2020届高考一轮复习理科数学(人教版)练习:第25讲 倍角公式及简单的三角恒等变换

合集下载

2025年新人教版高考数学一轮复习讲义 第四章 §4.4 简单的三角恒等变换

2025年新人教版高考数学一轮复习讲义  第四章 §4.4 简单的三角恒等变换

2025年新人教版高考数学一轮复习讲义第四章§4.4 简单的三角恒等变换能运用两角和与差的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式,并进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆).第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α= .(2)公式C 2α:cos 2α= == .(3)公式T 2α:tan 2α= .2sin αcos αcos 2α-sin 2α2cos 2α-11-2sin 2α2.半角公式(不要求记忆)常用结论1.二倍角公式的变形公式2.半角正切公式的有理化1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( )(2)半角的正切公式成立的条件是α≠(2k +1)π(k ∈Z ).( )(3)存在角α,使得sin 2α=2sin α成立.( )××√√2.(必修第一册P226T2改编)cos 15°等于√因为15°是第一象限角,所以cos 15°>0,3.若角α满足sin α+2cos α=0,则tan 2α等于√由题意知,tan α=-2,自主诊断返回第二部分探究核心题型题型一 三角函数式的化简A.-sin 20°B.-cos 20°√C.cos 20°D.sin 20°=cos 20°.(2)化简:cos 20°cos 40°cos 80°= . cos 20°cos 40°cos 80°微拓展积化和差、和差化积公式在三角函数的化简、求值中,有时可以用和差化积、积化和差公式,把非特殊角转化为特殊角进行计算.典例 化简下列各式.(1)sin 54°-sin 18°=;由和差化积公式可得,sin 54°-sin 18°=2cos 36°·sin 18°(2)cos 146°+cos 94°+2cos 47°cos 73°= .由和差化积和积化和差公式可得,cos 146°+cos 94°+2cos 47°cos 73°思维升华(1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.√可得3cos2θ-4cos θ-4=0,-cos θ原式=所以原式=-cos θ.题型二 三角函数式的求值命题点1 给角求值√命题点2 给值求值√命题点3 给值求角所以sin(2α-β)=sin 2αcos β-cos 2αsin β因为α为锐角,所以0<2α<π.又cos 2α>0,又β为锐角,(1)给值求值问题一般是将待求式子化简整理,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入即可. (2)给角求值问题一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角之间总有一定的关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除特殊角三角函数而得解.(3)给值求角问题一般先求角的某一三角函数值,再求角的范围,最后确定角.遵照以下原则:50°所以sin α=sin 50°,又因为α为锐角,所以α=50°.题型三 三角恒等变换的综合应用√∴sin α≠0,∵(1-cos 2α)(1+sin β)=sin 2αcos β,∴2sin2α(1+sin β)=2sin αcos αcos β,即sin α(1+sin β)=cos αcos β.∴sin α=cos αcos β-sin αsin β=cos(α+β),思维升华(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.A.c >a >bB.b >c >aC.c >b >aD.b >a >c √θ>a=sin θcos θ.知识过关一、单项选择题√因为α为锐角,2.(2023·邢台模拟)1+tan 22.5°等于√得2tan 22.5°=1-tan222.5°,所以(tan 22.5°+1)2=2,又tan 22.5°>0,√。

高考数学一轮复习 第25讲《三角函数的模型及应用》热点针对训练 理.pdf

高考数学一轮复习 第25讲《三角函数的模型及应用》热点针对训练 理.pdf

1.设向量a=(1, sin θ),b=(3sin θ,1),且a∥b,则cos 2θ等于( D ) A.- B.- C. D. 2.函数y=sin x(3sin x+4cos x)(xR)的最大值为M,最小正周期为T,则有序数对(M,T)为( B ) A.(5,π) B.(4,π) C.(-1,2π) D.(4,) 3.若0<xsin 3x B.4x0,所以f(x)为增函数. 又0<xf(0)=0, 即4x-sin 3x>0,所以4x>sin 3x. 4.(2012·南通市教研室全真模拟)已知电流I(A)随时间t(s)变化的关系式是I=Asin ωt,t[0,+∞),设ω=100π,A=5,则电流I(A)首次达到峰值时t的值为( C ) A. B. C. D. 解析:易得周期T==,则函数I=Asin ωt,t[0,+∞)首次达到峰值时t==. 5.(2013·山东省冲刺预测)如图,在台湾“莫拉克”台风灾区的搜救现场,一条搜救狗沿正北方向行进x m发现生命迹象,然后向右转105°,行进10 m发现另一生命迹象,这时它向右转135°回到出发点,那么x= m. 解析:因为ABC=180°-105°=75°,BCA=180°-135°=45°,A=180°-75°-45°=60°, 所以=,所以x= m. 6.(2012·长春市第四次调研测)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得BCD=15°,BDC=30°,CD=30 m,并在C测得塔顶A的仰角为60°,则塔的高度为 15 m. 解析:在BCD中,根据正弦定理得, BC=·sin CDB=×sin 30°=15, 在RtABC中,AB=BC·tan ACB=15×tan 60°=15为所求. 7.(2013·无锡市第一次模拟)如图,两座相距60 m的建筑物AB、CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角CAD的大小是 45° . 解析:tan ADC=tan DAB===3, tan DCA==2, 所以tan DAC=tan(π-ADC-DCA) =- =-=1, 而ADC>45°,DCA>45°,所以0°<DAC0), 则tan α===; tan β==, 因为tan φ=tan(α-β)= =≤==. 当x=,即x=1.2时,tan φ达到最大值, 因为φ是锐角, 所以tan φ最大时,视角φ最大,所以值班人员看表最清楚的位置为AD=1.2 m,即表盘前1.2 m处. 9.(2012·石家庄市质检)某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为ABC、ABD,经测量AD=BD=14,BC=10,AC=16,C=D. (1)求AB的长度; (2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由. 解析:(1)在ABC中,由余弦定理得 AB2=AC2+BC2-2AC·BCcos C =162+102-2×16×10cos C, 在ABD中,由余弦定理及C=D整理得 AB2=AD2+BD2-2AD·BDcos D =142+142-2×142cos C, 由得: 142+142-2×142cos C=162+102-2×16×10cos C, 解得cos C=. 又因为C为三角形的内角,所以C=60°, 又C=D,AD=BD,所以ABD是等边三角形, 故AB=14,即AB的长度为14. (2)小李的设计符合要求,理由如下: SABD=AD·BDsin D,SABC=AC·BCsin C, 因为AD·BD>AC·BC,sin D=sin C, 所以SABD>S△ABC, 由已知建造费用与用地面积成正比,故选择ABC建造环境标志费用较低,即小李的设计符合要求. 。

高考一轮复习专题三角函数(全)

高考一轮复习专题三角函数(全)

高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。

2020年高考数学一轮复习精品学案(人教版A版)――三角函数的图像与性质

2020年高考数学一轮复习精品学案(人教版A版)――三角函数的图像与性质

2020年高考数学一轮复习精品学案(人教版A版)三角函数的图象与性质一.【课标要求】1.能画出y=sin x, y=c os x, y=t a n x的图像,了解三角函数的周期性;2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最小值、图像与x轴交点等);3.结合具体实例,了解y=A sin(w x+φ)的实际意义;能借助计算器或计算机画出y=A sin (w x+φ)的图像,观察参数A,w,φ对函数图像变化的影响.二.【命题走向】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。

在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法.预测2020年高考对本讲内容的考察为:1.题型为1道选择题(求值或图象变换),1道解答题(求值或图像变换);2.热点问题是三角函数的图象和性质,特别是y=A sin(w x+φ)的图象及其变换;三.【要点精讲】1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈, 递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈, 递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心.4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

2019-2020年高考数学一轮复习第五章三角函数解三角形第24课二倍角的三角函数课件

2019-2020年高考数学一轮复习第五章三角函数解三角形第24课二倍角的三角函数课件

3.若 sin α=255,α∈0,π2,则 tan 2α=________. -43 [∵α∈0,π2,sin α=255, ∴cos α= 1-sin2α= 55, ∴tan α=2, ∴tan 2α=1-2tatnanα2α=1-4 4=-43.]
4.(2017·南京模拟)若 tan α= 3,则1+sinco2sα2α=________. 3 [1+sinco2sα2α=2si2ncoαsc2oαs α=tan α= 3.]
(4)等式 1+cos α=2sin2α2对∀α∈R 均成立.(
)
[答案] (1)× (2)× (3)× (4)×
2.下列各式中值为 23的是________.(填序号) ①2sin 15°cos 15°;②cos215°-sin215°;③2sin215°-1;④sin215°+cos215°. ② [2sin 15°cos 15°=sin 30°=12,cos215°-sin215°=cos 30°= 23,2sin215° -1=-cos 30°=- 23, sin215°+cos215°=1.]



·

主 学
第五章 三角函数、解三角形 课


第 24 课 二倍角的三角函数
分 层
明 考
训 练

·




[最新考纲] 内容
二倍角的正弦、余弦及正切
要求
A
B
C

1.二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α; (2)cos 2α=cos2α-sin2α=_2_c_o_s_2α__-__1__=__1_-__2_s_in_2_α__;

高考一轮复习专题三角函数(全)

高考一轮复习专题三角函数(全)

高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, |α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=kπ,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ. 两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cosα=x r 、tan α=yx 分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α. 公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数y =tan )4(x -π的定义域为( ).A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ).A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域.(2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π.(1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。

2020年高考数学一轮复习考点21二倍角公式与简单的三角恒等变换必刷题理含解析

2020年高考数学一轮复习考点21二倍角公式与简单的三角恒等变换必刷题理含解析

考点21 二倍角公式与简单的三角恒等变换1.设cos50cos127cos40cos37a =︒︒+︒︒,)sin 56cos56b =︒-︒,221tan 391tan 39c -︒=+︒,则a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >>C .c a b >>D .a c b >>【答案】D 【解析】由三角恒等变换的公式,可得cos50cos127cos 40cos37cos(50127)cos(77)cos77sin13a =︒︒+︒︒=︒-︒=-︒=︒=︒,)sin 56cos5656sin(5645)sin11222b =︒-︒=︒-︒=︒-︒=︒ 22222222sin 3911tan 39cos 39cos 39sin 39cos78sin12sin 391tan 391cos 39c ︒--︒︒===︒-︒=︒=︒︒+︒+︒, 因为函数sin ,[0,]2y x x π=∈为单调递增函数,所以sin13sin12sin11︒>︒>︒,所以a c b >>,故选D.2.已知4cos 5=-α,()π,0∈-α,则πtan 4⎛⎫-= ⎪⎝⎭αA .17 B .7 C .17-D .7-【答案】C 【解析】4cos ,(,0)5a απ=-∈-∴(,)2παπ∈--33sin ,tan 54αα∴=-=则tan 1tan 41tan πααα-⎛⎫-= ⎪+⎝⎭31143714-==-+ 故选:C . 3.已知sin 3cos 36ππαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,则tan2α=( ) A.-B. C.D【答案】A 【解析】由题11sin 3sin 22a a a a -=-+桫,则tan 2α=- 故tan2α=22tan =1tan aa--故选:A .4.函数()|sin |cos 2f x x x =+的值域为( ) A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D 【解析】22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦.故选:D .5.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若ABC ∆为锐角三角形,且满足,2sin 2tan (2sin cos 2)C A C C =+-,则等式成立的是( )A .2b a =B .2a b =C .2A B =D .2B A =【答案】B 【解析】 依题意得()2sin 2sin cos 22cos cos 2cos A C C C C A =-+-,2sin sin 12cos cos C A C A=-,()2sin cos cos sin sin A C A C A +=,即sin 2sin A B =,由正弦定理得2a b =,故选B.6.若2sin 43πα⎛⎫+= ⎪⎝⎭,则sin2α=( ) A .19B .19-C .59D .59-【答案】B 【解析】因为241212sin 124499cos ππαα⎛⎫⎛⎫+=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, 又2))si c 2n 2cos(os 2(4ππααα-==+-+,所以1sin 29α=-,故选B.7.cos()2πθ+=cos2θ的值为( ) A .18 B .716C .18±D .1316【答案】A 【解析】因为cos 24πθ⎛⎫+=- ⎪⎝⎭,所以sin θ=21cos 212sin 8θθ=-=. 故选A .8.已知2cos sin αα=,则cos2=α( )A .12B .32- C .12D 2【答案】D 【解析】解:由2cos sin αα==21sin a -,可得1sin 2a =,由cos2=α212sin a -,可得cos2=α2122-⨯=⎝⎭,故选D. 9.若4tan 3α=,则cos 22απ⎛⎫+= ⎪⎝⎭( ) A .2425-B .725-C .725D .2425【答案】A 【解析】 因为4tan 3α=, 所以22242sin cos 2tan 243cos 2sin 22162sin cos 1tan 2519παααααααα⎛⎫+=-=-=-=-⨯=- ⎪++⎝⎭+, 故选:A .10.若1sin()63πα-=,则2cos ()62πα+=________. 【答案】23【解析】 由题意可得:212cos 1cos cos sin 6232333παππππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+=-+=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,即:212cos 1623πα⎛⎫+-= ⎪⎝⎭, 解方程可得:22cos 623πα⎛⎫+=⎪⎝⎭. 11.已知tan 2α=,则3cos 2sin cos 22ππααα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭__________. 【答案】1- 【解析】因为2222223cos sin cos sin cos 2sin()cos()22sin cos sin cos ππααααααααααα-++-=-++,所以2222223cos sin sin cos 1tan tan cos 2sin()cos()122sin cos 1tan ππαααααααααααα----++-===-++,应填答案1-。

2020版高考数学人教版理科一轮复习课时作业:25 解三角形的应用 Word版含解析

2020版高考数学人教版理科一轮复习课时作业:25 解三角形的应用 Word版含解析

课时作业25解三角形的应用第|一次作业根底稳固练一、选择题1.如图,两座灯塔A和B与河岸观察站C的距离相等,灯塔A 在观察站南偏西40° ,灯塔B在观察站南偏东60° ,那么灯塔A在灯塔B的(D)A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°解析:由条件及题图可知,∠A=∠B=40° ,又∠BCD=60° ,所以∠CBD=30° ,所以∠DBA=10° ,因此灯塔A在灯塔B南偏西80°.2.一名学生在河岸上紧靠河边笔直行走,某时刻测得河对岸靠近河边处的参照物与学生前进方向成30°角,前进200 m后,测得该参照物与前进方向成75°角,那么河的宽度为(A)A.50(3+1) m B.100(3+1) mC.50 2 m D.100 2 m解析:如下图 ,在△ABC 中 ,∠BAC =30° ,∠ACB =75°-30°=45° ,AB =200 m ,由正弦定理 ,得BC =200×sin30°sin45°=1002(m) ,所以河的宽度为BC sin75°=1002×2+64=50(3+1)(m). 3.为测出所住小区的面积 ,某人进行了一些测量工作 ,所得数据如下图 ,那么小区的面积是( D )A.3+64 km 2B.3-64 km 2C.6+34 km 2D.6-34 km 2解析:连接AC ,根据余弦定理可得AC = 3 km ,故△ABC 为直角三角形.且∠ACB =90° ,∠BAC =30° ,故△ADC 为等腰三角形 ,设AD=DC =x km ,根据余弦定理得x 2+x 2+3x 2=3 ,即x 2=32+3=3×(2-3) ,所以所求的面积为12×1×3+12×3×(2-3)×12=23+6-334=6-34(km 2). 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .假设a =b cos C +c sin B ,且△ABC 的面积为1+ 2 ,那么b 的最|小值为( A )A .2B .3 C. 2 D. 3解析:由a =b cos C +c sin B 及正弦定理 ,得sin A =sin B cos C +sin C sin B ,即sin(B +C )=sin B cos C +sin C sin B ,得sin C cos B =sin C sin B ,又sin C ≠0 ,所以tan B =1.因为B ∈(0 ,π) ,所以B =π4.由S △ABC =12ac sin B=1+ 2 ,得ac =22+4.又b 2=a 2+c 2-2ac cos B ≥2ac -2ac =(2-2)(4+22)=4 ,当且仅当a =c 时等号成立 ,所以b ≥2 ,b 的最|小值为2.应选A.5.(2021·郑州质量预测)在△ABC 中 ,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,假设△ABC 的面积S =3c ,那么ab 的最|小值为( C )A .28B .36C .48D .56解析:在△ABC 中 ,2c cos B =2a +b ,由正弦定理 ,得2sin C cos B =2sin A +sin B .又A =π-(B +C ) ,所以sin A =sin[π-(B +C )]=sin(B +C ) ,所以2sin C cos B =2sin(B +C )+sin B =2sin B cos C +2cos B sin C +sin B ,得2sin B cos C +sin B =0 ,因为sin B ≠0 ,所以cos C =-12 ,又0<C <π ,所以C=2π3.由S =3c =12ab sin C =12ab ×32 ,得c =ab 4.由余弦定理得 ,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号) ,所以(ab 4)2≥3ab ,得ab ≥48 ,所以ab 的最|小值为48 ,应选C.6. (2021·山东日照二模)如下图 ,在平面四边形ABCD 中 ,AB =1 ,BC =2 ,△ACD 为正三角形 ,那么△BCD 面积的最|大值为( D )A .23+2 B.3+12 C.32+2D.3+1解析:在△ABC 中 ,设∠ABC =α ,∠ACB =β ,由余弦定理得:AC 2=12+22-2×1×2cos α ,∵△ACD 为正三角形 ,∴CD 2=AC 2=5-4cos α ,S △BCD =12·2·CD ·sin ⎝ ⎛⎭⎪⎫π3+β=CD ·sin ⎝ ⎛⎭⎪⎫π3+β=32CD ·cos β+12CD ·sin β ,在△ABC 中 ,由正弦定理得:1sin β=AC sin α ,∴AC ·sin β=sin α ,∴CD ·sin β=sin α ,∴(CD ·cos β)2=CD 2(1-sin 2β)=CD 2-sin 2α=5-4cos α-sin 2α=(2-cos α)2 ,∵β<∠BAC ,∴β为锐角 ,CD ·cos β=2-cos α ,∴S △BCD =32CD ·cos β+12CD ·sin β=32·(2-cos α)+12sin α=3+sin ⎝ ⎛⎭⎪⎫α-π3 ,当α=5π6时 ,(S △BCD )max =3+1.二、填空题7.如下图 ,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15° ,∠BDC =30° ,CD =30 ,并在点C 测得塔顶A 的仰角为60° ,那么塔高AB 等于15 6.解析:在△BCD 中 ,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin30°=CD sin135° ,所以BC =15 2.在Rt △ABC 中 ,AB =BC tan ∠ACB =152×3=15 6.8.如下图 ,在△ABC 中 ,C =π3 ,BC =4 ,点D 在边AC 上 ,AD =DB ,DE ⊥AB ,E 为垂足 ,假设DE =2 2 ,那么cos A =64.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =BD =x ,∴在△BCD 中 ,BC sin ∠CDB=BD sin C ,可得4sin2A =x sin60°.① 在△AED 中 ,ED sin A =AD sin ∠AED,可得22sin A =x 1.② ∴联立①②可得42sin A cos A =22sin A 32,解得cos A =64.9.在△ABC 中 ,BC =2 ,AB →·AC →=2 ,那么△ABC 面积的最|大值是3.解析:由BC →=AC →-AB → ,得BC →2=(AC →-AB →)2 ,设|AB →|=c ,|AC →|=b ,那么b 2+c 2=8 ,又因为AB →·AC →=bc ·cos A =2 ,所以cos A =2bc ,所以sin 2A =1-4(bc )2 ,设△ABC 的面积为S ,那么S 2=14(bc )2sin 2A =14(b 2c 2-4) ,因为bc ≤b 2+c 22=4 ,所以S 2≤3 ,所以S ≤ 3.所以△ABC 面积的最|大值是 3.10.(2021·武汉市调研测试)在钝角△ABC 中 ,内角A ,B ,C 的对边分别为a ,b ,c ,假设a =4 ,b =3 ,那么c 的取值范围是(1 ,7)∪(5,7).解析:三角形中两边之和大于第三边 ,两边之差小于第三边 ,据此可得1<c <7 ,①假设∠C 为钝角 ,那么cos C =a 2+b 2-c 22ab =25-c 224<0 ,解得c >5 ,②假设∠A 为钝角 ,那么cos A =b 2+c 2-a 22bc =c 2-76c <0 ,解得0<c <7 ,③结合①②③可得c 的取值范围是(1 ,7)∪(5,7).三、解答题11.(2021·全国卷Ⅰ)在平面四边形ABCD 中 ,∠ADC =90° ,∠A =45° ,AB =2 ,BD =5.(1)求cos ∠ADB ;(2)假设DC =2 2 ,求BC .解:(1)在△ABD 中 ,由正弦定理得BD sin A =AB sin ∠ADB. 由题设知 ,5sin45°=2sin ∠ADB, 所以sin ∠ADB =25.由题设知 ,∠ADB <90° ,所以cos ∠ADB =1-225=235.(2)由题设及(1)知 ,cos ∠BDC =sin ∠ADB =25.在△BCD 中 ,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC =25+8-2×5×22×25=25.所以BC =5.12.(2021·潮州二模)在锐角△ABC 中 ,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B +b cos A c =233sin C . (1)求C 的值;(2)假设a sin A =2 ,求△ABC 的面积S 的最|大值.解:(1)∵a cos B +b cos A c =233sin C , 由正弦定理可得sin A cos B +sin B cos A =233sin 2C ,∴sin(A +B )=233sin 2C ,∴sin C =233sin 2C .∵sin C >0 ,∴sin C =32 ,∵C 为锐角 ,∴C =60°.(2)由C =60°及c sin C =a sin A =2 ,可得c = 3.由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号) ,∴S =12ab sin C ≤12×3×32=334 ,∴△ABC 的面积S 的最|大值为334.第二次作业 (高|考)·模拟解答题体验1.(2021·北京卷)在△ABC 中 ,a =7 ,b =8 ,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解:(1)在△ABC 中 ,因为cos B =-17 ,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π ,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中 ,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314 ,所以AC 边上的高为a sin C =7×3314=332.2.(2021·益阳·湘潭调研考试)锐角△ABC 中 ,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -b c =cos B cos C .(1)求角C 的大小;(2)求函数y =sin A +sin B 的值域.解:(1)由2a -b c =cos B cos C ,利用正弦定理可得2sin A cos C -sin B cos C=sin C cos B ,可化为2sin A cos C =sin(C +B )=sin A ,∵sin A ≠0 ,∴cos C =12 ,∵C ∈(0 ,π2) ,∴C =π3.(2)y =sin A +sin B =sin A +sin(π-π3-A )=sin A +32cos A +12sin A =3sin(A +π6) ,∵A +B =2π3 ,0<A <π2 ,0<B <π2 , ∴π6<A <π2 ,∴π3<A +π6<2π3 ,∴sin(A +π6)∈(32 ,1] ,∴y ∈(32 ,3].3.锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos 2B -cos 2C -sin 2A =-sin A sin B ,sin(A -B )=cos(A +B ).(1)求角A ,B ,C ;(2)假设a = 2 ,求三角形ABC 的边长b 的值及三角形ABC 的面积.解:(1)∵cos 2B -cos 2C -sin 2A =-sin A sin B ,∴sin 2C +sin A sin B =sin 2A +sin 2B ,∴由正弦定理得c 2+ab =a 2+b 2 ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12 ,∵0<C <π ,∴C =π3.∵sin(A -B )=cos(A +B ) ,∴sin A cos B -cos A sin B =cos A cos B -sin A sin B ,∴sin A (sin B +cos B )=cos A (sin B +cos B ) ,∴sin A =cos A ,∴由A 为锐角 ,可得A =π4 ,B =π-A -C =5π12.(2)∵a = 2 ,A =π4 ,B =5π12 ,∴由正弦定理可得b =a ·sin B sin A =6+22 , ∴三角形ABC 的面积S =12ab sin C =12×2×6+22×32=3+34.4.(2021·武汉市调研测试)在锐角△ABC 中 ,内角A ,B ,C 的对边分别是a ,b ,c ,满足cos2A -cos2B +2cos(π6-B )cos(π6+B )=0.(1)求角A 的值;(2)假设b =3且b ≤a ,求a 的取值范围.解:(1)由cos2A -cos2B +2cos(π6-B )cos(π6+B )=0 ,得2sin 2B -2sin 2A +2(34cos 2B -14sin 2B )=0 ,化简得sin A =32 ,又△ABC 为锐角三角形 ,故A =π3.(2)∵b =3≤a ,∴c ≥a ,∴π3≤C <π2 ,π6<B ≤π3 ,∴12<sin B ≤32.由正弦定理a sin A =b sin B ,得a 32=3sin B ,∴a =32sin B ,由sin B ∈(12 ,32]得a ∈[ 3 ,3).5.如下图 ,在△ABC 中 ,C =π4 ,CA →·CB →=48 ,点D 在BC 边上 ,且AD =5 2 ,cos ∠ADB =35.(1)求AC ,CD 的长;(2)求cos ∠BAD 的值.解:(1)在△ABD 中 ,∵cos ∠ADB =35 ,∴sin ∠ADB =45.∴sin ∠CAD =sin(∠ADB -∠ACD )=sin ∠ADB cos π4-cos ∠ADB sin π4=45×22-35×22=210.在△ADC 中 ,由正弦定理得AC sin ∠ADC =CD sin ∠CAD =AD sin ∠ACD,即AC 45=CD 210=5222,解得AC =8 ,CD = 2.(2)∵CA →·CB →=48 ,∴8·CB ·22=48 ,解得CB =6 2 ,∴BD =CB -CD =5 2.在△ABC 中 ,AB =82+(62)2-2×8×62×22=210.在△ABD 中 ,cos ∠BAD =(210)2+(52)2-(52)22×210×52=55. 6.在△ABC 中 ,内角A ,B ,C 的对边分别为a ,b ,c ,假设b 2+c 2-a 2=bc .(1)求角A 的大小;(2)假设a = 3 ,求BC 边上的中线AM 的最|大值.解:(1)∵b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12.又0<A <π ,∴A =π3.(2)在△ABC 中 ,A =π3 ,a = 3 ,由余弦定理a 2=b 2+c 2-2bc cos A 得b 2+c 2=bc +3.那么b 2+c 2=bc +3≥2bc ,得bc ≤3(当且仅当b =c 时取等号).在△ABC 中 ,由余弦定理 ,得cos B =a 2+c 2-b 22ac .在△ABM 中 ,由余弦定理 ,得AM 2=AB 2+BM 2-2·AB ·BM ·cos B=c 2+a 24-2·c ·12a ·a 2+c 2-b 22ac=2c 2+2b 2-a 24=2bc +34≤94 , ∴AM ≤32.∴AM 的最|大值是32.。

2020年高考数学一轮复习《解三角形》

2020年高考数学一轮复习《解三角形》

第 6 页 共 22 页
7
AB 2BC 2sin C 4sin(120 C ) 2(sin C 3 cosC sin C )
2(2 sin C 3 cosC ) 2 7 sin(C ),其中 tan
所以
C
(0 ,120 ),因此 AB
2BC的最大值为 2 7.
3 ,
是第一象限角
2
变 式 3 已 知 a,b,c, 分 别 为 ABC 三 个 内 角 A, B, C 的 对 边 ,
3
2
b
a 评注 在 ABC 中,利用正弦定理
b
c 2R ,进行边与角的转化,
s i nA s i Bn sCi n
在条件中有边也有角时,一般考虑统一成边或角的形式,再由两角和与差的公
式来求解 .
2020 年高考数学一轮复习《解三角形》
第 5 页 共 22 页
6
变式 1 (1)若在锐角 ABC 中,若 A=2B,则 a 的取值范围为
B.{ k 3 k 6}
C.{ k k 6} D .{ k k 6 或 k 3}
分析 三角形问题首先根据题意画出三角形, AC 的最小值为 BC 边的垂线段, 再根据零点的意义及函数求解 .
解析 由 g (a) f (a) k 0, 且 b f (a). ,得 k f (a) b, 如图 4- 34 所示,由
a ,得c
sin A
a sin C sin A
1 65
12
21 .
20
13
评注 本题已知两角及一边,用正弦定理:在 ABC 中,
A B a b sin A sin B.
0, 据正弦定理得
变式 1 在 ABC 中,角 A, B,C 所对边依次为 a,b, c, a 2, b 2,

二倍角公式与简单的三角恒等变换-2020年领军高考数学(理)一轮必刷题

二倍角公式与简单的三角恒等变换-2020年领军高考数学(理)一轮必刷题

考点21二倍角公式与简单的三角恒等变换1.设cos50cos127cos 40cos37a =︒︒+︒︒,()sin 56cos562b =︒-︒,221tan 391tan 39c -︒=+︒,则a ,b ,c 的大小关系是()A .a b c >>B .b a c>>C .c a b>>D .a c b>>【答案】D 【解析】由三角恒等变换的公式,可得cos50cos127cos 40cos37cos(50127)cos(77)cos 77sin13a =︒︒+︒︒=︒-︒=-︒=︒=︒,()222sin 56cos56sin 56cos56sin(5645)sin11222b =︒-︒=︒-︒=︒-︒=︒22222222sin 3911tan 39cos 39cos 39sin 39cos 78sin12sin 391tan 391cos 39c ︒--︒︒===︒-︒=︒=︒︒+︒+︒,因为函数sin ,[0,]2y x x π=∈为单调递增函数,所以sin13sin12sin11︒>︒>︒,所以a c b >>,故选D.2.已知4cos 5=-α,()π,0∈-α,则πtan 4⎛⎫-=⎪⎝⎭αA .17B .7C .17-D .7-【答案】C 【解析】4cos ,(,0)5a απ=-∈- ∴(,)2παπ∈--33sin ,tan 54αα∴=-=则tan 1tan 41tan πααα-⎛⎫-=⎪+⎝⎭31143714-==-+故选:C .3.已知sin 3cos 36ππαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,则tan 2α=()A.-B .32C.D.2【答案】A 【解析】由题1331sin cos 3cos sin 2222a a a a 琪-=-+琪桫,则3tan 2α=-故tan 2α=22tan =1tan aa--故选:A .4.函数()|sin |cos 2f x x x =+的值域为()A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D 【解析】22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦.故选:D .5.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若ABC ∆为锐角三角形,且满足,2sin 2tan (2sin cos 2)C A C C =+-,则等式成立的是()A .2b a =B .2a b=C .2A B=D .2B A=【答案】B 【解析】依题意得()2sin 2sin cos 22cos cos 2cos A C C C C A =-+-,2sin sin 12cos cos C A C A=-,()2sin cos cos sin sin A C A C A +=,即sin 2sin A B =,由正弦定理得2a b =,故选B.6.若2sin 43πα⎛⎫+= ⎪⎝⎭,则sin 2α=()A .19B .19-C .59D .59-【答案】B 【解析】因为241212sin 124499cos ππαα⎛⎫⎛⎫+=-+=-⨯=⎪ ⎪⎝⎭⎝⎭,又2))si c 2n 2cos(os 2(4ππααα-==+-+,所以1sin 29α=-,故选B.7.cos()24πθ+=-,则cos 2θ的值为()A .18B .716C .18±D .1316【答案】A 【解析】因为7cos 24πθ⎛⎫+=- ⎪⎝⎭,所以sin 4θ=,所以21cos 212sin 8θθ=-=.故选A .8.已知2cos sin αα=,则cos 2=α()A .12B .32C .12D .2【答案】D 【解析】解:由2cos sin αα==21sin a -,可得51sin 2a -=,由cos 2=α212sin a -,可得cos 2=α211222⎛⎫--⨯= ⎪ ⎪⎝⎭,故选D.9.若4tan 3α=,则cos 22απ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】A 【解析】因为4tan 3α=,所以22242sin cos 2tan 243cos 2sin 22162sin cos 1tan 2519παααααααα⎛⎫+=-=-=-=-⨯=- ⎪++⎝⎭+,故选:A .10.若1sin()63πα-=,则2cos ()62πα+=________.【答案】23【解析】由题意可得:212cos 1cos cos sin 6232333παππππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+=-+== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,即:212cos 1623πα⎛⎫+-=⎪⎝⎭,解方程可得:22cos 623πα⎛⎫+=⎪⎝⎭.11.已知tan 2α=,则3cos 2sin cos 22ππααα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭__________.【答案】1-【解析】因为2222223cos sin cos sin cos 2sin()cos()22sin cos sin cos ππααααααααααα-++-=-++,所以2222223cos sin sin cos 1tan tan cos 2sin()cos()122sin cos 1tan ππαααααααααααα----++-==-++,应填答案1-。

2020版高考数学一轮复习第三章三角函数、解三角形课时作业25课件文新人教版

2020版高考数学一轮复习第三章三角函数、解三角形课时作业25课件文新人教版
解析 设在△ABC 中,a=13 里,b=14 里,c=15 里,所以 cosC= 1322×+1134×2-11452=132+124×-1135××1414+15=2×11430×14=153,所以 sinC=1123, 故△ABC 的面积为12×13×14×1123×5002×1 01002=21(平方千米)。
C.50 2 m
D.100 2 m
解析 如图所示,在△ABC 中,∠BAC=30°,∠ACB=75°-30°=45°,
AB=200 m,由正弦定理,得 BC=200s×in4s5in°30°=100 2(m),所以河的宽度
为 BCsin75°=100

2+ 4
6=50(
3+1)(m)。
答案 A
2.在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,若ttaannAA- +ttaannBB=
与∠CDB 互补,所以 cos∠ADB=-cos∠CDB,所以4b2+136-4= 16 3 3b
-b2+136-a2,所以 3b2-a2=-6②。联立①②解得 a=3,b=1,所以 AC 83 3b
=3,BC=3。在△ABC 中,cosC=BC2+2BACC·A2-C AB2=322+×332×-322=79。
由正弦定理,可得 sin2B=sinAsinC,
1-342= 47,因为 a,b,c


1 tanA

1 tanC

cosA sinA

cosC sinC

sinCcosA+cosCsinA sinAsinC=来自sinA+C sin2B

ssiinn2BB=si1nB=4 7 7。
(2)由B→A·B→C=32得 cacosB=32, 而 cosB=34,所以 b2=ac=2, 由余弦定理,得 b2=a2+c2-2accosB, 所以 a2+c2=5,所以(a+c)2=5+2ac=9, 所以 a+c=3。

两角和与差的正弦、余弦和正切公式课件-2025届高三数学一轮复习

两角和与差的正弦、余弦和正切公式课件-2025届高三数学一轮复习
2
2
1+cos 2β
1
− cos 2β
2
2
2
1
2
= .
2
]
方法3 (从“幂”入手,利用降幂公式先降次)
原式=
1−cos 2α 1−cos 2β

2
2
1
4
+
1+cos 2α
2

1+cos 2β
2
= (1 + cos 2αcos 2β − cos 2α − cos 2β) +
1
cos
2
1
4
2αcos 2β
s(2+β
co
)2=co
(α+β
s2
)−[2
s(α+β
co
)−1
]=

s2=co
(α+β
s2
)+β
α−α
2
sin
s2·co=co
co
(α+β
s2
)−α
s(2+β
co
)2=co
(α+β
s2
)−[2
s(α+β
co
)−1
]=

s2=co
(α+β
s2
)+β
α−
2
sin
=co
(α+β
s2
)−
s=co
co
(α+β
3
2 2
1
cos 2x = 1 − 2sin2 x = 1 − 2 × −
= .
3
9
例3 [教材改编P223 T5]利用倍角公式求下列各式的值:

2020版高考理科数学(人教版)一轮复习讲义:第四章+第一节+任意角和弧度制和任意角的三角函数和答案

2020版高考理科数学(人教版)一轮复习讲义:第四章+第一节+任意角和弧度制和任意角的三角函数和答案

第四章三角函数、解三角形全国卷5年考情图解高考命题规律把握1.从高考题型、题量来看,一般有两种方式:三个小题或一个小题另加一个解答题,分值上占17分左右.2.客观题主要考查:三角函数的定义,图象与性质,同角三角函数关系,诱导公式,和、差、倍角公式,正、余弦定理等知识.3.难度较大的客观题,主要在知识点的交汇处命题,如向量与三角的结合、正、余弦定理与三角恒等变换的结合等,主要考查数形结合、转化与化归思想.4.解答题涉及知识点较为综合.涉及三角函数图象与性质、三角恒等变换与解三角形知识较为常见.第一节任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类:①按旋转方向不同分为正角、负角、零角;②按终边位置不同分为象限角和轴线角.(3)终边相同的角❶:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+2kπ,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=yx(x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线、余弦线和正切线❷.(3)三角函数值在各象限内的符号,(1)终边相同的角不一定相等.(2)“锐角”不等同于“第一象限的角”,锐角的集合为{α|0°<α<90°},第一象限的角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z},小于90°的角包括锐角、负角、零角.(3)角的集合的表示形式不是唯一的,如⎩⎨⎧⎭⎬⎫α|α=2k π+π3,k ∈Z =⎩⎨⎧⎭⎬⎫β| β=2k π+7π3,k ∈Z .当角α的终边与x 轴重合时,正弦线、正切线都变成一个点,此时角α的正弦值和正切值都为0;当角α的终边与y 轴重合时,余弦线变成一个点,正切线不存在,此时角α的余弦值为0,正切值不存在.[熟记常用结论]1.象限角2.轴线角3.若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. [小题查验基础]一、判断题(对的打“√”,错的打“×”) (1)小于90°的角是锐角.( )(2)锐角是第一象限角,反之亦然.( )(3)相等的角终边一定相同,终边相同的角也一定相等.( ) (4)三角形的内角必是第一、二象限角.( ) 答案:(1)× (2)× (3)× (4)× 二、选填题1.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z)B .k ·360°+94π(k ∈Z)C .k ·360°-315°(k ∈Z)D .k π+5π4(k ∈Z) 解析:选C 由定义知终边相同的角中不能同时出现角度和弧度,应为π4+2k π(k ∈Z)或k ·360°+45°(k ∈Z),结合选项知C 正确.2.若角α=2 rad(rad 为弧度制单位),则下列说法错误的是( ) A .角α为第二象限角 B .α=⎝⎛⎭⎫360π°C .sin α>0D .sin α<cos α解析:选D 对于A ,∵π2<α<π,∴角α为第二象限角,故A 正确;对于B ,α=2×⎝⎛⎭⎫180π°=2 rad ,故B 正确;对于C ,sin α>0,故C 正确;对于D ,sin α>0,cos α<0,故D 错误.选D.3.已知角α的终边与单位圆的交点P ⎝⎛⎭⎫x ,32,则tan α=( ) A. 3 B .±3 C.33D .±33解析:选B 由|OP |2=x 2+34=1,得x =±12.所以tan α=yx=±3.故选B.4.已知扇形的圆心角为60°,其弧长为2π,则此扇形的面积为________. 解析:设此扇形的半径为r ,由题意得π3r =2π,所以r =6,所以此扇形的面积为12×2π×6=6π.答案:6π5.在0到2π范围内,与角-4π3终边相同的角是________. 解析:与角-4π3终边相同的角是2k π+⎝⎛⎭⎫-4π3,k ∈Z ,令k =1,可得在0到2π范围内与角-4π3终边相同的角是2π3.答案:2π3考点一象限角及终边相同的角[基础自学过关][题组练透]1.设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .2.若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角解析:选C ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.∴α2是第一或第三象限角.3.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z)时,2n π+π4≤α≤2n π+π2(n ∈Z),此时α的终边和π4≤α≤π2的终边一样;当k =2n +1(n ∈Z)时,2n π+π+π4≤α≤2n π+π+π2(n ∈Z),此时α的终边和π+π4≤α≤π+π2的终边一样,结合选项知选C.4.与-2 010°终边相同的最小正角是________.解析:因为-2 010°=(-6)×360°+150°,所以150°与-2 010°终边相同,又终边相同的两个角相差360°的整数倍,所以在0°~360°中只有150°与-2 010°终边相同,故与-2 010°终边相同的最小正角是150°.答案:150°5.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为______________________. 解析:如图,在平面直角坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.答案:⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[名师微点]1.判断象限角的2种方法2.确定kα,αk (k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk 的终边所在的位置.3.求终边在某直线上角的4个步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π]内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合.考点二扇形的弧长及面积公式的应用[师生共研过关][典例精析]已知扇形的圆心角是α,半径是r ,弧长为l . (1)若α=100°,r =2,求扇形的面积;(2)若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数. [解] (1)因为α=100°=100×π180=5π9, 所以S 扇形=12lr =12αr 2=12×5π9×4=10π9.(2)由题意知,l +2r =20,即l =20-2r , 故S 扇形=12l ·r =12(20-2r )·r =-(r -5)2+25,当r =5时,S 的最大值为25,此时l =10,则α=lr=2.[解题技法]有关弧长及扇形面积问题的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.[过关训练]1.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1D .2sin 1解析:选C 如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交AB 于D .则∠AOD =∠BOD =1弧度, 且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC =1sin 1,即r =1sin 1,从而AB 的长l =α·r =2sin 1.2.若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π6 B.π3 C .3D. 3解析:选D 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , ∴l =3r ,由弧长公式得α=l r =3rr= 3.3.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 考点三三角函数的定义及应用[师生共研过关][典例精析](1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)(2019·广州模拟)在平面直角坐标系中,以x 轴的非负半轴为角的始边,角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,则sin(α+β)=( )A .-3665 B.4865 C .-313 D.3365(3)已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________. [解析] (1)由sin αtan α<0可知sin α,tan α异号,则α为第二象限角或第三象限角.由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角.综上可知,α为第三象限角.(2)因为角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,所以sin α=513,cos α=1213,sin β=45,cos β=-35,所以sin(α+β)=sin αcos β+cos αsin β=513×⎝⎛⎭⎫-35+1213×45=3365. (3)因为角α的终边经过点P (-x ,-6),且cos α=-513, 所以cos α=-xx 2+36=-513, 解得x =52或x =-52(舍去), 所以P ⎝⎛⎭⎫-52,-6,所以sin α=-1213, 所以tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23. [答案] (1)C (2)D (3)-23[解题技法]利用三角函数定义解题的常见类型及方法(1)已知角α终边上一点P 的坐标求三角函数值.先求出点P 到原点的距离r ,然后利用三角函数定义求解.(2)已知角α的终边与单位圆的交点坐标求三角函数值.可直接根据三角函数线求解.(3)已知角α的终边所在的直线方程求三角函数值.先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数定义求解相关问题,同时注意分类讨论.(4)判断三角函数值的符号问题.先判断角所在的象限,再根据各象限的符号规律判断.[过关训练]1.下列各选项中正确的是( )A .sin 300°>0B .cos(-305°)<0C .tan ⎝⎛⎭⎫-223π>0D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;而-223π=-8π+2π3,所以-223π是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;因为3π<10<7π2,所以10是第三象限角,故sin 10<0. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35 D.45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t 5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 3.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m 4,求cos α,tan α的值. 解:设P (x ,y ).由题设知x =-3,y =m ,所以r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2,所以sin α=m r =2m 4=m 22, 所以r =3+m 2=22,即3+m 2=8,解得m =±5.当m =5时,r =22,x =-3,y =5, 所以cos α=-322=-64,tan α=-153; 当m =-5时,r =22,x =-3,y =-5,所以cos α=-322=-64,tan α=153. 综上,cos α=-64,tan α=-153或cos α=-64,tan α=153.。

2020届高考数学一轮总复习第四单元三角函数与解三角形第25讲倍角公式及简单的三角恒等变换课件理新人教A版

2020届高考数学一轮总复习第四单元三角函数与解三角形第25讲倍角公式及简单的三角恒等变换课件理新人教A版

7
1
A.25
B.5
C.-51
D.-275
解:因为 cos(π4-α)=35,
所以 sin 2α=cos(π2-2α)=cos[2(π4-α)]
=2cos2(π4-α)-1=2×295-1=-275.
答案:D
3.已知 cos α=13,α∈(π,2π),则 cosα2等于( )
6 A. 3
B.-
6 3
(方法 2)令 α+1π2=θ,则 tan θ=2, 因为 α 为第二象限角,又 tan θ=-2, 所以 θ 也是第二象限角,所以 sin θ=255,cos θ=- 55, 所以 sin(α+56π)=sin(θ-1π2+56π) =sin(θ+34π)= 22(-sin θ+cos θ) = 22(-255- 55)=-31010. 答案: (1)C (2)C
α=1-sicnoαs
α .
1.(2018·全国卷Ⅲ)若 sin α=31,则 cos 2α=( )
A.89
B.79
C.-97
D.-98
解:因为 sin α=31,
所以 cos 2α=1-2sin2α=1-2×(13)2=79.
答案:B
2.(2016·全国卷Ⅱ)若 cos(π4-α)=53,则 sin 2α=( )
sin(α+56π)等于(
)
A.

10 10
10 B. 10
C.-3
10 10
3 10 D. 10
解:(1)原式=4sin
40°-csoins
40° 40°
=4sin
40°cos 40°-sin cos 40°
40°=2sin
80°-sin cos 40°

2020高考文科数学(人教版)一轮复习作业手册 第25讲 三角函数的图象与性质(一) 含解析

2020高考文科数学(人教版)一轮复习作业手册 第25讲 三角函数的图象与性质(一) 含解析

第25讲 三角函数的图象与性质(一)1.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M ,N 两点,则|MN |的最大值为(B)A .1 B. 2 C. 3 D .2|MN |=|sin a -cos a |=2|sin(a -π4)|≤ 2.2.函数f (x )=3sin x +cos(π3+x )的最大值为(C)A .2 B. 3 C .1 D.12因为f (x )=3sin x +12cos x -32sin x=32sin x +12cos x =sin x cos π6+cos x sin π6=sin(x +π6).所以f (x )的最大值为1.3.(2016·全国卷Ⅱ)函数f (x )=cos 2x +6cos(π2-x )的最大值为(B)A .4B .5C .6D .7因为f (x )=cos 2x +6cos(π2-x )=cos 2x +6sin x =1-2sin 2x +6sin x =-2(sin x -32)2+112,又sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值5.故选B. 4.(2017·全国卷Ⅲ)函数f (x )=15sin(x +π3)+cos(x -π6)的最大值为(A)A.65 B .1 C.35 D.15(方法一)因为f (x )=15sin(x +π3)+cos(x -π6)=15(12sin x +32cos x )+32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin(x +π3), 所以当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.(方法二)因为(x +π3)+(π6-x )=π2,所以f (x )=15sin(x +π3)+cos(x -π6)=15sin(x +π3)+cos(π6-x ) =15sin(x +π3)+sin(x +π3) =65sin(x +π3)≤65.所以f (x )max =65. 5.函数f (x )=cos 2x +sin x 在区间[-π4,π4]上的最小值为 1-22 .f (x )=1-sin 2x +sin x =-(sin x -12)2+54,因为x ∈[-π4,π4],所以-22≤sin x ≤22,所以当x =-π4,即sin x =-22时,f (x )min =1-12-22=1-22.6.如图,半径为R 的圆的内接矩形周长的最大值为 42R .设∠BAC =θ,周长为p ,则p =2AB +2BC =2(2R cos θ+2R sin θ) =42R sin(θ+π4)≤42R ,当且仅当θ=π4时取等号.所以周长的最大值为42R .7.已知函数f (x )=sin 2x -sin 2(x -π6),x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间[-π3,π4]上的最大值和最小值.(1)由已知,有f (x )=1-cos 2x2-1-cos (2x -π3)2=12(12cos 2x +32sin 2x )-12cos 2x =34sin 2x -14cos 2x =12sin(2x -π6). 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间[-π3,-π6]上是减函数,在区间[-π6,π4]上是增函数,且f (-π3)=-14,f (-π6)=-12,f (π4)=34,所以f (x )在区间[-π3,π4]上的最大值为34,最小值为-12.8.(2018·天津市和平区月考)若f (x )=2cos(2x +φ)(φ>0)的图象关于直线x =π3对称,且当φ取最小值时,x 0∈(0,π2),使得f (x 0)=a ,则a 的取值范围是(D)A .(-1,2]B .[-2,-1)C .(-1,1)D .[-2,1)因为f (x )的图象关于直线x =π3对称,所以2π3+φ=k π(k ∈Z ),即φ=k π-2π3(k ∈Z ),因为φ>0,所以φmin =π3,此时f (x )=2cos(2x +π3).因为x 0∈(0,π2),所以2x 0+π3∈(π3,4π3),所以-1≤cos(2x 0+π3)<12,所以-2≤2cos(2x 0+π3)<1,即-2≤f (x 0)<1,因为f (x 0)=a ,所以-2≤a <1,故选D.9.(2018·北京卷)设函数f (x )=cos(ωx -π6)(ω>0).若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为 23.因为f (x )≤f (π4)对任意的实数x 都成立,所以当x =π4时,f (x )取得最大值,即f (π4)=cos(π4ω-π6)=1,所以π4ω-π6=2k π,k ∈Z ,所以ω=8k +23,k ∈Z .因为ω>0,所以当k =0时,ω取得最小值23.10.已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间[0,2π3]上的取值范围.(1)f (x )=1-cos 2ωx 2+32sin 2ωx =32sin 2ωx -12cos 2ωx +12=sin(2ωx -π6)+12.因为函数f (x )的最小正周期为π,且ω>0, 所以2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin(2x -π6)+12.因为0≤x ≤2π3,所以-π6≤2x -π6≤7π6,所以-12≤sin(2x -π6)≤1,因此0≤sin(2x -π6)+12≤32.即f (x )在区间[0,2π3]上的取值范围为[0,32].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25讲 倍角公式及简单的三角恒等变换
1.sin 47°-sin 17°cos 30°cos 17°的值为(C) A .-32 B .-12 C.12 D.32 原式=sin (30°+17°)-sin 17°cos 30°cos 17°

sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°
=sin 30°cos 17°cos 17°=sin 30°=12
. 2.(2017·山西太原4月模拟)已知α为锐角,若sin(α-π6)=13,则cos(α-π3
)=(A) A.26+16 B.3-28
C.3+28
D.23-16
(方法1)因为α为锐角,sin(α-π6)=13
, 所以cos(α-π6)=223
, 所以cos(α-π3)=cos[(α-π6)-π6
] =cos(α-π6)cos π6+sin(α-π6)sin π6
=223×32+13×12=26+16
. (方法2)令α-π6=θ,则sin θ=13,cos θ=223
, 所以cos(α-π3)=cos(θ-π6
) =
32×cos θ+12×sin θ=26+16
. 3. (2018·佛山一模)已知tan θ+1tan θ=4,则cos 2(θ+π4)=(C ) A .12 B .13
C .14
D .15
由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ
=4, 即sin 2θ+cos 2θsin θcos θ=4,所以sin θcos θ=14,
所以cos 2(θ+π4)=1+cos (2θ+π2)2=1-sin 2θ2 =1-2sin θcos θ2=1-2×142=14
.
4.(2018·全国卷Ⅰ·文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=2
3,则|a -b|=(B )
A .15
B .5
5
C .25
5 D .1
由cos 2α=2
3,得cos 2α-sin 2α=2
3,
所以cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=2
3,
所以tan α=±5
5,即b -a
2-1=±55,所以|a -b|=5
5.
5.(经典真题)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ= -10
5 .
因为tan(θ+π4)=12,所以1+tan
θ1-tan θ=1
2,
解得tan θ=-1
3,
所以(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ
sin 2θ+cos 2θ
=tan 2θ+2tan θ+1tan 2θ+1=19-2
3+1
19+1
=2
5,
因为θ为第二象限角,tan θ=-1
3,
所以sin θ+cos θ<0,
所以sin θ+cos θ=-10
5.
6.(2016·浙江卷)已知2cos 2x +sin 2x =A sin (ωx +φ)+b (A >0),则A = 2 ,b =
1
. 因为2cos 2x +sin 2x =1+cos 2x +sin 2x
=1+ 2sin (2x +π
4),
所以1+ 2sin(2x +π
4)=A sin(ωx +φ)+b ,
所以A =2,b =1. 7.已知cos α=17,cos(α-β)=1213,且0<β<α<π2
,求cos β的值. 因为cos α=17,0<α<π2
, 所以sin α=1-cos 2α=437
, 因为0<β<α<π2,所以0<α-β<π2
, 又cos(α-β)=1213
, 所以sin(α-β)=1-cos 2(α-β)=513, 所以cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=17×1213+437×513
=12+20391
.
8.(2018·湖南永州三模)已知方程|cos x |x
=k 在(0,+∞)上有两个不同的解α,β(α<β),则下列四个命题正确的是(C)
A .sin 2α=2αcos 2α
B .cos 2α=2αsin 2α
C .sin 2β=-2βsin 2β
D .cos 2β=-2βsin 2β
由题意得直线y =kx 与y =-cos x (x ∈(π2
,π))的图象相切,且切点为(β,-cos β),
因为y ′=sin x ,所以k =-cos ββ
=sin β, 所以tan β=-1β
. 则sin β=1
1+β2,cos β=-β1+β2,
那么sin 2β=2sin βcos β=-2β
1+β2=-2βsin 2β.故选C.
9.(2018·河南南阳第三次联考)如图所示,已知△ABC 中,∠C =90°,AC =6,BC =8,
D 为边AC 上的一点,K 为BD 上的一点,且∠ABC =∠KAD =∠AKD ,则DC = 73
.
由题意得sin ∠ABC =35,cos ∠ABC =45
. sin ∠BDC =sin(∠DKA +∠DAK )=sin 2∠ABC =2sin ∠ABC cos ∠ABC =2×35×45=2425
, 所以cos ∠BDC =725,tan ∠BDC =247
, 所以CD =BC tan ∠BDC =73. 10.(2018·江苏卷)已知α,β为锐角,tan α=43,cos (α+β)=-55
. (1)求cos 2α的值;
(2)求tan (α-β)的值.
(1)因为tan α=43,tan α=sin αcos α
, 所以sin α=43
cos α. 因为sin 2α+cos 2α=1,所以cos 2α=925
, 因此,cos 2α=2cos 2α-1=-725
. (2)因为α,β为锐角,所以α+β∈(0,π).
又因为cos (α+β)=-
55,所以sin (α+β)=1-cos 2(α+β)=255, 因此tan (α+β)=-2.
因为tan α=43,所以tan 2α=2tan α1-tan 2α
=-247. 因此,tan (α-β)=tan [2α-(α+β)]

tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.
感谢您的下载!
快乐分享,知识无限!由Ruize收集整理!。

相关文档
最新文档