭. ∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 4.A解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.5.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 6.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >.故选:B 【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.7.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.8.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.9.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.10.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.11.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 12.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.二、填空题13.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =, 令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2) 【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.14.【分析】根据题意令从而得到得到为奇函数整理得到将代入求得的值【详解】设则即为奇函数故即即【点睛】方法点睛:该题考查的是有关函数值的求解问题解题方法如下:(1)构造奇函数;(2)利用奇函数的性质得到进 解析:3-【分析】根据题意,令()()31g x f x ax bx =-=-,从而得到()()3g x ax bx g x -=-+=-,得到()g x 为奇函数,整理得到()()2121f f --=--⎡⎤⎣⎦,将()25f =代入求得()2f -的值.【详解】设()()31g x f x ax bx =-=-,则()()3g x ax bx g x -=-+=-,即()g x 为奇函数,故()()22g g -=-,即()()2121f f --=--⎡⎤⎣⎦, 即()()222523f f -=-+=-+=-. 【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下: (1)构造奇函数()()31g x f x ax bx =-=-;(2)利用奇函数的性质得到()()22g g -=-,进而求得()()222f f -=-+,得到结果.15.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x =-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立, 即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,而2117()2()48f x x =-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>;()f x m <有解min ()f x m ⇔<.16.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i Aϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.17.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.18.【分析】依题意分析的值域A 包含于的值域B 再对分类讨论得到的值域列关系计算即可【详解】因为总使得成立所以的值域A 包含于的值域B 依题意A=又函数因此当时不满足题意;当时在上递增则故即得;当时在上递减则故解析:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】依题意分析()f x 的值域A 包含于()g x 的值域B ,再对a 分类讨论得到()g x 的值域,列关系计算即可. 【详解】因为[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立, 所以()f x 的值域A 包含于()g x 的值域B ,依题意A =[]0,4, 又函数()1=-g x ax ,2,2x,因此,当0a =时,{}1B =-,不满足题意;当0a >时,()g x 在[]2,2-上递增,则[][]21,210,4B a a =---⊇,故210214a a --≤⎧⎨-≥⎩,即得52a ≥;当0a <时,()g x 在[]2,2-上递减,则[][]21,210,4B a a =---⊇,故210214a a -≤⎧⎨--≥⎩,即得52a ≤-.综上,实数a 的取值范围为55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故答案为:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 【点睛】本题考查了恒成立问题、函数的值域,以及利用包含关系求参数范围问题,属于中档题.19.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.20.【分析】结合二次函数的图象与性质按照分类再由分段函数的单调性即可得解【详解】因为函数的图象开口朝下对称轴为且所以当时函数在上不单调符合题意;当时函数在上均单调递增若要使在定义域上不是单调函数则解得故 解析:(),1(2,)-∞+∞【分析】结合二次函数的图象与性质,按照1a <、1a ≥分类,再由分段函数的单调性即可得解. 【详解】因为函数22y x ax =-+的图象开口朝下,对称轴为x a =,且22,?1()+1,?1x ax x f x ax x ⎧-+≤=⎨>⎩,所以当1a <时,函数()f x 在(],1-∞上不单调,符合题意; 当1a ≥时,函数()f x 在(],1-∞,()1,+∞上均单调递增, 若要使()f x 在定义域上不是单调函数,则2121a a -+>+,解得2a >,故2a >符合题意; 综上,实数a 的取值范围是(),1(,)2-∞⋃+∞. 故答案为:(),1(,)2-∞⋃+∞. 【点睛】解决本题的关键是将分段函数不单调转化为两种情况,分类求解.三、解答题21.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,简图答案见解析;(2)单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-;(3)1m .【分析】(1)设0x <,则0x ->,利用()f x f x =--()即可求出0x <时,()f x 的解析式,进而可得函数()f x 的解析式,按步骤列表描点连线即可作出函数图象; (2)根据图象上升和下降趋势即可得单调区间;(3)将原问题转化为max 21m f x ≤-(),利用单调性求出()f x 在区间[1,3]-上的最大值即可求解. 【详解】(1)设0x <,则0x ->,因为f x ()是奇函数所以()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦() 所以222,02,0x x x f x x x x ⎧-≥=⎨--<⎩() , 列表如下:(2)由图知:函数f x ()的单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-(3)不等式21f x m -≥()在1[]3x ∈-,上有解, 等价于在21m f x ≤-()在1[]3x ∈-,有解.可得max 21m f x ≤-(), 由(2)可知f x ()在[11-,)上单调递减,在[1]3,上单调递增, 因为()()()211211f -=---⨯-=,()233233f =-⨯=所以()max 3f x =,所以2312m ≤-=,所以1m 【点睛】方法点睛:求不等式有解问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可. 22.(1)(,0)(4,)-∞+∞;(2)[1,0][2,)-⋃+∞.【分析】(1)由题意可得x R ∃∈,20x bx b -+<,所以2()40b b ∆=-->,即可求解; (2)22()1F x x mx m =-+-,然后讨论0∆≤时满足对称轴为02mx =≤,当0∆>时,讨论对称轴与区间的关系,012m <<,显然不成立,所以有212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩或202(0)10mF m ⎧≤⎪⎨⎪=-≥⎩解不等式,最后求并集即可. 【详解】(1)x R ∃∈,()()f x bg x <, 即x R ∃∈,20x bx b -+<, 所以判别式2()40b b ∆=-->, 解得:0b <或4b >. 故实数b 的取值范围为(,0)(4,)-∞+∞.(2)22()1F x x mx m =-+-,对称轴为2m x =, ()F x 在[0,1]上单调递增,当()2241m m ∆=--=254m-①当0∆≤,即55m -≤≤时,则有02mm ⎧≤⎪⎪⎨⎪≤≤⎪⎩解得:m 0≤≤②当0∆>,即m <m > 设方程()0F x =的根为1x ,()212x x x <.若12m ≥,则10x ≤,即212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩解得:2≥m 若02m ≤,则20x ≤,即202(0)10m F m ⎧≤⎪⎨⎪=-≥⎩解得:10m -≤≤ 若012m<<,不符合题意, 综上所述,实数m 的取值范围为[1,0][2,)-⋃+∞.【点睛】结论点睛:一元二次不等式恒成立求参数(1)对于20ax bx c ++≥对于x ∈R 恒成立,等价于00a >⎧⎨∆≤⎩, (2)对于20ax bx c ++≤对于x ∈R 恒成立,等价于00a <⎧⎨∆≤⎩. 23.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭. 【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围. 【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =,再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-,∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-, 则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>, 从而()()120f x f x ->, ∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增. (2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =, ∴()f x 在11,22⎛⎫-⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①;max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②,由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值. 24.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+.(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选②, (1)由142a f ⎛⎫=⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键. 25.(1)单调递增,证明见解析;(2){}1-. 【分析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可; (2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f xf x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集. 【详解】解:(1)设123x x <<,则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭因为12120,90x x x x -<->, 所以()()120f x f x -<,所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,所以121x x -+, 当0x >时,12x x+,不合题意,舍去; 当0x <时,只需解12x x-+,可化为2(1)0x +,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增, 又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f xf x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.26.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥ 【分析】 (1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域;(2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果. 【详解】(1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈, 又()0f x ≥,所以()2]f x ∈. (2)()h x ==令t =2]∈,则22t =-,所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或,所以1m ≤-或1m ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。

(易错题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)

(易错题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)

一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <3.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦4.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .65.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)6.若()f x 是偶函数,其定义域为(,)-∞+∞,且在[0,)+∞上是减函数,则(1)f -与2(22)f a a ++的大小关系是( )A . 2(1)(22)f f a a ->++B .2(1)(22)f f a a -<++C .2(1)(22)f f a a -≥++D . 2(1)(22)f f a a -≤++7.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( ) A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞8.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞9.若函数2()2(2)1f x mx m x =+-+的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞ 10.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3 B .3或134C .3D .13411.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-二、填空题13.若函数()y f x =的定义域是[]0,4,则函数() 21f x f x x =-的定义域是__________.14.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________. 15.若函数2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩,满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,那么b 的取值范围是_____.16.若函数()22()42221f x x p x p p =----+在区间[]1,1-上至少存在一个实数c ,使()0f c >,则实数p 的取值范围为________.17.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式()cos f x x<0的解集为________.18.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .19.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________. 20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知函数()221x f x x=+. (1)求()122f f ⎛⎫+⎪⎝⎭,()133f f ⎛⎫+ ⎪⎝⎭的值;(2)求证:()1f x f x ⎛⎫+ ⎪⎝⎭是定值; (3)求()()11120202320202f f f f f ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 22.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 23.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;24.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+.(1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域. 25.已知函数1()1f x x =-,()1g x x x =+-.(1)判断当()1,x ∈+∞时函数()f x 的单调性,并用定义证明; (2)用分段函数的形式表示()g x 函数,并画出函数()g x 的图像. 26.已知函数()11f x x x =++- (1)求()f x 的定义域和值域; (2)设2()216h x x =-+231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,1215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤,要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

数学必修一《函数的单调性》精选练习(含答案解析)

数学必修一《函数的单调性》精选练习(含答案解析)

数学必修一《函数的单调性》精选练习(含答案解析)一、选择题1.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x) ( )A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定2.下列函数中,在区间(0,1)上是增函数的是( )A.y=|x|B.y=3-xC.y=D.y=-x2+43下列函数中,在区间(0,2)上为增函数的是( )①y=-x+1;②y=-;③y=x2-4x+5;④y=.A.①B.②C.③D.④4.函数f(x)在区间(-2,3)上是增函数,则y=f(x+4)的递增区间是( )A.(2,7)B.(-2,3)C.(-6,-1)D.(0,5)5.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不正确的是( )A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)<f(x1)<f(x2)<f(b)D.>06.函数f(x)=x2-2(a-1)x+1在区间[5,+∞)上是增函数,则实数a的取值范围是( )A.[6,+∞)B.(6,+∞)C.(-∞,6]D.(-∞,6).7.函数f(x)=2x2-mx+3,当x∈(-∞,-2]时是减函数,x∈[-2,+∞)时是增函数,则f(1)等于( )A.-3B.13C.7D.由m而定的常数8.设函数f(x)在(-∞,+∞)上为减函数,则( )A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)二、填空题9.函数f(x)=的减区间是.10.设函数f(x)满足:对任意的x1,x2∈R都有(x1-x2)[f(x1)-f(x2)]>0,则f(-3)与f(-π)的大小关系是.11.已知函数f(x)在R上是减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式-2<f(x)<2的解集为.12.函数y=在(-2,+∞)上为增函数,则a的取值范围是.13.f(x)是定义在[0,+∞)上的减函数,则不等式f(x)<f(-2x+8)的解集是.三、解答题14.如图分别为函数y=f(x)和y=g(x)的图象,试写出函数y=f(x)和y=g(x)的单调增区间.15.已知函数f(x)=.(1)求f(x)的定义域.(2)判断函数f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.16.设函数f(x)是R上的单调增函数,F(x)=f(x)-f(2-x).求证:函数F(x)在R上是单调增函数.17.定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m,n∈R恒成立.当x>0时,f(x)>2.(1)证明f(x)在R上是增函数.(2)已知f(1)=5,解关于t的不等式f(t-1)≤8.参考答案与解析1【解析】选D.由单调性定义可知,不能用特殊值代替一般值.【误区警示】本题易错选A,原因是对增函数概念理解不到位,用特殊值代替一般值,因而是错误的.2【解析】选A.B在R上为减函数;C在(-∞,0)和(0,+∞)上为减函数;D在(-∞,0)上为增函数,在(0,+∞)上为减函数.3【解析】选B.结合函数的图象可知②在区间(0,2)上为增函数,而①③④在区间(0,2)上均为减函数.4【解析】选C.函数y=f(x+4)是函数f(x)向左平移4个单位得到,因为函数f(x)在区间(-2,3)上是增函数,所以y=f(x+4)的增区间为(-2,3)向左平移4个单位,即增区间为(-6,-1).5【解析】选C.由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B,D正确;对于C,若x1<x2时,可能有x1=a或x2=b,即f(x1)=f(a)或f(x2)=f(b),故C不成立.6【解析】选C.函数f(x)的对称轴x=a-1,因为函数f(x)在[5,+∞)上是增函数,所以a-1≤5,所以a≤67【解析】选B.由题意知=-2,所以m=-8,所以f(x)=2x2+8x+3,f(1)=2+8+3=13. 8【解析】选D.因为a2+1-a=+>0,所以a2+1>a,又因为函数f(x)在(-∞,+∞)上为减函数,所以f(a2+1)<f(a).9【解题指南】本题可先作出函数图象,由图象观察减区间.【解析】函数f(x)的图象如图所示.则减区间是(0,1].答案:(0,1]10【解析】由(x1-x2)[f(x1)-f(x2)]>0,可知函数f(x)为增函数,又因为-3>-π,所以f(-3)>f(-π).答案:f(-3)>f(-π)11【解析】因为A(0,-2),B(-3,2)在函数y=f(x)的图象上,所以f(0)=-2,f(-3)=2,故-2<f(x)<2可化为f(0)<f(x)<f(-3),又f(x)在R上是减函数,因此-3<x<0. 答案:(-3,0)【解析】因为y==1-,所以函数的单调增区间为(-∞,-a),(-a,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a,即a≥2.答案:a≥213【解析】依题意,得不等式组解得<x≤4.答案:【误区警示】解答本题时易忽视函数定义域而出错.14【解题指南】根据函数的图象写出函数的单调区间,主要是观察图象,找到最高点或最低点的横坐标,便可得到一个单调区间,由图象的上升或下降的趋势确定是递增还是递减的区间.【解析】由题意,确定函数y=f(x)和y=g(x)的单调增区间,即寻找图象中呈上升趋势的一段图象.由图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的.由图(2)可知,在和内,y=g(x)是单调递增的.15【解析】(1)由x2-1≠0,得x≠±1,所以函数f(x)=的定义域为{x∈R|x≠±1}.(2)函数f(x)=在(1,+∞)上是减函数.证明:任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=-=.因为x2>x1>1,所以-1>0,-1>0,x2-x1>0,x2+x1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=在(1,+∞)上是减函数.16【证明】任取x1,x2∈R,且x1<x2,因为函数f(x)是R上的单调增函数,所以f(x1)<f(x2),f(2-x1)>f(2-x2),即f(x1)-f(x2)<0,f(2-x1)-f(2-x2)>0,所以F(x1)-F(x2)=[f(x1)-f(2-x1)]-[f(x2)-f(2-x2)]=[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)]<0,即F(x1)-F(x2)<0,所以F(x1)<F(x2).所以函数F(x)在R上是单调增函数.17【解析】(1)对任意x1,x2∈R,且x1<x2,所以x2-x1>0,所以f(x2-x1)>2,f(x1)-f(x2)=f(x1)-f(x2-x1+x1)=f(x1)-f(x2-x1)-f(x1)+2=2-f(x2-x1)<0,所以f(x1)<f(x2),所以f(x)在R上是增函数.(2)因为f(1)=5,所以f(2)=f(1)+f(1)-2=8,由f(t-1)≤8得f(t-1)≤f(2).因为f(x)在R上为增函数,所以t-1≤2,即t≤3, 故不等式的解集为{t|t≤3}.。

(完整)高中数学必修1函数单调性和奇偶性专项练习(含答案),推荐文档

(完整)高中数学必修1函数单调性和奇偶性专项练习(含答案),推荐文档

24高中数学必修 1第二章 函数单调性和奇偶性专项练习一、函数单调性相关练习题1、(1)函数 f (x )=x -2 , x ∈{0,1,2,4}的最大值为.3(2) 函数 f (x )=2x -1在区间[1,5]上的最大值为 ,最小值为.12、利用单调性的定义证明函数 f (x )= x 2 在(-∞,0)上是增函数.3、判断函数 f (x )=x +1在(-1,+∞)上的单调性,并给予证明. 4、画出函数 y =-x 2+2丨x 丨+3的图像,并指出函数的单调区间.5、已知二次函数 y =f(x)(x ∈R )的图像是一条开口向下且对称轴为 x =3 的抛物线,试比较大小: (1)f(6)与 f(4); (2)f(2)与f( 15)6、已知 y =f (x ) 在定义域(-1,1)上是减函数,且 f (1-a )<f (3a -2) ,求实数 a 的取值范围.7、求下列函数的增区间与减区间(1)y =|x 2+2x -3|x 2 - 2x(2) y=1-|x - 1|(3)y = (4) y =- x 2 - 2x + 31x 2-x -208、函数 f(x)=ax 2-(3a -1)x +a 2 在[1,+∞]上是增函数,求实数 a 的取值范围.ax9、 【例4】 判断函数f(x)=x 2 - 1(a ≠0)在区间(-1,1)上的单调性.10、求函数 f (x )=x + x在[1,3]上的最大值和最小值.二、函数奇偶性相关练习题11、判断下列函数是否具有奇偶性.(1) f (x )=(x -; (2) f (x )=a( x ∈ R ); (3) f (x )=3 (2x +5)2-3 (2x -5)212、若 y =(m -1)x 2+2mx +3 是偶函数,则 m =.13、 已知函数 f (x )=ax 2+bx +c ( a ≠ 0 )是偶函数,那么 g (x )=ax 3+bx 2+cx 是 ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14、已知函数 f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[ a -1, 2a ],则 ()1A . a = ,b =0B .a =-1,b =0C .a =1,b =0D .a =3,b =0315、已知 f (x ) 是定义在 R 上的奇函数,当 x ≥ 0 时, f (x )=x 2-2x ,则 f (x ) 在 R 上的表达式是 ( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)16、函数 f (x ) =)A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数17、若(x ) , g (x ) 都是奇函数, f (x )=a(x )+bg (x )+2 在(0,+∞)上有最大值 5,则 f (x ) 在(-∞,0)上有()A .最小值-5B .最大值-5C .最小值-1D .最大值-318、函数 f (x ) = 的奇偶性为(填奇函数或偶函数) .⎪ x 3-3x 2+1, 19、判断函数 f (x )= ⎨⎩ x 3+3x 2-1, x >0x <0的奇偶性. 20、f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且 f (x )在[5,+∞)上单调递减,试判断 f (x )在(-∞,-5]上的单调性,并用定义给予证明.121、已知 f (x ) 是偶函数, g (x ) 是奇函数,若 f (x ) + g (x ) =g (x ) 的解析式为.x -1,则 f (x ) 的解析式为,22、已知函数 f (x )满足 f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且 f (0)≠0.试证 f (x )是偶函数.23、设函数 y =f (x )(x ∈R 且x≠0)对任意非零实数 x 1、x 2 满足 f (x 1·x 2)=f (x 1)+f (x 2).求证 f (x )是偶函数.1 + x2 + x -11 + x2 + x +1x - 2 - 21 - x 2高中数学必修 1第二章函数单调性和奇偶性专项练习答案11、【答案】(1)2 (2)3,32、略3、【答案】减函数,证明略.4、【答案】分为x ≥ 0 和x<0 两种情况,分段画图.单调增区间是(-∞,-1)和[0,1];单调减区间是[-1,0)和(1,+∞)5、【答案】(1)f(6)<f(4) ;(2)∴f( 15)>f(4),即f( 15)>f(2).1 36、【答案】实数a 的取值范围是(,)3 47、【答案】(1)递增区间是[-3,-1],[1,+∞);递减区间是(-∞,-3],[-1,1](2)增区间是(-∞,0)和(0,1);减区间是[1,2)和(2,+∞)(3)∴函数的增区间是[-3,-1],减区间是[-1,1].1 1(4)函数的增区间是(-∞,-4)和(-4,);减区间是[ ,5)和(5,+∞)2 28、【答案】a 的取值范围是0≤a≤1.9、【答案】当a>0 时,f(x)在(-1,1)上是减函数;当a<0 时,f(x)在(-1,1)上是增函数.10、【答案】先判断函数在[1,2]上是减函数,在(2,3]上是增函数,可得f (2) =4 是最小值,f (1) =5 是最大值.二、函数奇偶性相关练习题11、【答案】(1)定义域不关于原点对称,所以是非奇非偶函数;(2)a=0 ,f (x) 既是奇函数又是偶函数;a ≠ 0 ,f (x) 是偶函数;(3)f (x) 是奇函数.12、【答案】013、【答案】选A14、【答案】选B15、【答案】选D16、【答案】选B17、【答案】选C18【答案】奇函数19、【答案】奇函数【提示】分x>0 和x<0 两种情况,分别证明f (-x)=-f (x) 即可.20、【答案】解析:任取x1<x2≤-5,则-x1>-x2≥-5.因f(x)在[5,+∞]上单调递减,所以f(-x1)<f(-x2)⇒f(x1)<-f(x2)⇒f(x1)>f(x2),即单调减函数.21、【答案】 f (x) =1x 2 -1 ,g(x)=xx 2-122、证明:令x=y=0,有f(0)+f(0)=2f(0)·f(0),又f(0)≠0,∴可证f(0)=1.令x=0,∴f(y)+f(-y)=2f(0)·f(y)⇒f(-y)=f(y),故f(x)为偶函数.23、证明:由x1,x2∈R 且不为 0 的任意性,令x1=x2=1 代入可证,f(1)=2f(1),∴f(1)=0.又令x1=x2=-1,∴f[-1×(-1)]=2f(1)=0,∴f(-1)=0.又令x1=-1,x2=x,∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

人教A版高中数学必修一《函数的基本性质》试题

人教A版高中数学必修一《函数的基本性质》试题

人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。

高中数学必修一第二章 §3 第1课时 函数的单调性

高中数学必修一第二章 §3 第1课时 函数的单调性

第二章函数§3函数的单调性和最值第1课时函数的单调性课后篇巩固提升基础达标练1.(多选题)下列函数在区间(0,+∞)上单调递增的是()A.y=2x+1B.y=x2+1C.y=3-xD.y=x2+2x+1y=3-x在区间(0,+∞)上单调递减.2.函数f(x)=-x2+2x+3的单调递减区间是()A.(-∞,1)B.(1,+∞)C.(-∞,2)D.(2,+∞)f(x)=-x2+2x+3是图象开口向下的二次函数,其对称轴为x=1,所以其单调递减区间是(1,+∞).>0成立,则()3.若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有f(a)-f(b)a-bA.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)是先增后减D.函数f(x)是先减后增>0知f(a)-f(b)与a-b同号,即当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),所以f(x)在R上由f(a)-f(b)a-b是增函数.4.已知函数f(x)在区间(-∞,+∞)上是减函数,若a∈R,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)D中,因为a2+1>a,f(x)在区间(-∞,+∞)上是减函数,所以f(a2+1)<f(a).而在其他选项中,当a=0时,自变量均是0,应取等号.故选D.5.若函数f (x )=x 2-2(a-1)x+1在区间(2,3)上为单调函数,则实数a 的取值范围是( )A.(-∞,3]∪[4,+∞)B.(-∞,3)∪(4,+∞)C.(-∞,3]D.[4,+∞)f (x )图象开口向上,对称轴为直线x=a-1,因为函数在区间(2,3)上为单调函数,所以a-1≤2,或a-1≥3,相应解得a ≤3,或a ≥4,故选A .6.函数f (x )=|x|与g (x )=x (2-x )的单调递增区间分别为( )A.(-∞,0],[1,+∞)B.(-∞,0],(-∞,1]C.[0,+∞),[1,+∞)D.[0,+∞),(-∞,1](图略)可知选D .7.(多选题)下列命题是假命题的有( )A.定义在区间(a ,b )上的函数f (x ),如果有无数个x 1,x 2∈(a ,b ),当x 1<x 2时,有f (x 1)<f (x 2),那么f (x )在区间(a ,b )上为增函数B.如果函数f (x )在区间I 1上为减函数,在区间I 2上也为减函数,那么f (x )在区间I 1∪I 2上就一定是减函数C.任取x 1,x 2∈(a ,b ),且x 1≠x 2,当f (x 1)-f (x 2)x 1-x 2<0时,f (x )在区间(a ,b )上单调递减 D.任取x 1,x 2∈(a ,b ),且x 1≠x 2,当(x 1-x 2)[f (x 1)-f (x 2)]>0时,f (x )在区间(a ,b )上单调递增是假命题,“无数个”不能代表“所有”“任意”; 以f (x )=1x为例,知B 是假命题; ∵f (x 1)-f (x 2)x 1-x 2<0(x 1≠x 2)等价于[f (x 1)-f (x 2)]·(x 1-x 2)<0,而此式又等价于{f (x 1)-f (x 2)>0,x 1-x 2<0或{f (x 1)-f (x 2)<0,x 1-x 2>0,即{f (x 1)>f (x 2),x 1<x 2或{f (x 1)<f (x 2),x 1>x 2,∴f (x )在区间(a ,b )上是减函数,C 是真命题,同理可得D 也是真命题.8.若函数y=ax 与y=-b x 在区间(0,+∞)上都是单调递减,则函数y=ax 2+bx 在区间(0,+∞)上是( ) A.单调递增B.单调递减C.先增后减D.先减后增y=ax 与y=-b x 在区间(0,+∞)上都是单调递减,所以a<0,-b>0,即a<0,b<0.因为抛物线y=ax 2+bx 的对称轴为x=-b2a <0,且抛物线开口向下,所以函数y=ax 2+bx 在区间(0,+∞)上单调递减.9.已知函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)单调递增,当x∈(-∞,-2]时,f(x)单调递减,则m=,f(1)=.函数f(x)在区间(-∞,-2]上单调递减,在区间[-2,+∞)上单调递增,∴x=-b2a =m4=-2,∴m=-8,即f(x)=2x2+8x+3.∴f(1)=13.81310.证明函数f(x)=-√x在定义域上为减函数.f(x)=-√x的定义域为[0,+∞).任取x1,x2∈[0,+∞),且x1<x2,则x2-x1>0,f(x2)-f(x1)=(-√x2)-(-√x1)=√x1−√x2=√x1-√x2)(√x1+√x2)√x+√x=12√x+√x.∵x1-x2<0,√x1+√x2>0,∴f(x2)-f(x1)<0,即f(x2)<f(x1).∴函数f(x)=-√x在定义域[0,+∞)上单调递减.能力提升练1.若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是单调递减,则a的取值范围是()A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1](x)=-x2+2ax=-(x-a)2+a2,∵f(x)在区间[1,2]上单调递减,∴a≤1.∵g(x)=ax+1在区间[1,2]上单调递减,∴a>0,∴0<a≤1.2.若定义在R上的一元二次函数f(x)=ax2-4ax+b在区间[0,2]上单调递增,且f(m)≥f(0),则实数m的取值范围是()A.0≤m≤4B.0≤m≤2C.m≤0D.m≤0或m≥4f(x)在区间[0,2]上单调递增,所以f(2)>f(0),解得a<0.又因为f(x)的图象的对称轴为x=--4a2a=2,所以f(x)在区间[0,2]上的值域与在区间[2,4]上的值域相同.所以满足f(m)≥f(0)的m的取值范围是0≤m≤4.3.给出下列三个结论:①若函数y=f (x )的定义域为(0,+∞),且满足f (1)<f (2)<f (3),则函数y=f (x )在区间(0,+∞)上是增函数; ②若函数y=f (x )在区间(-∞,+∞)上是减函数,则f (a 2+1)<f (a 2);③函数f (x )=1x 在其定义域上是减函数.其中正确的结论有( )A.0个B.1个C.2个D.3个在函数单调性的定义中,x 1,x 2具有任意性,不能仅凭区间内有限个函数值的大小关系判断函数单调性,①错误; ②∵a 2+1>a 2,又y=f (x )在区间(-∞,+∞)上是减函数,∴f (a 2+1)<f (a 2),②正确;③取x 1=-1,x 2=1,∵f (-1)=-1,f (1)=1,∴f (-1)<f (1),故f (x )=1x 不是其定义域上的减函数,③错误.4.设函数f (x )在(-∞,+∞)上是减函数,a ,b ∈R 且a+b ≤0,则下列选项正确的是( )A.f (a )+f (b )≤-[f (a )+f (b )]B.f (a )+f (b )≤f (-a )+f (-b )C.f (a )+f (b )≥-[f (a )+f (b )]D.f (a )+f (b )≥f (-a )+f (-b )a+b ≤0,所以a ≤-b ,b ≤-a ,又函数f (x )在区间(-∞,+∞)上是减函数,所以f (a )≥f (-b ),f (b )≥f (-a ),所以f (a )+f (b )≥f (-a )+f (-b ).5.若函数f (x )={x 2+2ax +3,x ≤1,ax +1,x >1是定义域上的减函数,则实数a 的取值范围为 .{-a ≥1,a <0,12+2a ×1+3≥a ×1+1,解得-3≤a ≤-1,则实数a 的取值范围是[-3,-1].-3,-1]6.已知函数f (x )=ax+1x+2,若x 1>x 2>-2,则f (x 1)>f (x 2),则实数a 的取值范围是 .(用区间来表示)“若x 1>x 2>-2,则f (x 1)>f (x 2)”可知函数f (x )在区间(-2,+∞)上单调递增.而f (x )=ax+1x+2=a+1-2a x+2,故有1-2a<0,解得a>12,即a 的取值范围为(12,+∞).(12,+∞)7.(2020浙江金华高一检测)函数f (x )=√(x -1)(x -2)的定义域为 ;单调递减区间为 .f (x )=√(x -1)(x -2), ∴(x-1)(x-2)>0,解得x<1或x>2,函数f (x )的定义域为(-∞,1)∪(2,+∞);又t=(x-1)(x-2)在区间(-∞,1)上单调递减,在区间(2,+∞)上单调递增,∴函数f (x )在区间(-∞,1)上单调递增,在区间(2,+∞)上单调递减,∴函数f (x )的单调递减区间为(2,+∞).-∞,1)∪(2,+∞) (2,+∞)8.已知函数f (x )=mx+1nx +12(m ,n 是常数),且f (1)=2,f (2)=114. (1)求m ,n 的值;(2)当x ∈[1,+∞)时,判断f (x )的单调性并证明;(3)若不等式f (1+2x 2)>f (x 2-2x+4)成立,求实数x 的取值范围.f (1)=m+1n +12=2,f (2)=2m+12n +12=114,∴{m =1,n =2.1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+12x 1+12−(x 2+12x 2+12)=(x 1-x 2)·(1-12x 1x 2)=(x 1-x 2)(2x 1x 2-12x 1x 2). ∵1≤x 1<x 2,∴x 1-x 2<0,x 1x 2>1.∴2x 1x 2-1>1.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在区间[1,+∞)上单调递增.1+2x 2≥1,x 2-2x+4=(x-1)2+3≥3,∴只需1+2x 2>x 2-2x+4.∴x 2+2x-3>0.∴x<-3或x>1.素养培优练1.(2019江苏南通期中)已知函数f (x )=x 2+a x (x ≠0,a ∈R ),若函数f (x )在区间[2,+∞)上单调递增,则a 的取值范围为 .x 1,x 2∈[2,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)-f (x 1)=x 22+a x 2−x 12−a x 1=x 2-x1x 1x 2[x 1x 2(x 1+x 2)-a ]. 要使函数f (x )在区间[2,+∞)上单调递增,需满足f (x 2)-f (x 1)>0在[2,+∞)上恒成立.∵x 2-x 1>0,x 1x 2>4>0,∴a<x1x2(x1+x2)恒成立.又x1+x2>4,∴x1x2(x1+x2)>16,∴a≤16,即a的取值范围是(-∞,16].-∞,16]2.设f(x)是定义在R上的函数,对m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且当x>0时,0<f(x)<1.(1)求证:f(0)=1;(2)求证:当x∈R时,恒有f(x)>0;(3)求证:f(x)在R上是减函数.根据题意,令m=0,可得f(0+n)=f(0)·f(n),∵f(n)≠0,∴f(0)=1.(2)由题意知,当x>0时,0<f(x)<1;当x=0时,f(0)=1>0;当x<0时,-x>0,∴0<f(-x)<1.∵f(x+(-x))=f(x)·f(-x),∴f(x)·f(-x)=1.∴f(x)=1>0.f(-x)故x∈R时,恒有f(x)>0.(3)设任意的x1,x2∈R,且x1>x2,则f(x1)=f(x2+(x1-x2)).∴f(x1)-f(x2)=f(x2+(x1-x2))-f(x2)=f(x2)·f(x1-x2)-f(x2)=f(x2)[f(x1-x2)-1].由(2)知,f(x2)>0.∵x1-x2>0,∴0<f(x1-x2)<1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),故f(x)在R上是减函数.。

高中数学必修一第三章函数的概念与性质知识总结例题(带答案)

高中数学必修一第三章函数的概念与性质知识总结例题(带答案)

高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。

人教版高中数学必修一《函数的单调性》精选习题(含答案解析)

人教版高中数学必修一《函数的单调性》精选习题(含答案解析)

人教版高中数学必修一《函数的单调性》精选习题(含答案解析)一、选择题1.定义在R上的函数y=f(x+1)的图象如右图所示.给出如下命题:①f(0)=1;②f(-1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0,其中正确的是()A.②③B.①④C.②④D.①③2.若(a,b)是函数y=f(x)的单调增区间,x1,x2∈(a,b),且x1<x2,则有()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.以上都可能3.f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上()A.至少有一个根B.至多有一个根C.无实根D.必有唯一的实根4.函数y=x2-6x+10在区间(2,4)上是()A.递减函数B.递增函数C.先递减再递增D.先递增再递减5.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不正确的是()A.f(x1)-f(x2)x1-x2>0B.(x1-x2)[f(x1)-f(x2)]>0 C.f(a)<f(x1)<f(x2)<f(b)D.x1-x2f(x1)-f(x2)>06.函数y=x2+2x-3的单调递减区间为()A.(-∞,-3] B.(-∞,-1]C.[1,+∞) D.[-3,-1]二、填空题7.设函数f(x)是R上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是______________.8.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数,当x∈(-∞,2]时是减函数,则f(1)=________.三、解答题9.画出函数y=-x2+2|x|+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.参考答案与解析1.B2.A [由题意知y =f (x )在区间(a ,b )上是增函数,因为x 2>x 1,对应的f (x 2)>f (x 1).]3.D [∵f (x )在[a ,b ]上单调,且f (a )·f (b )<0,∴①当f (x )在[a ,b ]上单调递增,则f (a )<0,f (b )>0,②当f (x )在[a ,b ]上单调递减,则f (a )>0,f (b )<0,由①②知f (x )在区间[a ,b ]上必有x 0使f (x 0)=0且x 0是唯一的.]4.C [如图所示,该函数的对称轴为x =3,根据图象可知函数在(2,4)上是先递减再递增的.]5.C [由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,选项A 、B 、D 正确;对于C ,若x 1<x 2时,可能有x 1=a 或x 2=b ,即f (x 1)=f (a )或f (x 2)=f (b ),故C 不成立.]6.A [该函数的定义域为(-∞,-3]∪[1,+∞),函数f (x )=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.]7.m >0解析 由f (m -1)>f (2m -1)且f (x )是R 上的减函数得m -1<2m -1,∴m >0.8.-3解析 f (x )=2(x -m 4)2+3-m 28,由题意m 4=2,∴m =8.∴f (1)=2×12-8×1+3=-3.9.解 y =-x 2+2|x |+3=⎩⎨⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3(x <0)=⎩⎨⎧-(x -1)2+4 (x ≥0)-(x +1)2+4(x <0). 函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y=-x2+2|x|+3的单调增区间是(-∞,-1]和[0,1],单调减区间是[-1,0]和[1,+∞).10.证明设a<x1<x2<b,∵g(x)在(a,b)上是增函数,∴g(x1)<g(x2),且a<g(x1)<g(x2)<b,又∵f(x)在(a,b)上是增函数,∴f(g(x1))<f(g(x2)),∴f(g(x))在(a,b)上是增函数.11.解函数f(x)=x2-1在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,则f(x2)-f(x1)=x22-1-x21-1=x22-x21x22-1+x21-1=(x2-x1)(x2+x1)x22-1+x21-1.∵1≤x1<x2,∴x2+x1>0,x2-x1>0,x22-1+x21-1>0. ∴f(x2)-f(x1)>0,即f(x2)>f(x1),故函数f(x)在[1,+∞)上是增函数.12.解(1)在f(m+n)=f(m)·f(n)中,令m=1,n=0,得f(1)=f(1)·f(0).因为f(1)≠0,所以f(0)=1.(2)函数f(x)在R上单调递减.任取x1,x2∈R,且设x1<x2.在已知条件f(m+n)=f(m)·f(n)中,若取m+n=x2,m=x1,则已知条件可化为f(x2)=f(x1)·f(x2-x1),由于x2-x1>0,所以0<f(x2-x1)<1.在f(m+n)=f(m)·f(n)中,令m=x,n=-x,则得f(x)·f(-x)=1.当x>0时,0<f(x)<1,所以f(-x)=1f(x)>1>0,又f(0)=1,所以对于任意的x1∈R均有f(x1)>0. 所以f(x2)-f(x1)=f(x1)[f(x2-x1)-1]<0,即f(x2)<f(x1).所以函数f(x)在R上单调递减.13.解 (1)∵f (4)=f (2+2)=2f (2)-1=5, ∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2). ∵f (x )是(0,+∞)上的减函数, ∴⎩⎨⎧ m -2≥2m -2>0,解得m ≥4.∴不等式的解集为{m |m ≥4}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的性质单调性
1.在区间(0,+∞)上不是增函数的函数是()
222xxyxyyyx+ 1
DC..B.A.==2=3+1
+=2+1
x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42)
上是减函数,f(1)等于(则)
B.1
C.17
A.-7
D.25
fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8)
B.(-7,-2) C.(-2,3)
D.(0,5)
ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间()
4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.(
,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已
知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没
有实根 D.必有唯一的实根
22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数
C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数
fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是
A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞)
fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定
义域为tfff(13)
<(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1)
<1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增
区间依次是(.函数9 )
B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范
围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3
B.5
≥-3
C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、
fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+
fafbfafbfafbfafb)
-(+)-(≥)(+)(.D ])(+)(≥-)(+)(.C
xxfyxyf)=0=,则(( +2)=(图象的对)在(-∞,2)上是增函数,且称轴是
12.定义在R上的函数ffffffff(3)
(2)1)=< (-1)<-(3) B.3) D (0)>.(3) C.- ( A.(-2xy的减区间
是.函数___ _=(-1).13xy.2=
的值域为-__ ___214.函数+x1?
???? .上的减函数,则的单调递减区间为15、
设是3x?y?f xfy?R2aaxfx ax __ 上递减,则.的取值范围是-3在16、函数([2) =,+∞+4(]+1)
x yffxffx) ) = -((17.())是定义在( 0,+∞)上的增
函数,且(y1f fxff(( -+(1)的值.(2)若(6)= 1,解不等式)求 ) <2 .(13 ) x
3xfx上是增函数还是减RR-上是否具有单调性?如果具有单调性,它在+118.函
数在()= 函数?试证明你的结论.
2xf在区间[-1,1)=]上的单调性..试讨论函数19(x1?
axaafxfx2)在0,+∞0)>,试确定:当.设函数20)(取什么值时,函数上)=-
(,(1x?为单调函数.
fxfmfmm的取值,求实数>-22)2,上的减函数,并且0()-1)-(121.已知(()
是定义在-范围.
2?2xx?a fxx∈[1,+∞]22.已知函数 (,)=x1xfxafx恒成立,>)0,
[12的最小值;=1()当时,求函数()()若对任意∈,+∞()2a的取值范围.试
求实数
答案解析??15.,, 14. (-∞,3),+∞一、选择题: CDBBD ADCCA BA 二、填空题:13. (1,)??3,1???,????2??f则x=36,,则三、解答题:17.解析:
①在等式中y=6(1)=0.②在等式中令0?令x?y136xfx),(36)?ff(x?3)?f(<( 故原不等
式为:3)]即[+.?2(6(f)()?f(36)?f(6),?f36)?2f x60?x?3??3?1153?xff故不等式等
价于:在(0,+∞(36),又)(上为增函数,)0?0?x?.??
2x?36)?x(x?30??? xfxx,∈18.解析: ((-∞,+∞)在R上具有单调性,且是
单调减函数,证明如下:设)、2123333xxxxfxx fxxxfxfxxxxx+-(<)( ,则)()=
---+1,((=()=-)=+1.+212111112222112xx3322222xxxxxxxxxxxfx)>)=(0-[)(++,
>0而(∴)+].∵+<),∴(-2211122122221144223xxffx上是减函数.+
1在).∴函数((-∞,+∞)=->()22xxxxfxxxfx--1≤.19.解析:设)=、1
∈-1,]且(<(,即-1≤)<x1?22211112122)?x(x?x)(x)x(1?(1?x)?222xxx1212,∴当,,∵=
>-0>0=21x?1?x1?x?11212122222x1??1?x x1??x?12121xfxxxxfxfxxxx<(,那么>0,那么+(>))(<).当0<0,时,<>0,>0时,0+1212122211xf (.)222xffx 1)=]上是减
函数.故((在区间[0)=在区间[-1,0]上是增函数,,x?1?x1?22xxaxfxfxxx-,
则-()=),+且-<((20.解析:任取、-∈01xx??1?12211122122x?xx?x axxxxxaa时,∵
-1)=(≥-)=))(,(1)--(当21212211222221?x1?x?x?1?x?12121x?x xxfxfxfxfxa≥1∴(时,(即)>0,)(,),<1又∵-0<,∴>()-21212211221x???x121fx)在区间[0,+∞)
上为减函数.函数 (2a fxfxaxx)=1,∴)=时,在区间[<10,+∞]上存在=0,
=(,满足0(<当(2)022112a?1?xaf①判断单调性常规思路为定义法;②时,
<<1()在[0,+上不是单调函数。

注:?.
x?x22xaxx的范围看还>|;变形过程中|≥<1;③从利用了>211?x1x?21112221?xx?1?21afx)
的单调性,这也是数学严谨性的体现.时须讨论0<(<1fxfmfmfmf(1>-)>
上是减函数,∴由0(,得-1)-1)(1-221.解析:∵(()在(-2,2)m)
2-???1?m?3?2?m?1?2??123121??m?m??的取值范围是(-)
,∴∴解得??m?2,即??2?1?2m,??232232??m?2?1?1m?2?m??
3?11xxxfxffaxxxx)=≥1,则(()=(++2,,+∞∈1),设->22.解析: (1)当=时,)221212x2x?x111xxxxxxxx-01,+)=(--1)(1-),∵>=(+>-≥
21??x112221211x2x2xxxx221
221112xffxfxxf,+∞(1))在[1>0,则,+∞)()>上是增函数.∴(,可知)在区间[()12
27a2x?x?x2x222aaxxxafxxfayyxaxayfxyx?=33上是增故[1恒成立.0>11)0+,+∞,
+∞于是当且仅当(2)。

(1)=当0>上,上的最小值为函数,恒成立。

设=1时,
==3+2++,,在区间[∈11),由=( >(+)=+-时函数(可知其在)>0恒成立,+∞)+>-2+.)21minmin x2.。

相关文档
最新文档