关于正方体截面形状探究
聚焦核心素养,构建生动课堂——“正方体截面的形状”教学设计与思考
优质课例 ^l W\聚焦核心素养,构建生动课堂—“正方俥截面的形状”教字设计与思考■曾敏《义务教育数学课程标准(2011年版)》指出:数 学课程应倡导自主探索、动手实践、合作交流等学习 数学的方式。
这些方式有助于发挥学生学习的主动 性,对培养学生良好的数学思维习惯、抽象能力及交 流合作能力大有裨益,从而促进学生发展,提高学生 数学核心素养。
截面问题是立体几何的典型问题。
教学“正方 体截面的形状”这节课时,教师利用正方体玻璃缸、水、量杯等实验工具开展数学探究活动,让学生在实 验探究中以分组讨论的方式开展研究性学习。
教师 通过问题导向、合作探究、数学实验,引导学生逐步 探究“正方体截面形状有哪些”和“正方体截面形状 的特征”,加深对截面问题的理解,实现由“教”到 “学”的转变,从而提升学生的核心素养。
教材分析“正方体截面的形状”是北师大版高中数学必修 2第1章“立体几何初步”中的课题学习内容。
在教 学中,我们希望学生通过“正方体截面的形状”的课 题学习,体会到“如何获得知识,比关注得到别人给 予的知识更重要”,体会到“问题是思考的结果,是深 人思考的开始;数学学习不仅要提高解决别人提出40 I X灰t 问题的能力,还要保持永不满足的好奇心,大胆地发 现问题、提出问题,养成问题意识和交流的习惯”,让 学生在学会数学的同时,培养数学核心素养。
学情分析学生已经学习了“立体几何初步”,对三维空间 有初步的认识,对简单几何体的基本特性和直观图、三视图有基本了解。
对空间的点、线、面的位置关系 也有了一定的理解,并初步学会用数学语言来描述 和论证某些位置关系(特别是平行和垂直关系)。
对 直观感知、操作确认、思辨论证和度量计算等方法有 了一定的体验。
有一定的空间想象能力,初步有了 推理论证和运用图形语言进行交流的能力。
教学过程一、创设情境,引人课题教师播放视频:《舌尖上的中国》(如下图),学生 观看视频。
Q I&S I S I 师:从视频中我们能感受到中国饮食文化的色、香、味、形。
细说正方体的截面图形
细说正方体的截面图形在实际生活中时常出现实物几何体的切面所形成的截面图形形状,在中学数学中也学习了几何体的截面图形,截面是一个平面去截一个几何体得到的平面图形或一个平面与几何体表面交线围成的封闭图形,。
截面图形更好的将平面几何与立体几何联系起来,探究具体几何体的截面图形有助于更深入的认识几何体,发展正确的空间观念。
对于一个几何体不同的切截方式所得到的截面图形可能出现不同的情况。
现具体以正方体为例来探究正方体的截面图形形状。
一个平面截正方体与各面的交线都是线段,因此正方体的截面图形都是平面图形。
正方体有六个面,用一个平面去截正方体至少要经过正方体的三个面而最多要经过六个面,所有出现的截面图形边数至少是三条而最多是六条,则只可能出现三角形、四边形、五边形、六边形。
一、截面图形是三角形用一平面去截正方体经过正方体三个面时得到的截面图形是三角形1.截面图形是锐角三角形如下图,一个平面截正方体任意三个面得到截面△EFG ,BE=a,BF=b,BG=c.可得EF=22b a +,EG=22c a +,FG=22c b +.(1)如图①,当a ≠b ≠c 时,则EG ≠FG ≠EF,即截面△EFG 是一般三角形。
(2)如图②,当a=b ≠c 时,则EG=FG ≠EF 即截面△EFG 是等腰三角形。
同理可得a=c ≠b 或b=c ≠a 时截面△EFG 是等腰三角形。
(3)如图③,当a=b=c 时EF=FG=EG 即截面△EFG 是等边三角形2.截面图形不能是直角三角形如图①,2EF =22b a +,2FG =22c b +,2EG =22c a +,则222EG FG EF +<,222EG EF FG +<,222EG FG EF +<,所以截面三角形不可能是直角三角形。
3.截面图形不可能是钝角三角形如图①,cos ∠FEG=EG EF FG EG EF ⋅-+2222=22222222222ca b a c b c a b a +⋅+--+++ =22222c a b a a +⋅+>0,则0<∠FEG< 90.同理可得0<∠EFG< 90.0<∠EGF< 90. 所有截面图形不可能是钝角三角形。
正方体的截面问题研究资料讲解
正方体的截面问题研究研究性学习报告——正方体的截面形状【课题】正方体的截面形状【作者】刘可歆岳新茹【摘要】探究正方体截面形状,通过实践和图示证明其结果,列举特例。
【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。
再通过网络查询资料,寻找未猜想到的情况。
【研究过程】探究1:当截面为三角形根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,正方体可以截得三角形截面。
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
2. 正方体最大面积的截面四边形:通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。
五年级:正方体截面图形
关于正方体截面图形的研究报告问题背景:一天,妈妈在切胡萝卜做菜,突然问我:“成宇轩,这个胡萝卜块切成了什么形状,你知道吗?”我跑过去一看,笑着说“就是一个正方体”,妈妈说,“最近你的课外书上提到正方体截面的问题,你解决了吗?”我说,“还没有啊,我感觉答案有很多啊”,妈妈摇摇手中的胡萝卜说,“这个可以帮助你吗?”对啊,我一拍脑门,对了,可以动手实验一下。
研究目标:通过动手操作实践,研究将一个正方体切一刀,截面可能是几边形?研究过程:一、材料准备:用胡萝卜切成正方体形状二、实验步骤:1、胡萝卜切成小正方体。
2、将刀和正方体的三条边接触,使得截面成三角形。
还可以这样切,即切到三个对角时,截面是一个大的等边三角形。
3、将刀和正方体的四条边接触,使得截面成四边形,这两个四边形(如下图)。
这副图的截面是长方形:这副图的截面是正方形:4、还有截面是梯形的,这是将刀从上面两边切起到下面的两个顶点。
5、将刀和正方体的两条棱接触,即把正方体截成体积相等的两部分,使得截面成四边形。
6、将刀由上面的一条棱切起,并接触到下面的两条棱,使得截面成四边形。
7、将刀和正方体的五条棱接触,使得截面成五边形。
8、将刀和正方体的六条棱接触,使得截面成六边形,切的时候感觉为了容易一些,最好和每条棱的中点接触比较好。
三、实验结论:1、将正方体切一刀,可以得到三角形、长方形、正方形、梯形这样的四边形、五边形和六边形。
2、切的过程中,刀接触到几条边,截面就有几个角,形成的截面就是几条边,截面就是几边形。
3、特别发现两点:第一是若刚好切到三个对角时,截面是一个大的等边三角形。
六边形截面比较难切好,只要把刀接触到六条棱的中点,就很容易形成六边形截面。
实验感想:在妈妈的鼓励下,我通过自己动手实践解决了这个困扰我的问题,我感到很高兴。
通过这样的研究活动,我感到非常有收获,本来在我的头脑中很难想象出的五边形、六边形这样的图形,通过亲手切出来,我感觉现在我可以很轻松的想象出五边形和六边形截面图形。
正方体截面的形状
1.主要内容
正方体截面的形状与特征: (1)三角形 只能是锐角三角形
(2)四边形
(3)五边形 (4)六边形
①两组对边分别平行 ②只有一组对边平行 不可能是直角梯形 有两组边分别平行 不可能是正五边形
三组对边分别平行
2.探究的步骤
观察--发现--猜想--论证
江西省中小学优秀教学课例展
《正方体截面的形状》 师大附中 曾 敏 江西省中小学优秀教学课例展示
如图,已知QRP, 求证:QRP是锐角三角形.
a2 b2
b a
c
a2 c2
b2 c2
江西省中小学优秀教学课例展示
正方体的三角形截面 是锐角三角形
长方体的三角形截面 是锐角三角形
正方体的截面四边形 不可能是直角梯形
DD22 AA22
CC22
BB22 R
DD11 AA11
CC11 PP BB11
《正方体截面的形状探究》 师大附中 曾 敏 江西省中小学优秀教学课例展示
什么是截面?
用一个平面去截一个几何体,得到的平面图形, 叫做截面.
说明:截面是平面和几何体的表面交线围成 的封闭图形(含内部).
实验探究
正方体截面的形状
实验探究
正方体截面的形状有:
三角形、四边形、五边形、六边形 有可能出现七、八边形吗?
BBB BD
CCACC
M
AAACA N
DDDBD
小试牛刀
一个棱长为3的正方体, 给定三
个点M、N、P (如图Байду номын сангаас, 若|MB1|=1, A1A¢
|NB |=2, |BP |=2.试一试, 如何沿着这
三个点做出一个截面?
正方体截面的形状 (3)
正方体截面的形状1.按截面图形的边数分类:三边形(锐角三角形,等腰三角形,等边三角形)四边形(矩形,菱形,正方形,等腰梯形,梯形)五边形(五边形)六边形(六边形,正六边形)2.(1)证明:截面是三角形①锐角三角形证明:∵设三边为a,b,c ,∴则证明a^2+b^2>c^2,且cosC>0,C为锐角。
同理可证,B、C也是锐角,所以三角形ABC是锐角三角形。
②等腰三角形证明:取相邻两边任意两点,距离两边交点相等,在第三边取任意一点(与交点不重合)∵AB长确定,AC=AD,∠CAB=∠DAB=90°。
∴根据勾股定理可知CB=DB且三角形为等腰三角形③等边三角形证明:在AB.AC.AD上,取三点距离原点A相同。
∵图形为正方体。
∴AB=AC=AD又∵三线两两垂直,根据勾股定理知BC=CD=BD,且截面为等边三角形。
(2)证明:截面是四边形。
①.矩形.正方形。
证明::取任意一平面平行于上下底面或侧面。
且所截图形为正方形。
又∵正方形是特殊的矩形,∴截面可以是矩形。
∵ABCD平行于上底面,∴AB=BC=CD=AD又∵AB.BC.CD.AD相交互相垂直,所以截面为正方形。
②.菱形证明:以相对顶点为菱形对点,取与顶线不相交的相对侧棱中点,所截平面。
∵图形为正方体,所以对边平行且相等。
∴截面为平行四边形。
又∵AB=BD,AE=DF.∠BAE=∠BDF=90°,且BE=BF. ∴截面为菱形③梯形.等腰梯形证明:当平面不垂直底面时,且在上底面的截线段平行对角线,所得的截面图形可能为梯形。
当上下底面的截线段都平行于同一条对角线,所得的截面图形可能为等腰梯形。
∵AB∥CD, ∴ABCD为梯形。
作AF’⊥CF,BF1⊥FD又∵AE=BE,CF=FD,AF’=BF1=EF. ∴AC=BD且截面为等腰梯形。
(3)证明:截面是五边形。
证明:第一个为五边形,在正面上画一个直线,直线一端为右下角另一段为左前侧棱1/2往上这样将直线延长与正上棱相交同样的道理在右侧面画一条直线直线一端为右下角(与上同理)另一段为后右侧棱1/2往上这样将直线延长与上右侧棱相交由图得所截平面为五边形。
正方体的截面问题研究报告
正方体的截面问题研究报告研究报告:正方体的截面问题一、引言:正方体是一种具有六个面都是正方形的立体,它具有许多有趣的性质和特点。
其中一个问题是关于正方体的截面问题,即在不同位置和方式截取正方体,观察其截面形状和特征。
本研究报告将对正方体的截面问题进行研究和分析。
二、研究目的:1. 研究正方体的截面形状及特征。
2. 探索正方体的不同截面位置和方式对截面形状的影响。
3. 分析正方体的截面特性与其它几何形体的关系。
三、研究方法:通过数学分析与计算机模拟相结合的方式进行研究。
首先,研究者将正方体进行截面,观察并记录截面形状、面积和其他特征。
然后,通过数学模型和计算机模拟,研究者将确定各种截面形状的数学方程,并分析其特性和关系。
四、实验过程与结果:1. 实验过程:研究者首先在正方体的不同位置划定截面平面,包括水平截面、垂直截面和倾斜截面。
然后,使用切割工具在规定的截面平面上进行截取操作,获得正方体的截面。
最后,通过测量和计算,记录截面的形状、面积及其他特征。
2. 实验结果:不同位置和方式的截面形状各不相同。
水平截面和垂直截面一般为正方形,但大小和位置不同。
而倾斜截面则为一种四边形,具有奇特的形状。
截面的面积也因位置和方式的不同而有差异。
五、分析与讨论:1. 正方体的截面形状与其位置和方式密切相关。
对于水平和垂直截面,截面形状为正方形,且大小和位置相对稳定。
而倾斜截面则更具变化性,形状可能是一种特殊的四边形。
2. 正方体的截面特性与其他几何形体有一定的关系。
在特定的截面位置和方式下,正方体的截面形状可能与柱体、圆柱体等具有相似的形态。
3. 正方体的截面问题与数学几何有密切关系,通过研究正方体的截面形状和特性,可以深入理解几何形体的性质,丰富几何学科的研究。
六、结论:通过对正方体的截面问题进行研究和分析,我们发现正方体的截面形状与其位置和方式密切相关,同时也与其他几何形体具有一定的关系。
正方体的截面问题在数学几何研究中具有一定的重要性,对于深入理解几何形体的性质具有积极的作用。
北师大版必修2《正方体截面的形状》教案及教学反思
北师大版必修2《正方体截面的形状》教案及教学反思一、教学目标1.了解正方体的基本性质和特征。
2.了解正方体截面的形状、数量和位置。
3.掌握正方体截面的形状与位置的关系。
4.学会应用平行四边形的性质解决问题。
二、教学内容1.正方体截面的形状。
2.正方体截面的数量和位置。
3.正方体截面形状与位置的关系。
4.平行四边形的性质。
三、教学过程第一节:正方体截面的形状1.引入学习:以举例的方式介绍正方体的性质和特征,引导学生思考正方体的截面形状与正方体自身的关系,并展示相关资料和图片。
2.观察实验:让学生感知正方体截面形状的多样性,让学生对各类正方体截面形状有一个初步的认识。
3.思考讨论:让学生围绕一组正方体截面图像进行思考讨论,从中归纳出正方体截面形状与位置的关系,帮助学生更好地理解正方体截面的性质。
第二节:正方体截面的数量和位置1.引入学习:通过实物模型和横截面图像的展示,让学生认识正方体的截面数量和位置,并分析其特点。
2.同步练习:带领学生做相关练习,检测学生掌握正方体截面数量和位置的能力。
3.思维拓展:提供实际生活中的例子,引导学生思考正方体截面的应用场合,并探讨其可能的解决方案。
第三节:正方体截面的形状与位置的关系1.引入学习:引导学生首先考虑平面上的平行四边形,帮助他们理解平行四边形的性质。
2.探究实验:通过在正方体中找到各种平面的截面,让学生进一步了解正方体截面的性质。
3.应用实践:提供实际例子,帮助学生应用所学的知识解决实际问题,并强化学生对正方体截面形状与位置的关系的理解。
四、教学反思正方体截面的形状是初中数学中难度较大的一个知识点,需要学生对正方体的特征有很好的掌握,同时也需要学生具备分析、归纳、推理的能力。
在教学过程中,我采用了让学生从具体事例出发,逐渐理解抽象的知识点的方式。
通过引导学生观察实物模型、探究实验、应用拓展等方式,让学生在感性认识的基础上,逐渐过渡到理性认识。
同时,在教学中我也将同步练习贯穿始终,定期检测学生掌握的程度。
正方体的截面问题研究报告
研究性学习报告——体的截面形状【课题】体的截面形状【作者】可歆岳新茹【摘要】探究体截面形状,通过实践和图示证明其结果,列举特例。
【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。
再通过网络查询资料,寻找未猜想到的情况。
【研究过程】探究1:当截面为三角形根据一定角度过体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,体可以截得三角形截面。
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.形:因为该立体几何图形是体,所以用从任意位置与该体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取体,得到的截面为形。
====》》》由图示可知,竖直方向截取体,得到的截面为形。
2.矩形:因为形也属于矩形,所以对形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取体可以得到矩形。
3.平行四边形:当平面与体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与体的各面平行时,所得截面可能为平行四边形。
4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
2. 体最大面积的截面四边形:通过猜想及查询资料可知,体截面可能得到的四边形有:形、矩形、梯形、平行四边形。
根据四边形的面积公式:面积=长*宽联系体图形:得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大,又因为在各个情况下的宽不变。
关于一个正方体截面的小论文,500字
关于一个正方体截面的小论文,500字
正方体是一种十分常见的几何体,不管是在题干中,还是在生活上,都已是我们眼中的常客。
但就是这么令人熟悉的物体,在它的背后仍然有许多有趣、深奥,甚至堪比未解之谜的问题待我们一一发掘、解答。
这不,正方体截面形状的多样性则是像这样一个趣味无穷的讨论点。
借助几何画板,我也发现了它其中的一些奥秘。
多次试验过后,我归纳出4种正方体的截面形状:三角形,四边形,五边形以及六边形。
下面,我们来讨论讨论这4种截面形状的产生条件。
三角形应该是我们最容易发现的截面形状之一了。
“很随便”地一截,就可以获得一个三角形截面。
当截面仅截过同一顶点的三条棱时,即可截得一对三角形截面。
二、四边形
四边形形状的截面也是比较容易发现的。
在此分以下两种情况讨论:
1. 当截面仅过四条相互平行的棱时,则有四边形截面出现。
2. 当截面仅过一个面内一对相交棱及其平行面内另一对完全相同的相交棱即可得到四边形截面。
四边形的出现和获得可由上述三角形某一顶点的运动,即截面绕棱旋转的角度推导而来。
运用这个顶点“一生二”的思路,我们应该很容易进行后面的探究。
若要得到面积最大的截面四边形,则可作以两条平行的面对角线为长,以对棱为宽的矩形。
三、五边形
五边形截面相对于前两种截面形状来说就不是那么能直观地看出来了——当然,我们借助前面顶点“一生二”的思想,也可较为容易地得到五边形的截面。
四、六边形
依据刚才所提出的思想,下面我们进行六边形的研究,将所得五边形在正方体底面上的棱所对顶点继续上移,即可得到六边形。
截正方体的截面形状
截正方体的截面形状《截正方体的截面形状,超有趣的探索!》嗨,小伙伴们!今天咱们来聊一个超级好玩的事儿——截正方体的截面形状。
这可不像看起来那么简单哦,里面有着好多奇妙的东西呢。
我最开始接触这个的时候,就想啊,正方体方方正正的,截一下能有啥特别的形状呢?我就拿了个小正方体模型,就像那种小塑料块块做的正方体。
我和同桌就开始拿着小刀(当然是那种很安全的塑料小刀啦,可不能用真刀,危险着呢),打算去截一截这个正方体。
我先斜着截了一下,哇塞,出来的形状可把我惊到了。
这个截面不是方的,也不是正正的三角形,而是一个斜斜的三角形。
我就问同桌:“你看,这个三角形好奇怪呀,和咱们平时画的三角形都不太一样呢。
”同桌瞅了瞅说:“是啊,它这个边都是斜着的,感觉像个调皮的小三角。
”我就想啊,这个斜斜的三角形就像一个歪着脑袋的小精灵,有点神秘又有点可爱。
然后我们又换了个方向截,这次我们想试着平行着一个面去截。
嘿,这一截可不得了,出来的截面居然是个正方形。
这就好像是从正方体这个大家庭里又分离出了一个小正方形家庭一样。
我高兴得直拍手,说:“哈哈,这个我能理解,就像是从一个大蛋糕上切出了一块正方形的小蛋糕。
”同桌也笑了,说:“对呀,这个正方形就规规矩矩地待在那儿,可不像刚才那个调皮的三角形。
”接着呢,我们更来劲了。
我们试着从一个顶点出发,向相对的面去截。
哇哦,这次出现的是一个三角形,不过这个三角形和之前那个斜斜的三角形又不一样。
这个三角形是那种尖尖的,就像山峰一样。
我就对同桌说:“你看这个三角形,像不像那种超级尖的山顶啊?”同桌眼睛一亮,说:“还真像呢,感觉这个三角形充满了力量,就像要冲破什么似的。
”我们还不满足呢,又想啊,如果我们从正方体的棱上去截会怎样呢?我们小心翼翼地把小刀放在棱上,然后慢慢截下去。
这次出现的截面是个长方形。
这个长方形长长的、扁扁的,我觉得它就像一个长长的小床。
我跟同桌说:“你看这个长方形,像不像小人儿睡觉的小床呀?”同桌哈哈大笑,说:“你可真能想,不过还真有点像呢。
正方体截面的探究
正方体截面的探究教学设计无为县襄安中学李向林背景介绍为了使课改工作开展的更有成效,很重要的方面,就是要重构课堂,在现代课堂的教学中,我们应该清楚地认识到:1.课堂不是教师表演的舞台,而是师生之间交流、互动的舞台。
2.课堂不是对学生进行训练的场所,而是引导学生发展的场所。
3.课堂不只是传授知识的场所,而更应该是探究知识的基地。
4.课堂不是教师教学行为模式化运作的天堂,而是教师教育智慧充分展现的竞技场。
在进行立体几何中“如何求作平面与平面的交线”这部分内容的教学时,为了提高学生学习立体几何的兴趣,帮助一些学生克服对立体几何的畏惧心理,我适时补充了“正方体的截面”这个内容。
考虑到要通过会“求作平面与平面的交线”从而学会“过已知点求作正方体的截面”对学生而言是有一定难度的。
因此,能否通过这节课的学习让学生体会到数学知识就在我们身边、感悟到数学的美,激发出学生学习数学的兴趣和强烈的求知欲望,初步培养学生动手实验、观察比较、归纳总结的能力和探究意识、创新意识,就成为这节课首要解决的问题。
为了更好地突破以上难点,落实新课标的精神,我运用"学生为主体,教师为引导,问题为核心,体验为红线"的探究性学习方式,逐步培养学生的创造性思维;在教学策略上我通过实物操作与电脑演示相结合的方法帮助学生了解正方体截面的各种可能的形状以及有否特殊的形状。
教材分析《正方体截面的探究》是人民教育出版社《普通高中课程标准实验教科书·数学·必修2》关于正方体的“截面”问题的教学设计。
本课是在学生已经学习了平面的三个基本性质的基础上,为了更深刻地理解平面图形与立体图形之间的关系及求作平面与平面的交线,帮助学生初步建立空间观念,发展几何直觉,而安排的一节以实验操作为主的探究课。
新课程标准强调课程实施应从学生的学习兴趣,生活经验和认知水平出发,倡导体验、实践、参与、交流的学习方式和任务型的教学途径,发展学生的主动思维能力和大胆实践的创新精神。
正方体的截面
正方体的截面引言截面是指一个物体被一个平面所切割后的形状。
正方体是一个具有六个相等的正方形面的立方体。
在本文中,我们将讨论正方体的截面形状和性质。
正方体的基本概念正方体是一种特殊的立方体,具有六个相等的正方形面。
它的每个面都与其他三个面相邻,形成直角相交。
正方体的边长被定义为所有正方形面的边长。
正方体的截面形状正方体的截面形状取决于截割平面的方向和位置。
根据截面与正方体边长的相对位置,可以将截面分为以下几种情况:1. 水平截面当截割平面与正方体的底面平行时,截面为一个正方形。
正方形的边长等于正方体的边长。
2. 垂直截面当截割平面与正方体的一个侧面平行时,截面为一个长方形。
长方形的边长等于正方体的边长,而宽度则取决于截割平面与正方体的相对位置。
3. 平面截面当截割平面与正方体的一个角相交时,截面为一个不规则多边形。
多边形的形状取决于截割平面的位置和角度。
4. 对角线截面当截割平面通过正方体的两个相对角点时,截面为一个菱形。
菱形的对角线为正方体的对角线。
5. 中心截面当截割平面通过正方体的中心点时,截面为一个正六边形。
正六边形的边长等于正方体的边长。
正方体截面的性质正方体的截面具有一些特殊的性质,这些性质可以用来解决一些几何问题。
以下是一些常见的性质:1. 截面面积正方体的截面面积取决于截割平面的形状和位置。
对于水平和垂直截面,其面积等于正方体的底面积。
对于其他类型的截面,其面积可以通过几何计算方法进行求解。
2. 截面形状对称性正方体的截面形状具有一定的对称性。
例如,水平和垂直截面是关于正方体的中心点对称的。
对称性可以帮助我们简化计算和分析截面的性质。
3. 截面相对位置正方体的截面相对位置可以用来确定截面之间的关系。
例如,两个水平截面之间的距离等于正方体的高度。
总结正方体的截面形状和性质是几何学中的重要概念。
通过研究截面,我们可以更好地理解正方体的结构和特性。
了解正方体截面的形状和性质对于解决几何问题和应用数学都具有重要的意义。
正方体截面探究
探索用平面截正方体所得截面形状
山东于秀坤
用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况.下面让我们来探索用平面截正方体所得截面的形状.
我们知道正方体有六个面,用一个平面去解正方体至少要经过三个面,最多经过六个面.所以出现的截面只可能是三角形、四边形、五边形和六边形.
一、截面是三角形
用一平面截正方体,当平面经过正方体的三个面时,所得的截面的形状为三角形.所得的三角形可能是锐角三角形(如图1);等腰三角形(如图2);等边三角形(如图3).其中等边三角形三个顶点是正方形的顶点.
图1 图2 图3
二、截面是四边形
用一个平面截正方体,当平面经过正方体的四个面时,所得截面可能是正方形、长方形、梯形.
①用平行于底面的一个平面去截正方体时,按图4方式得到的截面是正方形.
图4
②按图5或图6或图7的方式切截,得到的截面是长方形
图5 图6 图7
③按图8的方式所得截面为梯形.
图8
三、截面是五边形
用平面截正方体,当平面经过正方体的五个面时,所得截面是五边形.如图9.
图9
四、截面是六边形
用平面截正方体,当平面经过正方体的六个面时,所得截面是六边形,如图10.
图10
总结:用一个平面截正方体,由于正方体共有六个面,所以截面不可能是七边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于正方体截面形状探究
引题:
问题1:什么叫几何体的截面?
答:一个几何体与一个平面相交所得到的平面图形叫做几何体的截面。
问题2:截面的边是如何得到的?
答:截面的边是平面和几何体表面的交线。
问题3:正方体是立体几何中一个重要的模型,它是一种非常对称的几何体。
如果我们拿一个平面去截一个正方体那么会得到什么形状的截面图形呢?截面图形最多有几条边?
答:因为正方体有六个面,所以它与平面最多有六条交线,即所截到的截面图形最多有六条边。
所以截图可能是三角形,四边形,五边形,六边形。
探究1:截面图为三角形时,有几种情况? 1. 是否可以截出等腰三角形:
E
A A 1
解析:
如上图,一正方体被一平面所截后得到截面GEF
显然,只要BE=BF 就有GE=GF, ⊿GEF 就是等腰三角形 所以,截到等腰三角形的情况存在。
2.是否可以截出等边三角形: 解析
E
A A 1
一正方体被一平面截后得到三角形GEF , 只要BE=BF=BG 就有GE=EF=GF 所以,截到等边三角形的情况存在。
3.是否可以截出直角三角形:
A A 1
解析:若一正方体被一平面截后∠GEF 是直角, 那么:GE ⊥EF 又因为GB ⊥EF
所以EF ⊥面GBE 所以EF 与FB 重合 即E 点与B 点重合 不合实际
所以,这截得是普通三角形,不是直角三角形。
结论1:用平面去截正方体能截到三边形:
(1)等腰三角形,(2)等边三角形,(3)普通三角形; (不能截得直角三角形)
探究2:如果,截面为四边形,那么,可以截出哪几类呢? 1.可以截出长方形:
分析:过一正方体的一棱有无数个矩形,只要长宽不等,就是长方形。
所以,存在这一情况。
F
A A C 1
做法:
如上图;取正方体一棱AB ,作与棱AB 平行的平面就可以得到一个矩形截面。
2.可以截出正方形:
分析:正方体六个表面都是正方形只要用一平行于原表面的平面去截正方体,就可以得到正方形截面,如图所示。
F
A
A 1
3.可以截出梯形:
分析:用一平面从正方体上表面斜截下,与下底面相交,因为上下两底面平行,由面面平行的性质定理可得EH ∥FG ,只要EH ≠FG,所以可截到梯形。
A
A C 1
4、截面还可以是平行四边形或菱形
A
A 1
如图当AE= C 1F 时四边形A 1ECF 是菱形,调整面A 1ECF 的倾斜方向时四边形A 1ECF 可以是一般的平行四边形 结论2:用平面去截正方体能截到四边形: (1.)长方形;(2.)正方形;(3.)梯形;(4)平行四边形;(5)菱形。
探究3:截面多边形的边数最多有几条? 解析:
因为正方体有六个面,所以它与平面相交最多有六条交线,
即所截到的截面图形最多有六条边。
所以截图可能是三角形,四边形,五边形,六边形。
探究4:截面可能是正多边形吗?可能有几种? 答:截面是正多边形有3种可能。
有正三角形,正方形,正六边形。
如图所示
E
A
A 1
F
A
A 1
J
A
A C 1
E 、
F 、
G 、
H 、
I 、
J 分别是所在边的中点时六边形EFGHIJ 是正六边形 当截面是五边形时不可能是正五边形
如图:由面面平行的性质,五边形EFGHI 中必有E F ∥HI,G F ∥EI 所以五边形EFGHI 不可能是正五边形。
E
H
A
A 1
总结;
1.用平面去截正方体能截到三角形:
(1)等腰三角形,(2)三角形,(3)普通三角形;(不能截出直角三角形) 2.用平面去截正方体能截到四边形: (1)长方形、(2)正方形、(3)梯形、(4)平行四边形(5)菱形 3. 用平面去截正方体能截到三角形、四边形、五边形、六边形。
4.用平面截正方体可以截得的正多边形有正三角形、正方形、正六边形。
试题设计
1用平面去截正方体所得截面的形状可能有------ 2用平面去截正方体所得截面的边最多有------条
3用平面去截正方体所得截面可能有的正多边形有------ 可以设计成选择题或填空题。