圆的切线专题训练

合集下载

圆的切线练习题

圆的切线练习题

圆的切线练习题一、选择题1. 已知圆的半径为5,点P到圆心的距离为10,则点P与圆的位置关系是()。

A. 点P在圆内B. 点P在圆上C. 点P在圆外2. 圆的切线与圆相切于点A,若切线与圆心的距离为6,则圆的半径是()。

A. 3B. 6C. 12D. 9二、填空题1. 若圆的半径为r,点P到圆心的距离为d,当d等于r时,点P与圆的位置关系是________。

2. 已知圆的切线在圆上与点A相切,若切线与圆心的距离为d,圆的半径为r,则切线与圆心的距离d等于________。

三、计算题1. 已知圆的半径为7,圆上一点A的坐标为(3,4),求过点A的圆的切线方程。

2. 圆心坐标为(0,0),半径为5,求过点(3,3)的圆的切线方程。

四、证明题1. 证明:圆的切线垂直于经过切点的半径。

2. 证明:若两圆相切于点A,且两圆的半径分别为r1和r2,点P在两圆的公共切线上,且PA=PB,则PA=PB=r1+r2。

五、应用题1. 一个圆的半径为10,圆心在原点(0,0),求过点(6,8)的圆的切线方程。

2. 已知两圆外切,圆心分别为O1(-3,0)和O2(3,0),半径分别为5和3,求两圆的公共切线方程。

六、综合题1. 在平面直角坐标系中,圆C的圆心在(1,2),半径为3。

点A的坐标为(4,0),求过点A的圆C的切线方程。

2. 圆心在(2,3)的圆与x轴相切,求圆的半径,并求出切点坐标。

七、探索题1. 探索:若圆的半径为定值,当圆上一点到圆心的距离逐渐增大时,过该点的圆的切线数量会如何变化?2. 探索:若两圆相切,且已知一圆的半径和两圆心的距离,如何求另一圆的半径?八、开放性问题1. 若圆的切线与圆心构成一个直角三角形,求切线的长度与圆的半径之间的关系。

2. 设想一个实际问题,其中涉及到圆的切线,并尝试构建一个数学模型来解决这个问题。

请注意,以上题目仅为示例,具体题目应根据实际教学大纲和学生水平进行适当调整。

初三圆的切线试题及答案

初三圆的切线试题及答案

初三圆的切线试题及答案一、选择题1. 圆的切线与圆相切于一点,该点称为切点。

圆的切线有以下哪个特征?A. 切线与半径垂直B. 切线与直径平行C. 切线与切点的半径垂直D. 切线与圆心的距离等于半径答案:C2. 已知圆的半径为5,点A到圆心的距离为7,那么点A到圆的切线距离是多少?A. 2B. 3C. 4D. 5答案:A二、填空题1. 圆的切线与圆相切于______,并且切线与该点的半径垂直。

答案:切点2. 如果圆的半径为r,点P到圆心的距离为d,当d > r时,点P到圆的切线距离为d - r;当d < r时,点P到圆的切线距离为______。

答案:r - d三、解答题1. 如图,圆O的半径为3,点P在圆O上,PA是圆O的切线,PA垂直于OP,求PA的长度。

解:由于PA是圆O的切线,根据切线的性质,我们知道PA与OP 垂直,且PA的长度等于OP的长度减去半径的长度。

因此,PA的长度为OP - 3。

由于OP是半径,所以OP = 3。

代入公式得PA = 3 - 3 = 0。

但这个结果显然是错误的,因为PA不可能为0。

这里需要重新审视题目,如果题目没有错误,那么可能是题目本身存在问题。

2. 已知圆的半径为5,点A在圆上,点B在圆外,AB是圆的切线,且AB垂直于过圆心的直线l,求点B到圆心O的距离。

解:由于AB是圆的切线,且AB垂直于过圆心的直线l,我们可以知道OA = 5(半径),并且由于AB垂直于l,根据勾股定理,我们可以计算出OB的长度。

设OB = x,那么根据勾股定理,我们有:\[ x^2 = OA^2 + AB^2 \]由于AB垂直于OA,所以AB的长度等于OA的长度,即AB = 5。

代入公式得:\[ x^2 = 5^2 + 5^2 = 50 \]解得x = √50 ≈ 7.07。

结束语:通过上述试题,我们可以看到圆的切线问题涉及到切线的性质、勾股定理以及几何图形的构造。

解决这类问题需要对圆的性质有深入的理解,并且能够灵活运用几何知识。

初三圆切线练习题

初三圆切线练习题

初三圆切线练习题题1:已知直径AB的圆O的半径为r,点P在圆上,且OP的长度为5r/3。

若过P作圆O的切线,求切点T到点A的距离。

解析:根据圆的性质,切线与半径的垂直线段互相垂直。

设切点为T,连接OT。

根据勾股定理,OT^2 = OP^2 - PT^2。

又由于OP = 5r/3,所以OT^2 = (5r/3)^2 - PT^2。

又因为OT与PT平行,所以OT垂直于AP。

因此,PT也就是切点到直径的距离,即PT = r。

解答:切点T到点A的距离是r。

题2:已知圆O的半径为10 cm,点A是圆上的一个点,弦BC与切线AD相交于点M。

已知AM = 16 cm,BC = 12 cm,求切点D到切线AD的距离。

解析:由于BC为弦,根据弦切角定理可知角BAD = 角CBD。

所以三角形ABD与三角形CBD相似。

设切点为D,连接OD。

因为切点D到切线AD的距离垂直于切线,所以OD与AD平行。

根据相似三角形ABD与CBD的比例关系,可以得到AD/BD = CD/BD = AM/CB。

已知AM = 16 cm,BC = 12 cm,代入上述比例关系,可得AD/BD= 16/12。

又因为AD + BD = AB = 20 cm(AB为直径),所以AD +BD = 20。

解答:根据求得的比例关系和方程组,可解得AD = 10 cm,BD =10 cm。

因此,切点D到切线AD的距离为10 cm。

题3:已知圆O的半径为r,点P在圆上,以点O为圆心作圆O的切线PA和PB,切点分别为A和B。

如果AP = 4,BP = 6,求切线AB 的长度。

解析:首先根据勾股定理可以得到:OA^2 = OP^2 - PA^2 = r^2 -4^2 = r^2 - 16,OB^2 = OP^2 - PB^2 = r^2 - 6^2 = r^2 - 36。

由于OA = OB,所以r^2 - 16 = r^2 - 36。

取消公式中的r^2,解得16 = 36,显然矛盾。

圆的切线综合练习题与答案完整版

圆的切线综合练习题与答案完整版

圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。

初中圆切线试题及答案

初中圆切线试题及答案

初中圆切线试题及答案一、选择题1. 圆的切线与过切点的半径垂直,这是圆的切线性质中的哪一条?A. 切线与半径垂直B. 切线与直径垂直C. 切线与切点垂直D. 切线与圆心垂直答案:A2. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 无法确定答案:C3. 圆的切线与圆的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:B二、填空题4. 圆的切线与过切点的半径垂直,因此圆的切线与_________垂直。

答案:过切点的半径5. 如果圆的半径为r,圆心到直线的距离为d,那么直线与圆相切的条件是_________。

答案:d = r三、解答题6. 已知圆O的半径为4,圆心O到直线l的距离为3,求证:直线l是圆O的切线。

证明:由题意知,圆心O到直线l的距离d=3,圆的半径r=4。

因为d=r,所以直线l与圆O相切。

7. 已知圆的半径为6,圆心到直线的距离为5,求圆与直线的交点个数。

解:由于圆心到直线的距离d=5小于圆的半径r=6,所以直线与圆相交,交点个数为2个。

四、计算题8. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,直线方程为3x + 4y - 15 = 0,求直线与圆的切线方程。

解:首先求圆心坐标,圆心为(2, 3)。

计算圆心到直线的距离d,利用点到直线距离公式:\[ d = \frac{|3*2 + 4*3 - 15|}{\sqrt{3^2 + 4^2}} = \frac{|6 + 12 - 15|}{5} = 1 \]由于d=1,直线与圆相切。

设切线方程为3x + 4y + c = 0,将圆心坐标代入得:\[ 3*2 + 4*3 + c = 0 \]\[ 6 + 12 + c = 0 \]\[ c = -18 \]所以切线方程为3x + 4y - 18 = 0。

人教版数学中考专题复习:圆的切线证明题专项训练

人教版数学中考专题复习:圆的切线证明题专项训练

人教版数学中考专题复习:圆的切线证明题专项训练1.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E在AC上,以AE为直径的∠O经过点D.(1)求证:BC是∠O的切线;(2)若∠C=30°,且CD=2.如图,在Rt∠ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A.D的∠O分别交AB,AC于点E,F.(1)求证:BC是∠O的切线;(2)若BE=8,sin B≈513,求∠O的半径;(3)求证:AD2=AB•AF.3.如图,AB 是O 的直径,D 为O 上一点,点E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求OC 的长.4.如图,∠O 的弦AB 、CD 交于点E ,点A 是CD 的中点,连接AC 、BC ,延长DC 到点P ,连接PB .(1)若PB =PE ,判断PB 与∠O 的位置关系,并说明理由.(2)若AC 2=2AE 2,求证:点E 是AB 的中点.5.如图,在Rt ABC 中,∠BAC =90°,以AD 为直径的∠O 与边BC 有公共点E ,且AB =BE .(1)求证:BC是∠O的切线;(2)若BE=3,BC=7,求∠O的半径.⊥于点C,交O于点E,CD与BA的延长线交于点6.如图,AB为O直径,D为O上一点,BC CDF,BD平分ABC∠.(1)求证:CD是O的切线;BC=,求BD的长.(2)若3AB=,27.如图,四边形ABCD内接于∠O,AB是∠O的直径,点P为CA的延长线上一点,∠CAD=45°.(1)若AB=8,求图中阴影部分的面积;(2)若BC=AD,AD=AP,求证:PD是∠O的切线.8.如图,在∠ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE∠AC,垂足为E,∠O经过A,B,D三点.(1)证明:AB是∠O的直径(2)试判断DE与∠O的位置关系,并说明理由;(3)若DE的长为3,∠BAC=60°,求∠O的半径.9.如图,在Rt∠ABC中,∠ACB=90°,E是BC的中点,以AC为直径的∠O与AB边交于点D,连接DE.(1)求证:DE是∠O的切线;(2)若CD=3cm,5cm2DE ,求∠O直径的长.10.如图,点D在∠O的直径AB的延长线上,点C在∠O上,且AC=CD,∠ACD=120°.(1)求证:CD是∠O的切线;(2)若∠O的半径为2,求图中阴影部分的面积.11.如图,在∠ABC中,AB=AC,以AB为直径的∠O与BC相交于点D,DE∠AC于E.(1)求证:DE是∠O的切线;(2)若∠O的半径为5,BC=16,求DE的长.12.如图,AB是∠O的直径,C、D是∠O上的点,BD平分∠ABC,DE∠BE,DE交BC的延长线于点E.(1)求证:DE是∠O的切线;(2)如果CE=1,AC=∠O的半径r.13.如图,AB是O的直径,点C、G为圆上的两点,当点C是弧BG的中点时,CD垂直直线AG,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE .(1)求证:DC 与O 相切;(2)求证:PC PF =;(3)若1tan 3E =,BE =PF 的长.14.如图,∠O 是四边形ABCD 的外接圆,AC 是∠O 的直径,BE ∠DC ,交DC 的延长线于点E ,CB 平分∠ACE .(1)求证:BE 是∠O 的切线.(2)若AC =4,CE =1,求tan∠BAD .15.如图,AB 为∠O 的直径,射线AD 交∠O 于点F ,C 为BF 的中点,过点C 作CE ∠AD ,连接AC .(1)求证:CE是∠O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.16.如图,∠O是△ABC的外接圆,且AB=AC,四边形ABCD是平行四边形,边CD与∠O交于点E,连接AE.(1)求证△ABC∠∠ADE;(2)求证:AD是∠O的切线..以AB为直径的O交BC于点D,过点D作DE∠AC于点17.已知:如图,在∠ABC中,AB ACE.(1)求证:DE与O相切;AB ,sin B,求线段AF的长.(2)延长DE交BA的延长线于点F,若618.如图,Rt∠ABC中,∠ABC=90°,点E为BC的中点,连接DE.(1)求证:DE是半圆∠O的切线;(2)若∠BAC=30°,DE=2,求AD的长.19.如图,AB是∠O的直径,点E是劣弧AD上一点,∠PBD=∠BED,且DEBE平分∠ABD,BE与AD交于点F.(1)求证:BP是∠O的切线;(2)若tan∠DBE EF的长;(3)延长DE,BA交于点C,若CA=AO,求∠O的半径.20.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作∠O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是∠O的切线;(2)当BH与∠O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最小时,请直接写出此时点H到AB的距离.参考答案:1.(1)连接OD,∠AD是∠BAC的平分线,∠∠DAB=∠DAO,∠OD=OA,∠∠DAO=∠ODA,则∠DAB=∠ODA,∠DO∠AB,而∠B=90°,∠∠ODB=90°,∠BC是∠O的切线;(2)连接DE、OD、DF、OF,设圆的半径为R,∠∠C=30°,CD=∠OD=CD•tan30°=3,∠∠DAB=∠DAE=30°,∠DE=DF,∠∠DOE=60°,∠∠DOF=60°,∠∠FOA=60°,∠∠OFD、△OF A是等边三角形,∠DF∠AC,∠S阴影=S扇形DFO=2603360π⨯⨯=32π.2.(1)证明: 如图,连接OD ,∠OA =OD ,∠∠ODA =∠OAD ,∠AD 平分∠BAC ,∠∠OAD =∠CAD ,∠∠ODA =∠CAD∠OD AC ∥,∠∠C =90°,∠ ∠ODB =∠C =90°,又∠OD 是∠O 的半径,∠BC 是∠O 的切线;(2)解:90BDO ∠=︒,∴在Rt∠BDO 中,5sin 813OD OD OD B BO BE OD OD ====++, 解得5OD =,故∠O 的半径为5;(3)证明:如图:连接EF ,∠AE 是直径,∠90AFE ACB ∠=︒=∠,∠EF BC ∥,∠AEF B ∠=∠,又∠AEF ADF ∠=∠,∠B ADF ∠=∠,又∠OAD CAD ∠=∠,∠∠DAB ∠∠F AD , ∠AD AF AB AD=, ∠2AD AB AF =⋅.3.(1)解:连接OD ,∠OD OB =,∠B ODB ∠=∠,又∠B CDA ∠=∠,∠ODB CDA ∠=∠,∠AB 是圆O 的直径,∠∠ADB =90°,∠90ODB ODA ∠+∠=︒,∠90CDA ODA ∠+∠=︒即90ODC ∠=︒, ∠CD 是O 的切线;(2)解:连接BE 、OE∠E 是BD 的中点,∠2BE DE ==,OE BD ⊥,260BOE BDE ∠=∠=︒, ∠OBE △是等边三角形,∠2OB BE ==,60BOE ∠=︒∠OB OD =,OE BD ⊥,∠60BOE DOE ∠=∠=︒,∠60DOC ∠=︒在Rt ODC ,60DOC ∠=︒,∠∠C =30°,∠24OC OD ==.4.(1)PB 与∠O 相切,理由是:连接OA 、OB ,OA 交CD 于F ,∠点A 是CD 的中点,∠OA ∠CD ,∠∠AFE =90°,∠∠OAE +∠AED =90°,∠OA=OB,PB=PE,∠∠OAE=∠OBA,∠PEB=∠PBE,∠∠AED=∠PEB,∠∠OBA+∠PBE=90°,即∠OBP=90°,∠OB∠PB,∠PB与∠O相切;(2)∠AC=AD,∠∠ACE=∠ABC,∠∠CAE=∠BAC,∠∠ACE∠∠ABC,∠ACAE=ABAC,∠AC2=AE•AB,∠AC2=2AE2,∠AE•AB=2AE2,∠AB=2AE,∠E为AB的中点.5.(1)证明:连接OB,OE,如图所示,在ABO和EBO△中,AB BE OA OE OB OB =⎧⎪=⎨⎪=⎩,∠()SSS ABO EBO △△≌, ∠90BEO BAO ∠=∠=︒,即OE BC ⊥,∠BC 是O 的切线;(2)解:∠3BE =,7BC =,∠3AB BE ==,4CE =,∠AC == ∠OE BC ⊥,∠222OE EC OC +=,即()2224OE OE +=,解得:OE = ∠O6.(1)连接OD ,如图,∠BD 平分ABC ∠,∠ABD DBC ∠=∠,∠OB OD =,∠OBD ODB ∠=∠∠DBC ODB ∠=∠,∠∥OD BC ,∠ODF C ∠=∠∠BC CD ⊥,∠90C ∠=︒,∠90ODF C ∠=∠=︒,即OD DC ⊥,∠CD 是O 的切线(2)连接AD ,如图,∠AB 为O 直径,∠90ADB ∠=︒∠90C ∠=︒,∠90ADB C ∠=∠=︒∠ABD DBC ∠=∠,∠ABD DBC △△∽ ∠BC BD BD AB =,即23BD BD =, ∠BD =∠BD .7.(1)解:如图,连接OC ,OD ,∠∠COD=2∠CAD,∠CAD=45°,∠∠COD=90°,∠AB=8,∠OC=12AB=4,∠S扇形COD=2904360π⨯⨯=4π,S△OCD=12×OC×OD=12×4×4=8,∠S阴影= S扇形COD- S△OCD =4π﹣8.(2)证明:∠BC=AD,∠BC AD=,∠∠BOC=∠AOD,∠∠COD=90°,∠∠AOD=45°,∠OA=OD,∠∠ODA=∠OAD,∠∠AOD+∠ODA+∠OAD=180°,∠∠ODA=67.5°,∠AD=AP,∠∠ADP=∠APD,∠∠CAD=∠ADP+∠APD,∠CAD=45°,∠∠ADP=12∠CAD=22.5°,∠∠ODP=∠ODA+∠ADP=90°,∠PD是∠O的切线.8.(1)解:如图所示,连接AD∠AB=AC,BD=DC,∠AD∠BC即∠ADB=90°,∠AB是∠O的直径.(2)解:DE与∠O相切,理由如下:如图所示,连接OD,∠OB=OA,BD=DC,∠OD是∠ABC的中位线,∥.∠OD AC∠DE∠AC,∠DE∠OD即∠ODE=90°,∠DE与∠O相切.(3)解:∠AB=AC,AD∠BC,∠BAC=60°,∠∠BAD=∠DAE=30°.∠DE∠AC,AD∠BD,∠AD=2DE=6,AB=2BD.在∠ABD 中,222BD AD AB +=, ∠()22262BD BD +=,解得BD =∠2AB BD ==,∠∠O 的半径为9.(1)连接OD∠AC 为圆O 的直径 ∠∠ADC =90°∠OD =OC∠∠ODC =∠OCD在Rt ∠BCD 中,∠E 为BC 中点 ∠12DE BC CE == ∠∠EDC =∠ECD∠∠ODC +∠EDC =∠OCD +ECD =90° 即∠ODE =90°∠OD ∠DE∠DE 是圆O 的切线(2)在Rt∠BCD中,∠E为BC中点∠BC=2DE=5∠CD=3∠BD=4∠AC为直径,∠∠ADC=∠ACB=∠BDC=90°,又∠∠B=∠B∠∠ABC∠∠CBD,∠AC BC CD BD=∠5 34 AC=∠154=AC cm10.(1)证明:如图,连接OC,∠CD=AC,∠∠CAD=∠D,又∠∠ACD=120°,∠∠CAD=∠D=12(180°﹣∠ACD)=30°,∠OC=OA,∠∠A=∠2=30°,∠∠COD=60°,又∠∠D=30°,∠∠OCD=180°﹣∠COD﹣∠D=90°,∠OC∠CD∠OC是∠ O的半径∠CD是∠ O的切线;(2)解:∠∠A =30°,∠∠1=2∠A =60°. ∠260223603OBC S ππ⨯==扇形 ,在Rt ∠OCD 中,tan 60CD OC ==•︒=∠11222Rt OCD S OC CD =⨯=⨯⨯=△.∠图中阴影部分的面积为23π.11.(1)证明:如图:连接OD .∠AB =AC ,∠∠B =∠C ,又∠OD =OB ,∠∠ODB =∠OBD .∠∠ODB =∠ACB .∠OD AC ∥,∠DE ∠AC .∠OD ∠DE .∠OD 是圆的半径,∠DE 是∠O 的切线;(2)解:如图:连接AD ,∠AB为∠O的直径,∠∠ADB=90°,即AD∠BC,又∠AB=AC,BC=16,∠BD=CD=8,∠∠O的半径为5,∠AC=AB=10,∠6 AD=,∠S△ADC11••22AC DE CD AD ==,∠10DE=8×6,∠DE=4.8.12.(1)解:连接OD,如下图所示:∠OB=OD,∠∠OBD=∠ODB,∠BD平分∠ABC,∠∠OBD=∠DBE,∠∠ODB=∠DBE,∠OD∥BE,∠DE∠BE于点E,∠∠E=90°,∠∠ODE=180°-∠E=180°-90°=90°,∠OD∠DE;∠DE是∠O的切线.(2)解:设OD交AC于点M,如下图:∠AB为∠O的直径,∠∠ACB=∠ACE=90°,由(1)知,∠ODE=90°,∠∠ACE=∠E=∠ODE=90°,∠四边形DECM为矩形,∠EC=DM=1,∠MO∥CB,O为AC的中点,∠MO为∠ABC的中位线,且∠AMO=∠ACB=90°,AC∠AM=MC=12设圆的半径为r,则MO=DO-DM=r-1,在Rt∠AMO中,由勾股定理可知:AO²=AM²+MO²,代入数据:222=+-,r r(1)解出:4r=,故圆∠O的半径为4.13.(1)解:(1)CD AD ⊥,90D ∴∠=︒,∠∠DAC +∠DCA =90°,点c 是弧BG 的中点,∠CG BC =DAC BAC ∴∠=∠,OA OC =,OCA BAC ∴∠=∠,OCA DAC ∠=∠∴,//∴AD OC ,∠∠D =∠OCP =90°, OC 是圆O 的半径,DC ∴与O 相切,(2) AB 是O 的直径,90ACB ∴∠=︒,90PCB ACD ∴∠+∠=︒,由(1)得:90DAC DCA ∠+∠=︒,PCB DAC ∴∠=∠,DAC BAC ∠=∠,PCB BAC ∴∠=∠, CE 平分ACB ∠,ACF BCF ∴∠=∠,∠∠PFC =∠BAC +∠ACF ,∠PCF =∠PCB +∠BCF ,PFC PCF ∴∠=∠,PC PF ∴=;(3)连接AE ,CE 平分ACB ∠,∴AE BE =,AE BE ∴=, AB 是O 的直径,90AEB ∴∠=︒,AEB ∴∆为等腰直角三角形,∠AB ,∠OB =OC ∠1tan 3E = ∠1tan 3BC CAB AC ==∠, ∠∠PCB =∠BAC ,∠P =∠P ,∠△PCB ∠△P AC , ∠13BC PB AC PC ==, ∴设PB x =,3=PC x ,在Rt OCP ∆中,222OC PC OP +=,∠222(3))x x +=,∠x =x =0(舍去),∠PC∠PF 14.(1)证明:如图,连接OB,∠CB平分∠ACE.∠∠ACB=∠ECB,∠OB=OC,∠∠BCO=∠CBO,∠∠BCE=∠CBO,∠OB∠ED.∠BE∠ED,∠EB∠BO.∠BE是∠O的切线;(2)解:∠AC是∠O的直径,∠∠ABC=90°,∠BE∠ED,∠∠E=90°,∠∠E=∠ABC,∠∠BCE=∠ACB,∠∠BCE∠∠ACB,∠BC CE AC BC=,∠AC=4,CE=1,∠2BC==,∠BE,∠∠BCD+∠BAD=∠BCD+∠BCE=180°,∠∠BCE=∠BAD,∠tan tan BE BAD BCE CE∠=∠== 15.(1) 解:(1)连接BF ,OC ,∠AB 是∠O 的直径,∠∠AFB =90°,即BF ∠AD ,∠CE ∠AD ,∠BF ∠CE ,∠点C 为劣弧BF 的中点,∠OC ∠BF ,又BF ∠CE ,∠OC ∠CE ,∠OC 是∠O 的半径,∠CE 是∠O 的切线;(2)解:连接OF ,CF ,∠OA =OC ,∴∠OCA =∠BAC =30°,∠∠BOC =60°,∠点C 为劣弧BF 的中点,∠FC BC =,∠∠FOC =∠BOC =60°,∠OF =OC ,∴△FOC为等边三角形,∠∠OCF=∠COB=60°,∠CF∠AB,∠S△ACF=S△OCF,∠阴影部分的面积等于S扇形COF,∠AB=4,∠FO=OC=OB=2,∠S扇形FOC=260223603ππ⋅⨯=,即阴影部分的面积为23π.16.(1)解:∠四边形ABCD是平行四边形,∠∠B=∠D.∠四边形ABCE为∠O的内接四边形,∠∠B+∠AEC=180°.∠∠AED+∠AEC=180°.∠∠B=∠AED.∠AB=AC,∠AB=∠ACB∠∠ACB=∠AED.∠∠ABC∠∠ADE.(2)解:如图,连接AO并延长,交BC于点M,连接OB、OC.∠AB=AC,OB=OC,∠AM垂直平分BC.∠∠AMC=90°.∠四边形ABCD是平行四边形,∠AD∠BC.∠∠DAO=90°.∠点A在∠O上,∠AD是∠O的切线.17.(1)证明:连接OD,∠AB=AC,∠=∠,∠B C=,又∠OB OD∠1∠=∠,B∠C1∠=∠,∥,∠OD AC∠DE∠AC于E,∠DE∠OD,∠OD是O的半径,∠DE与O相切;(2)解:如图:连接AD,∠AB为O的直径,∠∠ADB=90°,∠AB =6,sin B∠sin AD AB B =⋅ ∠123290∠+∠=∠+∠=︒, ∠13∠=∠,∠3B ∠=∠,在∠AED 中,∠AED =90°,∠sin 3AE AD ∠==∠65AE AD ===. 又∠OD AE ∥, ∠∠FAE ∠∠FOD , ∠FA AE FO OD=, ∠6AB =,∠3OD AO ==, ∠235FA FA =+, ∠2AF =.18.(1)连接OD ,BD ,如图,AB 是直径,90ADB ∴∠=︒, 90BDC ∴∠=︒,E 是BC 的中点,12DE BE EC BC ∴=== EBD EDB ∠∠∴=,OB OD =OBD ODB ∠∠∴=OBD EBD ODB EDB ∠∠∠∠∴+=+即90ODE ABC ∠=∠=︒OD DE ∴⊥ OD 是半径,∴DE 是半圆∠O 的切线.(2)2DE =24BC ED ∴==30BAC ∠=︒28AC BC ∴==AB ∴==12BD AB ∴==6AD ∴=.19.(1) 证明:∠AB 是∠O 的直径,∠∠ADB =90︒,∠∠DAB +∠ABD =90︒,∠∠BED =∠DAB ,∠PBD =∠BED ,∠∠DAB =∠PBD ,∠∠PBD +∠ABD =90︒,∠∠ABP =90︒,∠AB ∠PB ,∠BP 是∠O 的切线;(2)解:连接AE ,∠AB 是直径∠∠AEB =90︒,∠BE 平分∠ABD ,∠∠ABE =∠DBE ,∠AE DE =,∠AE =DE∠∠ABE =∠DBE =∠DAE ,∠tan tan tan EF DBE ABE DAE EA ∠∠∠====,∠EF (3)解:连接OE ,∠OE =OB ,∠∠ABE =∠OEB ,∠∠ABE =∠DBE ,∠∠DBE =∠OEB ,∠//OE BD ∠CE OC DE OB=, ∠CA =AO ,设CA =AO =BO =R , ∠22CE R DE R==,2=, ∠CE∠DC = CE +DE∠∠ADC =∠ABE ,∠C =∠C ,∠CAD CEB △∽△, ∠CD AC CB CE=,= ∠R,∠∠O20.(1)证明:∠α=90°,∠AOB =90°,∠∠AOP =∠BOH ,在∠AOP 和∠BOH 中,OA OB AOP BOH OP OH =⎧⎪∠=∠⎨⎪=⎩∠∠AOP ∠∠BOH (SAS ),∠∠OP A=∠OHB,∠AP是∠O的切线,∠∠OP A=90°,∠OHB=90°,即OH∠BH于点H,∠BH是∠O的切线;(2)如图,过点B作∠O的切线BC,BD,切点分别为C,D,连接OC,OD,则有OC∠BC,OD∠BD,∠OC=2,OB=4,∠cos2142OCBOCOB===∠∠∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∠∠OHB=90°.∠圆弧PH的长为902180ππ⨯=;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∠圆弧PH的长为21027 1803ππ⨯=,∠当BH与∠O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π;(3)设h表示点H到直线AB的距离,作ON∠AB于点N,H在圆O上,在Rt∠ONB中,∠OBN=45°,OB=4,∠ON=4cos45°=∠h的最小值为=ON﹣r=2∠当∠AHB面积最小时,点H到AB的距离为2。

圆的切线证明 中考数学专项训练(含答案解析)

圆的切线证明 中考数学专项训练(含答案解析)

圆的切线证明(1)求证:CD 为O 切线;(2)若1CD =,5AC =,求PB (1)求证:CD 是O 的切线;(2)若16ABCD S =正方形,求CE3.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F 连接OF 交AD 于点G .(1)求证:BC 是O 的切线;(2)若60OFA ∠=︒,半径为4,在圆O 上取点P ,使15PDE ∠=︒,求点P 到直线DE 的距离.4.如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线;(2)如果20AB =,12CD =,求AE 的长.5.如图,O 是ABC 的外接圆,O 点在BC 边上,BAC ∠的平分线交O 于点D ,连接BD 、CD ,过点D 作BC 的平行线,与AB 的延长线相交于点P .(1)求证:PD 是O 的切线;(2)若3AB =,4AC =,求线段BD 的长.6.如图,已知以Rt ABC △的直角边AB 为直径作O ,与斜边AC 交于点D ,E 为BC 边上的中点,连接DE .(1)求证:DE 是O 的切线;(2)若AD ,AB 的长是方程210240x x -+=的两个根,求直角边BC 的长.(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求图中阴影部分的面积.(1)求证:DE 是O 的切线;(2)若2AB =,30C ∠=︒,求9.如图,AB 为O 的直径,C ,D 为O 上的两点,BAC DAC ∠=∠,过点C 作直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O 的切线;(2)若30CAO ∠=︒,2BC =,求CE 的长.10.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得ACQ ABC ∠=∠.(1)求证:直线PQ 是O 的切线.(2)过点A 作AD PQ ⊥于点D ,交O 于点E ,若O 的半径为2,30DAC ∠=︒,求图中阴影部分的面积.11.如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线;(2)若6AB =,求阴影部分的面积12.如图,AB 是ABC 外接圆O 的直径,PA 是O 的切线,BD OP ∥,点D 在O 上.(1)求证:PD 是O 的切线.(2)若ABC 的边6cm AC =,8cm BC =,I 是ABC 的内心,求IO 的长度.13.如图,AB 是O 的直径,AC 是弦,点D 是O 上一点,OD AB ⊥,连接CD 交AB 于点E ,F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 是O 的切线;(2)若8CF =,4BF =,求弧BD 的长度.14.如图所示,在Rt ABC △中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆O ,分别与BC 、AB 相交于点D 、E ,连接AD ,已知CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若23AD CD ==时,求阴影部分的面积.(1)求证:PA是O(2)若tan CAD∠=(3)延长CD,AB交于点(1)求证:DE BG=;(2)求证:BF是O的切线;(3)若23DEEG=时,AE(1)当60A ∠=︒,2AD =时,求(2)求证:DF 是O 的切线.(1)求证:DF 是O (2)若 BE DE =,tan(1)求证:直线AB 为O 的切线;(2)若4tan 3A =,O 的半径为2,求AB (1)求证:BF 是O 的切线;(2)若6EF =,cos ABC ∠①求BF 的长;②求O 的半径.参考答案:∵CD AE ⊥,∴90ADC ∠=︒,∵OC OA =,∴OCA OAC ∠=∠,∵的平分线AC 交O 于∵AB 为O 直径,∴90ACB ∠=︒,∴90ADC ACB ∠=∠=︒,∵DAC OAC ∠=∠,∴,【点睛】此题重点考查正方形的性质、等腰三角形的性质、切线的判定、平行线分线段成比例定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.3.(1)见解析(2)232-或423-【分析】(1)连接OD ,可得(2)①过点P 作PN DE ⊥交交于H ,可求60EOD ∠=︒,即可求解;②连接OD ,OP 60EOD ∠=︒,30POE ∠=︒,可证求解.【详解】(1)解:如图,连接∴OA OD =,∴ODA OAD ∠=∠,AD 是BAC ∠的平分线,, ∠=︒PDE15=,PE PE ∴∠=︒POE30,OA OF∠=︒60OFA=,∴∠=︒,OAF60∠的平分线, AD是BAC同理可求60EOD ∠=︒,30POE ∠=︒,1302DOL EOD ∴∠=∠=︒,30DOP EOD POE ∠=∠-∠=︒,DOP DOL ∴∠=∠,AB 是O 的直径,90ACB ∴∠=︒,AO OB =,AB CD ⊥ ,AB ∴平分弦CD ,AB 平分 CD,CH HD ∴=, CBDB =,90CHA CHE ∠=︒=∠,BAD BAC DCB ∴∠=∠=∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴BDC 为直角三角形,∵E 为BC 边上的中点,∴ED EB =,∴12∠=∠,∵OB OD =,3=4∠∠∵AB AC =,∴A ABC CB =∠∠,设OB OD r ==,∴ABC ODB ∠=∠,∵AB AC =,23CD =,C ∠=∴23BD CD ==,30B C ∠=∠=∴1803030120BOD ∠=︒-︒-︒=︒OF BD ⊥==OB OD AB AC,∴∠=∠,B CB ODB∠=∠∴∠=∠.ODB C∴∥.OD AC,=OA OC∴∠=∠,OAC OCAQ,∠=∠DAC BAC∴∠=∠,DAC OCA∥,∴AD OC,EF AD⊥∴⊥,而OC为半径,EF OC的切线;∴是OEF的直径,(2)解:AB为O(1)根据题意连接OC ,可知90ACB ∠=︒,可知AOC 是等腰三角形,OAC OCA ∠=∠,继而可证90OCD ∠=︒;(2)连接OE ,过点E 作EF AB ⊥,根据题意可知60EAO ∠=︒即可得知AEO △为等边三角形,再求出扇形AOE 面积减去AEO △的面积即为阴影面积.【详解】(1)解:连接OC ,,∵OA OC =,AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒,∴AOC 是等腰三角形,∴OAC OCA ∠=∠,∵ACQ ABC ∠=∠,∴90ACQ OCA ∠+∠=︒,∴OC PQ ⊥,∴直线PQ 是O 的切线;(2)解:连接OE ,过点E 作EF AB ⊥,,∵AD PQ ⊥,ACQ ABC ∠=∠,∴30DAC CAB ∠=∠=︒,∴60EAO ∠=︒,∵AB 为O 的直径,∴90ADB ∠=︒,∵BD OP ∥,∴OP AD ⊥,OP 是AD 的垂直平分线,∴PD PA =,则IU IV IQ ==,∵AB 为O 的直径,∴90ACB ∠=︒,∵6cm AC =,8cm BC =,∴226810AB =+=,5OB OA ==(2)3π.【分析】本题考查了切线的判定,求弧长;(1)如图,连接OC ,OD .证明90OCF ∠=︒即可;(2)设O 的半径为r ,在Rt COF △中,勾股定理可得6r =,再根据弧长公式可解决问题.【详解】(1)证明:连接OCCF EF= CEF ECF∴∠=∠OD AB⊥ 90DOE ∴∠=︒,90ODE OED ∴∠+∠=︒,OD OC = ,ODE OCD ∴∠=∠,CEF OED ∠=∠ ,OED ECF ∴∠=∠,90OCD ECF ∴∠+∠=︒,即90OCF ∠=︒,OC CF ∴⊥,CF ∴是O 的切线.(2)设O 的半径为r ,∵4BF =,∴4OF r =+,在Rt OCF 中,90,∠=︒ACB∴∠+∠CAD ADC=,OB OD∴∠=∠,B ODB则sin 30OH OD =⋅ODB S S S ∴=-阴影扇形∴CAD BAD ∠=∠,∴5CD BD ==,∵AB 为直径,点∴90ADB ∠=︒,∵2DOB DAB ∠=∠=∠又∵DFO CFA ∠=∠,∴DOF CAF ∽,又∵OB BF OA ==,∴23DF FO FC FA ==,∴90EHB BGF ∠=∠=︒,∵点C 为劣弧BD 中点,∴ CDBC =,∴DAC BAC DBC ∠=∠=∠∵AD 是O 的直径,∴90AED ∠=︒,∵60A ∠=︒,2AD =∴30ADE ∠=︒,则12AE =∴2222DE AD AE =-=∵AD 是直径,∴90AED ∠=︒,∴1809090DEB ∠=︒-︒=︒∵四边形ABCD 为菱形,∴DBE DBF ∠=∠,AD ∥∵BE BF =,DB DB =,∴()SAS DBE DBF ≌,∴90DFB DEB ∠=∠=︒,∵AD BC ∥,∴90ADF DFB ∠=∠=︒,∴AD DF ⊥,∵AD 为直径,∴DF 是O 的切线.【点睛】本题主要考查了直径所对的圆周角为直角,含30度角的直角三角形的性质,勾股定理,切线的判定,解题的关键是作出辅助线,熟练掌握切线的判定方法.18.(1)见解析(2)52AB 是O 的直径,90ADB ∴∠=︒,90BDC ∴∠=︒,90BDF CDF ∠∠∴+=︒,OB OD = ,OBD ODB ∴∠=∠,CDF ABD ∠∠= ,ODB CDF ∠∠∴=,90ODB BDF ∴∠+∠=︒,90ODF ∴∠=︒,DF OD ∴⊥,OD 是O 的半径,DF ∴是O 的切线;(2)如图,连接AE ,∵ BEDE =,BAE CAE ∴∠=∠,AB 是O 的直径,90AEB ∴∠=︒,90AEC ∴∠=︒,AEB AEC ∴∠=∠,∵OC OD =,∴OCD ODC ∠=∠.设OCD ODC α∠=∠=,∴22A BCD α∠=∠=.∵90ACB ∠=︒,。

《圆》切线的性质与判定专题练习

《圆》切线的性质与判定专题练习

《圆》切线的性质和判定专题练习卷已知直线与圆有公共点,证明切线的方法是:“连半径,证垂直”.证明垂直的方法有以下几种:(1)利用勾股定理的逆定理证垂直;(2)利用特殊角或一般角之间的转化证垂直;(3)利用三角形全等证明要证的角等于已知的某个直角;(4)利用平行线的性质证明要证的角等于已知的某个直角等。

若直线与圆没有公共点,证切线的方法是“作垂直,证相等”.圆的相关计算需将圆的基本性质定理灵活运用。

圆内常见添加辅助线的方法:(1)连半径;(2)作弦心距;(3)利用直径构造直角等.1.如图,⊙0是Rt△ABC的外接圆,∠ABC=90°,P是⊙0外一点,PA切⊙0于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA=√3,∠ACB=60°,求⊙0的半径.2.如图,AB是⊙0的直径,BD平分∠ABC交⊙O于D,DE⊥BC.(1)求证:DE是⊙0的切线;(2)若CE=2,DE=4,求⊙0的半径的长.3.如图,四边形ABCD中,AD//BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2√3,∠B CD=60°,求图中阴影部分面积.4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙0分别交AC,BC于点M,N,过点N作NE⊥AB,垂足为E.(1)求证:NE与⊙0相切;,AC=6,求BN长.(2)若⊙0的半径为525.如图,四边形ABCD内接于⊙0,AB为⊙0的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.(1)求证:CE为⊙0的切线;(2)若DE=1,CD=3,求⊙0的半径.6.如图,直线AB经过⊙0上的点C,直线AO与⊙0交于点E和点D,OB与⊙0交于点F,连接DF,DC.已知0A=OB,CA=CB,DE=10,DF=6.(1)求证: ①直线AB是⊙0的切线; ②∠FDC=∠EDC;(2)求CD的长.。

圆的切线试题专项训练

圆的切线试题专项训练

圆的切线试题专项训练一.选择题(共6小题)1.已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为()A.相离B.相切C.相交D.不能确定2.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为() A.4 B.3 C.2 D.1 3.如图,线段AB是⊙O的直径,⊙O交线段BC于D,且D是BC中点,DE⊥AC于E,连接AD,则下列结论正确的个数是()①CE•CA=CD•CB;②∠EDA=∠B;③OA=1/2AC;④DE是⊙O的切线;⑤AD2=AE•AB.A.2个B.3个C.4个D.5个4.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么()秒钟后⊙P与直线CD相切. A.4 B.8 C.4 或6 D.4 或85.如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC 和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.直线AC和BD的距离为2 B.若∠MON=90°,则MN与⊙O相切C.若MN与⊙O相切,则AM= D.MN=6.如图,在梯形ABCD中,AB∥DC.①若∠A=90°,AB+CD=BC,则以AD为直径的圆与BC 相切;②若∠A=90°,当以AD为直径的圆与BC相切,则以BC为直径的圆也与AD相切;③若以AD为直径的圆与BC相切,则AB+CD=BC;④若以AD为直径的圆与BC相切,则以BC 为直径的圆与AD相切.以上判断正确的个数有() A.1 B.2 C.3 D.47.如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(点Q为切点),则线段PQ的最小值为()8.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB 的延长线于E,则sin∠E的值为()A.1/2 B.3/2 C. 2 D.39.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°二.填空题1.如图,等腰△ABC中,∠ACB=90°,I为△ABC的内心,AI的延长线交BC于E.若IE=1,则AI= .2.三角形的内切圆(1)定义:与三角形各边都的圆叫做三角形的内切圆.内切圆的圆心叫三角形的.(2)三角形的内心是三角形的交点,它到三角形的距离相等,都等于该三角形.(3)如图,若△ABC的三边分别为AB=c,BC=a,AC=b,其内切圆⊙O分别切BC、CA、AB于D、E、F.则AF=AE= ,BD=BF= ,CD=CE= .∠BOC与∠A 的关系是,∠EDF与∠A的关系是△ABC的面积S与内切圆半径r的关系是(4)直角三角形的外接圆半径等于,内切圆半径等于.3.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH 的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2√2.其中正确的是 .(把你认为正确结论的序号都填上)4.如图,已知AB是⊙O的直径,AD、BD是半圆的弦,∠PDA=∠PBD,∠BDE=60°,若PD=√3 ,则PA的长为5.如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.过点A作直线AB 的垂线交BD的延长线于点E,且AB=√5 ,BD=2,则线段AE的长为.6.如图,在△ABC中,∠BAC=90°,D为BC上的中点,O是线段AD上一点,以点O为圆心,OA长为半径的⊙O交AC于点E,EF⊥BC于点F,则EF ⊙O的切线.(填“是”或“不是”)7.如图,△ACD内接于⊙O,CB垂直于过点D的切线,垂足为B,如果BC=3,sin∠A=3/4,那么⊙O的半径为8.如图,矩形ABCD中,AB=2√3 ,AD=2,以AB为弦在矩形内部画一条120°的弧,过点C 作直线CE,与弧AB切于点F,与AD边交于点E,那么DE的长是9.如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则阴影部分的面积为三.解答题1.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.2.如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD并延长,与BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.3.如图,已知AB是OD的直径,AM和BN是⊙O的两条切线,点E是⊙O上一点,点D 是AM上一点,连接DE并延长交BN于点C,连接OD、BE,且OD∥BE.(1)求证:DE是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.4.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA= 3,∠ACB=60°,求⊙O的半径.5.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O 的切线;(2)求点B的坐标.6.如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)若BC=6,AD:FD=1:2,求⊙O的半径的长.7.如图,AB是⊙O的直径,CA是⊙O的切线,在⊙O上取点D,连接CD,使得AC=DC,延长CD交直线AB于点E.(1)求证:CD是⊙O的切线;(2)作AF⊥CD于点F,交⊙O于点G,若⊙O的半径是6cm,ED=8cm,求GF的长.8.如图,PB为⊙0的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO9.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O 上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C 在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.10.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.11.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P 出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O 为△ABC的外接圆.若⊙P与⊙O相切,求t的值.12.如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t (秒)之间的关系式为r=1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?13.已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于点F、G(如图1),AF= 2/3,求DE的长;(2)如果折痕FG分别与CD、AB交于点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.14.如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.15.如图,AB是半圆O的直径,AC⊥AB,CD切半圆于点D,BF⊥AB,交AD的延长线于F,交CD的延长线于E.(1)若∠C=80°,求∠F的度数;(2)求证:BE=EF;(3)若AC=6,BE=4,求AB的长.16.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线EF,交AB和AC的延长线于E、F.(1)求证:FE⊥AB;(2)当AE=6,sin∠CFD=3/5 时,求EB 的长.17.已知,AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)如图①,AB=10,AD=2,求AC的长;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求AD/AC 的值.18.如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是⊙O的切线;(2)已知⊙O的半径为2,若过点O 作OE⊥AD,垂足为E,OE=√3 ,求弦AD的长.19.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).20.已知:如图,△ABC中,AB=AC,AD平分∠BAC,BE平分∠ABC交AD于点E.经过B、E两点的⊙O交AB于点F,交BC于点G,BF恰为⊙O的直径.(1)求证:AD与⊙O相切;(2)若BC=4,cos C=1/3 ,求⊙O的半径长.21.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;(2)若AD=4,AE=4√2 ,求BC的长.22.如图,⊙D交y轴于A、B,交x轴于C,过点C的直线:y=-2 √2x-8与y轴交于P.(1)求证:PC是⊙D的切线;(2)判断在直线PC上是否存在点E,使得S△EOP=4S△CDO,若存在,求出点E的坐标;若不存在,请说明理由;(3)当直线PC绕点P转动时,与劣弧AC 交于点F(不与A、C重合),连接OF,设PF=m,OF=n,求m、n之间满足的函数关系式,并写出自变量n的取值范围.。

人教版九年级数学上册《圆的切线》题组训练(含答案解析)

人教版九年级数学上册《圆的切线》题组训练(含答案解析)

提技能·题组训练切线的判定1.如图,△ABC的一边AB是☉O的直径,请你添加一个条件,使BC是☉O的切线,你所添加的条件为.【解析】当△ABC为直角三角形时,即∠ABC=90°时,BC与圆相切,∵AB是☉O的直径,∠ABC=90°,∴BC是☉O的切线(经过半径外端,与半径垂直的直线是圆的切线).答案:∠ABC=90°2.如图,已知点A是☉O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.则AB (填“是”或“不是”)☉O的切线.【解析】连接OA,∵OC=BC,AC=OB,∴∠OAB=90°,∴AB是☉O的切线.答案:是3.如图,点A,B,D在☉O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB=40°,直线BC与☉O的位置关系为.【解析】∵∠A=25°,∴∠BOD=50°,又∵∠OCB=40°,∴∠OBC=90°,∴BC为☉O的切线.答案:相切4.(2013·牡丹江中考)如图,点C是☉O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是☉O的切线.(2)若半径OB=2,求AD的长.【解析】(1)连接OD,如图,则有BO=BD=BC=DO,∴∠C=∠CDB,∠DOB=∠BDO.又∵∠C+∠CDB+∠DOB+∠BDO=180°,∴∠CDB+∠BDO=90°,即∠CDO=90°,∴CD是☉O的切线.(2)∵OB=2,∴BD=OB=2,AB=4.∵AB是直径,∴∠ADB=90°,∴AD=2.【方法技巧】证明一条直线是圆的切线的常用方法1.当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”.2.当直线和圆公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”.切线的性质1.(重庆中考)如图,AB是☉O的切线,B为切点,AO与☉O交于点C,若∠BAO=40°,则∠OCB的度数为( )A.40°B.50°C.65°D.75°【解析】选C.∵AB是☉O的切线,∴∠OBA=90°,∴∠O=90°-∠BAO=90°-40°=50°,又∵O B=OC,∴∠OCB=∠OBC=(180°-50°)=65°.2.(2013·黔西南州中考)如图所示,线段AB是☉O的直径,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于( )A.50°B.40°C.60°D.70°【解析】选A.连接OC,∵CE为切线,∴∠OCE=90°,∵∠CDB=20°,∴∠COE=40°,∴∠E=50°.3.(济南中考)如图,AB是☉O的直径,点D在☉O上,∠BAD=35°,过点D作☉O的切线交AB的延长线于点C,则∠C= .【解析】连接OD,则∠ODC=90°,∠DOC=2∠BAD=70°,因此∠C=90°-70°=20°.答案:20°4.(永州中考)如图,已知△ABC内接于☉O,BC是☉O的直径,MN与☉O相切,切点为A,若∠MAB=30°.则∠B= .【解析】连接OA,则OA⊥MN,由于∠MAB=30°,所以∠OAB=90°-30°=60°,而OA=OB,所以∠B=∠OAB=60°.答案:60°5.如图,AB为☉O的直径,BC切☉O于B,CO交☉O于D,AD的延长线交BC于E,若∠C=25°,求∠A的度数.【解析】∵AB为☉O的直径,BC切☉O于B,∴∠ABC=90°.∵∠C=25°,∴∠BOC=65°.∵∠A=∠BOD,∴∠A=32.5°.【知识归纳】关于切线性质的五点理解1.切线与圆只有一个公共点.2.切线和圆心的距离等于半径.3.切线垂直于过切点的半径.4.经过圆心且垂直于切线的直线必过切点.5.经过切点且垂直于切线的直线必过圆心.注意:对于任意一条直线,如果具备下列条件中的两个,就可以推出第三个结论:①垂直于切线;②经过切点;③经过圆心.【错在哪?】作业错例课堂实拍如图,直线AB,CD相交于点O,∠AOC=30°,半径为1cm的☉P的圆心在射线OA上,且与点O的距离为6cm,如果☉P以1cm/s的速度沿由A向B的方向移动,那么☉P与直线CD相切时运动时间为秒.(1)错因:.(2)纠错:.答案:(1)☉P在点O的左右两边各相切一次,本题错在只考虑了一种情况,而遗漏另一种情况(2)作PE⊥CD于E.若☉P与直线CD相切,则PE=1,当点P在OA上时,此时OP=2PE=2,则☉P需要移动6-2=4(cm),需要时间4s;当点P在OB上时,此时OP=2PE=2,则☉P需要移动6+2=8(cm),需要时间8s。

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)

中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。

圆的切线综合练习题与答案

圆的切线综合练习题与答案

切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 60 12. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD =OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。

圆的切线专题(全)

圆的切线专题(全)

圆的切线专题训练姓名:例题讲析:如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)求证:DE为⊙O的切线;(2)求证:BD2=AB•BE.例题2、(2012•温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E 是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.变式训练:1、如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.(1)求证:直线MN是⊙O的切线;(2)过点A作A D⊥MN于点D,交⊙O于点E,已知AB=6,BC=3,求阴影部分的面积.2、(2012•兰州)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)若ta n C=,DE=2,求AD的长.(10分)3、如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.(10分)课后作业4 .如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB 的延长线于点E , AD⊥EC 于点D 且交⊙O于点F ,连接BC , CF , AC 。

(1)求证:BC=C F;(2)若AD=6 , DE=8 ,求BE 的长;(3)求证:AF + 2DF = AB。

(10分)5.如图,在△ABC中,∠C=90°,∠ACB的平分线交AB于点O,以O为圆心的⊙O与AC相切于点D.(1)求证: ⊙O与BC相切;(2)当AC=3,BC=6时,求⊙O的半径.第二课时例题讲析:如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.(1)求证:直线CD为⊙O的切线;(2)当OB=BE=1时,求AD的长.变式练习:1、如图,⊙O的直径AB=13,弦BC=l2.过点A作直线MN,使∠BAM=1∠AOB。

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明【含答案】

2023九年级数学下册中考专题训练——圆的切线的证明A AM⊙O B⊙O BD⊥AM D BD1. 如图,点是直线与的交点,点在上,垂足为,与⊙O C OC∠AOB∠B=60∘交于点,平分,.AM⊙O(1) 求证:是的切线;DC=2π(2) 若,求图中阴影部分的面积(结果保留和根号).AB⊙O AC BD⊙O OE∥AC BC E B 2. 如图,已知是的直径,,是的弦,交于,过点⊙O OE D DC BA F作的切线交的延长线于点,连接并延长交的延长线于点.DC⊙O(1) 求证:是的切线;∠ABC=30∘AB=8CF(2) 若,,求线段的长.△ABC∠B=∠C=30∘O BC O OB3. 如图,中,,点是边上一点,以点为圆心、为半径的圆A BC D经过点,与交于点.AC⊙O(1) 试说明与相切;AC=23(2) 若,求图中阴影部分的面积.ABC⊙O B C D⊙O E BC OE 4. 如图,割线与相交于,两点,为上一点,为弧的中点,BC F DE AC G∠ADG=∠AGD交于,交于,.AD⊙D(1) 求证明:是的切线;∠A=60∘⊙O4ED(2) 若,的半径为,求的长.5. 如图,, 分别是半 的直径和弦, 于点 ,过点 作半 的切线 AB AC ⊙O OD ⊥AC D A ⊙O , 与 的延长线交于点 .连接 并延长与 的延长线交于点 .AP AP OD P PC AB F(1) 求证: 是半 的切线;PC ⊙O (2) 若 ,,求线段 的长.∠CAB =30∘AB =10BF 6. 如图, 是 的直径, 是 上一点, 是 的中点, 为 延长线上一点,AB ⊙O C ⊙O D AC E OD 且 , 与 交于点 ,与 交于点 .∠CAE =2∠C AC BD H OE F(1) 求证: 是 的切线.AE ⊙O (2) 若 ,,求直径 的长.DH =9tanC =34AB 7. 如图, 是 的直径, 是 的弦,, 与 的延长线交于点 ,点 AB ⊙O AC ⊙O OD ⊥AB OD AC D 在 上,且 .E OD CE =DE(1) 求证:直线 是 的切线.CE ⊙O (2) 若 ,,.OA =23AC =3CD =8. 如图, 是的直径,弦 于点 ,点 在直径 的延长线上,AB ⊙O CD ⊥AB E G DF .∠D =∠G =30∘(1) 求证: 是 的切线.CG ⊙OCD=6GF(2) 若,求的长.AB⊙O AC D BC D EF AC9. 如图,是的直径,是弦,是的中点,过点作垂直于直线,垂E AB F足为,交的延长线于点.EF⊙O(1) 求证:是的切线.B OF⊙O3(2) 若点是的中点,的半径为,求阴影部分面积.PB⊙O B PO⊙O E F B PO BA 10. 如图,切于点,直线交于点,,过点作的垂线,垂D⊙O A AO⊙O C BC AF足为点,交于点,延长交于点,连接,.PA⊙O(1) 求证:直线为的切线;BC=6AD:FD=1:2⊙O(2) 若,,求的半径的长.AC⊙O B⊙O∠ACB=30∘CB D11. 如图,为的直径,为上一点,,延长至点,使得CB=BD D DE⊥AC E CA BE,过点作,垂足在的延长线上,连接.BE⊙O(1) 求证:是的切线;BE=3(2) 当时,求图中阴影部分的面积.AB⊙O AP⊙O A BP⊙O C12. 已知是的直径,是的切线,是切点,与交于点.∠P=35∘∠ABP(1) 如图①,若,求的度数;D AP CD⊙O(2) 如图②,若为的中点,求证:直线是的切线.Rt△ABC∠C=90∘D AB AD⊙O BC13. 如图,在中,,点在上,以为直径的与相交于点E AE∠BAC,且平分.BC⊙O(1) 求证:是的切线;∠EAB=30∘OD=3(2) 若,,求图中阴影部分的面积.⊙O PA PC PH∠APB⊙O H H 14. 如图,在中,是直径,是弦,平分且与交于点,过作HB⊥PC PC B交的延长线于点.HB⊙O(1) 求证:是的切线;HB=6BC=4⊙O(2) 若,,求的直径.AB⊙O BD⊙O BD C AB=AC AC15. 已知:是的直径,是的弦,延长到点,使,连接,过D DE⊥AC E点作,垂足为.DC=BD(1) 求证:;DE⊙O(2) 求证:为的切线.AB⊙O C⊙O D AB∠BCD=∠A16. 如图,是的直径,是上一点,在的延长线上,且.CD⊙O(1) 求证:是的切线;⊙O3CD=4BD(2) 若的半径为,,求的长.△ABC AC⊙O△ABC∠ABC⊙O17. 如图,以的边为直径的恰为的外接圆,的平分线交D D DE∥AC BC E于点,过点作交的延长线于点.DE⊙O(1) 求证:是的切线.AB=45BC=25DE(2) 若,,求的长.AB O AD∠DBC=∠A18. 如图,是半圆的直径,为弦,.BC O(1) 求证:是半圆的切线;OC∥AD OC BD E BD=6CE=4AD(2) 若,交于,,,求的长.△ABC AO⊥BC O⊙O AC D BE⊥AB 19. 如图,是等边三角形,,垂足为点,与相切于点,交AC E⊙O G F的延长线于点,与相交于,两点.AB⊙O(1) 求证:与相切;ABC8BF(2) 若等边三角形的边长是,求线段的长.AC⊙O BC⊙O P⊙O PB AB 20. 如图,是的直径,是的弦,点是外一点,连接,,∠PBA=∠C.PB⊙O(1) 求证:是的切线;OP OP∥BC OP=8⊙O22BC(2) 连接,若,且,的半径为,求的长.答案1. 【答案】(1) ,,∵∠B=60∘OB=OC是等边三角形,∴△BOC,∴∠1=∠2=60∘平分,∵OC∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∴∠BDM=90∘,∴∠OAM=90∘是的切线.∴AM⊙O(2) ,,∵∠3=60∘OA=OC是等边三角形,∴△AOC,∴∠OAC=60∘,∵∠OAM=90∘,∴∠CAD=30∘,∵CD=2,∴AC=2CD=4,∴AD=23∴S阴影=S梯形OADC−S扇形OAC =12(4+2)×23−60⋅π×16360=63−8π3.2. 【答案】(1) 连接,OC,∵OE∥AC,∴∠1=∠ACB是的直径,∵AB⊙O,∴∠1=∠ACB=90∘,由垂径定理得垂直平分,∴OD⊥BC OD BC,∴DB=DC,∴∠DBE=∠DCE又,∵OC=OB,∴∠OBE=∠OCE即,∠DBO=∠OCD为的切线,是半径,∵DB⊙O OB,∴∠DBO=90∘,∴∠OCD =∠DBO =90∘即 ,OC ⊥DC 是 的半径,∵OC ⊙O 是 的切线.∴DC ⊙O (2) 在 中,,Rt △ABC ∠ABC =30∘ ,又 ,∴∠3=60∘OA =OC 是等边三角形,∴△AOC∴∠COF =60∘在 中,,Rt △COF tan∠COF =CF OC .∴CF =433. 【答案】(1) 连接 .OA ,∵OA =OB .∴∠OAB =∠B ,∵∠B =30∘ .∴∠OAB =30∘ 中:,△ABC ∠B =∠C =30∘ .∴∠BAC =180∘−∠B−∠C =120∘ .∴∠OAC =∠BAC−∠OAB =120∘−30∘=90∘ ,∴OA ⊥AC 是 的切线,即 与 相切.∴AC ⊙O AC ⊙O (2) 连接 .AD ,∵∠C =30∘∠OAC =90∘ .∴OC =2OA 设 的长度为 ,则 .OA x OC =2x 在 中,,.△OAC ∠OAC =90∘AC =23根据勾股定理可得:,x 2+(23)2=(2x )2解得:,(不合题意,舍去).x 1=2x 2=−2 ,∴S △OAC =12×2×23=23,S 扇形OAD =60360×π×22=23π .∴S 阴影=23−23π答:图中阴影部分的面积为 .23−23π4. 【答案】(1) 连接 .OD 为 的中点,∵E BC ,∴OE ⊥BC ,∵OD =OE ,∴∠ODE =∠OED ,∴∠AGD +∠OED =∠EGF +∠OED =90∘ ,∵∠AGD =∠ADG ,即 ,∴∠ADG +∠ODE =90∘OD ⊥AD 是 的切线.∴AD ⊙O (2) 作 于 .OH ⊥ED H ,∴DE =2DH ,∵∠ADG =∠AGD ,∴AG =AD ,∵∠A =60∘ ,∴∠ADG =60∘,∴∠ODE =30∘ ,∵OD =4 ,∴DH =32OD =23 .∴DE =2DH =435. 【答案】(1) 连接 ,OC , 经过圆心 ,∵OD ⊥AC OD O ,∴AD =CD ,∴PA =PC 在 和 中,△OAP △OCP {OA =OC,PA =PC,OP =OP,,∴△OAP ≌△OCP (SSS ) ,∴∠OCP =∠OAP 是 的切线,∵PA ⊙O .∴∠OAP =90∘,即 ,∴∠OCP =90∘OC ⊥PC 是 的切线.∴PC ⊙O (2) 是直径,∵AB ,∴∠ACB =90∘,∵∠CAB =30∘,∴∠COF =60∘ 是 的切线,,∵PC ⊙O AB =10 ,,∴OC ⊥PF OC =OB =12AB =5 ,∴OF =OC cos∠COF =10 .∴BF =OF−OB =56. 【答案】(1) 是 的中点,∵D AC ,∴OE ⊥AC ,∴∠AFE =90∘ ,∴∠E +∠EAF =90∘ ,,∵∠AOE =2∠C ∠CAE =2∠C ,∴CAE =∠AOE ,∴∠E +∠AOE =90∘ ,∴∠EAO =90∘ 是 的切线.∴AE ⊙O (2) ,∵∠C =∠B ,∵OD =OB ,∴∠B =∠ODB ,∴ODB =∠C ,∴tanC =tan∠ODB =HF DF =34 设 ,,∴HF =3x DF =4x ,∴DH =5x =9,∴x =95 ,,∴DE =365HF =275 ,,∵∠C =∠FDH ∠DFH =∠CFD ,∴△DFH ∼△CFD ,∴DF CF =FH DF,∴CF =365×365275=485 ,∴AF =CF =485设 ,OA =OD =x,∴OF =x−365 ,∵AF 2+OF 2=OA 2 ,∴(485)2+(x−365)2=x 2解得:,x =10 ,∴OA =10 直径 为 .∴AB 207. 【答案】(1) 连接 ,OC ,∵OD ⊥AB ,∴∠AOD =90∘ ,∴∠D +∠A =90∘ ,∵OA =OC ,∴∠A =∠ACO ,∵CE =DE ,∴∠ECD =∠D ,∵∠ACO +∠DCE =90∘ ,∴∠OCE =90∘ ,∴OC ⊥CE 直线 是 的切线.∴CE ⊙O (2)5【解析】(2) 连接 ,BC 是 的直径,∵AB ⊙O ,∴∠ACB =90∘ ,∴∠AOD =∠ACB ,∵∠A =∠A ,∴△ABC ∽△ADO,∴AO AC =AD AB ,∴233=AD43 ,∴AD =8 .∴CD =AD−AC =58. 【答案】(1) 连接 .OC ,,∵OC =OD ∠D =30∘ .∴∠OCD =∠D =30∘ ,∵∠G =30∘ .∴∠DCG =180∘−∠D−∠G =120∘ .∴∠GCO =∠DCG−∠OCD =90∘ .∴OC ⊥CG 又 是 的半径.∵OC ⊙O 是 的切线.∴CG ⊙O (2) 是 的直径,,∵AB ⊙O CD ⊥AB .∴CE =12CD =3 在 中,,,∵Rt △OCE ∠CEO =90∘∠OCE =30∘ ,.∴EO =12CO CO 2=EO 2+CE 2设 ,则 .EO =x CO =2x .∴(2x )2=x 2+32解得 (舍负值).x =±3 .∴CO =23 .∴FO =23在 中,△OCG ,,∵∠OCG =90∘∠G =30∘ .∴GO =2CO =43 .∴GF =GO−FO =239. 【答案】(1) 连接 ,连接 ,OD AD 点 是 的中点,∵D BC ,∴∠1=∠2 ,∵OA =OD ,∴∠2=∠3即 ,∠1=∠2=∠3 ,∴∠1=∠3 ,∴AE ∥OD ,∵AE ⊥EF ,∴OD ⊥EF 即 是 的切线.EF ⊙O(2) 点是 的中点, 半径为 ,∵B OF ⊙O 3 ,∴BF =OB =3由()可知 ,1OD ⊥EF 在 中,Rt △ODF ,∵sinF =OD OF =36=12 ,,∴∠F =30∘∠DOF =60∘故S 阴影=S △ODF −S 扇ODB=12OD ⋅DF−60∘360∘π×32=3×332−32π=32(33−π).故阴影面积为:.32(33−π)10. 【答案】(1) 如图,连接 .OB 是 的切线,∵PB ⊙O .∴∠PBO =90∘ , 于 ,∵OA =OB BA ⊥PO D ,.∴AD =BD ∠POA =∠POB 又 ,∵PO =PO .∴△PAO ≌△PBO .∴∠PAO =∠PBO =90∘ 直线 为 的切线.∴PA ⊙O (2) ,,,∵OA =OC AD =BD BC =6 .∴OD =12BC =3设 .AD =x ,∵AD:FD =1:2 ,.∴FD =2x OA =OF =2x−3在 中,由勾股定理,得 .Rt △AOD (2x−3)2=x 2+32解之得,,(不合题意,舍去).x 1=4x 2=0 ,.∴AD =4OA =2x−3=5即 的半径的长 .⊙O 511. 【答案】(1) 如图所示,连接 ,BO ,∵∠ACB =30∘ ,∴∠OBC =∠OCB =30∘,,∵DE ⊥AC CB =BD 中,,∴Rt △DCE BE =12CD =BC ,∴∠BEC =∠BCE =30∘ 中,,∴△BCE ∠EBC =180∘−∠BEC−∠BCE =120∘ ,∴∠EBO =∠EBC−∠OBC =120∘−30∘=90∘ 是 的切线.∴BE ⊙O (2) 当 时,,BE =3BC =3 为 的直径,∵AC ⊙O ,∴∠ABC =90∘又 ,∵∠ACB =30∘ ,∴AB =tan 30∘×BC =3 ,,∴AC =2AB =23AO =3 ∴S 阴影部分=S 半圆−S Rt △ABC =12π×AO 2−12AB ×BC=12π×3−12×3×3=32π−32 3.12. 【答案】(1) 是 的直径, 是 的切线,∵AB ⊙O AP ⊙O ,∴AB ⊥AP ;∴∠BAP =90∘又 ,∵∠P =35∘ ∴∠ABP =90∘−35∘=55∘(2) 如图,连接 ,,.OC OD AC 是 的直径,∵AB ⊙O (直径所对的圆周角是直角),∴∠ACB =90∘ ;∴∠ACP =90∘又 为 的中点,∵D AP (直角三角形斜边上的中线等于斜边的一半);∴AD =CD 在 和 中,△OAD △OCD {OA =OC,OD =OD,AD =CD, ,△OAD ≌△OCD (SSS ) (全等三角形的对应角相等);∴∠OAD =∠OCD 又 是 的切线, 是切点,∵AP ⊙O A ,∴AB ⊥AP ,∴∠OAD =90∘ ,即直线 是 的切线.∴∠OCD =90∘CD ⊙O13. 【答案】(1) 平分 ,∵AE ∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,∴OE ∥AC ,∴∠OEB =∠C =90∘ ,∴OE ⊥BC 是 的切线.∴BC ⊙O (2) ,∵∠EAB =30∘ ,∴∠EOD =60∘ ,∴∠OEB =90∘ ,∴∠B =30∘ ,∴OB =2OE =2OD =6 ,∴BE =OB 2−OE 2=33,,∴S △OEB =932S 扇形=3π2 .∴S 阴影=932−3π214. 【答案】(1) 如图,连接 .OH 平分 ,∵PH ∠APB .∴∠HPA =∠HPB ,∵OP =OH .∴∠OHP =∠HPA .∴∠HPB =∠OHP .∴OH ∥BP ,∵BP ⊥BH .∴OH ⊥BH 是 的切线.∴HB ⊙O (2) 如图,过点 作 ,垂足为 .O OE ⊥PC E ,,,∵OE ⊥PC OH ⊥BH BP ⊥BH 四边形 是矩形.∴EOHB ,.∴OE =BH =6OH =BE .∴CE =OH−4 ,∵OE ⊥PC.∴PE =EC =OH−4=OP−4在 中,,.Rt △POE OP 2=PE 2+OE 2 .∴OP 2=(OP−4)2+36 .∴OP =132 .∴AP =2OP =13 的直径是 .∴⊙O 1315. 【答案】(1) 连接 ,AD 是 的直径,∵AB ⊙O ,∴∠ADB =90∘又 ,∵AB =AC .∴DC =BD (2) 连接半径 ,OD ,,∵OA =OB CD =BD ,∴OD ∥AC ,∴∠ODE =∠CED 又 ,∵DE ⊥AC ,∴∠CED =90∘ ,即 ,∴∠ODE =90∘OD ⊥DE 是 的切线.∴DE ⊙O 16. 【答案】(1) 连接 .OC 是 的直径, 是 上一点,∵AB ⊙O C ⊙O ,即 .∴∠ACB =90∘∠ACO +∠OCB =90∘ ,,∵OA =OC ∠BCD =∠A ,∴∠ACO =∠A =∠BCD ,即 ,∴∠BCD +∠OCB =90∘∠OCD =90∘ 是 的切线.∴CD ⊙O (2) 在 中,,,,Rt △OCD ∠OCD =90∘OC =3CD =4 ,∴OD =OC 2+CD 2=5 .∴BD =OD−OB =5−3=217. 【答案】(1) 连接 ,OD 是 的直径,∵AC ⊙O,∴∠ABC =90∘ 平分 ,∵BD ∠ABC ,∴∠ABD =45∘ ,∴∠ODE =90∘ ,∵DE ∥AC ,∴∠ODE =∠AOD =90∘ 是 的切线.∴DE ⊙O (2) 在 中,,,Rt △ABC AB =45BC =25 ,∴AC =AB 2+BC 2=10 ,∴OD =5过点 作 ,垂足为 ,C CG ⊥DE G 则四边形 为正方形,ODGC ,∴DG =CG =OD =5 ,∵DE ∥AC ,∴∠CEG =∠ACB ,∴tan∠CEG =tan∠ACB ,即 ,∴CG GE =AB BC 5GE =4525解得:,GE =52 .∴DE =DG +GE =15218. 【答案】(1) 是半圆 的直径,∵AB O ,∴BD ⊥AD ,∴∠DBA +∠A =90∘ ,∵∠DBC =∠A ,即 ,∴∠DBA +∠DBC =90∘AB ⊥BC 是半圆 的切线.∴BC O (2) ,∵OC ∥AD ,∴∠BEC =∠D =90∘ ,,∵BD ⊥AD BD =6 ,∴BE =DE =3 ,∵∠DBC =∠A ,∴△BCE ∽△BAD ,即 ,∴CE BD =BE AD 46=3AD .∴AD =4.519. 【答案】(1) 过点 作 ,垂足是 .O OM ⊥AB M 与 相切于点 ,∵⊙O AC D ,∴OD ⊥AC ,∠ADO =∠AMO =90∘ 是等边三角形,,∵△ABC AO ⊥BC 是 的角平分线,∴OA ∠MAD ,,∵OD ⊥AC OM ⊥AB .∴OM =OD 与 相切.∴AB ⊙O (2) 过点 作 ,垂足是 ,连接 .O ON ⊥BE N OF ,,∵AB =AC AO ⊥BC ∴ 是 的中点,O BC ,∴OB =12BC =12×8=4 在直角 中,,,△ABC ∠ABE =90∘∠MBO =60∘ ,∴∠OBN =30∘ ,,,∵ON ⊥BE ∠OBN =30∘OB =4 ,,∴ON =12OB =2BN =42−22=23 ,∵AB ⊥BE ∴四边形 是矩形,OMBN .∴BN =OM =23 .∵OF =OM =23由勾股定理得 .NF =(23)2−22=22 .∴BF =BN +NF =23+2220. 【答案】(1) 连接 ,如图所示:OB 是 的直径,∵AC ⊙O ,∴∠ABC =90∘ ,∴∠C +∠BAC =90∘ ,∵OA =OB ,∴∠BAC =∠OBA ,∵∠PBA =∠C ,即 ,∴∠PBA +∠OBA =90∘PB ⊥OB 是 的切线.∴PB ⊙O (2) 的半径为 ,∵⊙O 22,,∴OB =22AC =42 ,∵OP ∥BC ,∴∠CBO =∠BOP ,∵OC =OB ,∴∠C =∠CBO ,∴∠C =∠BOP 又 ,∵∠ABC =∠PBO =90∘ ,∴△ABC ∽△PBO ,即 ,∴BC OB =AC OP BC 22=428 .∴BC =2。

圆切线的判定与性质综合(3大类题型)(解析版)--初中数学专项训练

圆切线的判定与性质综合(3大类题型)(解析版)--初中数学专项训练

圆切线的判定与性质综合(3大类题型)重难点题型归纳【题型1证圆的切线-有公共点:连半径,证垂直】【题型2证圆的切线-没有公共点:作垂直,证半径】【题型3圆切线的判定与性质综合】满分必练【题型1证圆的切线-有公共点:连半径,证垂直】1(2023春•保德县校级期中)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.【答案】见解答.【解答】证明:连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODE=∠AED=90°,∴半径OD⊥DE,∴DE是⊙O的切线.2(2022秋•大连期末)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.求证:CD是⊙O的切线.【答案】见试题解答内容【解答】解:连OD,如图,∵∠ADE=60°,∠C=30°,∴∠A=∠ADE-∠C=60°-30°=30°,又∵OD=OA,∴∠ODA=∠A=30°,∴∠EDO=90°,所以CD是⊙O的切线.3(2022秋•龙川县校级期末)如图,OA是⊙O的半径,∠B=20°,∠AOB=70°.求证:AB是⊙O的切线.【答案】见解答.【解答】证明:∵∠AOB=70°,∠B=20°,∴∠OAB=180°-∠B-∠AOB=90°,∴OA⊥AB,∵OA是⊙O的半径,∴AB是⊙O的切线.4(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.【答案】见解析.【解答】证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,在⊙D中,AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°-∠ADC-∠C=180°-60°-30°=90°,∴AD⊥AC,又∵DA是半径,∴AC是⊙D的切线.5(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.【答案】见试题解答内容【解答】证明:连接OD,∵AO=OB,D为AC的中点,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线.6(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB= AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【答案】证明过程见解答.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.7(2022•昭平县一模)如图,AB是⊙O的弦,OP⊥AB交⊙O于C,OC=2,∠ABC=30°.(1)求AB的长;(2)若C是OP的中点,求证:PB是⊙O的切线.【答案】见试题解答内容【解答】(1)解:连接OA、OB,如图,∵∠ABC=30°,OP⊥AB,∴∠AOC =60°,∴∠OAD =30°,∴OD =12OA =12×2=1,∴AD =3OD =3,又∵OP ⊥AB ,∴AD =BD ,∴AB =23;(2)证明:由(1)∠BOC =60°,而OC =OB ,∴△OCB 为等边三角形,∴BC =OB =OC ,∠OBC =∠OCB =60°,∴C 是OP 的中点,∴CP =CO =CB ,∴∠CBP =∠P ,而∠OCB =∠CBP +∠P ,∴∠CBP =30°∴∠OBP =∠OBC +∠CBP =90°,∴OB ⊥BP ,∴PB 是⊙O 的切线.8(2022•漳州模拟)已知:△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E .求证:DE 是⊙O 的切线.【答案】见试题解答内容【解答】证明:连接OD ,∵AB 为⊙O 的直径,∴AD ⊥BC ,又AB =AC ,∴BD =DC ,∵BO =OA ,∴OD ∥AC ,∴∠ODE =180°-∠AED =90°,∴DE 是⊙O 的切线.9(2022秋•芜湖期末)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,AC =CD =DB,DE ⊥AC .求证:DE 是⊙O 的切线.【答案】见解析.【解答】证明:连接OD ,∵AC =CD =DB,∴∠BOD =13×180o =60o ,∵CD =DB ,∴∠EAD =∠DAB =12∠BOD =30°,∵OA =OD ,∴∠ADO =∠DAB =30°,∵DE ⊥AC ,∴∠E =90°,∴∠EAD +∠EDA =90°,∴∠EDA =60°,∴∠EDO =∠EDA +∠ADO =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.【题型2证圆的切线-没有公共点:作垂直,证半径】10(2022秋•长乐区期中)如图,在△OAB 中,OA =OB =5,AB =8,⊙O 的半径为3.求证:AB 是⊙O 的切线.【答案】证明见解析.【解答】证明:如图,过O 作OC ⊥AB 于C ,∵OA =OB ,AB =8,∴AC =12AB =4,在Rt △OAC 中,OC =OA 2-AC 2=52-42=3,∵⊙O 的半径为3,∴OC 为⊙O 的半径,∴AB 是⊙O 的切线.11(2022•八步区一模)如图,在Rt △ABC 中,∠BAC 的角平分线交BC 于点D ,E 为AB 上一点,DE =DC ,以D 为圆心,DB 的长为半径作⊙D ,AB =5,BE =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【解答】(1)证明:过点D 作DF ⊥AC 于F ;∵AB 为⊙D 的切线,∴∠B =90°,∴AB ⊥BC ,∵AD 平分∠BAC ,DF ⊥AC ,∴BD =DF ,∴AC 与⊙D 相切;(2)解:在△BDE 和△DCF 中;BD =DF DE =DC ,∴Rt △BDE ≌Rt △DCF (HL ),∴EB =FC .∵AB =AF ,∴AB +EB =AF +FC ,即AB +EB =AC ,∴AC =5+3=8.12(秋•莆田期末)如图,半圆O 的直径是AB ,AD 、BC 是两条切线,切点分别为A 、B ,CO 平分∠BCD .(1)求证:CD 是半圆O 的切线.(2)若AD =20,CD =50,求BC 和AB 的长.【解答】(1)证明:过点O 作OE ⊥CD ,垂足为点E ,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD-DE=50-20=30,∴BC=30,∴CF=BC-BF=10,在Rt△CDF中,由勾股定理得:DF=DC2-CF2=502-102=206,∴AB=DF=206,∴BC的长为30,AB的长为206.【题型3 圆切线的判定与形式综合】13(2023•银川校级四模)如图△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,以点D为圆心,BD为半径作⊙D交AB于点E.(1)求证:⊙D与AC相切;(2)若AC=5,BC=3,试求AE的长.【答案】见试题解答内容【解答】(1)证明:过D 作DF ⊥AC 于F ,∵∠B =90°,∴AB ⊥BC ,∵CD 平分∠ACB 交AB 于点D ,∴BD =DF ,∴⊙D 与AC 相切;(2)解:设圆的半径为x ,∵∠B =90°,BC =3,AC =5,∴AB =AC 2-BC 2=4,∵AC ,BC ,是圆的切线,∴BC =CF =3,∴AF =AB -CF =2,∵AB =4,∴AD =AB -BD =4-x ,在Rt △AFD 中,(4-x )2=x 2+22,解得:x =32,∴AE =4-3=1.14(2022秋•五莲县期中)如图,O 为正方形ABCD 对角线上一点,以点O 为圆心,OA 长为半径的⊙O 与BC 相切于点E .(1)求证:CD 是⊙O 的切线;(2)若正方形ABCD 的边长为10,求⊙O 的半径.【答案】见试题解答内容【解答】(1)证明:连接OE ,并过点O 作OF ⊥CD .∵BC 切⊙O 于点E ,∴OE ⊥BC ,OE =OA ,又∵AC 为正方形ABCD 的对角线,∴∠ACB =∠ACD ,∴OF =OE =OA ,即:CD 是⊙O 的切线.(2)解:∵正方形ABCD 的边长为10,∴AB =BC =10,∠B =90°,∠ACB =45°,∴AC =AB 2+BC 2=102,∵OE ⊥BC ,∴OE =EC ,设OA=r,则OE=EC=r,∴OC=OE2+EC2=2r,∵OA+OC=AC,∴r+2r=102,解得:r=20-102.∴⊙O的半径为:20-102.15(2023•甘南县一模)如图,已知AB是⊙O的直径,点C在⊙O上,AD⊥DC于点D,AC平分∠DAB.(1)求证:直线CD是⊙O的切线;(2)若AB=4,∠DAB=60°,求AD的长.【答案】见试题解答内容【解答】(1)证明:连接OC,如图1所示:∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥DC,∴CD⊥OC,又∵OC是⊙O的半径,∴直线CD是⊙O的切线;(2)解:连接BC,如图2所示:∵AB是⊙O的直径,∴∠ACB=90°,∵AC平分∠DAB,∠DAB=60°,∴∠DAC=∠BAC=30°,AB=2,AC=3BC=23,∴BC=12∵AD⊥DC,∴∠ADC=90°,AC=3,AD=3CD=3.∴CD=1216(2023•夹江县模拟)如图,已知AB是⊙O的直径,BC⊥AB于点B,D是⊙O上异于A、B的一个动点,连接AD,过O作OC∥AD交BC于点C.(1)求证:CD是⊙O的切线;(2)若EA=1,ED=3,求⊙O的半径.【答案】(1)见解答;(2)4.【解答】解:(1)如图,连接OD,由OD=OA得:∠OAD=∠ODA,∵OC∥AD,∴∠DOC=∠ODA,∠BOC=∠OAD,∴∠DOC=∠BOC,又∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC,∵BC⊥AB,∴∠ODC=∠OBC=90°,又∵D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为x,则:OD=x,OA=x+1,∵CD是⊙O的切线,∴∠ODE=90°,在Rt△ODE中,由勾股定理得:ED2+OD2=OE2,∴32+x2=(x+1)2,解得:x=4,∴⊙O的半径为4.17(2022秋•盘山县期末)如图,已知AB是⊙O的直径,AC是⊙O的弦,过点C的直线与AB的延长线相交于点P,且AC=PC,∠P=30°.(1)求证:PC是⊙O的切线;(2)若AB=6,求PC的长.【答案】(1)证明见解析;(2)33.【解答】(1)证明:如图所示,连接OC,∵AC=PC,∠P=30°,∴∠A=∠P=30°,∴∠BOC=2∠A=60°,∴∠PCO=180°-∠P-∠POC=90°,即OC⊥PC,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB=6且AB是⊙O的直径,∴OC=1OA=3,2在Rt△POC中,∠PCO=90°,∠P=30°,∴OP=2OC=6,∴PC=PO2-OC2=33.18(2023春•东营期末)如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的直径.【答案】见试题解答内容【解答】证明:(1)如图,连接OH,∵PH平分∠APB,∴∠HPA=∠HPB,∵OP=OH,∴∠OHP=∠HPA,∴∠HPB=∠OHP,∴OH∥BP,∵BP⊥BH,∴OH⊥BH,∴HB 是⊙O 的切线;(2)如图,过点O 作OE ⊥PC ,垂足为E ,∵OE ⊥PC ,OH ⊥BH ,BP ⊥BH ,∴四边形EOHB 是矩形,∴OE =BH =4,OH =BE ,∴CE =OH -2,∵OE ⊥PC∴PE =EC =OH -2=OP -2,在Rt △POE 中,OP 2=PE 2+OE 2,∴OP 2=(OP -2)2+16∴OP =5,∴AP =2OP =10,∴⊙O 的直径是10.19(2023•汉川市模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,直线BF 与AD 延长线交于点F ,且∠AFB =∠ABC .(1)求证:直线BF 是⊙O 的切线;(2)若CD =12,BE =3,求⊙O 的半径.【答案】(1)证明见解析;(2)152.【解答】(1)证明:∵AC =AC ,∴∠ABC =∠ADC ,∵∠AFB =∠ABC ,∴∠ADC =∠AFB ,∴CD ∥BF ,∵CD ⊥AB ,∴AB ⊥BF ,∵OB 为⊙O 的半径.∴直线BF 是⊙O 的切线;(2)解:设⊙O 的半径为R ,连接OD ,如图,∵AB ⊥CD ,CD =12,∴CE =DE =12CD =6,∵BE =3,∴OE =R -3,在Rt △OED 中,∵OE2+DE2=OD2,∴R2=(R-3)2+62,解得:R=15 2.即⊙O的半径为15 2.20(2022秋•斗门区期末)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠ACP=∠OBC.(1)求证:PC与⊙O相切;(2)若PA=4,PC=BC,求⊙O的半径.【答案】(1)见解析;(2)4.【解答】(1)证明:连接OC,则OC=OB,∴∠OBC=∠OCB,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACP=∠OBC,∴∠ACP=∠OCB,∴∠OCP=∠OCA+∠ACP=∠OCA+∠OCB=∠ACB=90°,∵PC经过⊙O的半径OC的外端,且PC⊥OC,∴PC与⊙O相切.(2)解:∵PC=BC,∴∠P=∠B,∵∠ACP=∠B,∴∠ACP=∠P,∴CA=PA=4,∵∠OCP=90°,∴∠ACO+∠ACP=90°,∠AOC+∠P=90°,∴∠ACO=∠AOC,∴CA=OA=OC=4.21(2023•黑龙江模拟)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=10,BD=3,求AE的长.【答案】(1)见解析;(2)658.【解答】(1)证明:(1)连接OC ;∵AE ⊥CD ,CF ⊥AB ,又CE =CF ,∴∠1=∠2.∵OA =OC ,∴∠2=∠3,∠1=∠3.∴OC ∥AE .∴OC ⊥CD .∴DE 是⊙O 的切线.(2)解:∵OC ⊥ED ,AB =10,BD =3,∴OB =OC =5.CD =OD 2-OC 2=39,∵S △OCD =12OC ⋅CD =12OD ⋅CF ,即12×5×39=125+3 ⋅CF ,∴CF =5398,∴OF =OC 2-FC 2=658,∴AF =OA +OF =5+258=658,在Rt △AEC 和Rt △AFC 中,CE =CF ,AC =AC ,∴Rt △AEC ≌Rt △AFC (HL ),∴AE =AF =658.22(2023•宿豫区三模)如图,Rt △ABC 中,∠ACB =90°,点D 在AC 边上,以AD 为直径作⊙O 交BD 的延长线于点E ,CE =BC .(1)求证:CE 是⊙O 的切线;(2)若CD =2,BD =2,求⊙O 的半径.【答案】见试题解答内容【解答】解:(1)如图,连接OE,∵∠ACB=90°,∴∠1+∠5=90°.∵CE=BC,∴∠1=∠2.∵OE=OD,∴∠3=∠4.又∵∠4=∠5,∴∠3=∠5,∴∠2+∠3=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线.(2)在Rt△BCD中,∠DCB=90°,CD=2,BD=25,BC=CE=4.设⊙O的半径为r,则OD=OE=r,OC=r+2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+42=(r+2)2,解得r=3,∴⊙O的半径为3.23(2023•东港区校级三模)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点E,点D在AB上,且以AD为直径的⊙O经过点E.(1)求证:BC是⊙O的切线;(2)当AD=3BD,且BE=4时,求⊙O的半径.【答案】(1)证明见解析;(2)3.【解答】(1)证明:连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE∥AC,∵∠C=90°,∴∠OEC =90°,∴OE ⊥BC ,∵OE 为半径,∴BC 是⊙O 切线;(2)解:∵AD =3BD ,设BD =2x ,则AD =6x ,∴AO =OD =OE =3x ,∴OB =5x ,在Rt △OBE 中,根据勾股定理得:OE 2+BE 2=OB 2,∴(3x )2+42=(5x )2,∴x =1,∴OE =3x =3,∴⊙O 半径为3.24(2023•泗县校级模拟)如图,在Rt △ABC 中,∠ACB =90°,以AB 为直径作⊙O ,在⊙O 上取一点D ,使CD =BC,过点C 作EF ⊥AD ,交AD 的延长线于点E ,交AB 的延长线于点F .(1)求证:直线EF 是⊙O 的切线;(2)若AB =10,AD =6,求AC 的长.【答案】(1)见详解;(2)45.【解答】(1)证明:连接OC ,如图,∵CD =CB,∴∠EAC =∠CAB ,∵EF ⊥AD ,∴∠EAC +∠ACE =90°,∵OC =OA ,∴∠CAB =∠OCA ,∴∠EAC =∠OCA ,∴∠ACO +∠ACE =90°,即半径OC ⊥EF ,∴EF 是⊙O 的切线;(2)解:连接BD ,交OC 于点G ,如图,∵AE ⊥EF ,OC ⊥EF ,∴AE ∥OC ,∵O 为AB 为中点,∴OG 为△ABD 中位线,∴OG=1AD=3,DG=BG,2∴DG=BG=CE,DB⊥OC,GC=OC-OG=2,∵AB=10,∴OB=5,∴BG=OB2-OG2,∴DG=BG=4,∵AE⊥EF,OC⊥EF,DB⊥OC,∴四边形DECG是矩形,∴DE=CG=2,EC=DG=4,∴AE=8,∴在△AEC中,AC=AE2+EC2=45.25(2023•荔湾区校级一模)如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为2,求EF的长度.【答案】(1)证明见解析;(2)12.【解答】(1)证明:如图所示,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图所示,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴DC=12BC=1,FC=12AC=1.∵∠EDC=30°,∴EC=12DC=12.∴EF=FC-EC=12.。

圆的切线综合练习题与答案

圆的切线综合练习题与答案

切线的判定与性质练习题一、选择题答案唯一;每小题3分1.下列说法中;正确的是A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图;AB是⊙O的直径;AC切⊙O于A;BC交⊙O于点D;若∠C=70°;则∠AOD的度数为A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图;线段AB是⊙O的直径;点C;D为⊙O上的点;过点C作⊙O的切线交AB的延长线于点E;若∠E=50°;则∠CDB等于A.20° B.25° C.30° D.40°4.如图;等腰直角三角形ABC中;AB=AC=8;O为BC的中点;以O为圆心作半圆;使它与AB;AC都相切;切点分别为D;E;则⊙O的半径为A.8 B.6 C.5 D.45.如图;CD是⊙O的直径;弦AB⊥CD于点G;直线EF与⊙O相切于点D;则下列结论中不一定正确的是A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题每小题3分6.如图;在⊙O中;弦AB=OA;P是半径OB的延长线上一点;且PB=OB;则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图;△ABC的一边AB是⊙O的直径;请你添加一个条件;使BC是⊙O的切线;你所添加的条件为________________.8.如图;AB是⊙O的直径;O是圆心;BC与⊙O切于点B;CO交⊙O于点D;且BC=8;CD=4;那么⊙O的半径是______.9. 如图;若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D;则∠C=_______度.第9题第10题第11题10. 如图;AB为⊙O的直径;直线l与⊙O相切于点C;AD⊥l;垂足为D;AD交⊙O于点E;连接OC;BE.若AE=6;OA=5;则线段DC的长为______.11.如图;已知△ABC内接于⊙O;BC是⊙O的直径;MN与⊙O相切;切点为A;若∠MAB=30°;则∠B=________度.三、解答题写出详细解答或论证过程12.7分如图;在Rt△ABC中;∠C=90°;BD是角平分线;点O在AB上;以点O为圆心;OB为半径的圆经过点D;交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.7分如图;AB是⊙O的直径;点C在AB的延长线上;CD与⊙O相切于点D;CE⊥AD;交AD的延长线于点E.求证:∠BDC=∠A.14.7分如图;在Rt△ABC中;∠ABC=90°;∠BAC的平分线交BC于D;以D为圆心;DB长为半径作⊙D;求证:AC与⊙D相切.15.10分如图;AB为⊙O的直径;PD切⊙O于点C;交AB的延长线于点D;且∠D=2∠CAD.1求∠D的度数;2若CD=2;求BD的长.第15题第16题16.12分已知△ABC内接于⊙O;过点A作直线EF.1如图①;若AB为⊙O的直径;要使EF成为⊙O的切线;还需要添加的一个条件是至少说出两种:__________________________或者_______________________;(2)如图②;如果AB是不过圆心O的弦;且∠CAE=∠B;那么EF是⊙O的切线吗试证明你的判断.17.12分如图;已知直线PA交⊙O于A;B两点;AE是⊙O的直径;点C为⊙O上一点;且AC平分∠PAE;过C作CD⊥PA;垂足为D.1求证:CD为⊙O的切线;2若DC+DA=6;⊙O的直径为10;求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD;∵BD为∠ABC平分线;∴∠OBD=∠CBD;∵OB=OD;∴∠OBD=∠ODB;∴∠CBD=∠ODB;∴OD∥BC;∵∠C=90°;∴∠ODA=90°;则AC为⊙O的切线13. 解:连接OD;∵CD是⊙O的切线;∴∠ODC=90°;∴∠ODB+∠BDC=90°;∵AB是⊙O的直径;∴∠ADB=90°;即∠ODB+∠ADO=90°;∴∠BDC=∠ADO;∵OA=OD;∴∠ADO=∠A;∴∠BDC=∠A14. 解:过D作DH⊥AC于H;由角平分线的性质可证DB=DH;∴AC与⊙D相切15. 解:1∵∠COD=2∠CAD;∠D=2∠CAD;∴∠D=∠COD.∵PD与⊙O相切于点C;∴OC⊥PD;即∠OCD=90°;∴∠D=45°2由1可知△OCD是等腰直角三角形;∴OC=CD=2;由勾股定理;得OD=错误!=2错误!;∴BD=OD-OB=2错误!-216. 1 ∠BAE=90°∠EAC=∠ABC2 2EF是⊙O的切线.证明:作直径AM;连接CM;则∠ACM=90°;∠M=∠B;∴∠M+∠CAM=∠B+∠CAM=90°;∵∠CAE=∠B;∴∠CAM+∠CAE=90°;∴AE⊥AM;∵AM为直径;∴EF是⊙O的切线17. 解:1连接OC;证∠DAC=∠CAO=∠ACO;∴PA∥CO;又∵CD⊥PA;∴CO⊥CD;∴CD为⊙O的切线2过O作OF⊥AB;垂足为F;∴四边形OCDF为矩形.∵DC+DA=6;设AD=x;则OF=CD=6-x;AF=5-x;在Rt△AOF 中;有AF2+OF2=OA2;即5-x2+6-x2=25;解得x1=2;x2=9;由AD<DF知0<x<5;故x=2;从而AD=2;AF=5-2=3;由垂径定理得AB=2AF=6。

专题训练(一) 圆的切线中常见的辅助线类型

专题训练(一) 圆的切线中常见的辅助线类型

专题训练(一)圆的切线中常见的辅助线类型▶类型之一遇到切线时,有交点,连半径,得垂直1.[2019·包头]如图1-ZT-1,BD是☉O的直径,A是☉O外一点,点C在☉O上,AC与☉O 相切于点C,∠CAB=90°.若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.图1-ZT-12.[2018·德州]如图1-ZT-2,AB是☉O的直径,直线CD与☉O相切于点C,且与AB的延⏜的中点.长线交于点E,C是BF(1)求证:AD⊥CD;⏜爬回至点B,求蚂(2)若∠CAD=30°,☉O的半径为3,一只蚂蚁从点B出发,沿着BE-EC-CB蚁爬过的路程(π≈3.14,√3≈1.73,结果保留一位小数).图1-ZT-23.如图1-ZT-3,在Rt△ABC中,∠ACB=90°,D是边AB上一点,以BD为直径的☉O与边AC 相切于点E,连接DE并延长,交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cos B=3,求☉O的半径.5图1-ZT-3▶类型之二证明某一直线是圆的切线一、有交点,连半径,证垂直4.[2018·金华]如图1-ZT-4,在Rt△ABC中,点O在斜边AB上,以点O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是☉O的切线;,求☉O的半径.(2)若BC=8,tan B=12图1-ZT-45.[2019·十堰]如图1-ZT-5,在△ABC中,AB=AC,以AC为直径的☉O交BC于点D,E为AC延长线上一点,且∠CDE=1∠BAC.2(1)求证:DE是☉O的切线;(2)若AB=3BD,CE=2,求☉O的半径.图1-ZT-56.如图1-ZT-6,已知☉O的半径为1,DE是☉O的直径,AD是☉O的切线,C是AD的中点,AE 交☉O于点B,四边形BCOE是平行四边形.(1)求AD的长.(2)BC是☉O的切线吗?若是,请给出证明;若不是,请说明理由.图1-ZT-6二、无交点,作垂直,证半径7.[2018·安顺]如图1-ZT-7,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;,AB=12,求半圆O所在圆的半径.(2)若cos∠ABC=23图1-ZT-78.如图1-ZT-8,已知O是正方形ABCD对角线AC上的一点,以点O为圆心、OA长为半径的圆与BC相切于点M,与AB,AD分别相交于点E,F.求证:CD是☉O的切线.图1-ZT-89.如图1-ZT-9,AB是☉O的直径,AM,BN分别切☉O于点A,B,CD分别交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是☉O的切线;(2)若AD=4,BC=9,求☉O的半径R.图1-ZT-9教师详解详析【详解详析】 1.2√62.解:(1)证明:连接OC.∵直线CD 与☉O 相切,∴OC ⊥CD.∵C 是BF⏜的中点,∴∠DAC=∠EAC. ∵OA=OC ,∴∠OCA=∠EAC ,∴∠DAC=∠OCA ,∴OC ∥AD.∵OC ⊥CD , ∴AD ⊥CD.(2)∵∠CAD=30°,∴∠CAE=∠CAD=30°. 由圆周角定理,得∠COE=60°, ∴OE=2OC=6,EC=√3OC=3√3,BC⏜=60π×3180=π,∴BE=3,∴蚂蚁爬过的路程为3+3√3+π≈11.3.3.解:(1)证明:连接OE.∵AC 与☉O 相切于点E , ∴OE ⊥AC ,∴∠OEA=90°. ∵∠ACB=90°,∴∠OEA=∠ACB , ∴OE ∥BC ,∴∠OED=∠F . ∵OE=OD ,∴∠OED=∠ODE , ∴∠F=∠ODE ,∴BD=BF .(2)∵cos B=BC AB =35,设BC=3x ,则AB=5x.又CF=1,∴BF=3x+1.由(1)知BD=BF ,∴BD=3x+1.∵OE ∥BF ,O 是BD 的中点,∴OB=OE=12BF=3x+12,OA=AB -OB=5x -3x+12=7x -12.∵OE ∥BF ,∴∠AOE=∠B , ∴cos ∠AOE=OE OA =35,即3x+127x -12=35,解得x=43,∴☉O 的半径为3x+12=52.4.解:(1)证明:如图,连接OD.∵OB=OD ,∴∠3=∠B. ∵∠B=∠1,∴∠1=∠3.在Rt △ACD 中, ∠1+∠2=90°,∴∠4=180°-(∠2+∠3)=90°, ∴OD ⊥AD.∵点D 在☉O 上,∴AD 为☉O 的切线.(2)设☉O 的半径为r.在Rt △ABC 中,AC=BC ·tan B=4. 根据勾股定理,得AB=√42+82=4√5,∴OA=4√5-r.,在Rt△ACD中,tan∠1=tan B=12∴CD=AC·tan∠1=2.根据勾股定理,得AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,.即(4√5-r)2=r2+20,解得r=3√525.解:(1)证明:如图,连接OD,AD.∵AC是直径.∴∠ADC=90°,∴AD⊥BC.∵AB=AC,∴∠CAD=∠BAD=1∠BAC.2∵∠CDE=1∠BAC.∴∠CDE=∠CAD.2∵OA=OD,∴∠CAD=∠ADO,∴∠ADO=∠CDE.∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°,∴∠ODE=90°.又∵OD是☉O的半径,∴DE是☉O的切线.(2)∵AB=AC,AD⊥BC,∴BD=CD.∵AB=3BD,∴AC=3DC.设DC=x,则AC=3x,∴AD=√AC2-DC2=2√2x.∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CEDE =DCAD=DEAE,即2DE=2√2x=DE3x+2,∴DE=4√2,x=143,∴AC=3x=14,则☉O的半径为7.6.解:(1)如图,连接BD.∵DE是☉O的直径,∴∠DBE=∠DBA=90°.∵四边形BCOE是平行四边形,∴BC∥OE,BC=OE=1.在Rt△ABD中,C为AD的中点,∴BC=12AD=1,∴AD=2.(2)BC是☉O的切线.证明:如图,连接OB.由(1)得BC∥OE,且BC=OE.∵OE=OD,∴BC=OD,∴四边形BCDO是平行四边形.又∵AD是☉O的切线,∴OD⊥AD,∴四边形BCDO是矩形,∴OB⊥BC.∵点B在☉O上,∴BC是☉O的切线.7.解:(1)证明:如图,过点O作OE⊥AB于点E,连接OD,OA.∵AB=AC,O是BC的中点,∴∠CAO=∠BAO.∵AC与半圆O相切于点D,∴OD⊥AC.∵OE⊥AB,∴OD=OE.∵AB过半圆O的半径的外端点,∴AB是半圆O所在圆的切线.(2)如(1)题图,∵AB=AC,O是BC的中点,∴AO ⊥BC.在Rt △AOB 中,OB=AB ·cos ∠ABC=12×23=8.根据勾股定理,得OA=√AB 2-OB 2=4√5. S △AOB =12AB ·OE=12OB ·OA , ∴OE=OB ·OA AB=8√53, 即半圆O 所在圆的半径为8√53. 8.[解析] 此例未给出直线和圆的公共点,在这种情况下,应连接OM ,并过点O 作ON ⊥CD 于点N ,然后证明ON=OM 即可.为此只需证明△OMC ≌△ONC 即可.证明:如图,连接OM ,过点O 作ON ⊥CD 于点N.∵BC 与☉O 相切于点M ,∴OM ⊥BC ,即∠OMC=90°.∴∠ONC=90°.∵ON ⊥CD ,∴∠ONC=∠OMC=90°.∵四边形ABCD 是正方形,AC 为正方形ABCD 的对角线,∴∠OCM=∠OCN=45°.在△OMC 和△ONC 中,{∠OMC =∠ONC ,∠OCM =∠OCN ,OC =OC ,∴△OMC≌△ONC(AAS),∴OM=ON.∵ON⊥CD,∴CD是☉O的切线.9.解:(1)证明:如图,过点O作OE⊥CD于点E.∵AM切☉O于点A,∴OA⊥AD.又∵DO平分∠ADC,∴OE=OA.∴CD是☉O的切线.(2)过点D作DF⊥BC于点F.∵AM,BN分别切☉O于点A,B,∴AD⊥AB,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF.又∵AD=4,BC=9,∴FC=9-4=5.又∵AM,BN,CD分别切☉O于点A,B,E,∴DA=DE,CB=CE,∴DC=DE+EC=AD+BC=4+9=13.在Rt△DFC中,DF=√DC2-FC2=√132-52=12,∴AB=12,∴☉O的半径R为6.。

圆的切线训练题

圆的切线训练题

圆的切线训练题1.以下四个命题中准确的是( )①与圆有公共点的直线是该圆的切线; ②垂直于圆的半径的直线是该圆的切线;③到圆心的距离等于半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线. A.①② B.②③ C.③④ D.①④2.已知OA 平分∠BOC ,P 是OA 上任意一点,以P 为圆心的圆与OC 相切,那么⊙P 与OB 的位置关系是( ) A.相离 B.相切 C.相交 D.不能确定3.直线l 上的一点到圆心的距离等于⊙O 的半径,则l 与⊙O 的位置关系是( )A.相离B.相交C.相切D.相切或相交4.如图,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O 的半径为( ) A.45㎝ B.25㎝ C.213㎝ D.13㎝5.以等腰三角形顶角的顶点为圆心,顶角的平分线为半径的圆必与_____相切.6.如图,两个同心圆的半径分别为3 cm 和4 cm ,大圆的弦AB 与小圆相切于点P ,求AB 的长. A BPO7.如图,AB 在⊙O 的直径,点D 在AB 的延长线上,且BD =OB ,点C 在⊙O 上,∠CAB =30°.(1)CD 是⊙O 的切线吗?说明你的理由;(2)AC =_____,请给出合理的解释.A B CDO8.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .求证:DE 是⊙O 的切线.1.已知PA ,PB 与⊙O 切于点A ,B ,若PA=3㎝,则PB=______,理由是_____________________. E D BA OB A CE D OF D O A F C B E 2.若点O 是△ABC 的内心,∠BAC=80°,连接OA ,则∠OAB=____________.3.三角形的外心到三角形的________的距离相等;三角形的内心到三角形的_______的距离相等.4.边长为2的正三角形的内切圆半径是_______.5.PA ,PB 分别切圆O 于A ,B ,并与圆C ,D ,•已知PA=7cm ,则△PCD 的周长等于_________6.如图3,PA ,PB 分别切圆O 于A ,B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠ACB 的度数为( ) A .60° B .75° C .105° D .120°7.如图4,⊙O 内切于△ABC ,切点分别为D ,E ,F .已知∠B=50°,∠C=60°,连接OE ,OF ,DE ,DF ,那么∠EDF 的度数为( ) A.40° B.55° C.65° D.70°8.如图,PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°.(1)求∠APB 的度数;(2)当OA=3时,求AP 的长.9.如图,已知⊙O 是△ABC 的内切圆,切点为D ,E ,F ,假如AE=1,CD=2,BF=3,且△ABC 的面积为6.求内切圆的半径r .10、如图,在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,AB =8㎝,AD=24㎝,BC=26㎝,AB 为⊙O 的直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一、直线和圆的位置关系的定义、性质及判定
设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:
从另一个角度,直线和圆的位置关系还可以如下表示:
二、切线的性质及判定
1. 切线的性质:
定理:圆的切线垂直于过切点的半径.
推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定:
定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线;
定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:
(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.
(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
①切线的判定定理
设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线.
l
A
l
A
l
证明一直线是圆的切线有两个思路:(1)连接半径,证直线与此半径垂直;(2)作垂线,证d=r ②切线的性质定理及其推论
切线的性质定理:圆的切线垂直于过切点的半径.
我们分析:这个定理共有三个条件:一条直线满足:(1)垂直于切线(2)过切点 (3)过圆心
T
O
A
T
M
O
B
A
定理:①过圆心,过切点⇒ 垂直于切线 O A 过圆心, O A 过切点A ,则OA AT ⊥
②经过圆心,垂直于切线⇒过切点
()()12AB M AB MT ⎫⎪
⇒⎬⊥⎪⎭
过圆心为切点
③ 经过切点,垂直于切线⇒过圆心
()()12AM MT AM M ⊥⎫⎪
⇒⎬⎪⎭
过圆心为切点
考点一、圆的切线的证明
例1、如图,ABC ∆中,AB AC =,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。

求证:AC 是O 的切线。

O
D C
B
A
例2、已知:如图8,在Rt △ABC 中,∠B =90°,∠A 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D 。

求证:(1)AC 是⊙D 的切线;(2)AB +EB =AC
巩固练习、如图,已知⊙O 中,AB 是直径,过B 点作⊙O 的切线BC ,连结CO .若AD ∥OC 交⊙O 于D .求证:CD 是⊙O 的切线.
考点二、切线长定理及切线性质的应用
例1、在Rt ABC ∆中,90A ∠=︒,点O 在BC 上,以O 为圆心的O 分别与AB 、AC 相切于E 、F ,若AB a =, AC b =,则O 的半径为( )
A

a b ab + C 、ab a b + D 、2
a b
+ C
F
B
A
例2、如图,AB BC ⊥,DC BC ⊥,BC 与以AD 为直径的O 相切于点E ,9AB =,4CD =,则四边形ABCD 的面积为 。

C
E B
例3、如图,O 为Rt ABC ∆的内切圆,点D 、E 、F 为切点,若6AD =,4BD =,则ABC ∆的面积为 。

C
E
F
B
A
例4、如图,以正方形ABCD的边AB为直径,在正方形内部作半圆,圆心为O,CG切半圆于E,交AD于F,交BA的延长线于G,8
GA=。

(1)求G
∠的余弦值;
(2)求AE的长。

D
C
巩固练习:
1、正方形ABCD中,AE切以BC为直径的半圆于E,交CD于F,则:
CF FD=()
A、1∶2
B、1∶3
C、1∶4
D、2∶
5
F
C
B
A
2、如图,AB是半O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半O上运动,且总保持PQ PO
=,过点Q作O的切线交BA的延长线于点C。

(1)当60
QPA
∠=︒时,请你对QCP
∆的形状做出猜想,并给予证明;
(2)当QP AB
⊥时,QCP
∆的形状是三角形;
(3)则(1)(2)得出的结论,请进一步猜想,当点P在线段AM上运动到任何位置时,QCP

一定是三角形。

知识点小结:
【切线的证明】
1、如图,割线ABC 与O 相交于B 、C
两点,D 为O 上一点,E 为BC 的中点,OE 交BC 于F ,
DE 交AC 于G ,ADG AGD ∠=∠。

(1)求证:AD 是O 的切线;
(2)如果242AB AD EG ===,,,求O 的半径。

2、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。

(1)求证:CD 是半圆的切线;
(2)若AB 长为4,点D 在半圆上运动,设AD 长为x ,点A 到直线CD 的距离为y ,试求出y 与x 之间的函数关系式,并写出自变量x 的取值范围。

M O
A D
C
B
E
【切线长定理及切线性质的应用】
1、如图,已知ABC ∆中,AC BC =, CAB α∠=(定值),O 的圆心O 在AB 上,并分别与AC 、
BC 相切于点P 、Q 。

(1)求POQ ∠;
(2)设D 是CA 延长线上的一个动点,DE 与O 相切于点M ,点E 在CB 的延长线上,试判断DOE ∠的大小是否保持不变,并说明理由。

N
Q
P O
D
C
B
A
2、如图,AB 是⊙O 的直径,点C 在⊙O 的半径AO 上运动, PC ⊥AB 交⊙O 于E ,PT 切⊙O 于T ,
PC =2.5。

(1)当CE 正好是⊙O 的半径时,PT =2,求⊙O 的半径; (2)设2PT y =,AC x =,求出y 与x 之间的函数关系式;
(3)△PTC 能不能变为以PC 为斜边的等腰直角三角形?若能,请求出△PTC 的面积;若不能,请说明理由。

A
B
直击中考
1、如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为
A.4 B.3
2
3C.6 D.3
2、如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长
线交于点P,连接PC、BC.
(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.
(2)求证:PC是⊙O的切线.
3、如图,在Rt△ABC中,∠C=90°,BC=4cm,以点C为圆心,以3cm长为半径作圆,则⊙C与AB的位置关系是。

A
C B
第3题
4、如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN 于点C,F是CD的中点,连接OF。

(1)求证:OD∥BE;
(2)猜想:OF与CD有何数量关系?并说明理由。

课后练习
1.“圆的切线垂直于经过切点的半径”的逆命题是()
A、经过半径外端点的直线是圆的切线;
B、垂直于经过切点的半径的直线是圆的切线;
C、垂直于半径的直线是圆的切线;
D、经过半径的外端并且垂直于这条半径的直线是圆的切线。

2. 两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( )
A 、⊙1r 内
B 、⊙2r 外
C 、⊙1r 外,⊙2r 内
D 、⊙1r 内,⊙2r 外
3. 一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( ) A 、2.5 cm 或6.5 cm B 、2.5 cm C 、6.5 cm D 、5 cm 或13cm
4. 三角形的外心恰在它的一条边上,那么这个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、不能确定
5. 已知PA 、PB 是O 的切线,A 、B 是切点,78APB ∠=︒,点C 是O 上异于A 、B 的任
一点,则ACB ∠= ︒
6. 如图,已知O 的直径为AB ,BD OB =,30CAB ∠=︒, 请根据已知条件和所给图形写出4个正确的结论
(除OA OB BD ==外):① ;② ;
③ ;④ 。

7. 若圆外切等腰梯形()ABCD AD BC ∥的面积为20,AD 与BC 之和为10,则圆的半径为 。

8. 如图,AB 是⊙O 直径,EF 切⊙O 于C ,AD ⊥EF 于D ,求证:AC 2
=AD ·AB
C O D
B A
9.如图,AB是⊙O的弦,AB=12,PA切⊙O于A,PO⊥AB于C,PO=13,求PA的长。

相关文档
最新文档