最新高中数学立体几何大题(有答案)精选
高三精选立体几何大题30题(含详细解答)
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
高三数学立体几何专项练习题及答案
高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
高中数学立体几何测试题(10套)
∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
高中数学立体几何专项练习题及答案
高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
立体几何大题综合(含答案)
立体几何大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.3.(2022秋·广东肇庆·高二校考期中)如图在棱长为1的正方体1111ABCD A B C D -中,E 为11A B 的中点,F 为AB 的中点,H 为1DD 的中点,K 为1BB 的中点.(1)求直线1A H 到直线KC 的距离;(2)求直线FC 到平面1AEC 的距离.4.(2022秋·广东江门·高二校考期中)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.6.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形ABCD 中,,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.7.(2022秋·广东江门·高二台山市第一中学校考期中)如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ==ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.9.(2022秋·广东江门·高二江门市第二中学校考期中)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.10.(2022秋·广东阳江·高二校联考期中)图1是直角梯形ABCD ,//AB DC ,90,2,3,2D AB DC AD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.11.(2022秋·广东深圳·高二深圳外国语学校校考期中)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,E 为侧棱PC的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C的值;若不存在,请说明理由.13.(2022秋·广东茂名·高二统考期中)在直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,M为1AA 的中点,1BC BD ==,1AB AA ==(1)求证:DM ⊥平面1BDC ;(2)求平面1MBC 与平面1D B C 夹角的余弦值.14.(2022秋·广东揭阳·高二惠来县第一中学校考期中)已知四棱锥P ABCD -中,底面ABCD 是矩形,且2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PM PA的值;若不存在,说明理由.15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.16.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.17.(2022秋·广东珠海·高二珠海市第二中学校考期中)如图1,在MBC 中,24BM BC BM BC ==⊥,,,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --求出PG PC 的值;若不存在,请说明理由.18.(2022秋·广东广州·高二广州市第八十九中学校考期中)如图,已知梯形ABCD ,AB //CD ,,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.19.(2022秋·广东东莞·高二校考期中)如图,在长方体ABCD-A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.21.(2022秋·广东广州·高二统考期中)如图,在四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,PA =,G 为CD 的中点,E ,F 是棱PD 上两点(F 在E 的上方),且2EF =.(1)若BF //平面AEG ,求DE ;(2)当点F 到平面AEC 的距离取得最大值时,求直线AG 与平面AEC 所成角的正弦值.22.(2022秋·广东广州·高二校联考期中)在多面体ABCDEF 中,平面ABCD 为正方形,2AB =,3AE =,DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=> ,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.23.(2022秋·广东佛山·高二佛山市顺德区容山中学校考期中)如图,圆柱的轴截面ABCD 为正方形,点E 在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.24.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图,四棱锥P ABCD -的底面为菱形,,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PG CG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.25.(2022秋·广东江门·高二校考期中)如图甲,在矩形ABCD 中,2AB AD E ==为线段DC 的中点,ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.26.(2022秋·广东惠州·高二统考期中)如图,在四棱锥P ABMN -中,PNM △是边长为2的正三角形,AN NP ⊥,AN BM ∥,3AN =,1BM =,AB =C ,D 分别是线段AB ,NP 的中点.(1)求证:平面ANMB ⊥平面NMP ;(2)求直线CD 与平面ABP 所成角的正弦值.27.(2022秋·广东广州·高二校联考期中)如图,在四棱锥P ABCD -中,平面PAD ⊥平面,2,4,ABCD PA AD BD AB ====,BD 是ADC ∠的平分线,且BD BC ⊥.(1)若点E 为棱PC 的中点,证明:BE 平面PAD ;(2)已知二面角P AB D --的大小为60 ,求平面PBD 和平面PCD 的夹角的余弦值.28.(2022秋·广东珠海·高二珠海市斗门区第一中学校考期中)如图,等腰直角△ACD 的斜边AC 为直角△ABC 的直角边,E 是AC 的中点,F 在BC 上.将三角形ACD 沿AC 翻折,分别连接DE ,DF ,EF ,使得平面DEF ⊥平面ABC .已知2AC =,30B ∠=︒,(1)证明:EF ∥平面ABD ;(2)若DF =A BC D --的余弦值.29.(2022秋·广东阳江·高二统考期中)如图,在四面体ABCD 中,ABC 是正三角形,ACD 是直角三角形,ABD CBD ∠=∠,AB =BD .(1)求证:平面ACD ⊥平面ABC ;(2)若DE mDB = ,二面角D AE C --的余弦值为17,求m .30.(2022春·广东广州·高二执信中学校考期中)已知△ABC 是边长为6的等边三角形,点M ,N 分别是边AB ,AC 的三等分点,且13AM AB =,13CN CA =,沿MN 将△AMN 折起到A MN '△的位置,使90A MB '∠=︒.(1)求证:A M '⊥平面MBCN ;(2)在线段BC 上是否存在点D ,使平面A ND '与平面A MB '所成锐二面角的余弦值为13若存在,设()0BD BC λλ=> ,求λ的值;若不存在,说明理由.立体几何大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.(2)以AD 方向为x 轴正方向,妨设正方体边长为1,则()0,0,0A 面1AD E 的法向量为(),,n x y z = ,则设直线1D C 与平面1AD E 所成角为2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.则()()()0,0,0,1,0,0,0,1,0,C O B B (,1,0),(0,,0)E m F m ,(1,A F '=- 则(1)(1)11A F C E m m ''⋅=-+-⨯+ ∴A F C E ''⊥ ,故A F C E ''⊥.(2)由(1)知1BB '=,而B BEF V '-故当S 取到最大值时,三棱锥111111的中点,F 为AB的中点,H为1DD的中点,K为1BB的中点.(1)求直线1A H到直线KC的距离;(2)求直线FC到平面1AEC的距离.【详解】(1)长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.【详解】(1)以D 为原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2),(2,0,0),(2,2,0),(0,2,0),(1,1,1),G P A B C F 明显面PCD 的一个法向量为()1,0,0n =r ,又()0,1,1GF = ,()()1,0,00,1,10n GF ∴⋅=⋅= ,GF n ∴⊥ ,又GF ⊄面PCD ,//GF ∴面PCD ;(2)(1,0,2),(2,2,2)PG PB =-=- ,设平面PGB 的一个法向量为(,,)m a b c = ,00m PB m PG ⎧⋅=⎪∴⎨⋅=⎪⎩ ,即222020a b c a c +-=⎧⎨-=⎩,令1c =,则2,1a b ==-所以平面PGB 的一个法向量为(2,1,1)m =- ,又()2,0,0CB = ,所以点C 到平面PGB 的距离4263||411CB m d m ⋅===++ 5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.【详解】(1)∵AB ⊥平面PAD ,PE ⊂平面PAD ,∴PE AB ⊥,又∵PAD 是等腰直角三角形,E 是斜边AD 的中点,∴PE AD ⊥,又∵AD ⊂平面ABCD ,AB ⊂平面ABCD ,AB AD A ⋂=,∴PE ⊥平面ABCD又∵BD ⊂平面ABCD ,∴PE BD ⊥;因为22PA AB ==,则()000E ,,,(0,1,1)B ,()010A ,,则(0,1,1)EB = ,(1,0,0)EP = ,PA 设平面PBE 的一个法向量为(n = 00EB n y z EP n x ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取1y =,则z 设点A 到平面PBE 的距离为h ,则∴点A 到平面PBE 的距离为226.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.【详解】(1)如图,作,FG EA AG EF ,连接EG ,AF ,BG ,∵EF CD ∥且EF AG ∥,AG CD ∴ ,即点G 在平面ABCD 内,所以四边形CDAG 为平行四边形,四边形AEFG 为平行四边形.又90ADC ∠=︒,BG AG ∴⊥,因为⊥AE 平面ABCD ,BG ⊂平面ABCD ,所以AE BG ⊥,又因为AG AE A = ,,AG AE ⊂平面AEFG ,∴BG ⊥平面AEFG ,因为AF ⊂平面AEFG ,BG AF ∴⊥.AE AG ⊥ ,所以平行四边形AEFG 为矩形,又因为AE EF =,所以矩形AEFG 为正方形,所以AF EG ⊥,又因为BG EG G = ,,BG EG ⊂平面BGE ,所以AF ⊥平面BGE ,因为BE ⊂平面BGE ,所以AF BE ⊥.(2)由(1)知AG ,AD ,AE 为三条两两互相垂直的直线,所以以A 为原点,AG 为x 轴,AD 为y 轴,AE 为z 轴建立空间直角坐标系A xyz -,如图,则(0,0,0),(1,0,0),(0,0,1),(0,2,0)A G E D ,设()001,,0,[1,2]M y y ∈,∴(0,2,1)ED =- ,()01,2,0DM y =- ,设平面EMD 的法向量为(,,)n x y z = ,则00n ED n DM ⎧⋅=⎪⎨⋅=⎪⎩,即()02020y z x y y -=⎧⎨+-=⎩,令1y =,得02,2z x y ==-,所以平面EMD 的法向量为()02,1,2n y =- ,又⊥AE 平面ABCD ,即⊥AE 平面AMD ,ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)侧棱2PA PD ==,底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.【详解】(1)PA PD = ,O 为AD 的中点,PO AD ∴⊥,侧面PAD ⊥底面ABCD ,侧面PAD ⋂底面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD ;(2) 底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,OC AD ∴⊥,又PO ⊥平面ABCD ,∴以O 为原点,OC 所在直线为x 轴,OD 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,易得平面PAD 的法向量(1,0,0m =设平面PCD 的法向量(,,n x y z = 设二面角C PD A --夹角为θ,则1cos 3m n m n θ⋅==⋅ ,则sin θ2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.(2)由题意,可构建如下图示的空间直角坐标系,令2x =,故(2,1,1)m =- ,又(1,0,0)n = 是面PAD 的一个法向量,所以26cos ,3||||6m n m n m n ⋅<>=== 故平面PMC 与平面PAD 的夹角的余弦值10.(2022秋·广东阳江·高二校联考期中)图90,2,3,2D AB DCAD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.(2)如图②,以D 为坐标原点,DA ,DE 的方向分别为空间直角坐标系.D xyz -则(0,0,0),(3,0,0),(3,2,0),(0,1,0)D A BE ,F 33(,,0)22,133(,,3)22C ,31(,,3)BC =-- ()3,0,0DA = ,DC = 正方形,E 为侧棱PC 的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.【详解】(1)因为底面ABCD 为矩形,所以//AB CD .又AB ⊄平面PCD ,且CD ⊂平面PCD ,所以//AB 平面PCD .又AB ⊂平面ABE ,且平面ABE ⋂平面PCD EF =,所以//AB EF .又因为//AB CD ,所以//CD EF因为E 为PC 的中点,所以F 为PD 的中点.(2)如图所示,以A 为原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则(2,0,0),(2,2,0),(0,0,2),(1,1,1)B C P E ,设(,,)n x y z = 是平面ABE 的法向量,则0,0n AE n AB ⋅=⋅= ,即200x x y z =⎧⎨++=⎩令1y =,则平面ABE 的一个法向量为(0,1,1)n =- 又因为(0,0,2)AP = ,所以点P 到平面ABE 的距离为222|||00+01+21|2||011AP n n ⋅⨯⨯⨯==++ (-),即点P 到平面ABE 的距离为2.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C 的值;若不存在,请说明理由.【详解】(1)如图1,连接BD ,由题意,△ADB 是正三角形,设M 是AB 的中点,则DM ⊥AB ,所以DM ⊥DC ,又DD 1⊥平面ABCD ,所以DM ⊥平面DD 1C 1C.以D 为原点,建立如图所示的空间直角坐标系,则D (0,0,0),D 1(0,0,3),C (0,2,0),B (3,1,0),则BC =(-3,1,0),1BD =(-3,-1,3).显然,平面D 1CD 的一个法向量是()1,0,0m = ,设平面BD 1C 的法向量为n = (x ,y ,z ),则1=30,330,n BC x y n BD x y z ⎧⋅-+=⎪⎨⋅=--+=⎪⎩ 令x =3,得n = (3,3,2),设二面角B -D 1C -D 的平面角为θ,由几何体的特征可知θ为锐角,则cos ||||m n m n θ⋅=⋅=33941++⨯=34.故二面角B -D 1C -D 的平面角的余弦值为34.(2)设11D P D C=λ,即有11λD P D C =,其中01λ≤≤由(1)知D 1(0,0,3),C (0,2,0),则()10,2,3D C =- ,所以P (0,2,33)λλ-+,又D (0,0,0),B (3,1,0),1111为1AA的中点,1BC BD==,1AB AA==(1)求证:DM⊥平面1BDC;(2)求平面1MBC与平面1D B C夹角的余弦值.则()0,0,0D,21,0,2M⎛⎫⎪⎪⎝⎭,2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【详解】(1)解:因为PAD 是正三角形,O 为AD 的中点,所以PO AD ⊥,因为CD ⊥平面PAD ,PO ⊂平面PAD ,PO CD ∴⊥,,,AD CD D AD CD Q Ç=Ì平面ABCD ,PO ∴⊥平面ABCD ,因为AD BC ∥且AD BC =,O 、G 分别为AD 、BC 的中点,所以AO BG ∥且AO BG =,所以四边形ABGO 为平行四边形,15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.则()0,0,0O ,()23,0,0A ,()10,2,4D -,()1123,2,0B C =-∴- ,AB P 为1AD 的中点,则(P()3,3,2BP =∴- ,(BC =- 则33202320n BP x y z n BC x y ⎧⋅=-+=⎪⎨⋅=--=⎪⎩4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.【详解】(1) 平面ABC ⊥平面BCDE ,平面ABC ⋂平面BCDE BC =,CD BC ⊥,BE ⊂平面BCDE ,CD \^平面ABC ,则以C 为原点,,,CA CB CD正方向为,,x y z 轴,可建立如图所示的空间直角坐标系,则()0,0,0C ,()22,0,0A()22,0,23AD ∴=- ,DE设平面ADE 的法向量为n =则2223220AD n x z DE n y ⎧⋅=-+=⎪⎨⋅==⎪⎩DB n ⋅ ,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --的余弦值为10若存在,求出PG PC 的值;若不存在,请说明理由.由题意得(0,1,0),(0,0,2),(2,0,0),(2,2,0),D P B C 所以(1,0,1)DE = ,(2,0,2),PB PD =-=设平面PBD 的法向量(,,)n x y z =,则22020PB n x z PD n y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,解得(1,2,1)n = 设直线DE 与平面PBD 所成角为θ,n DE ⋅,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.令(03)FM λλ=≤≤,则(3,0,0),(0,1,0),(,0,3),(3,0,A B M E λ1111AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.延长DM交AB于点G,可证点G是线段再过点G作GF//AB1与线段BB1交于点20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体11111 AB=,点E在棱AB上移动.2(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.【详解】(1)以D 为坐标原点,分别以1DA DC DD 、、所在直线为x y z 、、轴,建立如图的坐标系,则()()()()()110,0,0,1,0,1,0,0,1,1,0,00,2,0D A D A C ,,所以()11,0,1DA = ,设()1,,0E t ,所以()11,,1D E t =- ,所以11110DA D E ⋅=-= ,故11DA D E ⊥ 所以11D E A D ⊥;(2)设平面1ACD 的法向量为(),,n x y z =r,则()()11,0,1,1,2,0AD AC =-=-,由10,0n AD n AC ⋅=⋅=,得020x z x y -+=⎧⎨-+=⎩,令1x =得11,,12n ⎛⎫= ⎪⎝⎭;(3)当E 为AB 的中点时,()1,1,0E ,则()11,1,1D E =-,由点到平面的距离公式,得()12221111111231112n D E d n ⨯+⨯+⨯-⋅===⎛⎫++ ⎪⎝⎭,边长为2的正方形,PA=,G为CD的中点,E,F是棱PD上两点(F在E的上方),且2EF=.(1)若BF//平面AEG,求DE;(2)当点F到平面AEC的距离取得最大值时,求直线AG与平面AEC所成角的正弦值.则()0,0,0A ,()2,2,0C ,()1,2,0G ,因为2EF =,所以EFC 的面积为定值,又点A 到平面EFC 的距离为定值,所以三棱锥A -EFC 的体积为定值,即三棱锥所以要使点F 到平面AEC的距离最大,则AEC △即E 到AC 的距离最小时,点F 到平面AEC 的距离最大,设()0,2,3E t t -,则()0,2,3AE t t =- ,AC22AE AC⎛⎫⋅ DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=>,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.【详解】(1)∵2AB AD ==,3AE =,5DE =,∴222AD DE AE +=,即AD DE ⊥,又∵在正方形ABCD 中,AD DC ⊥,且DE DC D ⋂=,DE ⊂平面EDC ,DC ⊂平面EDC ,∴AD ⊥平面EDC ,又AD ⊂平面ABCD ,∴平面ABCD ⊥平面EDC ;(2)由(1)知,EDC ∠是二面角E AD C --的平面角,作OE CD ⊥于点O ,则cos 1OD DE EDC =⋅∠=,2OE =,且平面ABCD ⊥平面EDC ,平面ABCD ⋂平面EDC CD =,OE ⊂平面EDC ,∴OE ⊥平面ABCD ,取AB 中点M ,连接OM ,则OM CD ⊥,如图,建立空间直角坐标系,则()2,1,0A -,()2,1,0B ,()0,1,0D -,()0,1,0C ,()0,0,2E ,()2,2,0DB = ,()2,2,0EF λλ=,()0,1,2EC =- ,设平面CEF 的一个法向量为(),,m x y z=,则20220m EC y z m EF x y λλ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11,1,2m ⎛⎫=-- ⎪⎝⎭ ,()22,21,2BF λλ=--,()0,2,0AB = ,设平面ABF 的一个法向量为(),,n a b c =,在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.【详解】(1)由题知AB ⊥面,BEC EC ⊂面BEC ,则AB EC ⊥,由BC 为底面圆的直径,则EC BE ⊥,由BE AB B =I ,,BE AB ⊂面ABE ,则(220,,,1,33BM CA ⎛⎫=-=-+ ⎪ ⎪⎝⎭设()(,,2,CN CA λλλλλ==-∈设面BMN 的法向量为(,,n x y z =r 13λ-⎛⎫,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PGCG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.则()()(0,0,0,3,1,0,3,1,0A BC-()31,,1,0,1,122AE AF ⎛⎫=-= ⎪ ⎪⎝⎭ (0,0,AG AP PG AP PC λ=+=+=设平面AEF 的法向量(,,m a b =ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.【详解】(1)证明:连接BE ,取线段AE 的中点O ,连接,DO OC ,在Rt ADE V 中,DA DE ==,1DO AE DO ∴⊥=,在OEC △中,11,2OE AE ==()()()1,0,1,1,1,0,2,0,0,D C A B -平面ADE 的法向量()10,1,0n =,在平面直角坐标系xOy 中,直线设H 的坐标为(),2,0t t -,()(。
立体几何大题训练及答案
1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.解:(1)取的中点为,连,,则,面/面, .............. 分5(2)先证出面,.............. 分8为直线与平面所成角,................ 分11................ 分142、己知多面体ABCDE中,DE平面ACD,, AC=AD=CD=DE=2 AB =1, O 为CD 的中点.(1)求证:AO平面CDE(2)求直线BD与平面CBE所成角的正弦值3、如图,在△中,,,点在上,交于,交于•沿将△翻折成△,使平面平面;沿将△翻折成△ ,使平面平面.( 1 )求证:平面;(2 )若,求二面角的平面角的正切值.解:(1)因为,平面,所以平面.因为平面平面,且,所以平面. …2分同理,平面,所以,从而平面. …4分所以平面平面,从而平面.2)因为,,所以,,,.过E作,垂足为M,连结.由( 1)知,可得,所以,所以.所以即为所求二面角的平面角,可记为.在Rt△中,求得,所以. …4、如图,平面ABC,平面BCD, DE=DA=AB=AC,. M(1) 求直线EM与平面BCD所成角的正弦值;(2) P为线段DM上一点,且DM,求证:AP//DE. (12)分15 分为BC中点.解:(1) 平面,为在平面上的射影,为与平面所成角. …分2平面,, 设,又,. 在△中,,,又为中点,, ,.…5分在△中,,.……………………分 (7)2),为中点, .又平面, ,平面.又平面,,分11 …分9又,平面. .............. 分13又平面,. .............. 分145、如图,已知ABCD是边长为1的正方形,AF丄平面ABCD, CE// AF,(1)证明:BD丄EF;(2)若AF= 1,且直线BE与平面ACE所成角的正弦值为,求的值.解:(1)连结BD、AC,交点为O. •/ ABCD是正方形/• BD丄AC ……2分•/ AF丄平面ABCD A AF丄BD ……4分••• BD丄平面ACEF (6)A BD丄EF ……7分(2)连结0E,由(1)知,BD丄平面ACEF所以/ BEO即为直线BE与平面ACE所成的角. ……10分•/ AF丄平面ABCD, CE// AF , • CE丄平面ABCD, CE1 BC,•/ BC =1 , AF= 1 ,贝U CE= , BE= , B0=,• RtA BEO 中,,…1盼因为解得. …… 15分6、如图在几何体中平面ABC分别是的中点.(1) 求证:平面CDE;(2) 求二面角的平面角的正切值.解:(1)连接ACR1R交EC于点F ,由题意知四边形ACCR1RE是矩形,贝U F是ACR1R的中连接DF, •/ D是AB的中点,•ABCR1R勺中位线,a BCR1R//DF, 4 分•/ BCR1RF面EDC DF平面EDC,• BCR1R//平面CDE. 7 分(2)作AH丄直线CD,垂足为H ,连接HE,•/ AAR1R丄平面ABC, • AAR1RL DC,CD丄平面AHE,CD丄EH ,••• AHE是二面角E -CD -A的平面角. 11分•/ D是AB的中点,• AH等于点B到CD的距离,在厶BCD中,求得:AH=, 在厶AEH中,即所求二面角的正切值为.7、如图,已知平面与直线均垂直于所在平面,且,( 1 )求证:平面;(2)若,求与平面所成角的正弦值.解:(1)证明:过点作于点,•••平面丄平面,•平面……2分又•••丄平面•- 〃 , ......... 分又•••平面• 〃平面 ......... 分(2) •••平面•,又•/••………………分8•点是的中点,连结,则•平面•//,•四边形是矩形………………分10设得:,又•••,•,从而,过作于点,则:•是与平面所成角…………………………………………分…… •,• 与平面所成角的正弦值为…………………………分14&如图,在直三棱柱中,是等腰直角三角形,,侧棱AA仁2, D, E分别为点,点E在平面ABD上的射影是的重心.(1) 求证:DE// 平面ACB;(2) 求A1B与平面ABD所成角的正弦值.12CC1 与A1B 的中9、如图,在侧棱垂直于底面的三棱柱ABC-A1B1中,底面△ ABC为等腰直角三角形,/ B=90°D为棱BB1的中点。
高中数学立体几何多选题100含解析
高中数学立体几何多选题100含解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:2|||sin|cos,|||||n AEn AEn AEπθα⎛⎫++⎪====⨯当且仅当4πθ=时,sinα15=,故D正确故选:CD【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.在正三棱柱111ABC A B C-中,AC=11CC=,点D为BC中点,则以下结论正确的是()A .111122A D AB AC AA=+-B.三棱锥11D AB C-的体积为6C.1AB BC⊥且1//AB平面11AC DD.ABC内到直线AC、1BB的距离相等的点的轨迹为抛物线的一部分【答案】ABD【分析】A .根据空间向量的加减运算进行计算并判断;B.根据1111D AB C A DB CV V--=,然后计算出对应三棱锥的高AD和底面积11DB CS,由此求解出三棱锥的体积;C.先假设1AB BC⊥,然后推出矛盾;取AB中点E,根据四点共面判断1AB//平面11AC D是否成立;D.将问题转化为“ABC内到直线AC和点B的距离相等的点”的轨迹,然后利用抛物线的定义进行判断.【详解】A.()11111111222A D A A AD AD AA AB AC AA AB AC AA=+=-=+-=+-,故正确;B.1111D AB C ADB CV V--=,因为D为BC中点且AB AC=,所以AD BC⊥,又因为1BB⊥平面ABC,所以1BBAD⊥且1BB BC B=,所以AD⊥平面11DB C,又因为AD===11111122DB CS BB B C=⨯⨯=,所以1111111133226D AB C A DB C DB CV V AD S--==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.4.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-,由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--, ()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.5.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==,2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯⨯=,四边形面积是22242⨯=,故截面面积是52. 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得tan 5θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.8.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.9.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
高中数学必修二第八章立体几何初步专项训练题(带答案)
高中数学必修二第八章立体几何初步专项训练题单选题1、直角三角形的三边满足a<b<c,分别以a,b,c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,则()A.V c<V b<V a B.V a<V b<V c C.V c<V a<V b D.V b<V a<V c答案:A解析:求出V a=b×13abπ,V b=a×13abπ,V c=abc×13abπ,推导出abc<a<b,从而得到V c<V b<V a.∵直角三角形的三边满足a<b<c,分别以a、b、c三边为轴将三角形旋转一周所得旋转体的体积记为V a、V b、V c,∴V a=13×π×b2×a=13πab2=b×13abπ,V b=13×π×a2×b=13πa2b=a×13abπ,该直角三角形斜边上的高ℎ满足12ab=12cℎ,可得ℎ=abc,V c=13×π×(abc)2×c=13π⋅a2b2c=abc×13abπ,∵abc −a=ab−acc<0,abc−b=ab−bcc<0,∴abc<a<b,∴V c<V b<V a,故选:A.小提示:关键点点睛:本题考查旋转体体积的大小比较,解题的关键就是确定旋转体的形状,并据此求出对应的旋转体的体积,结合作差法比较即可.2、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD −BHC 及直三棱柱DGC −AEB 组成,作HM ⊥CB 于M ,如图,因为CH =BH =3,∠CHB =120∘,所以CM =BM =3√32,HM =32, 因为重叠后的底面为正方形,所以AB =BC =3√3,在直棱柱AFD −BHC 中,AB ⊥平面BHC ,则AB ⊥HM ,由AB ∩BC =B 可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D. 3、直三棱柱ABC −A 1B 1C 1中,若∠BAC =90°,AB =AA 1=1,AC =2,E 是棱A 1C 1上的中点,则点A 到平面BCE 的距离是( )A .1B .√23C .√63D .√33答案:C分析:作出草图,根据题意易证A 1C 1⊥平面AA 1BB 1,可得A 1C 1⊥BA 1,再根据勾股定理分别求出A 1B ,BE ,CE,BC的值,再根据V A−BCE=V E−ABC,即可求出点A到平面BCE的距离.如图,在直三棱柱ABC−A1B1C1中,连接BA1,CE,AE,BE,由题知,AA1⊥平面A1B1C1,AA1⊥A1C1,AA1⊥A1B1,又∠CAB=∠C1A1B1=90°,∴B1A1⊥A1C1又AA1∩B1A1=A1,所以A1C1⊥平面AA1BB1,所以A1C1⊥BA1,由于AB=AA1=CC1=1,A1C1=AC=2,E点是棱AC上的中点,根据勾股定理,A1B=√AB2+AA12=√12+12=√2,BE=√A1B2+A1E2=√(√2)2+12=√3 CE=√(C1C)2+(C1E)2=√12+12=√2,BC=√AB2+AC2=√12+22=√5,所以BE2+CE2=BC2,即BE⊥CE.设E到平面ABC的距离为d,则d=1,设点A到平面BCE的距离为ℎ,在四面体A−BCE中,V A−BCE=V E−ABC,V E−ABC=13×S△ABC×d=13×(12×1×2)×1=13V A−BCE=13×S△BCE×ℎ=13×(12×√3×√2)×ℎ=√66ℎ则√66ℎ=13,解得ℎ=√63.故选:C.4、如图1,已知PABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△PAD沿AD折起,使平面PAD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面PAB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN答案:A分析:由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面PAD,得到△PAB为直角三角形,判定D正确;可证明平面PBC⊥平面PDC,若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC,矛盾,可判断A图1中AD⊥PC,则图2中PD⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴AB⊥平面PAD,则AB⊥PA,即△PAB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.由于BC⊥平面PDC,又BC⊂平面PBC∴平面PBC⊥平面PDC若平面PAB ⊥平面PBC ,则平面PAB 与平面PDC 的交线⊥平面PBC由于AB//平面PDC ,则平面PAB 与平面PDC 的交线//AB显然AB 不与平面PBC 垂直,故A 错误故选:A5、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A −BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =CD =4,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A .√32B .√34C .√33D .√24答案:C分析:画出图形,取AC 的中点N ,连接MN ,BN ,可得MN //CD ,则所求为∠BMN ,易证△BMN 是直角三角形,则可得BM ,进而求解.如图,取AC 的中点N ,连接MN ,BN ,由题,AB =BC =CD =4,M 为AD 的中点,所以MN //CD ,MN =2,则∠BMN 为所求,由AB ⊥平面BCD ,则AB ⊥CD ,又BC ⊥CD ,AB ∩BC =B ,所以CD ⊥平面ABC ,则MN ⊥平面ABC ,所以△BMN 是直角三角形,即∠MNB =90°,又BM =12AD =12√AB 2+BD 2=2√3,所以cos∠BMN =MN BM =2√3=√33, 故选:C6、若直线a //平面α,A ∉α,且直线a 与点A 位于α的两侧,B ,C ∈a ,AB ,AC 分别交平面α于点E ,F ,若BC =4,CF =5,AF =3,则EF 的长为( )A .3B .32C .34D .23 答案:B分析:根据线面平行可得线线平行,从而可求EF =32. ∵BC //α,BC ⊂平面ABC ,平面ABC ∩α=EF ,∴EF //BC ,∴AF AC =EF BC ,即35+3=EF 4,∴EF =32. 故选:B.7、一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .MN//平面ABEB .MN//平面ADEC .MN//平面BDHD .MN//平面CDE答案:C解析:根据题意,得到正方体的直观图及其各点的标记字母,取FH的中点O,连接ON,BO,可以证明MN‖BO,利用BO与平面ABE的关系可以判定MN与平面ABE的关系,进而对选择支A作出判定;根据MN与平面BCF的关系,利用面面平行的性质可以判定MN与平面ADE的关系,进而对选择支B作出判定;利用线面平行的判定定理可以证明MN与平面BDE的平行关系,进而判定C;利用M,N在平面CDEF的两侧,可以判定MN与平面CDE 的关系,进而对D作出判定.根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.小提示:本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.8、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.多选题9、如图,在菱形ABCD中,AB=2,∠BAD=60°,将△ABD沿对角线BD翻折到△PBD位置,连结PC,则在翻折过程中,下列说法正确的是()A.PC与平面BCD所成的最大角为45°B.存在某个位置,使得PB⊥CDC.当二面角P﹣BD﹣C的大小为90°时,PC=√6D.存在某个位置,使得B到平面PDC的距离为√3答案:BC分析:A,取BD的中点O,连接OP、OC,则OP=OC=√3.可得PC与平面BCD所成的角为∠PCO,当PC=√3时∠PCO=60°>45°,即可判断;B,当点P在平面BCD内的投影为△BCD的重心点Q时,可得PB⊂平面PBQPB⊥CD,即可判断;C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,即可得△POC为等腰直角三角形,即可判断;D,若B到平面PDC的距离为√3,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.解:选项A,取BD的中点O,连接OP、OC,则OP=OC=√3.由题可知,△ABD和△BCD均为等边三角形,由对称性可知,在翻折的过程中,PC与平面BCD所成的角为∠PCO,当PC=√3时,△OPC为等边三角形,此时∠PCO=60°>45°,即选项A错误;选项B,当点P在平面BCD内的投影为△BCD的重心点Q时,有PQ⊥平面BCD,BQ⊥CD,∴PQ⊥CD,又BQ∩PQ=Q,BQ、PQ⊂平面PBQ,∴CD⊥平面PBQ,∵PB⊂平面PBQ,∴PB⊥CD,即选项B正确;选项C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,∵PB=PD,∴OP⊥BD,∵平面PBD∩平面BCD=BD,∴OP⊥平面BCD,∴OP⊥OC,又OP=OC=√3,∴△POC为等腰直角三角形,∴PC=√2OP=√6,即选项C正确;选项D,∵点B到PD的距离为√3,点B到CD的距离为√3,∴若B到平面PDC的距离为√3,则平面PBD⊥平面PCD.平面CBD⊥平面PCD,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.故选:BC.10、如图是正方体的平面展开图,在这个正方体中,下列结论正确的是()A.BM与ED平行B.CN⊥AFC.CN与BM成60°D.四条直线AF、BM、CN、DE中任意两条都是异面直线答案:BCD分析:还原成正方体之后根据正方体性质分析线线位置关系.根据展开图还原正方体如图所示:BM与ED不平行,所以A错误;正方体中CN⊥DM,DM//FA,所以CN⊥AF,所以B正确;CN//EB,CN与BM成角就是∠EBM,△EBM是等边三角形,所以∠EBM=60°,所以C正确;由图可得四条直线AF、BM、CN、DE中任意两条既不想交也不平行,所以任意两条都是异面直线. 故选:BCD11、下图是一个正方体的平面展开图,则在该正方体中()A.AE//CD B.CH//BE C.DG⊥BH D.BG⊥DE答案:BCD分析:由平面展开图还原为正方体,根据正方体性质即可求解.由正方体的平面展开图还原正方体如图,由图形可知,AE⊥CD,故A错误;由HE//BC,HE=BC,四边形BCHE为平行四边形,所以CH//BE,故B正确;因为DG⊥HC,DG⊥BC,HC∩BC=C,所以DG⊥平面BHC,所以DG⊥BH,故C正确;因为BG//AH,而DE⊥AH,所以BG⊥DE,故D正确.故选:BCD填空题12、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④13、中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA⊥平面ABCE,四边形ABCD为正方形,AD=√5,ED=√3,若鳖臑P−ADE 的外接球的体积为9√2π,则阳马P−ABCD的外接球的表面积等于______.答案:20π解析:求出鳖臑P−ADE的外接球的半径R1,可求出PA,然后求出正方形ABCD的外接圆半径r2,利用公式R2=√(PA2)2+r22可求出阳马P−ABCD的外接球半径R2,然后利用球体的表面积公式可得出答案.∵四边形ABCD是正方形,∴AD⊥CD,即AD⊥CE,且AD=√5,ED=√3,所以,ΔADE的外接圆半径为r1=AE2=√AD2+ED22=√2,设鳖臑P−ADE的外接球的半径R1,则43πR13=9√2π,解得R1=3√22.∵PA⊥平面ADE,∴R1=√(PA2)2+r12,可得PA2=√R12−r12=√102,∴PA=√10.正方形ABCD的外接圆直径为2r2=AC=√2AD=√10,∴r2=√102,∵PA⊥平面ABCD,所以,阳马P−ABCD的外接球半径R2=√(PA2)2+r22=√5,因此,阳马P−ABCD的外接球的表面积为4πR22=20π.所以答案是:20π.小提示:本题考查球体表面积和体积的计算,同时也涉及了多面体外接球问题,解题时要分析几何体的结构特征,考查分析问题和解决问题的能力,属于中等题.14、词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体PABC,其中PA⊥平面ABC,PA=AC=2,BC=2√2,则四面体PABC的外接球的表面积为______.答案:16π分析:确定外接球球心求得球半径后可得表面积.由于PA⊥平面ABC,因此PA与底面上的直线AC,AB,BC都垂直,从而AC与AB不可能垂直,否则△PBC是锐角三角形,由于AC<BC,因此有AC⊥BC,而PA与AC是平面PAC内两相交直线,则BC⊥平面PAC,PC⊂平面PAC,所以BC⊥PC,所以PB的中点O到P,A,B,C四个点的距离相等,即为四面体PABC的外接球球心.PB2=PA2+AB2=PA2+AC2+BC2=22+22+(2√2)2=16,PB=4,)2=4π×22=16π.所以所求表面积为S=4π×(PB2所以答案是:16π.解答题15、如图,四边形ABCD是一个半圆柱的轴截面,E,F分别是弧DC,AB上的一点,EF//AD,点H为线段AD 的中点,且AB=AD=4,∠FAB=30°,点G为线段CE上一动点.(1)试确定点G的位置,使DG//平面CFH,并给予证明;(2)求三棱锥E−CFH的体积.答案:(1)点G为线段CE中点,证明见解析;.(2)8√33分析:(1)点G为线段CE中点,取CF中点M,证明DG//HM,再利用线面平行的判定推理作答.(2)根据给定条件,证得CE⊥平面ADEF,再结合等体积法即可求出三棱锥E−CFH的体积作答.(1)当点G为线段CE中点时,DG//平面CFH,取CF中点M,连接HM,GM,如图,则GM//EF,GM=12EF,因E,F分别是弧DC,AB上的一点,EF//AD,则EF是半圆柱的一条母线,即EF=AD,而点H为线段AD的中点,于是得GM//DH,GM=DH,即四边形DGMH为平行四边形,则DG//HM,而DG⊄平面CFH,HM⊂平面CFH,所以DG//平面CFH.(2)依题意,AB是半圆柱下底面半圆的直径,则∠AFB=90∘,而∠FAB=30°,有AF=√32AB=2√3,BF=12AB=2,显然CD是半圆柱上底面半圆的直径,则CE⊥DE,由(1)知EF是半圆柱的一条母线,则EF⊥平面CDE,而CE⊂平面CDE,即有CE⊥EF,DE∩EF=E,DE,EF⊂平面ADEF,因此,CE⊥平面ADEF,而EF//BC,EF=BC,即四边形BCEF是平行四边形,CE=BF=2,又点H为线段AD的中点,则S△EFH=12AD⋅AF=4√3,所以三棱锥E−CFH的体积V E−CFH=V C−EFH=13⋅S△EFH⋅CE=13×4√3×2=8√33.。
高中数学第八章立体几何初步知识总结例题(带答案)
高中数学第八章立体几何初步知识总结例题单选题1、如图,点N为正方形ABCD的中心,ΔECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案:B解析:利用垂直关系,再结合勾股定理进而解决问题.如图所示,作EO⊥CD于O,连接ON,过M作MF⊥OD于F.连BF,∵平面平面ABCD.EO⊥CD,EO⊂平面CDE,∴EO⊥平面ABCD,MF⊥平面ABCD,∴ΔMFB与ΔEON均为直角三角形.设正方形边长为2,易知EO=√3,ON =EN=2,MF=√32,BF=52,∴BM=√7.∴BM≠EN,故选B.CDE小提示:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解. 由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则OʹAʹ=2√2,所以原图形中,OB=4,OA=4√2,故原平面图形的面积为1×4×4√2=8√2.2故选:A3、如图,用斜二测画法作水平放置的正三角形A1B1C1的直观图,则正确的图形是()A.B.C.D.分析:由斜二侧画法的规则分析判断即可先作出一个正三角形A1B1C1,然后以B1C1所在直线为x轴,以B1C1边上的高所在的直线为y轴建立平面直角坐标系,画对应的x′,y′轴,使夹角为45°,画直观图时与x轴平行的直线的线段长度保持不变,与y轴平行的线段长度变为原来的一半,得到的图形如图,然后去掉辅助线即可得到正三角形的直观图如图,故选:A4、下列空间图形画法错误的是()A.B.C.D.分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.5、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.6、已知三棱锥A−BCD的所有顶点都在球O的球面上,且AB⊥平面BCD,AB=2√3,AC=AD=4,CD= 2√2,则球O的表面积为()A.20πB.18πC.36πD.24π答案:A分析:根据AB⊥平面BCD,得到AB⊥BC,AB⊥BD,再由AB=2√3,AC=AD=4,CD=2√2,得到BC⊥BD,则三棱锥A−BCD截取于一个长方体,然后由长方体的外接球即为三棱锥的外接球求解.因为AB⊥平面BCD,所以AB⊥BC,AB⊥BD,∴BC=BD=√42−(2√3)2=2,在△BCD中,CD=2√2,∴CD2=BC2+BD2,∴BC⊥BD.如图所示:三棱锥A−BCD的外接球即为长方体AGFH-BCED的外接球,设球O的半径为R,则2R=√BA2+BC2+BD2=√(2√3)2+22+22=2√5,解得R=√5,所以球O的表面积为20π,故选:A.7、下列条件中,能得出直线m与平面α平行的是()A.直线m与平面α内的所有直线平行B.直线m与平面α内的无数条直线平行C.直线m与平面α没有公共点D.直线m与平面α内的一条直线平行答案:C分析:根据线面平行的判定,线面平行的性质逐个辨析即可.对A ,直线m 与平面α内的所有直线平行不可能,故A 错误;对B ,当直线m 在平面α内时,满足直线m 与平面α内的无数条直线平行,但m 与α不平行;对C ,能推出m 与α平行;对D ,当直线m 在平面α内时,m 与α不平行.故选:C.8、如图是长方体被一平面所截得到的几何体,四边形EFGH 为截面,长方形ABCD 为底面,则四边形EFGH 的形状为( )A .梯形B .平行四边形C .可能是梯形也可能是平行四边形D .矩形答案:B解析:利用面面平行的性质判断EF 与的平行、EH 与FG 平行.因为平面ABFE //平面CGHD ,且平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面CGHD =GH ,根据面面平行的性质可知EF //,同理可证明EH //FG .所以四边形EFGH 为平行四边形.故选:B.小提示:本题考查长方体截面形状判断,考查面面平行的性质应用,较简单.多选题9、(多选)一个几何体有6个顶点,则这个几何体可能是( )A .三棱柱B .三棱台C .五棱锥D .四面体答案:ABCGH GH分析:根据棱柱、棱台、棱锥及四面体的图形分析,即可得答案.对于A ,三棱柱是上下两个三角形,有6个顶点,满足题意;对于B ,三棱台是上下两个三角形,有6个顶点,满足题意;对于C ,五棱锥是底面为五边形及一个顶点,有6个顶点,满足题意;对于D ,四面体的顶点个数为4个,不满足题意.故选:ABC.10、我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( )A .半径是3B .体积为18πC .表面积为27πD .表面积为18π答案:ABC分析:作出正四棱锥的对角面,为半球的半个大圆的内接三角形,由图形可用球的半径表示出棱锥底面边长,高,由棱锥体积求得半球半径.然后计算半球体积,表面积,判断各选项.如图,是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,则正四棱锥底面边长为√2r ,棱锥体积为V =13×(√2r)2×r =23r 3=18,r =3, 半球体积为V =23πr 3=23π×33=18π,表面积为S =2π×32+π×32=27π,故选:ABC .11、如图,正方体ABCD −A 1B 1C 1D 1的棱长为1,则下列四个命题正确的是( )PAC △PAC△A.两条异面直线D1C和BC1所成的角为π4B.直线BC与平面ABC1D1所成的角等于π4C.点D到面ACD1的距离为√33D.三棱柱AA1D1−BB1C1外接球半径为√32答案:BCD分析:对于A:根据异面直线的求法易得:异面直线D1C和BC1所成的角为∠AD1C;对于B:可证B1C⊥平面ABC1D1,则直线BC与平面ABC1D1所成的角为∠CBC1;对于C:根据等体积转换V D−ACD1=V D1−ACD,求点D到面ACD1的距离;对于D:三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球,直接求正方体外接球的半径即可.连接AC、AD1∵AB∥C1D1且AB=C1D1,则四边形ABC1D1为平行四边形,∴异面直线D1C和BC1所成的角为∠AD1C∵AC=AD1=D1C,则△ACD1为正三角形,即∠AD1C=π3A不正确;连接B1C在正方形BB1C1C中,BC1⊥B1C∵AB⊥平面BB1C1C,B1C⊂平面BB1C1C∴AB⊥B1CAB∩BC1=B,则B1C⊥平面ABC1D1∴直线BC与平面ABC1D1所成的角为∠CBC1=π4 B正确;根据等体积转换可知:V D−ACD1=V D1−ACD即13×ℎ×12×√2×√2×√32=13×1×12×1×1,则ℎ=√33C正确;三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球则外接球的半径即为正方体ABCD−A1B1C1D1体对角线的一半,即R=√32D正确;故选:BCD.12、如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1答案:CD分析:直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.13、正三棱锥底面边长为3,侧棱长为2√3,则下列叙述正确的是()A.正三棱锥高为3B.正三棱锥的斜高为√392C.正三棱锥的体积为27√34D.正三棱锥的侧面积为9√394答案:ABD分析:先求出正三棱锥的高和斜高,从而可判断AB的正误,再计算出体积和侧面积,从而可判断CD的正误.设E为等边三角形ADC的中心,F为CD的中点,连接PF,EF,PE,则PE为正三棱锥的高,PF为斜高,又PF=√12−94=√392,EF=32×√33=√32,故PE=√394−34=3,故AB正确.而正三棱锥的体积为13×3×√34×9=9√34,侧面积为3×12×3×√392=9√394,故C错误,D正确.故选:ABD.填空题14、如图,在棱长为2的正方体ABCD−A1B1C1D1中,P为线段A1B上的动点(不含端点),则下列结论正确的是____.①平面A 1D 1P ⊥平面BB 1P ;②DC 1⊥PC ;③∠APD 1的取值范围是[π2,π); ④三棱锥C 1−D 1PC 的体积为定值43.答案:①②④分析:由正方体的特征知A 1D 1⊥平面AA 1B 1B ,DC 1⊥对角面A 1BCD 1,由面面垂直的判定和线面垂直的性质可知①②正确;当点P 为线段A 1B 的一个四等分点且靠近点B 时,由长度关系可求得cos∠APD 1>0,知③错误;由体积桥和三棱锥体积公式可确定④正确.对于①,∵几何体是正方体,∴A 1D 1⊥平面AA 1B 1B ,又A 1D 1⊂平面A 1D 1P ,∴平面A 1D 1P ⊥平面BB 1P ,①正确;对于②,在正方体ABCD −A 1B 1C 1D 1中,DC 1⊥对角面A 1BCD 1,对角面A 1BCD 1,∴DC 1⊥PC ,②正确;对于③,当点P 为线段A 1B 的一个四等分点且靠近点B 时,可得:AP =√102,D 1P =√342,AD 1=2√2,由余弦定理得:cos∠APD 1=AP 2+D 1P 2−AD 122AP⋅D 1P =52+172−82×√102×√342=√85>0,此时∠APD 1<π2,③错误; 对于④,∵△D 1C 1C 的面积是定值S =12×2×2=2,点P 到面D 1C 1C 的距离为BC =2,∴三棱锥C 1−D 1PC的体积V =13×2×2=43,④正确. PC所以答案是:①②④.15、如图,在正方体中,A 、B 、C 、D 分别是顶点或所在棱的中点,则A 、B 、C 、D 四点共面的图形______(填上所有正确答案的序号).答案:①③④分析:四点共面主要通过证明两线平行说明,本题利用中位线、平行四边形的性质结合平行线的传递性进行说明,证明平行时绝不能凭直观感觉或无理论依据.图①:证明AB ∥EF ,CD ∥EF ,可得AB ∥CD ;图③:证明BD ∥EF ,AC ∥EF ,可得BD ∥AC ;图④:证明GH ∥EF ,AC ∥EF , BD ∥GH ,可得BD ∥AC .图①:取GD 的中点F ,连结BF 、EF ,∵B 、F 均为相应边的中点,则:BF ∥HG又∵HG ∥,则BF ∥即ABFE 为平行四边形∴AB ∥EF同理: CD ∥EF则AB ∥CD 即A 、B 、C 、D 四点共面,图①正确;图②:显然AB 与CD 异面,图②不正确;AEAE图③:连结AC,BD,EF,∵BE∥DF即BDFE为平行四边形∴BD∥EF又∵A、C分别为相应边的中点,则AC∥EF∴BD∥AC即A、B、C、D四点共面,图③正确;图④:连结AC,BD,EF,GH,∵GE∥HF即GEFH为平行四边形,则GH∥EF又∵A、C分别为相应边的中点,则AC∥EF同理:BD∥GH∴BD∥AC即A、B、C、D四点共面,图④正确.所以答案是:①③④.16、一个正四棱柱的底面边长为2,高为4,则该正四棱柱的体积为________.答案:16分析:根据棱柱的体积公式直接计算即可.由题可得该正四棱柱的体积为2×2×4=16.所以答案是:16.解答题17、在正方体ABCD—A1B1C1D1中,E是棱BB1的中点.(1)求证:B1D∥平面ACE.(2)若F是棱CC1的中点,求证:平面B1DF∥平面ACE.答案:(1)证明见解析(2)证明见解析分析:(1)连BD,使BD∩AC=G,连EG,由中位线定理以及线面平行判定定理证明即可;(2)证明B1F∥平面ACE,结合B1D∥平面ACE,利用面面平行判定定理证明即可.(1)连BD,使BD∩AC=G,连EG.∵ABCD是正方形,BD∩AC=G,∴DG=BG.又∵E是BB1中点,∴B1E=BE,∴DB1∥GE,又DB1⊄平面ACE,GE⊂平面ACE,∴B1D∥平面ACE.(2)∵E是棱BB1的中点,F是棱CC1的中点.∴B1E∥CF且B1E=CF,∴四边形B1ECF是平行四边形,∴B1F∥CE,又∴B1F⊄平面ACE,CE⊂平面ACE,∴B1F∥平面ACE,由(1)B1D∥平面ACE,又∵DB1∩B1F=B1,∴平面B1DF∥平面ACE.18、用符号表示下列语句,并画出图形.(1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B;(2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.答案:(1)α∩β=l,a∩α=A,a∩β=B;图象见解析;(2)A∈α,B∈α,a∩α=C,C∉AB;图象见解析分析:由题意将自然语言转化为符号语言,根据点线面的关系,借用集合符号,表示即可.(1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图.(2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.小提示:本题主要考查点、线、面的关系的符号表达,属于基础题.。
高二数学-空间向量与立体几何测试题及答案
高二数学空间向量与立体几何测试题第1卷(选择题,共50分)一、选择题:(本大题共10个小题每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在下列命题中:CD若a、b共线则a、b所在的直线平行;@若a、b所在的直线是异面直线,则a、b一定不共面;@若a、b、c三向量两两共面,则a、b、c三向量一定也共面;@已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=a+yb+zc,, y, z R.其中正确命题的个数为( )A. 0B. 1C. 2D. 32. 若三点共线为空间任意一点且则的值为()A. lB.C.D.3. 设,且,则等千()A. B. 9 C. D4. 已知a=(2, —1, 3) , b= C—1, 4, —2) , c= (7, 5, 入),若a、b、c三向量共面,则实数入等千()A. B. C.5.如图1,空间四边形的四条边及对角线长都是,点分别是的中点则等千()D.A.C...BD6. 若a、b均为非零向量,则是a与b共线的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件7. 已知点0是LABC所在平面内一点满足• = • = • '则点0是LABC的()A. 三个内角的角平分线的交点B. 三条边的垂直平分线的交点C. 三条中线的交点8. 已知a+b+c=O,al =2, bl =3,A. 30°B. 45°D.三条高的交点l e = , 则向量a与b之间的夹角为()C. 60°D. 以上都不对9. 已知, ' ,点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A.B.10. 给出下列命题:CD已知,则C. D.@为空间四点若不构成空间的一个基底,那么共面;@已知则与任何向量都不构成空间的一个基底;@若共线则所在直线或者平行或者重合.正确的结论的个数为()C. 3A.1B.2D.4 第II卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.已知LABC的三个顶点为A(3, 3, 2) , B (4, —3, 7) , C (0, 5, 1) , 则BC边上的中线长为12. 已知三点不共线为平面外一点若由向量确定的点与共面,那么13. 已知a,b,c是空间两两垂直且长度相等的基底,m=a+b,n=b-c,则m,n的夹角为14. 在空间四边形ABC D中,AC和B D为对角线G为L:.ABC的重心,E是B D上一点BE=3E D, 以{, , }为基底,则=15. 在平行四边形ABCD中,AB=AC=l,乙ACD=90, 将它沿对角线AC折起,使AB与CD成60角,则B,D两点间的距离为16. 如图二面角a-t -B的棱上有A,B两点直线AC,B D分别在这个二面角的两个半平面内,且都垂直千AB,已知AB=4,AC=6, B D=8, C D= ,二面角Q—t—B的大小三、解答题(本大题共5小题,满分70分),17. C lo分)设试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.18. (12分)如图在四棱锥中,底面ABC D是正方形,侧棱底面ABC D,, 是PC的中点,作交PB千点F.(1)证明PAIi平面EDB:(2)证明PB上平面E F D:(3)求二面角的大小.、、、、、、、、.、19. (12分)如图在直三棱柱ABC—AlBlCl中,底面是等腰直角三角形,乙ACB=90°.侧棱AA1=2, D. E 分别是CCl与AlB的中点点E在平面ABO上的射影是DAB D的重心G.(1)求AlB与平面ABO所成角的大小.(2)求Al到平面ABO的距离1) 20. 12分)如图在三棱柱ABC-AlBlCl中,AB上AC,顶点Al在底面ABC上的射影恰为点B,且AB=AC=A1B=2.2)求棱AA1与BC所成角的大小;在棱BlCl上确定一点P,使AP=, 并求出二面角P—AB—Al的平面角的余弦值A1C1B21. (12分)如图直三棱柱ABC-AlBlCl中AB上AC,D.E分别为AAl.B lC的中点DEl_平面BCCl.C I)证明:A B=ACC II)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小c,22. (12分)P是平面ABC D外的点四边形ABC D是平行四边形,AP= (-1, 2, -1)(1)求证:PA 平面ABC D.(2)对千向量,定义一种运算:,试计算的绝对值;说明其与几何体P—ABC D的体积关系,并由此猜想向量这种运算的绝对值的几何意义(几何体P-ABC D叫四棱锥,锥体体积公式:V= ) .一、选 1 2 择题(本大题土2上、10小题,每3 4空间向量与立体几何(2)参考答案5 6 7 8 9 10小题5/刀\.让,/、50分)题号答案D D D A B C A 二、填空题(本大题共4小题,每小题6分,共24分)11. (0, ,) 12. 0 13. 1, —3 14. 90° l厮—15。
高中几何体试题及答案解析
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
(精选试题附答案)高中数学第八章立体几何初步典型例题
(名师选题)(精选试题附答案)高中数学第八章立体几何初步典型例题单选题1、下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个B.2个C.3个D.4个答案:A解析:根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A2、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.3、下列命题中,正确的是( )A .三点确定一个平面B .垂直于同一直线的两条直线平行C .若直线l 与平面α上的无数条直线都垂直,则l ⊥αD .若a 、b 、c 是三条直线,a ∥b 且与c 都相交,则直线a 、b 、c 在同一平面上答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A 错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.4、已知三棱锥P−ABC,其中PA⊥平面ABC,∠BAC=120°,PA=AB=AC=2,则该三棱锥外接球的表面积为()A.12πB.16πC.20πD.24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC的外心为G,O为球心,所以OG⊥平面ABC,因为PA⊥平面ABC,所以OG//PA,设D是PA中点,因为OP=OA,所以DO⊥PA,因为PA⊥平面ABC,AG⊂平面ABC,所以AG⊥PA,因此OD//AG,PA=1,因此四边形ODAG是平行四边形,故OG=AD=12由余弦定理,得)=2√3,BC=√AB2+AC2−2AB⋅AC⋅cos120°=√4+4−2×2×2×(−12⇒AG=2,由正弦定理,得2AG=√3√32所以该外接球的半径R满足R2=(OG)2+(AG)2=5⇒S=4πR2=20π,故选:C.小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、如图,已知正方体的棱长为a ,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为( )A .(8+2√2)a 2B .(2+4√2)a 2C .(4+2√2)a 2D .(6−4√2)a 2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a ,宽为a ,所以面积为√2a 2,所以拼成的几何体的表面积为4a 2+2√2a 2=(4+2√2)a 2.故选:C.6、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.7、如图所示,在三棱柱ABC −A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点,若点Q 在线段B 1P 上,则下列结论中正确的是( ).A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BDB .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BDD .不存在DQ 与平面A 1BD 垂直答案:D分析:依据线面垂直性质定理,利用反证法即可否定选项ABC ;按照点Q 为线段B 1P 的中点和点Q 不为线段B 1P的中点两种情况利用反证法证明选项D判断正确.连接AB1,交A1B于H在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面A1B1C1,AB=AA1=1,则四边形A1B1BA为正方形,则AB1⊥A1B又∠BAC=90°,即AB⊥AC,又AA1⊥AC,AB∩AA1=A,AA1⊂面A1B1BA,AB⊂面A1B1BA则AC⊥面A1B1BA,则AC⊥A1B又AB1⊥A1B,AB1∩AC=A,AB1⊂面AB1C,AC⊂面AB1C则A1B⊥面AB1C,选项A:当点Q为线段B1P的中点时,又D是棱CC1的中点,则DQ//AB1若DQ⊥平面A1BD,则AB1⊥平面A1BD又A1B⊥面AB1C,则面AB1C//平面A1BD,这与AB1∩A1B=H矛盾,故假设不成立,即当点Q为线段B1P的中点时,DQ⊥平面A1BD不正确;选项B:当点Q为线段B1P的三等分点时,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即当点Q为线段B1P的点三等分时,DQ⊥平面A1BD,不正确;选项C:在线段B1P的延长线上一点Q,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD不正确;选项D:由选项A可知,点Q为线段B1P的中点时,DQ⊥平面A1BD不成立;假设点Q在线段B1P上,且不是中点,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即点Q在线段B1P上,且不是中点时,DQ⊥平面A1BD不正确;故不存在DQ与平面A1BD垂直.判断正确.故选:D8、设α,β为两个不同的平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α,β垂直于同一平面C.α,β平行于同一条直线D.α内的任何直线都与β平行答案:D分析:根据面面平行、相交的知识确定正确选项.A选项,α内有无数条直线与β平行,α与β可能相交,A选项错误.B选项,α,β垂直于同一平面,α与β可能相交,B选项错误.C选项,α,β平行于同一条直线,α与β可能相交,C选项错误.D选项,α内的任何直线都与β平行,则α//β,D选项正确.故选:D9、在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P−ABCD为阳马,侧棱PA⊥底面ABCD,且PA=2√2,AB=BC=2,则该阳马的外接球的表面积为()A.4πB.8πC.16πD.32π答案:C分析:补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,求出外接球半径,即可得出答案.解:因为四棱锥P−ABCD为阳马,侧棱PA⊥底面ABCD,如图,补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,设外接球半径为R,则(2R)2=AB2+BC2+PA2=4+4+8=16,所以R=2,所以该阳马的外接球的表面积为4πR2=16π.故选:C.10、球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正△ABC 的项点都在半径为2的球面上,球心到△ABC 所在平面距离为2√63,则A 、B 两点间的球面距离为( ) A .πB .π2C .2π3D .3π4答案:C分析:设球心为点O ,计算出∠AOB ,利用扇形弧长公式可求得结果.设球心为点O ,平面ABC 截球O 所得截面圆的半径为r =√22−(2√63)2=2√33,由正弦定理可得4√33=AB sin∠ACB ,∴AB =4√33sin π3=2,又∵OA =OB =2,所以,△AOB 为等边三角形,则∠AOB =π3,因此,A 、B 两点间的球面距离为2×π3=2π3. 故选:C.小提示:思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式r =√R 2−d 2(其中r 为截面圆的半径,R 为球的半径,d 为球心到截面的距离)来计算.填空题11、词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体PABC ,其中PA ⊥平面ABC ,PA =AC =2,BC =2√2,则四面体PABC 的外接球的表面积为______.答案:16π分析:确定外接球球心求得球半径后可得表面积.由于PA⊥平面ABC,因此PA与底面上的直线AC,AB,BC都垂直,从而AC与AB不可能垂直,否则△PBC是锐角三角形,由于AC<BC,因此有AC⊥BC,而PA与AC是平面PAC内两相交直线,则BC⊥平面PAC,PC⊂平面PAC,所以BC⊥PC,所以PB的中点O到P,A,B,C四个点的距离相等,即为四面体PABC的外接球球心.PB2=PA2+AB2=PA2+AC2+BC2=22+22+(2√2)2=16,PB=4,)2=4π×22=16π.所以所求表面积为S=4π×(PB2所以答案是:16π.12、已知一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为______.答案:π32πrl=2⋅π⋅分析:设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,根据面积关系可得12r2,即可得到答案;设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,则122πrl=2⋅π⋅r2⇒rl=12,∴cosθ=12⇒θ=60°,所以答案是:π313、如图所示,过三棱台上底面的一边A1C1,作一个平行于棱BB1的截面,与下底面的交线为DE.若D、E分别是AB、BC的中点,则V A1B1C1−DBEV A1B1C1−ABC=______.答案:37分析:证得S△A1B1C1=14S△ABC,然后结合棱台与棱柱的体积公式即可求出结果.因为BB1//平面DEC1A1,且平面BB1C1C∩平面DEC1A1=C1E,所以BB1//C1E,又因为B1C1//BE,所以四边形BB1C1E为平行四边形,所以B1C1=BE,且E分别是BC的中点,所以B1C1=1 2BC,同理A1B1=12AB,因此S△A1B1C1=14S△ABC,设上底面的面积为S,高为ℎ,则下底面的面积为4S,所以V A1B1C1−DBEV A1B1C1−ABC =13(S+√S⋅4S+4S)ℎ=37,所以答案是:37.14、如图,已知平面四边形ABCD中,△ABD是边长为2的正三角形,BC⊥CD,以BD为棱折成直二面角A−BD−C,若折叠后A,B,C,D四点在同一球面上,则该球的体积为___________.答案:32√327π分析:如图,折叠后,取BD的中点H,连接CH,AH,由面面垂直的性质可得AH⊥平面BCD,由BC⊥CD,可得球心O在AH上,设球半径为R,求得半径R,再根据球的体积公式即可得出答案.解:如图,折叠后,取BD的中点H,连接CH,AH,因为△ABD是边长为2的正三角形,所以AH⊥BD,又二面角A−BD−C为直二面角,平面ABD⊥平面BCD,所以AH⊥平面BCD,则AH=√3,HC=1,又BC⊥CD,所以球心O在AH上,设球半径为R,则OA=OB=R,OH=√3−R,所以R2=(√3−R)2+1,解得R=2√33,所以球的体积为V=43π(2√33)3=32√327π.所以答案是:32√327π.15、如图,四棱锥S-ABCD的底面ABCD为正方形,SD⊥底面ABCD,则下列结论中正确的有______个.①AC⊥SB;②AB∥平面SCD;③SA与平面ABCD所成的角是∠SAD;④AB与SC所成的角等于DC与SC所成的角.答案:4分析:利用线面垂直的判定定理AC⊥平面SBD,进而可判定①正确.根据AB∥CD,利用线面平行的判定定理可证②正确.根据线面所成角的定义可判定③正确.根据AB∥CD,由异面直线所成角的定义可判定④正确.因为SD⊥底面ABCD,所以AC⊥SD.因为四边形ABCD是正方形,所以AC⊥BD.又BD∩SD=D,所以AC⊥平面SBD,所以AC⊥SB,故①正确.因为AB∥CD,AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD,故②正确.因为AD是SA在平面ABCD内的射影,所以SA与平面ABCD所成的角是∠SAD.故③正确.因为AB∥CD,所以AB 与SC所成的角等于DC与SC所成的角,故④正确.所以答案是:4.解答题16、如图所示,在四棱锥P−ABCD中,底面ABCD为正方形,E为侧棱PC的中点.(1)求证:经过A、B、E三点的截面平分侧棱PD;(2)若PA⊥底面ABCD,且PA=AD=2,求四面体ABEP的体积..答案:(1)证明见解析;(2)23分析:(1)设截面ABE与侧棱PD交于点F,连结EF,AF,证明CD//EF.即得F为PD的中点,即截面ABE平分侧棱PD;(2)取PB中点H,连EH,证明EH⊥平面PAB,即得解.(1)证明:设截面ABE与侧棱PD交于点F,连结EF,AF.因为底面ABCD为矩形,所以AB//CD.又AB⊄平面PCD,且CD⊂平面PCD,所以AB//平面PCD.又AB⊂平面ABE,且平面ABE∩平面PCD=EF,所以AB//EF.又因为AB//CD,所以CD//EF.因为E为PC的中点,所以F为PD的中点,即截面ABE平分侧棱PD. (2)∵PA⊥平面ABCD,BC⊆平面ABCD,∴BC⊥PA,又BC⊥AB,∴BC⊥平面PAB.取PB中点H,连EH,∵E是PC中点,∴EH//BC,即EH=1且EH⊥平面PAB,又Rt△PAB的面积S=12PA⋅AB=2.∴四面体ABEP的体积V=V E−PAB=13⋅S⋅EH=23.小提示:方法点睛:求几何体的体积常用的方法有:(1)规则的公式法;(2)不规则的割补法;(3)等体积法. 要根据已知条件灵活选择方法求解.17、长方体ABCD−A1B1C1D1中,E,F分别为棱AA1,CC1的中点.(1)求证:D1E//BF;(2)求证:∠B1BF=∠A1ED1.答案:(1)证明见解析;(2)证明见解析.分析:(1)先证明四边形EMC1D1为平行四边形,可得D1E//MC1,再证明四边形MBFC1为平行四边形,得BF//MC1,从而得D1E//BF;(2)根据等角定理证明即可.证明:(1)如图,取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM//A1B1,EM=A1B1因为A1B1//C1D1,A1B1=C1D1,所以EM//C1D1,EM=C1D1所以四边形EMC1D1为平行四边形,所以D1E//MC1.在矩形BCC1B1中,易得MB//C1F,MB=C1F.所以四边形MBFC1为平行四边形,所以BF//MC1,所以D1E//BF.(2)因为D1E//BF,BB1//EA1,又∠B1BF与∠A1ED1的对应边方向相同,所以∠B1BF=∠A1ED1.18、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√2.3分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC=2a(a>0).因为DC=1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM⋅k BD=a−01−0×2a−00−1=a×(−2a)=−2a2=−1.所以a=√22,即DA=√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D−xyz,设|DA|=t,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M(t2,1,0),PB⃑⃑⃑⃑⃑ =(t,1,−1),AM⃑⃑⃑⃑⃑⃑ =(−t2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD ⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0.即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.19、如图,在四棱锥P -ABCD 中,四边形ABCD 为矩形,AB ⊥BP ,M ,N 分别为AC ,PD 的中点.(1)求证:MN ∥平面ABP ;(2)若BP ⊥PC ,求证:平面ABP ⊥平面APC .答案:(1)证明见解析;(2)证明见解析.分析:(1)要证明线面平行,需证明线线平行,即连结BD,证明MN//BP;(2)要证明面面垂直,需证明线面垂直,利用垂直关系转化,证明PC⊥平面ABP. 证明:(1)连结BD,由已知,M为AC和BD的中点,又∵N为PD的中点,∴MN∥BP.∵MN⊄平面ABP,BP⊂平面ABP,∴MN∥平面ABP.(2)∵AB⊥BP,AB⊥BC,BP∩BC=B,∴AB⊥平面BPC.∵PC⊂平面BPC,∴AB⊥PC.∵BP⊥PC,AB∩BP=B,∴PC⊥平面ABP.∵PC⊂平面APC,∴平面ABP⊥平面APC.。
2024届新高考数学大题精选30题--立体几何含答案
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
高中立体几何试题及答案
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
(完整版)高中数学立体几何大题(有答案)
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱S D⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.。
高中数学立体几何习题(含答案与解析)
立体几何试卷五一、选择题1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角 5、若直线l 平面α,直线a α⊂,则l 与a 的位置关系是A 、l aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 二、填空题1、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).2、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为3、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .4、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1. 5.正三棱锥P -ABC 中,三条侧棱两两垂直,且侧棱长为a ,则P 点到面ABC 的距离是6.三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是6,8,10,则OP 的长为 。
(理科)已长方体的全面积是8,则其对角线长的最小值是 认为正确的一种条件即可,不必考虑所有可能的情形.) 三、解答题1、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分) 2、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD . (12分)3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)4、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,H G FE DB A CSD CB A四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域. (12分)5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)1C O 面11AB D ;(2 )1AC ⊥面11AB D . (14分)6、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC AD λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)7、如图3所示,一个圆锥形的空杯子上面放着一个半球形冰淇淋,如果冰淇淋融化了,会溢出杯子吗?8、矩形ABCD 中,1,(0)AB BC a a ==>,PA ⊥平面AC ,BC 边上存在点Q ,使得PQ QD ⊥,求a 的取值范围.参考答案选择ACDDDB填空1、小于2、平行3、菱形4、1111AC B D 对角线与互相垂直5、设P 点到面ABC 的距离为h ,由体积公式可得:()3261231a h a =⋅,故a h 332=。
高中几何体试题及答案大全
高中几何体试题及答案大全试题一:直线与平面的关系题目:在空间直角坐标系中,直线l过点A(1, 2, 3)且与向量(2, -1, 0)平行。
求证:直线l与平面x - 2y + z = 6平行。
答案:首先,直线l的参数方程可以表示为:\[ x = 1 + 2t, \quad y = 2 - t, \quad z = 3 \]其中\( t \)为参数。
接下来,将直线l的参数方程代入平面方程x - 2y + z = 6,得到:\[ (1 + 2t) - 2(2 - t) + 3 = 6 \]\[ 1 + 2t - 4 + 2t + 3 = 6 \]\[ 4t = 6 \]\[ t = \frac{3}{2} \]由于直线l的参数方程中,参数\( t \)可以取任意实数,而代入平面方程后,\( t \)有唯一解,这表明直线l与平面x - 2y + z = 6平行。
试题二:立体几何体积计算题目:一个正方体的边长为a,求其外接球的体积。
答案:正方体的外接球的直径等于正方体的对角线长度,即:\[ 2R = a\sqrt{3} \]其中\( R \)为外接球的半径。
由此可得外接球的半径为:\[ R = \frac{a\sqrt{3}}{2} \]球的体积公式为:\[ V = \frac{4}{3}\pi R^3 \]代入\( R \)的值,得到正方体外接球的体积为:\[ V = \frac{4}{3}\pi \left(\frac{a\sqrt{3}}{2}\right)^3 =\frac{\pi a^3\sqrt{3}}{2} \]试题三:圆锥曲线问题题目:已知椭圆的方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \),其中a > b > 0。
求椭圆的焦点坐标。
答案:椭圆的焦点位于主轴上,根据椭圆的性质,焦点到椭圆中心的距离为c,满足以下关系:\[ c^2 = a^2 - b^2 \]假设焦点位于x轴上,焦点的坐标为\( (c, 0) \)和\( (-c, 0) \)。
2024届高考数学专项立体几何大题含答案
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中
点.
(Ⅰ)求证:AP∥平面BEF;
(Ⅱ)求证:BE⊥平面PAC.
解答:证明:(Ⅰ)连接CE,则
∵AD∥BC,BC=AD,E为线段AD的中点,
∴四边形ABCE是平行四边形,BCDE是平行四边形,
设AC∩BE=O,连接OF,则O是AC的中点,
∵F为线段PC的中点,
∴PA∥OF,
∵PA⊄平面BEF,OF⊂平面BEF,
∴AP∥平面BEF;
(Ⅱ)∵BCDE是平行四边形,
∴BE∥CD,
∵AP⊥平面PCD,CD⊂平面PCD,
∴AP⊥CD,
∴BE⊥AP,
∵AB=BC,四边形ABCE是平行四边形,
∴四边形ABCE是菱形,
∴BE⊥AC,
∵AP∩AC=A,
∴BE⊥平面PAC.
3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.
解答:解:(Ⅰ)取PD的中点F,连接EF,AF,
∵E为PC中点,∴EF∥CD,且,
在梯形ABCD中,AB∥CD,AB=1,
∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,
∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,
∴BE∥平面PAD.(4分)
(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,
∴PD⊥AD.(5分)
如图,以D为原点建立空间直角坐标系D﹣xyz.
则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分)
,,
∴,BC⊥DB,(8分)
又由PD⊥平面ABCD,可得PD⊥BC,
∴BC⊥平面PBD.(9分)
(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)
∵,,且λ∈(0,1)
∴Q(0,2λ,1﹣λ),(11分)
设平面QBD的法向量为=(a,b,c),,,由,,得
,
∴,(12分)
∴,(13分)
因λ∈(0,1),解得.(14分)
4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,
又∵PA⊄平面DEF,DE⊂平面DEF,
∴PA∥平面DEF;
(2)∵D、E为PC、AC的中点,∴DE=PA=3;
又∵E、F为AC、AB的中点,∴EF=BC=4;
∴DE2+EF2=DF2,
∴∠DEF=90°,
∴DE⊥EF;
∵DE∥PA,PA⊥AC,∴DE⊥AC;
∵AC∩EF=E,∴DE⊥平面ABC;
∵DE⊂平面BDE,∴平面BDE⊥平面ABC.
13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1;
(2)直线A1F∥平面ADE.
解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,
∴CC1⊥平面ABC,
∵AD⊂平面ABC,
∴AD⊥CC1
又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线
∴AD⊥平面BCC1B1,
∵AD⊂平面ADE
∴平面ADE⊥平面BCC1B1;
(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点
∴A1F⊥B1C1,
∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,
∴A1F⊥CC1
又∵B1C1、CC1是平面BCC1B1内的相交直线
∴A1F⊥平面BCC1B1
又∵AD⊥平面BCC1B1,
∴A1F∥AD
∵A1F⊄平面ADE,AD⊂平面ADE,
∴直线A1F∥平面ADE.
16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A﹣EF﹣D的大小.
解答:(1)如图,建立空间直角坐标系D﹣xyz.
设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,
.
取SD的中点,则.平面SAD,EF⊄平面
SAD,
所以EF∥平面SAD.
(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,
又,,
所以向量和的夹角等于二面角A﹣EF﹣D的平面角..
所以二面角A﹣EF﹣D的大小为.。