同济大学数学系《高等数学》第6版下册笔记和课后习题(含考研真题)详解(无穷级数)【圣才出品】
最新同济大学第六版高等数学上下册课后习题答案8-6
同济大学第六版高等数学上下册课后习题答案8-6仅供学习与交流,如有侵权请联系网站删除 谢谢2习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12(-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2 π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为 0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为仅供学习与交流,如有侵权请联系网站删除 谢谢3 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为 0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 对x 求导得,仅供学习与交流,如有侵权请联系网站删除 谢谢4⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z -z +xy -3, 则仅供学习与交流,如有侵权请联系网站删除 谢谢5n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为 000000cz z z by y y ax x x -=-=-.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程. 解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z , 解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6).仅供学习与交流,如有侵权请联系网站删除 谢谢7 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为 a z y x a az ay ax =++=++)(000000.。
高等数学第六版上下册全同济大学出版社
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
例1. 海伦公式
(满射)
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有 r
高等数学第六版上下册全同济大学 出版社
(满射)
目录 上页 下页 返回 结束
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
使
பைடு நூலகம்
其中
称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成
y f 1(x) , x f (D)
性质:
1) y=f (x) 单调递增 (减) , 其反函数
且也单调递增 (减) .
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
2) 函数
与其反函数
第一章
函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法
— 研究桥梁
第一节 映射与函数
一、集合 二、映射 三、函数
第一章
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
一、 集合
1. 定义及表示法
简称集
定义 1. 具有某种特定性质的事物的总体称为集合.
组成集合的事物称为元素.
左 邻域 :
右 邻域 :
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
2. 集合之间的关系及运算
定义2 . 设有集合 A, B , 若 x A 必有 x B , 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 A B.
同济大学第六版高等数学上下册课后习题答案5-2
同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
高等数学同济第六版下册课后习题答案
习题8-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证 →→→-=OA OB AB ; →→→-=OD OC DC ,而 →→-=OA OC , →→-=OB OD ,所以 →→→→→→-=-=+-=AB OA OB OB OA DC .这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以c =→AB 、a =→BC 表示向量→A D 1、→A D 2、→A D 3、→A D 4.解 a c 5111--=-=→→→BD BA A D , a c 5222--=-=→→→BD BA A D , a c 5333--=-=→→→BD BA A D , a c 5444--=-=→→→BD BA A D .4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→-212M M .解 )2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=→M M ,)4 ,4 ,2()2 ,2 ,1(2221-=---=-→M M .5. 求平行于向量a =(6, 7, -6)的单位向量.解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限? A (1, -2, 3); B (2, 3, -4); C (2, -3, -4); D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, -1, 0).解 在xOy 面上, 点的坐标为(x , y , 0); 在yOz 面上, 点的坐标为(0, y , z ); 在zOx 面上, 点的坐标为(x , 0, z ).在x 轴上, 点的坐标为(x , 0, 0); 在y 轴上, 点的坐标为(0, y , 0), 在z 轴上, 点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上. 8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ), 点(a , b , c )关于yOz 面的对称点为(-a , b , c ), 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ), 点(a , b , c )关于y 轴的对称点为(-a , b , -c ), 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ). 9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点? 解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a , ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距 离, 即415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5,1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则 2222)2()1(3||-+-+=→z y PA ,2222)2()2(4||++++=→z y PB ,222)1()5(||-+-=→z y PC .由题意, 有222||||||→→→==PC PB PA , 即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为7)96()11()410(||222=-+--+-=→AB ,7)93()14()42(||222=-+-+-=→AC ,27)63()14()102(||222=-+++-=→BC ,所以222||||||→→→+=AC AB BC , ||||→→=AC AB . 因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角.解 )1 ,2 ,1()12 ,20 ,43(21-=---=→M M ;21)2()1(||22221=++-=→M M ;21cos -=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何? 解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴 u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题8-21. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i k j i b a 75121 213++=---=⨯. (2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, -1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与→21M M 、→32M M 同时垂直的单位向量.解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M , →)2 ,2 ,0()13 ,31 ,33(32-=---=M M . →→k j i k j i n 446 220 142 3221--=--=⨯=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e --±=--±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, -100⨯9. 8)=(0, 0, -980), →)6 ,3 ,2()82 ,14 ,31(21--=---==M M S . W =F ⋅S =(0, 0, -980)⋅(-2, 3, -6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与→1OP 成角θ1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与→2OP 成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, -3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b . 7. 设a =(3, 5, -2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, -2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, -2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0, 所以λ=2μ. 当λ=2μ时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则→→OA OB -=, →→||||OA OC =.因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC ,所以→→BC AC ⊥, ∠C =90︒.9. 设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132, (a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.10. 已知→j i 3+=OA , →k j 3+=OB , 求∆OAB 的面积.解 根据向量积的几何意义, →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积, 于是∆OAB 的面积为→→||21OB OA S ⨯=. 因为→→k j i k j i +--==⨯33310301OB OA , →→191)3()3(||223=+-+-=⨯OB OA , 所以三角形∆OAB 的面积为→→1921||21=⨯=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅,于是 ||332211232221232221b a b a b a b b b a a a ++≥++++,其中当) ,cos(^b a =1时, 即a 与b 平行是等号成立.习题8-31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即 4x +4y +10z -63=0.2. 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=-++=R ,球面方程为(x -1)2+(y -3)2+(z +2)2=14,即 x 2+y 2+z 2-2x -6y +4z =0.3. 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++-z y x ,所以此方程表示以(1, -2, -1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=-+-+-++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(---为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程.解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2-9y 2-9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2-9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+-;(2)19422=+-y x ;(3)14922=+z x ;(4)y2-z=0;(5)z=2-x2.9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x=2;解在平面解析几何中,x=2表示平行于y轴的一条直线;在空间解析几何中,x=2表示一张平行于yOz面的平面.(2)y=x+1;解在平面解析几何中,y=x+1表示一条斜率是1,在y轴上的截距也是1的直线;在空间解析几何中,y=x+1表示一张平行于z轴的平面.(3)x2+y2=4;解在平面解析几何中,x2+y2=4表示中心在原点,半径是4的圆;在空间解析几何中, x2+y2=4表示母线平行于z轴,准线为x2+y2=4的圆柱面.(4)x2-y2=1.解在平面解析几何中,x2-y2=1表示双曲线;在空间解析几何中,x2-y2=1表示母线平行于z轴的双曲面.10.说明下列旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的.(2)14222=+-z y x ;解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的. (3)x 2-y 2-z 2=1;解 这是xOy 面上的双曲线x 2-y 2=1绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线x 2-z 2=1绕x 轴旋转一周而形成的. (4)(z -a )2=x 2+y 2 .解 这是zOx 面上的曲线(z -a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线(z -a )2=y 2绕z 轴旋转一周而形成的. 11. 画出下列方程所表示的曲面: (1)4x 2+y 2-z 2=4;(2)x 2-y 2-4z 2=4;(3)94322y x z +=.习题8-41. 画出下列曲线在第一卦限内的图形: (1)⎩⎨⎧==21y x ;(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y ;解 在平面解析几何中, ⎩⎨⎧-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317 ,34(--; 在空间解析几何中, ⎩⎨⎧-=+=3215x y x y 表示平面y =5x +1与y =2x -3的交线, 它表示过点)0 ,317 ,34(--, 并且行于z 轴. (2)⎪⎩⎪⎨⎧==+319422y y x .解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线.3. 分别求母线平行于x 轴及y 轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x .5. 将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧==++x y z y x 9222 ;解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x .令t x cos 23=, 则z =3sin t .故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t .(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=, 于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为 ⎩⎨⎧==+0222z a y x .由第三个方程得bz=θ代入第一个方程得b z a x cos =, 即axb z arccos =,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a xb z .由第三个方程得b z =θ代入第二个方程得b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==a y b z x arcsin 0.7. 求上半球2220y x a z --≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax -x 2, 代入半球面方程222y x a z --=, 得ax a z -=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z -≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题8-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程.解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为k j i kj i n n n 69301332021++-=-=⨯=,所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x -3y -6=0;解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33.(5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x -2z =0;解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+-+=⋅⋅==i n i n i n α;此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+-+=⋅⋅==k n k n k n γ.6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点. 解 解线性方程组 ⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3). 8. 分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x -2)-5(y +5)+0⋅(z -3)=0, 即y =-5. (2)通过z 轴和点(-3, 1, -2); 解 所求平面可设为Ax +By =0. 因为点(-3, 1, -2)在此平面上, 所以 -3A +B =0, 将B =3A 代入所设方程得 Ax +3Ay =0, 所以所求的平面的方程为 x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即 b +9c =0, b =-9c ,于是 n =(0, -9c , c )=-c (0, 9, -1). 所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-⨯+⨯+=d .习题8-61. 求过点(4, -1, 3)且平行于直线51123-==-z y x 的直线方程.解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124-=+=-z y x .2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程. 解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1),所求的直线方程为112243-=+=--x y x .3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++-=-=⨯=. 在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ; 参数方程为x =3-2t , y =t , z =-2+3t .4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为已知直线的方向向量, 即k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=. 所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0,即 16x -14y -11z -65=0.5. 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦.解 两直线的方向向量分别为k j i k j i s -+=--=431233351, k j i k j i s 105101831222+-=-=. 两直线之间的夹角的余弦为||||) ,cos(2121^21s s s s s s ⋅⨯=010)5(10)1(4310)1()5(4103222222=+-+-++⨯-+-⨯+⨯=. 6. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行. 解 两直线的方向向量分别为k j i k j i s 531121211++=--=, k j i k j i s 15391123632---=---=. 因为s 2=-3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, -3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++-=-=32310201. 所求直线的方程为14322-=-=-z y x . 8. 求过点(3, 1, -2)且通过直线12354z y x =+=-的平面方程. 解 所求平面的法线向量与直线12354z y x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1, -2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521--=-=⨯=. 所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0,即 8x -9y -22z -59=0.9. 求直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角. 解 已知直线的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s -+=-+=--=--⨯=, 已知平面的法线向量为n =(1, -1, -1).因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以s ⊥n , 从而直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角为0. 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =-+=-+和4x -2y -2z =3; 解 所给直线的方向向量为s =(-2, -7, 3), 所给平面的法线向量为n =(4, -2, -2).因为s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(-3, -4, 0)不满足平面方程4x -2y -2z =3, 所以所给直线不在所给平面上.(2)723z y x =-=和3x -2y +7z =8; 解 所给直线的方向向量为s =(3, -2, 7), 所给平面的法线向量为n =(3, -2, 7).因为s =n , 所以所给直线与所给平面是垂直的.(3)431232--=+=-z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, -4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3⨯1+1⨯1+(-4)⨯1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, -2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x 平行的平面的方程.解 已知直线的方向向量分别为k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=, k j k j i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n -+-=----=⨯=11032121, 所求平面的方程为-(x -1)+(y -2)-(z -1)=0, 即x -y +z =0.12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n =(1, 2, -1). 过点(-1, 2, 0)并且垂直于已知平面的直线方程为12211-=-=+z y x . 将此方程化为参数方程x =-1+t , y =2+2t , z =-t , 代入平面方程x +2y -z +1=0中, 得(-1+t )+2(2+2t )-(-t )+1=0, 解得32-=t . 再将32-=t 代入直线的参数方程, 得35-=x , 32=y , 32=z . 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32 ,32 ,25(-. 13. 求点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 已知直线的方向向量为k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=. 过点P 且与已知直线垂直的平面的方程为-3(y +1)-3(z -2)=0, 即y +z -1=0.解线性方程组⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得x =1, 21-=y , 23=z . 点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (3, -1, 2)与点)23 ,21 ,1(-间的距离, 即 223)232()211()13(22=-++-+-=d . 14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→=MN s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为||||00s ⨯=⨯→→→M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为||||s ⋅=⋅→d MN d . 因此 ||||0s s ⨯=⋅→M M d , ||||0s s ⨯=→M M d . 15. 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过已知直线的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0,即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0.故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x . 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z -12=0;(2)x =0, z =0, x =1, y =2, 4y z =;(3)z =0, z =3, x -y =0, 03=-y x , x 2+y 2=1(在第一卦限内);(4)x =0, y =0, z =0, x 2+y 2=R 2, y 2+z 2=R 2(在第一卦限内).总习题八1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________.解 M (x -x 0, y -y 0, z -z 0), →) , ,(z y x OM =.提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b -λa ⋅a =2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23-. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ⨯b +b ⨯c +c ⨯a |=____________.解36.提示: c =-(a +b ),a ⨯b +b ⨯c +c ⨯a =a ⨯b -b ⨯(a +b )-(a +b )⨯a =a ⨯b -b ⨯a -b ⨯a =3a ⨯b ,|a ⨯b +b ⨯c +c ⨯a |=3|a ⨯b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y -7)2+(-5)2,即 (y +3)2=(y -7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知∆ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+. 所求中线的长度为 30)23()11()14(222=-+--++=d .4. 设∆ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明→→→0=++CF BE AD .解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+-=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE -=-=, →→→→→AB AC AC BA BC -=+=,所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a -b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a +b =(2, -4, 8+z ), a -b =(4, -6, 8-z ). 因为|a +b |=|a -b |, 所以222222)8()6(4)8()4(2z z -+-+=++-+,解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π. 设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ,72arccos =θ. 8. 设a +3b ⊥7a -5b , a -4b ⊥7a -2b , 求) ,(^b a .解 因为a +3b ⊥7a -5b , a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(z z +-=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z z z f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a . 11. 设a =(2, -3, 1), b =(1, -2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x -3y +z =0, x -2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x ,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a ---=--=⨯57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7⨯2+5⨯1+1⨯2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(-1, 3, 2), b =(2, -3, -4), c =(-3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0. 因为k i k j i b a 36432231--=---=⨯, (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6),即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=--z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c ).→)1 ,0 ,3(-=BA , xOy 面的法线向量为k =(0, 0, 1).按要求有→0=⋅BA n , 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=-2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±-z y x ,即 3326=++z y x , 或3326=+-z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线, 求此平面方程.解 直线⎩⎨⎧==+-001x z y 的方向向量为s =(0, 1, -1)⨯(1, 0, 0)=(0, -1, -1).设点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+-001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(-1, y 0+1, y 0).显然有s ⋅s 1=0, 即-y 0-1-y 0=0, 210-=y . 从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s . 所求平面的法线向量可取为j i k j i k s k n --=-+-⨯=⨯=21)2121(1, 所求平面的方程为0)1()1(21=+---y x , 即x +2y +1=017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311z y x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为3(x +1)-4(y -0)+(z -4)=0, 即3x -4y +z -1=0.将直线21311z y x =-=+化为参数方程x =-1+t , y =3+t , z =2t , 代入平面方程3x -4y +z -1=0, 得3(-1+t )-4(3+t )+2t -1=0,解得t =16. 于是平面3x -4y +z -1=0与直线21311z y x =-=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28),所求直线的方程为28419161-==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程. 解 在xOy 面上的投影曲线方程为⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z y x y x . 在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x . 在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y . 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影.解 锥面与柱面交线在xOy 面上的投影为⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x , 所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x . 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为⎩⎨⎧==0||y x z 和⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:(1)抛物柱面2y 2=x , 平面z =0及1224===z y x ;(2)抛物柱面x 2=1-z , 平面y =0, z =0及x +y =1;(3)圆锥面22y x z +=及旋转抛物面z =2-x 2-y 2;(4)旋转抛物面x 2+y 2=z , 柱面y 2=x , 平面z =0及x =1.习题9-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2,边界为 {(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集,导集为 {(x , y )|1≤x 2+y 2≤4},边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集,导集为 {(x , y )| y ≥x 2},边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅-+= ),()tan (2222y x f t yx xy y x t =-+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2-2x +1);解 要使函数有意义, 必须y 2-2x +1>0,故函数的定义域为D ={(x , y )|y 2-2x +1>0}.(2)yx y x z -++=11; 解 要使函数有意义, 必须x +y >0, x -y >0,故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须y ≥0,0≥-y x 即y x ≥,于是有 x ≥0且x 2≥y ,故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须y -x >0, x ≥0, 1-x 2-y 2>0,故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2,故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +-→; 解 110011lim22)1,0(),(=+-=+-→y x xy y x . (2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xyxy y x 42lim )0,0(),(+-→; 解 xy xy y x 42lim )0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim)0,0(),(-=++-=→xy y x . (4)11lim )0,0(),(-+→xy xy y x ; 解 11lim )0,0(),(-+→xy xy y x )11)(11()11(lim )0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→;解 y xy y x )sin(lim)0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim 00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim 不存在.。
第六版同济大学高等数学上下课后答案详解
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
高等数学同济第六版下册课后习题答案
习题8-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证 →→→-=OA OB AB ; →→→-=OD OC DC ,而 →→-=OA OC , →→-=OB OD ,所以 →→→→→→-=-=+-=AB OA OB OB OA DC .这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以c =→AB 、a =→BC 表示向量→A D 1、→A D 2、→A D 3、→A D 4.解 a c 5111--=-=→→→BD BA A D , a c 5222--=-=→→→BD BA A D , a c 5333--=-=→→→BD BA A D , a c 5444--=-=→→→BD BA A D .4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→-212M M .解 )2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=→M M ,)4 ,4 ,2()2 ,2 ,1(2221-=---=-→M M .5. 求平行于向量a =(6, 7, -6)的单位向量.解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a . 6. 在空间直角坐标系中, 指出以下各点在哪个卦限? A (1, -2, 3); B (2, 3, -4); C (2, -3, -4); D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出以下各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, -1, 0).解 在xOy 面上, 点的坐标为(x , y , 0); 在yOz 面上, 点的坐标为(0, y , z ); 在zOx 面上, 点的坐标为(x , 0, z ).在x 轴上, 点的坐标为(x , 0, 0); 在y 轴上, 点的坐标为(0, y , 0), 在z 轴上, 点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上. 8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ), 点(a , b , c )关于yOz 面的对称点为(-a , b , c ), 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ), 点(a , b , c )关于y 轴的对称点为(-a , b , -c ), 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ). 9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点? 解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a , ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距 离, 即415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5,1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则 2222)2()1(3||-+-+=→z y PA ,2222)2()2(4||++++=→z y PB ,222)1()5(||-+-=→z y PC .由题意, 有222||||||→→→==PC PB PA , 即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为7)96()11()410(||222=-+--+-=→AB ,7)93()14()42(||222=-+-+-=→AC ,27)63()14()102(||222=-+++-=→BC ,所以222||||||→→→+=AC AB BC , ||||→→=AC AB . 因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角.解 )1 ,2 ,1()12 ,20 ,43(21-=---=→M M ;21)2()1(||22221=++-=→M M ;21cos -=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何? 解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴 u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题8-21. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i k j i b a 75121 213++=---=⨯. (2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, -1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与→21M M 、→32M M 同时垂直的单位向量.解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M , →)2 ,2 ,0()13 ,31 ,33(32-=---=M M .→→k j i k j i n 446 220 142 3221--=--=⨯=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e --±=--±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, -100⨯9. 8)=(0, 0, -980), →)6 ,3 ,2()82 ,14 ,31(21--=---==M M S . W =F ⋅S =(0, 0, -980)⋅(-2, 3, -6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与→1OP 成角θ1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与→2OP 成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, -3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b . 7. 设a =(3, 5, -2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, -2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, -2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0, 所以λ=2μ. 当λ=2μ时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则→→OA OB -=, →→||||OA OC =.因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC ,所以→→BC AC ⊥, ∠C =90︒.9. 设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k , b +c =2i -3j +3k ,k j k j i c b b a --=--=+⨯+332443)()(. (3)k j i k j i b a +--=--=⨯58311132, (a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.10. 已知→j i 3+=OA , →k j 3+=OB , 求∆OAB 的面积.解 根据向量积的几何意义, →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积, 于是∆OAB 的面积为→→||21OB OA S ⨯=. 因为→→k j i k j i +--==⨯33310301OB OA , →→191)3()3(||223=+-+-=⨯OB OA , 所以三角形∆OAB 的面积为→→1921||21=⨯=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅,于是 ||332211232221232221b a b a b a b b b a a a ++≥++++,其中当) ,cos(^b a =1时, 即a 与b 平行是等号成立.习题8-31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即 4x +4y +10z -63=0.2. 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=-++=R ,球面方程为(x -1)2+(y -3)2+(z +2)2=14,即 x 2+y 2+z 2-2x -6y +4z =0.3. 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++-z y x ,所以此方程表示以(1, -2, -1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=-+-+-++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(---为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程.解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2-9y 2-9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2-9y 2=36.8. 画出以下方程所表示的曲面:(1)222)2()2(a y a x =+-; (2)19422=+-y x ;(3)14922=+z x ;(4)y2-z=0;(5)z=2-x2.9.指出以下方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x=2;解在平面解析几何中,x=2表示平行于y轴的一条直线;在空间解析几何中,x=2表示一张平行于yOz面的平面.(2)y=x+1;解在平面解析几何中,y=x+1表示一条斜率是1,在y轴上的截距也是1的直线;在空间解析几何中,y=x+1表示一张平行于z轴的平面.(3)x2+y2=4;解在平面解析几何中,x2+y2=4表示中心在原点,半径是4的圆;在空间解析几何中, x2+y2=4表示母线平行于z轴,准线为x2+y2=4的圆柱面.(4)x2-y2=1.解在平面解析几何中,x2-y2=1表示双曲线;在空间解析几何中,x2-y2=1表示母线平行于z轴的双曲面.10.说明以下旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的.(2)14222=+-z y x ;解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的. (3)x 2-y 2-z 2=1;解 这是xOy 面上的双曲线x 2-y 2=1绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线x 2-z 2=1绕x 轴旋转一周而形成的.(4)(z -a )2=x 2+y 2 .解 这是zOx 面上的曲线(z -a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线(z -a )2=y 2绕z 轴旋转一周而形成的. 11. 画出以下方程所表示的曲面: (1)4x 2+y 2-z 2=4;(2)x 2-y 2-4z 2=4;(3)94322y x z +=.习题8-41. 画出以下曲线在第一卦限内的图形:(1)⎩⎨⎧==21y x ;(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y ;解 在平面解析几何中, ⎩⎨⎧-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317 ,34(--; 在空间解析几何中, ⎩⎨⎧-=+=3215x y x y 表示平面y =5x +1与y =2x -3的交线, 它表示过点)0 ,317 ,34(--, 并且行于z 轴. (2)⎪⎩⎪⎨⎧==+319422y y x .解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x .5. 将以下曲线的一般方程化为参数方程:(1)⎩⎨⎧==++xy z y x 9222 ;解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x .令t x cos 23=, 则z =3sin t .故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t .(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=, 于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为 ⎩⎨⎧==+0222z a y x .由第三个方程得bz=θ代入第一个方程得b z a x cos =, 即ax b z arccos =,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==0arccos y a xb z .由第三个方程得b z =θ代入第二个方程得b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==a y b z x arcsin 0.7. 求上半球2220y x a z --≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax -x 2, 代入半球面方程222y x a z --=, 得ax a z -=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z -≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题8-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程.解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0. 3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为k j i kj i n n n 69301332021++-=-=⨯=,所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出以下各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x -3y -6=0;解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2.(4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33.(5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x -2z =0;解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1). 此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+-+=⋅⋅==i n i n i n α;此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+-+=⋅⋅==k n k n k n γ.6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为k j i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点. 解 解线性方程组 ⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3). 8. 分别按以下条件求平面方程: (1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x -2)-5(y +5)+0⋅(z -3)=0, 即y =-5. (2)通过z 轴和点(-3, 1, -2); 解 所求平面可设为Ax +By =0. 因为点(-3, 1, -2)在此平面上, 所以 -3A +B =0, 将B =3A 代入所设方程得 Ax +3Ay =0, 所以所求的平面的方程为 x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即 b +9c =0, b =-9c , 于是 n =(0, -9c , c )=-c (0, 9, -1). 所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-⨯+⨯+=d .习题8-61. 求过点(4, -1, 3)且平行于直线51123-==-z y x 的直线方程.解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124-=+=-z y x .2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程. 解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1), 所求的直线方程为112243-=+=--x y x .3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i kj i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3,z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z yx ;参数方程为x =3-2t , y =t , z =-2+3t .4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为已知直线的方向向量, 即k j i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=.所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即 16x -14y -11z -65=0.5. 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦.解 两直线的方向向量分别为k j i kj i s -+=--=431233351,k j i kj i s 105101831222+-=-=.两直线之间的夹角的余弦为 ||||) ,cos(2121^21s s s s s s ⋅⨯= 010)5(10)1(4310)1()5(4103222222=+-+-++⨯-+-⨯+⨯=. 6. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行.解 两直线的方向向量分别为k j i kj i s 531121211++=--=,k j i kj i s 153********---=---=.因为s 2=-3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, -3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i kj i s ++-=-=32310201.所求直线的方程为14322-=-=-z y x .8. 求过点(3, 1, -2)且通过直线12354zy x =+=-的平面方程. 解 所求平面的法线向量与直线12354zy x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1, -2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i kj i s s n 229824112521--=-=⨯=.所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0, 即 8x -9y -22z -59=0.9. 求直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角.解 已知直线的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i kj i s -+=-+=--=--⨯=,已知平面的法线向量为n =(1, -1, -1). 因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以s ⊥n , 从而直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角为0.10. 试确定以下各组中的直线和平面间的关系:(1)37423zy x =-+=-+和4x -2y -2z =3; 解 所给直线的方向向量为s =(-2, -7, 3), 所给平面的法线向量为n =(4, -2, -2).因为s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(-3, -4, 0)不满足平面方程4x -2y -2z =3, 所以所给直线不在所给平面上.(2)723zy x =-=和3x -2y +7z =8;解 所给直线的方向向量为s =(3, -2, 7), 所给平面的法线向量为n =(3, -2, 7).因为s =n , 所以所给直线与所给平面是垂直的.(3)431232--=+=-z y x 和x +y +z =3.解 所给直线的方向向量为s =(3, 1, -4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3⨯1+1⨯1+(-4)⨯1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, -2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x平行的平面的方程.解 已知直线的方向向量分别为k j i kj i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=,k j kj i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1.所求平面的法线向量可取为k j i kj i s s n -+-=----=⨯=11032121,所求平面的方程为-(x -1)+(y -2)-(z -1)=0, 即x -y +z =0. 12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n =(1, 2, -1). 过点(-1, 2, 0)并且垂直于已知平面的直线方程为12211-=-=+zy x .将此方程化为参数方程x =-1+t , y =2+2t , z =-t , 代入平面方程x +2y -z +1=0中, 得(-1+t )+2(2+2t )-(-t )+1=0,解得32-=t . 再将32-=t 代入直线的参数方程, 得35-=x , 32=y ,32=z . 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32 ,32 ,25(-.13. 求点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 已知直线的方向向量为k j kj i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=.过点P 且与已知直线垂直的平面的方程为 -3(y +1)-3(z -2)=0, 即y +z -1=0. 解线性方程组 ⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得x =1, 21-=y , 23=z .点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (3, -1, 2)与点)23 ,21 ,1(-间的距离, 即223)232()211()13(22=-++-+-=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离 →||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→=MN s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为||||00s ⨯=⨯→→→M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为||||s ⋅=⋅→d MN d . 因此||||0s s ⨯=⋅→M M d , ||||0s s ⨯=→M M d . 15. 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过已知直线的平面束方程为 (2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0. 为在平面束中找出与已知平面垂直的平面, 令 (4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得17x +31y -37z -117=0. 故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x .16. 画出以下各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z -12=0;(2)x =0, z =0, x =1, y =2, 4yz =;(3)z =0, z =3, x -y =0, 03=-y x , x 2+y 2=1(在第一卦限内);(4)x =0, y =0, z =0, x 2+y 2=R 2, y 2+z 2=R 2(在第一卦限内).总习题八 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________. 解 M (x -x 0, y -y 0, z -z 0), →) , ,(z y x OM =.提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变. (2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -λa , 且a ⊥c , 则λ=____________. 解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b -λa ⋅a =2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23-.提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .(5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ⨯b +b ⨯c +c ⨯a |=____________.解36.提示: c =-(a +b ),a ⨯b +b ⨯c +c ⨯a =a ⨯b -b ⨯(a +b )-(a +b )⨯a =a ⨯b -b ⨯a -b ⨯a =3a ⨯b , |a ⨯b +b ⨯c +c ⨯a |=3|a ⨯b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点. 解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y -7)2+(-5)2, 即 (y +3)2=(y -7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知∆ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度.解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+. 所求中线的长度为30)23()11()14(222=-+--++=d .4. 设∆ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明 →→→0=++CF BE AD . 解 →→→a c 21+=+=BD AB AD ,→→→b a 21+=+=CE BC BE ,→→→c b 21+=+=AF CA CF .→→→0=+-=++=++)(23)(23c c c b a CF BE AD5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE -=-=, →→→→→AB AC AC BA BC -=+=,所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =.6. 设|a +b |=|a -b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a +b =(2, -4, 8+z ), a -b =(4, -6, 8-z ). 因为|a +b |=|a -b |, 所以 222222)8()6(4)8()4(2z z -+-+=++-+,解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π. 设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ. 8. 设a +3b ⊥7a -5b , a -4b ⊥7a -2b , 求) ,(^b a .解 因为a +3b ⊥7a -5b , a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(z z +-=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z z z f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a . 11. 设a =(2, -3, 1), b =(1, -2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x -3y +z =0, x -2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x ,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a ---=--=⨯57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7⨯2+5⨯1+1⨯2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(-1, 3, 2), b =(2, -3, -4), c =(-3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0. 因为k i k j i b a 36432231--=---=⨯, (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6),即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.14. 指出以下旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=--z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x , 旋转轴为x 轴. 15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c ).→)1 ,0 ,3(-=BA , xOy 面的法线向量为k =(0, 0, 1).按要求有→0=⋅BA n , 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=-2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±-z y x ,即 3326=++z y x , 或3326=+-z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线, 求此平面方程.解 直线⎩⎨⎧==+-001x z y 的方向向量为s =(0, 1, -1)⨯(1, 0, 0)=(0, -1, -1). 设点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+-001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(-1, y 0+1, y 0).显然有s ⋅s 1=0, 即-y 0-1-y 0=0, 210-=y . 从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s . 所求平面的法线向量可取为j i k j i k s k n --=-+-⨯=⨯=21)2121(1, 所求平面的方程为0)1()1(21=+---y x , 即x +2y +1=017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311z y x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为3(x +1)-4(y -0)+(z -4)=0, 即3x -4y +z -1=0.将直线21311z y x =-=+化为参数方程x =-1+t , y =3+t , z =2t , 代入平面方程3x -4y +z -1=0, 得3(-1+t )-4(3+t )+2t -1=0,解得t =16. 于是平面3x -4y +z -1=0与直线21311z y x =-=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28),所求直线的方程为28419161-==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小.解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程. 解 在xOy 面上的投影曲线方程为⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z y x y x . 在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x . 在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y . 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影.解 锥面与柱面交线在xOy 面上的投影为⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x , 所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x . 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z ,所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z . 锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为⎩⎨⎧==0||y x z 和⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出以下各曲面所围立体的图形:(1)抛物柱面2y 2=x , 平面z =0及1224===z y x ;(2)抛物柱面x 2=1-z , 平面y =0, z =0及x +y =1;(3)圆锥面22y x z +=及旋转抛物面z =2-x 2-y 2;(4)旋转抛物面x 2+y 2=z , 柱面y 2=x , 平面z =0及x =1.习题9-11. 判定以下平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2,边界为 {(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集,导集为 {(x , y )|1≤x 2+y 2≤4},边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集,导集为 {(x , y )| y ≥x 2},边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅-+= ),()tan (2222y x f t yx xy y x t =-+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求以下各函数的定义域:(1)z =ln(y 2-2x +1);解 要使函数有意义, 必须y 2-2x +1>0,故函数的定义域为D ={(x , y )|y 2-2x +1>0}.(2)yx y x z -++=11; 解 要使函数有意义, 必须x +y >0, x -y >0,故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须y ≥0,0≥-y x 即y x ≥,于是有 x ≥0且x 2≥y ,故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须y -x >0, x ≥0, 1-x 2-y 2>0,故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0,故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求以下各极限:(1)22)1,0(),(1limy x xy y x +-→; 解 110011lim22)1,0(),(=+-=+-→y x xy y x . (2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xyxy y x 42lim )0,0(),(+-→; 解 xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim)0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→;解 y xy y x )sin(lim)0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明以下极限不存在: (1)yx yx y x -+→)0,0(),(lim ; 证明 如果动点p (x , y )沿y =0趋向(0, 0), 则。
(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解
目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表
记
该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。
高等数学第六版下册课后习题答案_同济大学
同学们,淘00宝00搜00店00铺 春少爷33,美00鞋惊喜不断哦第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域;理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ; 注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++ (2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒=2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xyxy y x 42lim )0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(,)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的?(1) yx z -=1解:x y =(2)xy xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, y y x f y y x f y x f y y ∆∆∆),(),(lim),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴 的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:x y zy x z yz x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x ∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x xz ++=解:(1z x∂==∂z y ∂=∂ (4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y xz cos sin =解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim 1y y y e z y∆∆→-==-∆3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y ∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22xz ∂∂,y x z∂∂∂2 解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)limlim 0x x x f x f f x x ∆→∆→∆--===∆∆, 00(0,)(0,0)00(0,0)lim lim 0y y y f y f f yy ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z yz y x z x 222=∂∂+∂∂解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解
目 录第1章 行列式1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章 矩阵及其运算2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章 矩阵的初等变换与线性方程组3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章 向量组的线性相关性4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章 相似矩阵及二次型5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章 线性空间与线性变换6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第1章 行列式1.1 复习笔记一、二阶与三阶行列式1二阶行列式定义 将四个数,,,按一定位置,排成二行二列的数表:则表达式就是数表的二阶行列式,并记作2三阶行列式定义 设有9个数排成3行3列的数表记该式称为数表所确定的三阶行列式.二、全排列和对换1全排列把n个不同的元素排成一列,称为这n个元素的全排列.n个不同元素的所有排列的种数,通常用P n表示.(1)逆序数定义对于n个不同的元素,先规定各元素之间有一个标准次序(例如,个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说构成1个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.(2)分类逆序数是奇数的排列称为奇排列,逆序数是偶数的排列称为偶排列.(3)逆序数的计算设n个元素为1至n这n个自然数,并规定由小到大为标准次序.设为这n个自然数的一个排列,考虑元素,如果比p i大的且排在p i前面的元素有t i个,则称p i这个元素的逆序数为t i.全体元素的逆序数的总和即是这个排列的逆序数.2对换(1)定义对换是在排列中,将任意两个元素对调,其余元素不动.将相邻两个元素对换称为相邻对换.(2)性质①排列中的任意两个元素对换,排列改变奇偶性.②奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数为偶数.三、n阶行列式1定义称为n阶行列式,简记作,其中数a ij为行列式D的第(i,j)元素.2两类典型的n阶行列式(1)下三角形行列式(2)对角行列式3行列式的性质(1)行列式与它的转置行列式相等.(2)对换行列式的两行(列),行列式变号.(3)如果行列式有两行(列)元素成比例,则此行列式等于零.(4)行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式.(5)若行列式的某一行(列)的元素都是两数之和,则可以将该行列式拆分成两个行列式之和.(6)把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.四、行列式按行(列)展开1余子式与代数余子式在n阶行列式中,把(i,j)元a ij所在的第i行和第j列划去后,留下来的n -1阶行列式称为(i,j)元a ij的余子式,记作M ij,记A ij称为(i,j)元a ij的代数余子式.2定理行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即或 3范德蒙德行列式4代数余子式的推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.即或5代数余子式的重要性质或.1.2 课后习题详解1利用对角线法则计算下列三阶行列式:2按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)13…(2n-1)24…(2n);(6)13…(2n-1)(2n)(2n-2)…2.解:(1)此排列为标准排列,其逆序数为0;(2)此排列的首位元素4的逆序数为0,第2位元素1的逆序数为1,第3位元素3的逆序数为1,末位元素2的逆序数为2,故它的逆序数为0+1+1+2=4;(3)此排列的前两位元素的逆序数均为0,第3位元素2的逆序数为2;末位元素1的逆序数为3,故它的逆序数为0+0+2+3=5;(4)此排列的从首位元素到末位元素的逆序数依次为0,0,2,1,因此它的逆序数为0+0+2+1=3;(5)此排列中前n位元素的逆序数均为0.第n+1位元素2与它前面的n -1个数构成逆序对,所以它的逆序数为n-1;同理可知,第n+2位元素4的逆序数为n-2……末位元素2n的逆序数为0.因此该排列的逆序数为(6)此排列的前n+1位元素的逆序数均为0;第n+2位元素(2n-2)的逆序数为2;第n+3位元素2n-4与它前面的2n-3,2n-1,2n,2n-2构成逆序对,所以它的逆序为4,……,末位元素2的逆序数为2(n-1),因此该排列的逆序数为3写出四阶行列式中含有因子的项.解:根据行列式定义可知,此项必定还含有分别位于第3行和第4行的某两元素,而它们又分别位于第2列和第4列,即a32和a44或a34和a42.又因排列1324与1342的逆序数分别为1与2,所以此行列式中含有的项为与4计算下列各行列式:解:(1)(2);(3)(4)(5)(6)5求解下列方程:其中a,b,c互不相等.因此方程的解为.(2)根据题意,方程左式为4阶范德蒙德行列式,则有因a,b,c互不相等,因此方程的解为6证明:(2)将左式按第1列拆开可以得到因此有其中于是因此,(5)方法一 按第1列展开得方法二 按最后一行展开得7设n阶行列式,把D上下翻转、或逆时针旋转、或依副对角线翻转,依次得证明证:(1)通过对换行将D1变换成D,从而可找出D1与D的关系:D1的最后一行是D的第1行,把它依次与前面的行交换,直至换到第1行,共进行n-1次交换;这时最后一行是D的第2行,把它依次与前面的行交换,直至换到第2行,共进行n-2次交换……直至最后一行是D 的第n-1行,再通过一次交换将它换到第n-1行,这样就把D1变换成D,共进行次交换,故.(2)计算D2:观察可知,D2的第1,2,…,n行恰好依次是D的第n,n-1,…,1列,因此若把D2上下翻转得,则的第1,2,…,n行依次是D的第1,2,…,n列,即.于是由(1)有(3)计算D3:观察可知,若把D3逆时针旋转90°得,则的第1,2,…n列恰好是D的第n,n-1,…,1列,于是再把左右翻转就得到D.由(1)、(2)有8计算下列各行列式(D k为k阶行列式):,其中对角线上元素都是a,未写出的元素都是0;;;提示:利用范德蒙德行列式的结果.,其中未写出的元素都是0;;,其中a ij=|i-j|;,其中解:(1)方法一 化D n为上三角形行列式上式中最后那个行列式为上三角形行列式;方法二 把D n按第二行展开,由于D n的第二行除对角线元素外全为零,因此有,即于是有 (2)利用各列的元素之和相同,把从第二行起的各行全部加到第一行,再提取公因式.(3)把所给行列式上下翻转,即为范德蒙德行列式,若再将它左右翻转,由于上下翻转与左右翻转所用交换次数相等,因此行列式经上下翻转再左右翻转,即相当于转180°,其值不变.于是按范德蒙德行列式的结果可得(4)可用递推法即有递推公式另外,归纳基础为,利用这些结果可递推得(5)把第一行除外的所有行都加到第一行,并提取第一行的公因子,得(6)(7)可将原行列式化为上三角形行列式,需从第2行起,各行均减去第1行,得行列式其中.于是9设,D的(i,j)元的代数余子式记作A ij,求.解:求,则等于用1,3,-2,2替换D的第3行对应元素所得行列式,即1.3 考研真题详解一、选择题行列式等于( ).[数一、数二、数三 2014研]A. B.C. D.【答案】B【解析】二、填空题1阶行列式 [数一 2015研]【答案】【解析】将阶行列式按第一行展开2设是三阶非零矩阵,为A的行列式,A ij为a ij的代数余子式,若,则|A|=______.[数一、数二、数三 2013研]【答案】-1【解析】由可知,故3设A,B为3阶矩阵,且.[数二、数三2010研]【答案】3【解析】因为所以第2章 矩阵及其运算2.1 复习笔记一、线性方程组和矩阵1线性方程组(1)n元非齐次线性方程组设有n个未知数m个方程组的线性方程组当常数项不全为零时,该方程组称为n元非齐次线性方程组.(2)n元齐次线性方程组含有n个未知数m个方程组的线性方程组称为n元齐次线性方程组.2矩阵(1)定义由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.记为(2)分类①实矩阵 矩阵元素都为实数的矩阵.②复矩阵 矩阵元素为复数的矩阵.③行矩阵/列矩阵 又称行向量/列向量,只有一行(列)的矩阵.④n阶方阵 行数与列数都等于n的矩阵称为n阶方阵.⑤零矩阵 元素都是零的矩阵.⑥对角矩阵 对角线以外的元素都是0的方阵.⑦单位矩阵 对角线上元素都为1的对角矩阵.二、矩阵的运算1矩阵的加法(1)定义设有两个m×n矩阵A=(a ij)和B=(b ij),则矩阵A与B的和记作A+B,规定为注意:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算.(2)运算规律设A,B,C都是m×n矩阵,则①A+B=B+A;②(A+B)+C=A+(B+C);③设矩阵A=(a ij),记:-A=(-a ij),-A称为矩阵A的负矩阵,显然有A+(-A)=0,由此规定矩阵的减法为:A-B=A+(-B).2数与矩阵相乘(1)定义数λ与矩阵A的乘积记作λA或Aλ,规定为(2)运算规律设A、B为m×n矩阵,λ、μ为数,则①(λμ)A=λ(μA);②(λ+μ)A=λA+μA;③λ(A+B)=λA+λB.3矩阵与矩阵相乘(1)定义设A=(a ij)是一个m×s矩阵,B=(b ij)是一个s×n矩阵,则规定矩阵A 与矩阵B的乘积是一个m×n矩阵C=(c ij),其中并把此乘积记为C=AB.(2)运算规律①(AB)C=A(BC);②(AB)=(A)B=A(B)(其中λ为数);③A(B+C)=AB+AC,(B+C)A=BA+CA;④EA=AE=A;⑤.(3)注意①只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.②矩阵的乘法一般不满足交换律,即在一般情形下,AB≠BA.③对于两个n阶方阵A,B,若AB=BA,则称方阵A与B是可交换的.④若有两个矩阵A,B,满足AB=0,不能得出A=0或B=0的结论;若A≠0,而A(X-Y)=0也不能得出X=Y的结论.三、矩阵的转置1定义把矩阵A的行换成同序数的列得到一个新矩阵,称为A的转置矩阵,记作A T.2转置运算(1)(A T)T=A;(2)(A+B)T=A T+B T;(3)(λA)T=λA T;(4)(AB)T=B T A T.3对称矩阵设A为n阶方阵,如果满足A T=A,即a ij=a ji(i,j=1,2…,n),则称A为对称矩阵.四、方阵的行列式1定义由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A 的行列式,记作detA或|A|.2由A确定|A|的运算规律假设A、B为n阶方阵,λ为数:(1)|A T|=|A|;(2)|λA|=λn|A|;(3)|AB|=|A||B|.3伴随矩阵行列式|A|的各个元素的代数余子式A ij所构成的如下的矩阵称为矩阵A的伴随矩阵,简称伴随阵.一般地,五、逆矩阵1定义对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则称矩阵A是可逆的,并把矩阵B称为A的逆矩阵,A又称B的逆矩阵,简称逆阵.2性质(1)若矩阵A是可逆的,则A的逆矩阵是唯一的.(2)若矩阵A可逆,则|A|≠0.(3)若|A|≠0,又称A为非奇异矩阵,则矩阵A可逆,且,其中A*为矩阵A的伴随矩阵.若|A|=0,称A为奇异矩阵,A不可逆.(4)A为可逆矩阵的充要条件是|A|≠0.3逆矩阵运算规律:(1)若A可逆,则A-1也可逆,且;(2)若A可逆,数λ≠0,则λA可逆,且(3)若A、B为同阶矩阵且均可逆,则AB也可逆,且;(4)若AB=E(或BA=E),则B=A-1.六、克拉默法则含有n个未知数x1,x2,…,x n的n个线性方程的方程组 (2-1-1)它的解可以用n阶行列式表示,即有克拉默法则:如果线性方程组(2-1-1)的系数矩阵A的行列式不等于零,即则方程组(2-1-1)有唯一解其中A j(j=1,2,…,n)是把系数矩阵A中第j列的元素用方程组右端的常数项代替后所得到的n阶矩阵,即七、矩阵分块法1定义将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵.2矩阵分块法(1)设矩阵A与B的行数相同、列数相同,采用相同的分块法,有其中A ij与B ij的行数相同、列数相同,则(2)设,λ为数,则.(3)设A为m×l矩阵,B为l×n矩阵,分块成其中A i1,A i2,…,A it的列数分别等于B1j,B2j,…,B tj的行数,则其中(4)设,则(5)设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即其中A i(i=1,2,…,s)都是方阵,则称A为分块对角矩阵.分块对角矩阵的行列式具有下述性质由此性质可知,若,则,并有2.2 课后习题详解1计算下列乘积:(1);(2);(3);(4);(5).解:(1);(2);(3);(4);(5)2设,求3AB-2A及A T B.解:则有因A T=A,即A为对称阵,所以3已知两个线性变换求从z1,z2,z3到x1,x2,x3的线性变换.解:依次将两个线性变换写成矩阵形式其中分别为对应的系数矩阵;在这些记号下,从z1,z2,z3到x1,x2,x3的线性变换的矩阵形式为,此处矩阵即有4假设,问:(1)AB=BA吗?(2)(A+B)2=A2+2AB+B2吗?(3)(A+B)(A-B)=A2-B2吗?5举反例说明下列命题是错误的:(1)若,则;(2)若A2=A,则或A=E;(3)若AX=AY,且A≠0,则X=Y.6(1)设,求A2,A3,…,A k;(2)设,求A4.解:(1)根据矩阵乘法直接计算得一般可得 (2-2-1)则当k=1时,式(2-2-1)成立.假设当k=n时,式(2-2-1)成立,则当k=n+1时根据数学归纳法可知式(2-2-1)成立;7(1)设,求A50和A51;(2)设,A=ab T,求A100.解:(1),则可得(2)由于b T a=-8,所以根据上式可知8(1)设A,B为n阶矩阵,且A为对称阵,证明B T AB也是对称阵;(2)设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.证:(1)由矩阵乘积的转置规则有所以由定义知B T AB为对称阵;(2)因为A T=A,B T=B,所以9求下列矩阵的逆矩阵:(1);(2);(3);(4).解:(1)根据二阶方阵的求逆公式可得(2)(3)因为,所以A可逆,并且于是(4)因为a1a2…a n≠0,所以a i≠0,i=1,2,…,n.则矩阵是有意义的,并且因为所以A可逆,而且.10已知线性变换求从变量x1,x2,x3到变量y1,y2,y3的线性变换.解:记则线性变换的矩阵形式为x=Ay,其中A是它的系数矩阵.因为所以A是可逆矩阵,则从变量x1,x2,x3到变量y1,y2,y3的线性变换的矩阵形式可写成又由于 于是即11设J是元素全为1的n(≥2)阶方阵.证明E-J是可逆矩阵,且这里E是与J同阶的单位矩阵.证:因为于是所以,是可逆矩阵,并且12设(k为正整数),证明可逆,并且其逆矩阵证:因为所以可逆,并且其逆矩阵.13设方阵A满足A2-A-2E=O (2-2-2)证明A及A+2E都可逆,并求解:(1)可先证A可逆.由式(2-2-2)得即 所以A是可逆的,且;(2)再证A+2E可逆.由,即同理,可知可逆,且.14解下列矩阵方程:(1);(2);(3);(4)AXB=C,其中.解:(1)因为矩阵的行列式等于1,不为零,所以它可逆,从而用它的逆矩阵左乘方程两边,得(2)记矩阵方程为,因所以A可逆,用右乘方程的两边可得又由于所以(3)记,则矩阵方程可写为因为,所以A,B均可逆.依次用和左乘和右乘方程两边得(4)因为,所以A,B均是可逆矩阵,且分别用和左乘和右乘方程两边得15分别应用克拉默法则和逆矩阵解下列线性方程组:(1)(2)解:(1)①可用克拉默法则:因为系数矩阵的行列式,由克拉默法则,方程组有唯一解,并且②用逆矩阵方法:因为|A|≠0,所以A可逆,于是则有(2)①用克拉默法则:因为系数矩阵的行列式,由克拉默法则方程组有唯一解,并且②用逆矩阵方法因为|A|=2≠0,所以A可逆,于是,易求得代入可得16设A为三阶矩阵,,求.解:因为,所以A可逆.于是由及,得对公式两端取行列式得17设,AB=A+2B,求B.解:由因,它的行列式det(A-2E)=2≠0,所以它是可逆矩阵.用左乘上式两边得18设.且AB+E=A2+B,求B.解:由方程,合并含有未知矩阵B的项,得又因为,其行列式,所以A-E可逆,用左乘上式两边,即可得到解:由于所给矩阵方程中含有A及其伴随阵A*,可用公式求解:用A左乘所给方程两边,得又由于,所以A是可逆矩阵,用右乘上式两边,可以得到观察可得是可逆矩阵,并且于是 20已知A的伴随阵A*=diag(1,1,1,8),且,求B.解:(1)先化简所给矩阵方程假设能求得A并且为可逆矩阵,则可解得 (2-2-3)(2)再计算A根据题意可知A是可逆矩阵,由,两边取行列式得即,所以,于是因为,所以是可逆矩阵,并且将上述结果代入式(2-2-3)可得21设,其中,求A11.解:由于,则.所以22设AP=PΛ,其中求φ(A)=A8(5E-6A+A2).解:由于,所以P是可逆矩阵.根据AP=PΛ可得,并且记多项式,则有由于是三阶对角阵,所以于是 23设矩阵A可逆,证明其伴随阵A*也可逆,且.证:因为,根据定理2的推论可以知A*可逆,且另因.用A左乘此式两边得通过比较上面两式可知结论成立.24设n阶矩阵A的伴随阵为A*,证明:(1)若|A|=0,则|A*|=0;(2).证:(1)因为 (2-2-4)当时,上式成为可用反证法求证。
高数问题详解(下)习题册问题详解 第六版 下册 同济大学数学系 编
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim y x yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=xyxe xy + ,验证 z x y +=∂∂+∂∂yz yx z x 证明:x y x y x y e x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yxy xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂解:1-=∂∂y z x y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : uz u y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件(C )充分必要条件 (D )既非充分又非必要条件 (2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在2、求下列函数的全微分:1)x ye z = )1(2dy x dx xy e dz x y +-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx zz y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin)(),(2222y x y x yx y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
高数(同济第六版)下册无穷级数要点
若 lim S n = S ,称数列收敛, S 为级数的和,即:
n →∞
∑u
N =1
n
=S;
若 lim S n 不存在,称级数发散。
n →∞
�
性质:
(1) 若级数 � �
∑u ,∑v
n n
n
都收敛,则
∑ (u
± vn ) 也收敛,且 ∑ (un ± vn ) = ∑ un ± ∑ vn
也收敛,且
∑ cu
n =0
幂级数收敛定理——阿贝尔定理
∞
如果幂级数
∑a x
n n =0
n
当 x = x0 ( x0 ≠ 0) 时收敛, 则对满足不等式 x < x0 的一切 x , 幂级
数都收敛,并且是绝对收敛;
∞
如果幂级数 数都发散。
∑a x
n n =0
n
当 x = x0 ( x0 ≠ 0) 时发散, 则对满足不等式 x > x0 的一切 x , 幂级
∑ u ( x) = u ( x) + u ( x ) + ⋯ + u ( x ) + ⋯ 为函数项级数。
n
1 2
∞
n
n =1
∞
�
函数项的收敛点: ∀x0 ∈ I ,
∑ u ( x ) 收敛,称 x 为函数项级数的收敛点;
n
0 0
n =1
∞
函数项的发散点: ∀x0 ∈ I , � � 收敛域:收敛点的全体。
n →∞
p
∑u
n =1
n
收敛。
∞
�
比值审敛法:设
∑u
n =1
n
是正项级数,则 lim
同济大学数学系高等数学第6版笔记和课后习题答案
第1章函数与极限1.1 复习笔记一、映射与函数1.集合(1)集合概念集合(简称集)是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素(简称元)。
常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合的元素。
如果a是集合A的元素,就说a属于A,记作a∈A;如果a不是集合A的元素,就说a不属于A,记作a A。
一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
(2)表示集合的方法通常有以下两种:①列举法,就是把集合的全体元素一一列举出来表示;②描述法,若集合M是由具有某种性质P的元素x的全体所组成的,就可表示成M={x|具有性质P}。
(3)常见的集合①空集,指不包含任何元素的集合,记为φ;②非负整数集,全体非负整数即自然数的集合,记作N,即N={0,1,2,…,n,…};③正整数集,全体正整数的集合,记作,即={1,2,3,…,n,…};④整数集,全体整数的集合,记作Z,即Z={…,-n,…,-2,-1,0,1,2,…,n,…};⑤有理数集,全体有理数的集合,记作Q,即Q={∈z,q∈且P与q互质};⑥实数集,全体实数的集合,记作R,R为排除数0的实数集,为全体正实数的集合。
(4)集合的关系①包含关系设A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作A B(读作A包含于B)或B A(读作B包含A)。
规定空集φ是任何集合A的子集,即φA。
若且,则称A是B的真子集,记作(读作A真包含于B)。
②等价关系若集合A与集合B互为子集,即A B且B A,则称集合A与集合B相等,记作A=B。
(5)集合的运算①并、交、差a.并集设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集(简称并),记作,即。
b.交集由所有既属于A又属于B的元素组成的集合,称为A与B的交集(简称交),记作,即。
c.差集由所有属于A而不属于B的元素组成的集合,称为A与B的差集(简称差),记作A\B,即。
高数(同济第六版)下册 无穷级数习题精选
解
∞
n →∞
lim
( n +1)! 2n +1
n! 2n
n→∞
n =1
n! 2n
发散。
7. Σ sin n 2
n =1
解
∞
lim sin n 2 不存在,所以 Σ sin n 2 发散。
n →∞ n =1
n
∞
8. Σ ( ( −1n) + 1 ) n
∞
1 n n =1 2
为等比级数,且公比
1 2
< 1 ,所以 Σ
∞
1
n
n =1 2
收敛。因此由比
较判别法 Σ tan 21n 收敛。
n =1
∞
∞
7. 解
n =1 (ln n )
Σ
nln n
n
ln n ln 2 n
lim
n→∞ n→∞
∞
n
nln n (ln n )n n (ln n ) n
ln n
= lim
an +1 an
= 3⋅
tan
π 2 n +1 tan πn 2
,
lim n → ∞
a n +1 an
= 3 ⋅ lim n → ∞
tan
π
π
2n +1 tan πn 2
= 3 ⋅ lim n → ∞
2 n +1 π 2n
=3 >1。 2
π 故由正项级数的比值审敛法可知级数 ∑ 3n ⋅ tan 2 n 是发散的。 n =1
∞
n =1
高等数学第六版下册课后习题答案-同济大学
本答案由大学生必备网 免费提供下载第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-解二:(,)(0,0)(,)(0,0)(,)(0,0)1limlim lim 4x y x y x y →→→===-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可.2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂==∂z y ∂==∂(4))ln(222z y x u ++= 解:222222222222,,u x u y u zx x y z y x y z z x y z∂∂∂===∂++∂++∂++(5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z uu u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)zx y x y x y x ∂=-++=-+∂ 4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂(3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z ∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂ 由轮换对称性, 2222222323,r r y r r z y r z r ∂-∂-==∂∂222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
2019年同济大学第六版高等数学上下册课后习题答案11-3.doc
习题11-31. 求下列幂级数的收敛域:(1)x +2x 2+3x 3+ ⋅ ⋅ ⋅ +nx n + ⋅ ⋅ ⋅;解 11lim ||lim 1=+=∞→+∞→nn a a n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=1n n , 是发散的;当x =-1时, 幂级数成为∑∞=-1)1(n n n , 也是发散的,所以收敛域为(-1, 1).(2) )1( 21222⋅⋅⋅+-+⋅⋅⋅++-nx x x n n ; 解 1)1(lim 1)1(1lim ||lim 2221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n, 也是收敛的, 所以收敛域为[-1, 1].(3) )2( 42 64242232⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+n x x x x n ; 解 0)1(21lim )!1(2!2lim ||lim 11=+=⋅+⋅⋅=∞→+∞→+∞→n n n a a n n n n n n n , 故收敛半径为R =+∞, 收敛域为(-∞, +∞).(4) 3 3332313322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n x x x x ; 解 31131lim 3)1(3lim ||lim 11=+⋅=⋅+⋅=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为R =3.因为当x =3时, 幂级数成为∑∞=11n n , 是发散的; 当x =-3时, 幂级数成为∑∞=-11)1(n n n , 也是收敛的, 所以收敛域为[-3, 3). (5) 12 102522223322⋅⋅⋅+++⋅⋅⋅+++n n x n x x x ; 解 21)1(1lim 2211)1(2lim ||lim 222211=+++=+⋅++=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为21=R . 因为当21=x 时, 幂级数成为∑∞=+1211n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+-1211)1(n n n , 也是收敛的, 所以收敛域为]21 ,21[-. (6)∑∞=++-11212)1(n n n n x ; 解 这里级数的一般项为12)1(12+-=+n x u n nn . 因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1.因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1]. (7)∑∞=--122212n n n x n; 解 这里级数的一般项为22212--=n n n x nu .因为22212121|)12(22)12(|lim ||lim x x n x n u u n n n n n n n n =-⋅+=-+∞→+∞→, 由比值审敛法, 当1212<x , 即2||<x 时, 幂级数绝对收敛; 当1212>x , 即2||>x 时, 幂级数发散, 故收敛半径为2=R .因为当2±=x 时, 幂级数成为∑∞=-1212n n , 是发散的, 所以收敛域为)2 ,2(-.(8)∑∞=-1)5(n n n x . 解 11lim ||lim 1=+=∞→+∞→n n a a n n n n , 故收敛半径为R =1, 即当-1<x -5<1时级数收敛, 当|x -5|>1时级数发散.因为当x -5=-1, 即x =4时, 幂级数成为∑∞=-1)1(n n n , 是收敛的; 当x -5=1, 即x =6时, 幂级数成为∑∞=11n n, 是发散的, 所以收敛域为[4, 6).2. 利用逐项求导或逐项积分, 求下列级数的和函数:(1)∑∞=-11n n nx ;解 设和函数为S (x ), 即∑∞=-=11)(n n nx x S , 则][][])([)(1010110'='='=∑⎰⎰∑⎰∞=-∞=-n x n x n n x dx nx dx nx dx x S x S)11( )1(1]111[][21<<--='--='=∑∞=x x x x n n .(2)∑∞=++11414n n n x ; 解 设和函数为S (x ), 即∑∞=++=11414)(n n n x x S , 则 dx x dx n xdx x S S x S x n n x n n x ⎰∑⎰∑⎰∞=∞=+='+='+=01401140]14[)()0()( ⎰⎰-⋅++⋅+-=--=x x dx x x dx x02204)112111211()111( )11( a r c t a n 2111ln 41<<--+-+=x x x x x . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(.(3)⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . 解 设和函数为S (x ), 即⋅⋅⋅+-+⋅⋅⋅+++=-=-∞=-∑ 12 5312)(1253112n x x x x n x x S n n n , 则 ⎰∑⎰∑⎰∞=-∞=-='-='+=x n n x n n x dx x dx n x dx x S S x S 012201120]12[)()0()( )11( 11ln 211102<<--+=-=⎰x x x dx xx . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=x dx x S S x S 0)()0()(.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u1 u2 u3 ... un ... 叫做(常数项)无穷级数,简称(常数项)级数,记为 un , n1
即 (2)级数 n 项和的收敛与发散
,其中第 n 项 un 叫做级数的一般项。
求(常数项)级数的前 n 项的和 Sn u1 u2 u3 ... un ui ,Sn 称为级数的部分 i 1
n1
n1
a.如果 lim un
v n n
l
(0≤ l <+ ),且级数
vn
n1
收敛,则级数
un
n1
收敛;
b.如果 lim un
v n n
l 0 或 lim un v n
n
,且级数 vn
n1
发散,则级数 un
n1
发散。
②比值审敛法,达朗贝尔(d’A1embert)判别法
【定理】设 un 为正项级数, n1
n1
n1
n1
【推论】设 un 和 vn 都是正项级数,如果级数 vn 收敛,且存在正整数 N,使
n1
n1
n1
当 n≥N 时有 un kvn (k>0)成立,则级数 un 收敛;如果级数 vn 发散,且当行≥N
n1
n1
时有 un kvn (k>0)成立,则级数 un 发散。 n1
【定理】(比较审敛法的极限形式)设 un 和 vn 都是正项级数,
如果
3 / 79
圣才电子书 十万种考研考证电子书、题库视频学习平台
则当 1时级数收敛; 1 (或 lim un1 )时级数发散; 1 时级数可能收敛 un
也可能发散。
③根值审敛法,柯西判别法
【 定 理 】 设
un
n1
为正项级数,如果
lim
n
n
un
,则当
n1
有极限,则称无穷级数 un 发散。 n1
1 / 79
圣才电子书 十万种考研考证电子书、题库视频学习平台
显然,当级数收敛时,其部分和 Sn 是级数的和 s 的近似值,它们之间的差值
叫做级数的余项。用近似值 Sn 代替和 s 所产生的误差是这个余项的绝对值,即误差是 | rn | 。
2.收敛级数的基本性质
(1)如果级数 un 收敛于和 s,则级数 kun 也收敛,且和为 ks;
n1
n1
(2)如果级数 un 、 vn 分别收敛于和 s、 ,则级数 (un vn ) 也收敛,且其
n1
n1
n1
和为 s± ;
(3)在级数中去掉、加上或改变有限项,不会改变级数的收敛性;
(4)如果级数 un 收敛,则对这个级数的项任意加括号后所成的级数 n1
(2)收敛条件
【定理】正项级数 un 收敛的充分必要条件是:它的部分和数列{ Sn }有界。 n1
(3)判断准则
①比较审敛法
【定理】设 un 和 vn 都是正项级数,且 un vn (1,2,…)。若级数 vn 收敛,
n1
n1
n1
则级数 un 收敛;反之,若级数 un 发散,则级数 vn 发散。
和。当 x 依次取 1,2,3,…时,它们构成一个新的数列
S1 u1 , S2 u1 u2 , S3 u1 u2 u3 … Sn u1 u2 u3 ... un ,
该数列为级数数列。
【定义】如果级数
un
n1
的部分和数列 {Sn} 有极限
s,即
lim
n
Sn
s
,则称无穷级数
un 收敛,这时极限 s 叫做这个级数的和,并写成 Sn u1 u2 u3 ... un 。如果{Sn} 没
圣才电子书 十万种考研考证电子书、题库视频学习平台
同济大学数学系《高等数学》第 6 版下册笔记和课后习题(含考研真题)详解 第 12 章 无穷级数
12.1 复习笔记
一、常数项级数的概念和性质
1.常数项级数的概念
(1)级数
一 般 的 , 如 果 给 定 一 个 数 列 u1 , u2 , u3 , un , … 则 由 这 个 数 列 构 成 的 表 达 式
(1)定义
交错级数是这样的级数,它的各项是正负交错的,从而可以写成下面的形式:
u1 u2 u3 u4 ,或 u1 u2 u3 u4 。
其中 u1 , u2 ,…都是正数。
(2)判断准则,莱布尼茨定理
n1
【定理】如果交错级数 (1) un 满足条件:
n1
① un un1 n 1, 2, 3, ;
对于每一个确定的值 x0 ∈I,函数项级数成为常数项级数
5 / 79
,称
圣才电子书 十万种考研考证电子书、题库视频学习平台
②
lim
n
un
0。
4 / 79
圣才电子书 十万种考研考证电子书、题库视频学习平台
则级数收敛,且其和 s u1 ,其余项 rn 的绝对值 | rn | un1 。
3.绝对收敛与条件收敛
【定理】如果级数 un 绝对收敛,则级数 un 必定收敛。
n1
n1
4.绝对收敛级数的性质
仍收敛,且其和不变;
(5)(级数收敛的必要条件)如果级数 un 收敛,则它的一般项 un 趋于零,即 n1
lim
n
un
0。
二、常数项级数的审敛法 1.正项级数及其审敛法 (1)正项级数定义
2 / 79
圣才电子书 十万种考研考证电子书、题库视频学习平台
设级数 u1 u2 ... un ... 是一个正项级数( un ≥0),它的部分和为 sn 。
(1)可交换性
【定理】绝对收敛级数改变项的位置后构成的级数也收敛,且与原级数有相同的和(即
绝对收敛级数具有可交换性)。
(2)可积性
【定理】设级数 un 和 vn 都绝对收敛,其和分别为 s 和 ,则它们的柯西乘积
n1
n1
也是绝对收敛的,且其和为 s· 。
三、幂级数 1.函数项级数的概念 如果给定一个定义在区间上的函数列 则由这个函数列构成的表达式 为定义在区间 I 上的(函数项)无穷级数,简称(函数项)级数。
<1 时级数收敛,
>1(或
lim n
nunΒιβλιοθήκη )时级数发散, =1 时级数可能收敛也可能发散。
④极限审敛法
【定理】设 un 为正项级数, n1
a.如果
lim
n
nun
l
0
(或
lim
n
nun
),则级数
un
n1
发散;
b.如果
p>1,而
lim
n
n
pun
l
(0≤1≤
),则级数
un
n1
收敛。
2.交错级数及其审敛法