圆确定的条件

合集下载

圆的定义确定基本要素

圆的定义确定基本要素

圆的概念及确定1.圆定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心。

(确定圆的位置)线段OA叫做半径。

(确定圆的大小)记法:以点O为圆心的圆,记作“⊙O”,读作“圆O”注意:(1)圆指的是“圆周”而不是“圆面”。

(2)半径指的是线段,为了方便也把半径的长称为半径。

圆的确定:(1)一个圆心一个半径(2)圆心、圆上一个一个的已知点(3)直径2. 圆的集合定义:(1)角平分线上的点到角两边的距离相等。

到角两边距离相等的点在角的平分线上。

所以:角平分线可以看做是到角的两边距离相等的点的集合。

(2)线段的垂直平分线上的点到线段的两个端点的距离相等。

到线段的两个端点的距离相等的点在线段的垂直平分线上。

线段的垂直平分线可以看做是和线段两个端点距离相等的点的集合。

*把一个图形看成是满足某种条件的点的集合,必须符合:a.图形上的每一点都满足某个条件,b.满足某个条件的每一个点,都在这个图形上。

(3)圆上各点到定点(圆心O)的距离都等于定长(半径r),到定点的距离等于定长的点都在同一个圆上。

(圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形)圆的集合定义:圆是到定点的距离等于定长的点的集合。

点和圆的位置关系有:点在圆内、圆上,圆外三种,设⊙O的半径为r,点P和圆心O的距离为d,则有:点在圆内;点在圆上;点在圆外。

6. 理解定理,不在一直线上的三点确定一个圆,并掌握不在同一条直线上三点作圆的方法。

7. 会用尺规作经过不在同一直线上三点的圆。

8. 了解三角形外心的概念。

9. 过三点的圆确定一个圆有两个基本条件:圆心(定点),确定圆的位置;半径(定长),确定圆的大小。

只有当圆心和半径都确定时,圆才能确定。

此外,下列条件都可以确定圆心和半径,因而都能确定圆:(1)经过不在一直线上的三点的圆;(2)已知圆心和圆上一点的圆;(3)以已知线段为直径的圆。

圆的知识点概念公式大全

圆的知识点概念公式大全

圆的知识点概念公式大全一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆或直径所对的圆周角是直角,90 的圆周角所对的弦是直径.在同圆中,半弧所对的圆心角等于全弧所对的圆周角3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半.5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;2.其它正确结论:⑴弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.⑶圆的两条平行弦所夹的弧相等.3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT △,用勾股,求长度; ⑵有弧中点,连中点和圆心,得垂直平分.相关题目:1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径2.08郴州已知在O ⊙中,半径5r =,AB CD ,是两条平行弦,且86AB CD ==,,则弦AC 的长为__________.. 六.点与圆的位置关系 1.点与圆的位置有三种:⑴点在圆外⇔d r >;⑵点在圆上⇔d r =;⑶点在圆内⇔d r <. 如下表所示:2.过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个.⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个.⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆.注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部如图1;直角三角形外接圆的圆心在斜边中点处即直角三角形外接圆半径等于斜边的一半,如图2;钝角三角形外接圆的圆心在 它的外部如图3.图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定设O⊙的半径为r,圆心O到直线l的距离为d,则直线和圆的位置关系如下表:从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线; 距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.五.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定设12O O 、⊙⊙的半径分别为R r 、其中R r >,两圆圆心距为d ,则两圆位置关系如下表:位置关系图形定义性质及判定外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部.d R r >+⇔两圆外离外切两个圆有唯一公共点,并且除了这个公共点之外,每个圆上的点都在另一个圆的外部.d R r =+⇔两圆外切相交两个圆有两个公共点.R r d R r -<<+⇔两圆相交内切两个圆有唯一公共点,并且除了这个公共点之外,一个圆上的点都在另一个圆的内部.d R r=-⇔两圆内切内含两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,两圆同心是两圆内含的一种特例.0d R r≤<-⇔两圆内含说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.⑵正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.⑷正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.3. 正多边形的性质:⑴正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O⊙的半径为R,n︒圆心角所对弧长为l,1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+ 4. 圆锥体表面积公式:2ππS R Rl =+l 为母线 常见组合图形的周长、面积的几种常见方法: ① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。

苏科版2022年九年级数学上册 《确定圆的条件》教材预习辅导讲义(附解析)

苏科版2022年九年级数学上册 《确定圆的条件》教材预习辅导讲义(附解析)

2.3 确定圆的条件确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.【点拨】(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【例题1】(1)请借助网格和一把无刻度直尺找出△ABC的外心点O;(2)设每个小方格的边长为1,求出外接圆⊙O的面积.【例题2】如图,Rt△ABC,∠ACB=90°,尺规作图,作Rt△ABC外接圆⊙O.(保留作图痕迹,不写作法)【例题3】我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.如图,将△ABC放在每个看例题,涨知识教材知识总结小正方形边长为1的网格中,点A、B、C均落在格点上.(1)用无刻度直尺画出△ABC的最小覆盖圆的圆心(保留作图痕迹);(2)该最小覆盖圆的半径是.【例题4】已知,如图,点A为⊙O上的一点(1)用没有刻度的直尺和圆规作一个⊙O的内接正三角形ABC(保留作图痕迹并标出B、C);(2)若⊙O半径为10,则三角形ABC的边长为一、单选题1.下列判断中正确的是()A.平分弦的直径垂直于弦B.垂直于弦的直线平分弦所对的弧C.平分弧的直径平分弧所对的的弦D.三点确定一个圆2.如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC 的外接圆的圆心坐标是()A.(-2,-1)B.(-1,0)C.(-1,-1)D.(0,-1)3.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内课后习题巩固一下接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.正确的有()A.1个B.2个C.3个D.4个4.给定下列条件可以确定唯一的一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点5.从一块圆形玻璃镜残片的边缘描出三点A、B、C,得到△ABC,则这块玻璃镜的圆心是()A.AB、AC边上的高所在直线的交点B.AB、AC边的垂直平分线的交点C.AB、AC边上的中线的交点D.∠BAC与∠ABC的角平分线的交点6.下列说法中错误的是()A.直径是弦B.经过不在同一直线上三点可以确定一个圆C.三角形的外心到三个顶点的距离相等D.两个半圆是等弧7.如图,点O是△ABC的外心(三角形三边垂直平分线的交点),若∠BOC=96°,则∠A的度数为()A.49°B.47.5°C.48°D.不能确定A B,C在平面直角坐标系中,则ABC的外心在()8.如图,点(0,3),(2,1)A.第四象限B.第三象限C.原点O处D.y轴上9.如图,已知平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,318)D.(4,338)10.如图,ABC为锐角三角形,6BC=,45A∠=︒,点O为ABC的重心,D为BC中点,若固定边BC,使顶点A在ABC所在平面内进行运动,在运动过程中,保持A∠的大小不变,设BC的中点为D,则线段OD的长度的取值范围为()A521OD≤B531OD≤C.131OD≤<D.121OD<≤二、填空题11.如图,点O是△ABC的外心,连接OB,若∠OBA=17°,则∠C的度数为_________°.12.三角形两边的长是3和4,第三边的长是方程2-12+35=0x x的根,则该三角形外接圆的半径为______.13.如图,已知AB=AC=BE=CD,AD=AE,点F为△ADE的外心,若∠DAE=40°,则∠BFC=______°.14.有一种化学实验中用的圆形过滤纸片,如果需要找它的圆心,请你简要说明你找圆心的方法是__________________15.如图,在57⨯网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是ABC的外心,在不添加其他字母的情况下,则除ABC外把你认为外心也是O的三角形都写出来__________________________.16.已知ABC的三边a,b,c满足|c﹣4|+b+a2﹣10a=1b+30,则ABC的外接圆半径的长为___.三、解答题17.为了美化校园,某小区要在如图所示的三角形空地(ABC)上作一个半圆形花坛并使之满足以下要求;①圆心在边BC上,②该半圆面积最大.请你帮忙设计这一花坛.18.如图,学校某处空地上有A、B、C三棵树,现准备建一个圆形景观鱼池,要求A、B、C三棵树恰在圆周上,请你帮助设计鱼池,在图中作出它的鱼池轮廓,保留作图痕迹并将圆心标记为点O.19.有趣的倍圆问题:校园里有个圆形花坛,春季改造,负责该片花园维护的某班同学经过协商,想把该花坛的面积扩大一倍.他们在图纸上设计了以下施工方案:①在⊙O中作直径AB,分别以A、B为圆心,大于1AB长为半径画弧,两弧在直径AB上方交于点C,作2射线OC交⊙O于点D;②连接BD,以O为圆心BD长为半径画圆;③大⊙O 即为所求作.(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成如下证明: 证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点, ∴CO ⊥AB ( )(填推理的依据) 设小O 半径长为r ∵OB =OD ,∠DOB =90° ∴BD 2∴S 大⊙O =π2)2= S 小⊙O . 20.如图,ABC 是直角三角形,90ACB ∠=︒.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法). ①作ABC 的外接圆O ;②以线段AC 为一边,在AC 的右侧作等边三角形ACD ; ③连接BD ,交O 于点E ,连接AE ;(2)在(1)中所作的图中,若4AB =,2BC =,则线段AE 的长为______.2.3 确定圆的条件解析确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A 、B 能作无数个圆,这些圆的圆心在线段AB 的垂直平分线上; (3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的教材知识总内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等. 【点拨】(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【例题1】(1)请借助网格和一把无刻度直尺找出△ABC的外心点O;(2)设每个小方格的边长为1,求出外接圆⊙O的面积.【答案】(1)见解析;(2)10π【分析】(1)根据三角形的外心是三边垂直平分线的交点作出点O;(2)根据勾股定理求出圆的半径,根据圆的面积公式计算,得到答案.【解析】解:(1)如图所示,点O即为所求;(2)连接OB,由勾股定理得:OB223110+=∴外接圆⊙O的面积为:π×102=10π.看例题,涨知识【例题2】如图,Rt△ABC,∠ACB=90°,尺规作图,作Rt△ABC外接圆⊙O.(保留作图痕迹,不写作法)【答案】见详解【分析】作AB的垂直平分线,找到AB的中点,则以AB为直径作圆就是三角形的外接圆.【解析】解:如图所示:【例题3】我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上.(1)用无刻度直尺画出△ABC的最小覆盖圆的圆心(保留作图痕迹);(2)该最小覆盖圆的半径是.【答案】(1)见解析;(25【分析】(1)作出线段AB,AC的垂直平分线的交点O即可.(2)连接OA,利用勾股定理求出OA即可.【解析】解:(1)如图,点O即为所求.(2)半径OA22+1255【例题4】已知,如图,点A为⊙O上的一点(1)用没有刻度的直尺和圆规作一个⊙O的内接正三角形ABC(保留作图痕迹并标出B、C);(2)若⊙O半径为10,则三角形ABC的边长为【答案】(1)图见详解;(2)三角形ABC的边长为103【分析】(1)以OA为半径,在圆上依次截取得到圆的6等分点,从而得到圆的三等分点,进而问题可求解;(2)连接OB、OC,延长AO交BC于点D,则有AD⊥BC,然后根据等边三角形的性质及垂径定理可求解.【解析】接:(1)等边三角形ABC如图所示:(2)连接OB、OC,延长AO交BC于点D,如图,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,∴AD⊥BC,∠BOD=∠COD=60°,∴∠OBD=30°,BC=2BD,∵⊙O半径为10,∴152OD OB==,∴2253 BD OB OD-∴103BC=∴三角形ABC的边长为103故答案为3一、单选题1.下列判断中正确的是()A.平分弦的直径垂直于弦B.垂直于弦的直线平分弦所对的弧C.平分弧的直径平分弧所对的的弦D.三点确定一个圆【答案】C【分析】根据垂径定理和确定圆的条件对各选项进行逐一解答即可.【解析】解:A、平分弦(不是直径)的直径垂直于弦,故选项错误;B、垂直于弦的直径平分弦所对的弧,故选项错误;C、平分弧的直径平分弧所对的的弦,故选项正确;D、不共线的三点确定一个圆,故选项错误;故选C.2.如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC 的外接圆的圆心坐标是()A.(-2,-1)B.(-1,0)C.(-1,-1)D.(0,-1)【答案】A【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.【解析】解:∵△ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O′即为所求的△ABC的外心,课后习题巩固一∴△ABC的外心坐标是(﹣2,﹣1).故选:A3.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】①没有边相等的信息不能判定其是正多边形;②符合正三角形的定义;③仅有各角相等没有边相等的信息不能判定其是圆内正多边形;④符合圆内接多边形的定义.【解析】①错误,如矩形,满足条件,却不是正多边形;②正确;③错误,如圆内接矩形,满足条件,却不是正多边形;④正确.共有2个正确.故选B4.给定下列条件可以确定唯一的一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点【答案】D【分析】根据确定圆的条件,逐一判断选项,即可得到答案.【解析】A. 已知圆心,但半径不确定,不可以确定唯一的一个圆,不符合题意,B. 已知半径,但圆心位置不确定,不可以确定唯一的一个圆,不符合题意,C. 已知直径,但圆心位置不确定,不可以确定唯一的一个圆,不符合题意,D. 不在同一条直线上的三个点可以确定一个圆,符合题意.故选D.5.从一块圆形玻璃镜残片的边缘描出三点A、B、C,得到△ABC,则这块玻璃镜的圆心是()A.AB、AC边上的高所在直线的交点B.AB、AC边的垂直平分线的交点C.AB、AC边上的中线的交点D.∠BAC与∠ABC的角平分线的交点【答案】B【分析】结合图形可知所求玻璃镜的圆心是ABC外接圆的圆心,据此可得出答案.【解析】根据题意可知,所求的玻璃镜的圆心是ABC外接圆的圆心,而ABC外接圆的圆心是三边垂直平分线的交点,故选:B.6.下列说法中错误的是()A.直径是弦B.经过不在同一直线上三点可以确定一个圆C.三角形的外心到三个顶点的距离相等D.两个半圆是等弧【答案】D【分析】根据圆的性质:弦的定义、确定圆的条件、外心性质、弧的定义逐一判断解答.【解析】解:A. 直径是弦,故A正确;B. 经过不在同一直线上三点可以确定一个圆,故B正确;C. 三角形的外心到三个顶点的距离相等,故C正确;D. 两个半圆不一定是等弧,故D错误,故选:D.7.如图,点O是△ABC的外心(三角形三边垂直平分线的交点),若∠BOC=96°,则∠A的度数为()A.49°B.47.5°C.48°D.不能确定【答案】C【分析】根据三角形垂直平分线的性质以及三角形内角和定理计算即可.【解析】解:如图,连接AO,∵点O是△ABC三边垂直平分线的交点,∴AO=BO=CO,∴∠OAB=∠OBA,∠OAC=∠OCA,∠OBC=∠OCB,∴∠AOB=180°-2∠OAB,∠AOC=180°-2∠OAC,∴∠BOC=360°-(∠AOB+∠AOC)=360°-(180°-2∠OAB+180°-2∠OAC)=2∠OAB+2∠OAC=2∠BAC;∵∠BOC=96°,∴∠BAC=48°,故选:C.A B,C在平面直角坐标系中,则ABC的外心在()8.如图,点(0,3),(2,1)A.第四象限B.第三象限C.原点O处D.y轴上【答案】B【分析】根据直角坐标系的特点作AB、BC的垂直平分线即可求解.【解析】如图,作AB、BC的垂直平分线,交点在第三象限,故选B.9.如图,已知平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A .(6,8)B .(4,5)C .(4,318) D .(4,338) 【答案】C【分析】先由题意可知,点P 在线段AB 的垂直平分线上,可确定P 的横坐标为4;设点P 的坐标为(4,y ),如图作PE ⊥OB 于E ,PF ⊥OC 于F ,运用勾股定理求得y 即可. 【解析】解:∵⊙P 经过点A 、B 、C , ∴点P 在线段AB 的垂直平分线上, ∴点P 的横坐标为4, 设点P 的坐标为(4,y ), 作PE ⊥OB 于E ,PF ⊥OC 于F , 22224(4)1y y +-+ 解得,y 318=, 故选:C .10.如图,ABC 为锐角三角形,6BC =,45A ∠=︒,点O 为ABC 的重心,D 为BC 中点,若固定边BC ,使顶点A 在ABC 所在平面内进行运动,在运动过程中,保持A ∠的大小不变,设BC 的中点为D ,则线段OD 的长度的取值范围为( )A 521OD ≤B 531OD ≤C .131OD ≤< D .121OD <≤【答案】D【分析】如图,作ABC 的外接圆,点E 为圆心,AD BC ⊥,由题意知1OD AD 3=且90BEC ∠=︒,3BD DE ==,由勾股定理知2232BE BD DE =+=,332AD DE AE =+=+当AD BC⊥时,AD 最长,可求此时OD 最大值;由于3AD BD >=,可得此时OD 最小值,进而可得OD 的取值范围. 【解析】解:如图,作ABC 的外接圆,点E 为圆心,AD BC ⊥由题意知1OD AD 3=∵45A ∠=︒ ∴90BEC ∠=︒ ∴45EBD BED ∠=∠=︒∴3BD DE ==,由勾股定理知2232BE BD DE =+= ∴332AD DE AE =+=+∵AD BC ⊥时,AD 最长, ∴OD 最大值为12∵3AD BD >= ∴1OD > ∴112OD <≤故选D . 二、填空题11.如图,点O 是△ABC 的外心,连接OB ,若∠OBA =17°,则∠C 的度数为_________°.【答案】73【分析】连接OA ,OC ,根据三角形的内角和和等腰三角形的性质即可得到结论. 【解析】解:连接OA ,OC ,点O 是ABC ∆的外心,OA OB OC ∴==,OBA OAB ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠, 17OBA ∠=︒, 17OAB ∴∠=︒,1801801717146OBC OCB OCA ACO OBA OAB ∠+∠+∠+∠=-∠-∠=︒-︒-︒=︒即146OBC OCB OCA ACO ∠+∠+∠+∠=︒,22146OCB ACO ∴∠+∠=︒, 73OCB ACO ∴∠+∠=︒, 73BCA ∴∠=︒.故答案为:73.12.三角形两边的长是3和4,第三边的长是方程2-12+35=0x x 的根,则该三角形外接圆的半径为______. 【答案】52【分析】先解一元二次方程,根据构成三角形的条件取舍,勾股定理的逆定理判定三角形为直角三角形,进而根据90度角所对的弦为直径,进而求得三角形外接圆的半径. 【解析】解:2-12+35=0x x ,()()570x x --=,解得215,7x x ==,当7x =时,347+=不能构成三角形; 当5x =时,22234255+==,∴这个三角形是斜边为5的直角三角形, ∴该三角形外接圆的半径为52, 故答案为:52. 13.如图,已知AB =AC =BE =CD ,AD =AE ,点F 为△ADE 的外心,若∠DAE =40°,则∠BFC =______°.【答案】140【分析】由等腰三角形的性质得出∠BEA =∠BAE = 70°,求出∠ABE = 40°,连接AE ,EF ,DF ,由三角形外心的性质求出∠EBF =∠FCB =20°,由三角形内角和定理可得出答案. 【解析】解:∵∠DAE =40°,AD =AE , ∴∠ADE =∠AED ,∴∠AED =12(180°﹣40°)=70°, ∵AB =BE ,∴∠BEA =∠BAE =70°, ∴∠ABE =40°, 连接AE ,EF ,∵点F 为△ADE 的外心, ∴AF =EF ,AF =DF , ∴点F 在AE 的垂直平分线上, 同理点B 在AE 的垂直平分线上, ∴∠ABF =∠EBF , ∴∠EBF =12∠ABE =20°,同理∠FCB =20°,∴∠BFC =180°﹣∠FBC ﹣∠FCB =180°﹣20°﹣20°=140°. 故答案为:14014.有一种化学实验中用的圆形过滤纸片,如果需要找它的圆心,请你简要说明你找圆心的方法是__________________【答案】在圆形纸片的边缘上任取三点,,,A B C 则线段,AB AC 的垂直平分线的交点O 是圆形纸片的圆心. 【分析】如图,在圆形纸片的边缘上任取三点,,,A B C 连接,,AB AC 再作,AB AC 的垂直平分线得到两条垂直平分线的交点即可.【解析】解:如图,在圆形纸片的边缘上任取三点,,,A B C连接,,AB AC 则,AB AC 的垂直平分线的交点O 是圆形纸片的圆心.故答案为:在圆形纸片的边缘上任取三点,,,A B C 则线段,AB AC 的垂直平分线的交点O 是圆形纸片的圆心. 15.如图,在57⨯网格中,各小正方形边长均为1,点O ,A ,B ,C ,D ,E 均在格点上,点O 是ABC 的外心,在不添加其他字母的情况下,则除ABC 外把你认为外心也是O 的三角形都写出来__________________________.【答案】△ADC 、△BDC 、△ABD【分析】先求出△ABC 的外接圆半径r ,再找到距离O 点的长度同为r 的点,即可求解. 【解析】由网格图可知O 点到A 、B 、C 22125+ 则外接圆半径5r =图中D 点到O 22125r +=, 图中E 点到O 221310+=则可知除△ABC 外把你认为外心也是O 的三角形有:△ADC 、△ADB 、△BDC , 故答案为:△ADC 、△ADB 、△BDC .16.已知ABC 的三边a ,b ,c 满足|c ﹣4|+b +a 2﹣10a =1b +30,则ABC 的外接圆半径的长为___. 【答案】2.5【分析】先根据|c ﹣4|+b +a 2﹣10a =1b +30变形可得22|4|(12)(5)0c b a -+++-=,再根据绝对值和完全平方公式的非负性即可求得a 、b 、c 的值,进而根据勾股定理的逆定理可得ABC 为直角三角形,由此可得ABC 外接圆半径的长为斜边的一半. 【解析】解:∵|c ﹣4|+b +a 2﹣10a =1b +30,2|4|(1414)(1025)0c b b a a ∴-++-++-+=, 22|4|(12)(5)0c b a ∴-+++-=,又∵22|4|0,(12)0,(5)0c b a -≥+≥-≥, ∴40c -=120b +=,50a -=,解得:4c =,3b =,5a =, ∴22225c b a +==,∴ABC 为直角三角形,且斜边长为5, ∴ABC 的外接圆的半径r =5×12=2.5,故答案为:2.5. 三、解答题17.为了美化校园,某小区要在如图所示的三角形空地(ABC )上作一个半圆形花坛并使之满足以下要求;①圆心在边BC 上,②该半圆面积最大.请你帮忙设计这一花坛.【答案】见解析【分析】作∠A 的角平分线AD 交BC 于点O ,以点O 为圆心,点O 到AC 的距离OD 为半径画半圆,此时半圆和AC ,AB 都相切,则该半圆面积最大. 【解析】如图所示:该半圆即为所求.18.如图,学校某处空地上有A 、B 、C 三棵树,现准备建一个圆形景观鱼池,要求A 、B 、C 三棵树恰在圆周上,请你帮助设计鱼池,在图中作出它的鱼池轮廓,保留作图痕迹并将圆心标记为点O .【答案】见解析【分析】连接,AB BC ,分别作,AB BC 的垂直平分线,交于点O ,以OA 的长度为半径,O 为圆心作圆即可. 【解析】如图所示.连接,AB BC ,分别作,AB BC 的垂直平分线,交于点O ,以OA 的长度为半径,O 为圆心作圆,则O 即为所求,19.有趣的倍圆问题:校园里有个圆形花坛,春季改造,负责该片花园维护的某班同学经过协商,想把该花坛的面积扩大一倍.他们在图纸上设计了以下施工方案:①在⊙O 中作直径AB ,分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧在直径AB 上方交于点C ,作射线OC 交⊙O 于点D ;②连接BD ,以O 为圆心BD 长为半径画圆; ③大⊙O 即为所求作.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成如下证明:证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点,∴CO ⊥AB ( )(填推理的依据)设小O 半径长为r∵OB =OD ,∠DOB =90°∴BD 2∴S 大⊙O =π2)2= S 小⊙O .【答案】(1)见解析;(2)见解析【分析】(1)按照题意作图即可;(2)先根据三线合一定理得到CO ⊥AB ,然后证明BD 2r 即可得到S 大⊙O =π2r )2=2S 小⊙O .【解析】(1)解:如图所示,即为所求;(2)证明:连接CA 、CB在△ABC 中,∵CA =CB ,O 是AB 的中点,∴CO ⊥AB (三线合一定理)(填推理的依据)设小O 半径长为r∵OB =OD ,∠DOB =90°∴BD 2∴S 大⊙O =π2)2=2S 小⊙O .20.如图,ABC 是直角三角形,90ACB ∠=︒.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作ABC 的外接圆O ;②以线段AC 为一边,在AC 的右侧作等边三角形ACD ;③连接BD ,交O 于点E ,连接AE ;(2)在(1)中所作的图中,若4AB =,2BC =,则线段AE 的长为______.【答案】(1)作图见解析;4217【分析】(1)利用直角三角形的外心是直角三角形斜边的中点,先做AB 的垂直平分线,找出圆心O ,以O 为圆心,OA 为半径画圆即可,再分别以A ,B 为圆心,AB 为半径画弧交于点D ,连接AD ,CD ,即可做出等边三角形ACD ;(2)证明∠BAD =90°,利用勾股定理求出2227BD AB AD =+=AE 的长.【解析】(1)解:作图如下:(2)解:∵AB =4,BC =2,△ACD 是等边三角形,∴∠BAD =∠BAC +∠CAD =30°+60°=90°, ∴323===AD AC AB ∴2227BD AB AD =+= ∴14221172=AB AD AE BD 故线段AE 的长为4217。

2_3+确定圆的条件(1) (1)

2_3+确定圆的条件(1) (1)

课题:2.3 确定圆的条件【学习目标】1、经历不在同一条直线上的三点确定一个圆的探索过程。

2、理解三角形的外接圆,三角形的外心,圆的内接三角形的概念,会过不在同一条直线上的三点作一个圆。

.【重点难点】重点:三角形的外接圆,外心,圆的内接三角形,会过不在同一条直线上的三点作一个圆。

难点:不在同一条直线上的三点确定一个圆的探索过程【新知导学】读一读:阅读课本P50-P52想一想:如何确定一个圆?需要哪两个要素?练一练:1、操作(1):经过图中的点A作圆;(2):经过图中的A、B两点作圆;2、经过两点A、B能够作个圆,圆心在3、经过同一平面内三个点A、B、C能否作一个圆?假如能,请你作出这个圆,指出圆心的位置;假如不能,请你说明理由。

【新知归纳】确定一个圆。

叫做这个三角形的外接圆。

叫做这个三角形的外心。

叫做这个圆的内接三角形。

一批日期9、二批日期9、教师评价家长签字【例题教学】例1、作出以下三角形的外接圆,并指出圆心的位置。

(要求:尺规作圆,不写做法)DC BA例2、如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 则这条圆弧所在圆的圆心是( ) A .点P B .点Q C .点R D .点M例3、如图,等腰ABC ∆中,13AB AC cm ==,10BC cm =,AD 是高。

求ABC ∆外接圆的半径和面积。

【当堂训练】 1、判断:(1)经过三点一定能够作圆。

( )(2)三角形的外心就是这个三角形两边垂直平分线的交点。

( ) (3)三角形的外心到三个顶点的距离相等。

( )(4)经过不在一直线上的四点能作一个圆。

()2、三角形外接圆的圆心是( )A.三个内角平分线的交点;B.三条边的中线的交点C.三条边垂直平分线的交点D.三边的三条高的交点3、如图:点A、B、C都在⊙O上,△ABC是⊙O的________三角形;⊙O是△ABC的________圆。

4、经过已知点A,且半径为2cm的圆有个,这些圆的圆心的集合是:5、如下图,O为△ABC的外心,若∠BAC=70°,则∠OBC=________.OCB6、(1)解决“破镜重圆”的问题(作出破镜所在的圆):(2)设所画圆⊙O,已知AB=BC=60,∠ABC=120°,求此圆的半径。

2.3 确定圆的条件 教案-苏科版九年级数学上册

2.3 确定圆的条件 教案-苏科版九年级数学上册

2.3 确定圆的条件教案-苏科版九年级数学上册
一、教学目标
1.了解圆的定义和性质;
2.掌握圆的常识和圆的元素的特点;
3.能够根据给定的条件确定圆。

二、教学重点
1.圆的定义和性质;
2.圆的元素的特点。

三、教学难点
1.根据给定的条件确定圆。

四、教学准备
1.教学课件和投影仪;
2.学生作业本和练习题。

五、教学过程
1. 导入
首先通过展示多种圆形的图片,引出本课的话题——圆。

让学生讨论圆的形状、特点和应用领域。

2. 引入
在第一部分中,我们了解到如果在平面上取一个点,并以该点为圆心,以一定的长度为半径作圆,那么这个平面范围内的所有点与圆心的距离都相等。

这个几何图形就是圆。

3. 圆的定义和性质
1.请同学们读一读关于圆的定义。

圆是平面上的一个点到另一个点的距离固定且小于这个固定值的所有点的集合。

2.根据定义可知,圆有以下性质:
–圆的边界叫做圆周;
–圆周上任意两点与圆心的距离相等;
–圆周的中心即为圆心。

4. 圆的元素
1.圆心:圆的中心点,用字母。

初二数学知识点归纳:确定圆的条件

初二数学知识点归纳:确定圆的条件

初二数学知识点归纳:确定圆的条件初二数学知识点归纳:确定圆的条件学习重点:1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.学习难点:分析作圆的方法,实质是设法找圆心.过已知点作圆的问题,就是对圆心和半径的探讨.学习方法:教师指导学生自主探索交流法.学习过程:一、举例:【例1】下面四个命题中真命题的个数是()①经过三点一定可以做圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离相等.A.4个B.3个C.2个D.1个【例2】在△ABC中,BC=24cm,外心O到BC的距离为6cm,求△ABC的外接圆半径.【例3】如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.【例4】阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.如图3-4-5中的三角形被一个圆所覆盖,图3-4-6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm.(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm.(3)边长为2cm,1cm的矩形被两个半径都为r的图所覆盖,r的最小值是 cm,这两个圆的圆心距是 cm.【例5】已知Rt△ABC的两直角边为a和b,且a,b是方程x2-3x+1=0的两根,求Rt△ABC的外接圆面积.【例6】如图,有一个圆形铁片,用圆规和直尺将它分成面积相等的两部分.二、随堂练习一、填空题1.经过平面上一点可以画个圆;经过平面上两点A、B可以作个圆,这些圆的圆心在.2.经过平面上不在同一直线上的三点可以作个圆. 3.锐角三角形的外心在;直角三角形的外心在;钝角三角形的外心在.二、选择题4.下列说法正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形5.下列命题中的假命题是()A.三角形的外心到三角形各顶点的距离相等B.三角形的外心到三角形三边的距离相等C.三角形的外心一定在三角形一边的中垂线上D.三角形任意两边的中垂线的交点,是这个三角形的外心6.下列图形一定有外接圆的是()A.三角形B.平行四边形C.梯形D.菱形三、课后练习1.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是()A.a=15,b=12,c=1B.a=5,b=12,c=12C.a=5,b=12,c=13D.a=5,b=12,.一个三角形的外心在其内部,则这个三角形是()A.任意三角形B.直角三角形C.锐角三角形D.钝角三角形4.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为()A.5cmB.6cmC.7cmD..等边三角形的外接圆的半径等于边长的()倍.A. B. C. D.6.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是()A.2B.6C.12D.77.三角形的外心具有的性质是()A.到三边距离相等B.到三个顶点距离相等C.外心在三角形外D.外心在三角形内8.对于三角形的外心,下列说法错误的是()A.它到三角形三个顶点的距离相等B.它与三角形三个顶点的连线平分三内角C.它到任一顶点的距离等于这三角形的外接圆半径 D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点9.下列说法错误的是()A.过直线上两点和直线外一点,可以确定一个圆 B.任意一个圆都有无数个内接三角形C.任意一个三角形都有无数个外接圆D.同一圆的内接三角形的外心都在同一个点上10.在一个圆中任意引两条直径,顺次连接它们的四个端点组成一个四边形,则这个四边形一定是() A.菱形B.等腰梯形C.矩形D.正方形11.若AB=4cm,则过点A、B且半径为3cm的圆有个.12.直角三角形三个顶点都在以为圆心,以为半径的圆上,直角三角形的外心是.13.若Rt△ABC的斜边是AB,它的外接圆面积是121πcm2,则AB= .14.△ABC的三边3,2,,设其三条高的交点为H,外心为O,则OH= .15.在△ABC中,∠C=90°,AB=6,则其外心与垂心的距离为.16.外心不在三角形的外部,这三角形的形状是.17.锐角△ABC中,当∠A逐渐增大时,其外心向边移动,∠A=90°,外心位置是.18.△ABC的外心是它的两条中线交点,则△ABC的形状为.19.如图是一块破碎的圆形木盖,试确定它的圆心. 20.求边长是6cm的等边三角形的外接圆的半径.21.已知线段a、b、c.求作:(1)△ABC,使BC=a,AC=b,AB=c;(2)⊙O使它经过点B、C,且圆心O在AB 上.(作⊙O不要求写作法,但要保留作图痕迹)22.已知点P在圆周上的点的最小距离为5cm,最大距离为15cm,求该圆的半径.23.如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观.为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎样找到圆心半径?。

3.5确定圆的条件(教案)

3.5确定圆的条件(教案)
五、教学反思
在今天的教学过程中,我发现学生们对确定圆的条件的理解存在一些困难。在导入新课环节,当我问到大家在日常生活中是否遇到过需要确定圆的情况时,大部分同学能够联想到一些实际例子,但只有少数同学能够准确描述如何确定圆心和半径。这让我意识到,我们需要在课堂上加强基础知识的教学。
在新课讲授环节,我尝试通过理论介绍和案例分析来帮助学生理解确定圆的条件。从学生的反馈来看,这种方法还是有效的。然而,我也注意到,对于圆的方程推导这个难点,部分同学仍然感到困惑。在今后的教学中,我需要更加注重逐步引导,让学生能够循序渐进地掌握这个知识点。
1.培养学生的空间观念:通过学习确定圆的条件,使学生能够直观想象出圆在平面直角坐标系中的位置,提高对几何图形的认识和理解。
2.提升学生的逻辑推理能力:在教学过程中,引导学生运用逻辑推理方法,从圆的定义出发,推导出确定圆的条件,培养学生严密的逻辑思维。
3.增强学生的数学应用意识:通过解决实际例题,让学生将所学知识应用于实际问题中,培养学生在现实生活中发现数学问题、运用数学知识解决问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“确定圆的条件在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点解释:学生需要能够从实际问题中抽象出数学信息,并建立相应的数学模型。
-举例:提供实际问题背景,指导学生如何提取关键信息,建立数学关系式。
(3)逻辑推理能力的培养。
-难点解释:在推导圆的方程过程中,需要学生运用逻辑推理,理解每一步的推导依据。

确定圆的条件

确定圆的条件

5.4确定圆的条件知识点1: 1、定理:不在同一条直线上的三个点确定一个圆.2、三角形的外接圆.定义:经过三角形各项点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形3、三角形的外心:(l)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;(3)三角形的外心到三角形的三个顶点的距离相等.练习1:按图填空:(1)是⊙O的_________三角形;(2)⊙O是的_________圆,2、.经过一点作圆可以作个圆;经过两点作圆可以个圆,这些圆的圆心在这两点的上;经过的三点可以作个圆,并且只能作个圆。

3、Rt⊿ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为。

4、等边三角形的边长为a,则其外接圆的半径为 .练习2:判断题:(1)经过三点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心是三角形三边中线的交点;()(5)三角形的外心到三角形各项点距离相等.()练习3:钝角三角形的外心在三角形()(A)内部(B)一边上(C)外部(D)可能在内部也可能在外部4.在Rt△ABC中,∠C=90°,若AC=6,BC=8.求Rt△ABC的外接圆的半径和面积。

5.已知AB=7cm,则过点A,B,且半径为3cm的圆有()A 0个B 1个C 2个D 无数个6.如图,平原上有三个村庄A,B,C,现计划打一水井P,使水井到三个村庄的距离相等。

在图中画出水井P的位置。

巩固提高一、选择题1.三角形的外心是()A.三条中线的交点B.三条边的中垂线的交点C.三条高的交点D.三条角平分线的交点2.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个3.(2010•大庆)在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,-1)D.(3,1)4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块5.下图中,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )A .B .C .D .6.在△ABC 中,∠A=30°,∠B=60°,AC=6,则△ABC 外接圆的半径为( )A .23B .33C .3D .37.在△ABC 中,I 是外心,且∠BIC=130°,则∠A 的度数是( )A .65°B.115°C.65°或115°D.65°或130°8.正三角形的外接圆的半径和高的比为( )A .1:2B .2:3C .3:4D .1:39.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为( )A .1B .2C .3D .410.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=42 ,则⊙O 的直径等于( )A .225 B .3 2 C .52 D .7二、填空题1.已知直角三角形的两条直角边长分别为6cm 和8cm ,则这个直角三角形的外接圆的半径为 cm .2.(2002•辽宁)△ABC 是半径为2的圆的内接三角形,若BC=23 ,则∠A 的度数为 。

《确定圆的条件》 学历案

《确定圆的条件》 学历案

《确定圆的条件》学历案一、学习目标1、理解不在同一直线上的三个点确定一个圆。

2、掌握过不在同一直线上的三个点作圆的方法。

3、了解三角形的外接圆、三角形的外心等概念。

二、学习重难点1、重点(1)不在同一直线上的三个点确定一个圆。

(2)过不在同一直线上的三个点作圆。

2、难点(1)理解不在同一直线上的三个点确定一个圆的原理。

(2)三角形外心的性质及应用。

三、学习过程(一)知识回顾1、圆的定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

2、圆的相关概念:圆心、半径、直径等。

(二)问题引入思考:经过一个点 A 能不能作圆?如果能,可以作几个圆?经过两个点 A、B 能不能作圆?如果能,可以作几个圆?(三)探究活动1、经过一个点 A 作圆因为圆上的点到圆心的距离都等于半径,所以以点 A 以外的任意一点为圆心,以这一点到点 A 的距离为半径,就可以作出一个圆。

这样的圆有无数个。

2、经过两个点 A、B 作圆连接点 A 和点 B,作线段 AB 的垂直平分线。

这条垂直平分线上任意一点到点 A 和点 B 的距离都相等,所以以垂直平分线上任意一点为圆心,以这一点到点 A 或点 B 的距离为半径,就可以作出一个圆。

这样的圆也有无数个。

3、经过不在同一直线上的三个点 A、B、C 作圆连接点 A、B、C,分别作线段 AB 和线段 BC 的垂直平分线,这两条垂直平分线相交于一点 O。

以点 O 为圆心,以 OA 为半径作圆,则圆 O 经过点 A、B、C。

因为 OA = OB = OC,所以点 A、B、C 在以点 O 为圆心,以 OA 为半径的圆上。

即经过不在同一直线上的三个点 A、B、C 可以确定一个圆。

(四)定理总结不在同一直线上的三个点确定一个圆。

(五)例题讲解例 1:已知不在同一直线上的三个点 A(2,0),B(0,2),C (1,1),求经过这三个点的圆的方程。

解:设圆的方程为$(x a)^2 +(y b)^2 = r^2$因为点 A(2,0),B(0,2),C(1,1)在圆上,所以$\begin{cases}(2 a)^2 + b^2 = r^2 \\ a^2 +(2 b)^2 =r^2 \\(1 a)^2 +(1 b)^2 = r^2\end{cases}$解方程组得:$a = 1$,$b = 1$,$r =\sqrt{2}$所以圆的方程为$(x 1)^2 +(y 1)^2 = 2$例 2:在△ABC 中,AB = 6,AC = 8,BC = 10,求△ABC 的外接圆的半径。

确定圆的条件 (教学设计) 九年级数学下册(北师大版)

确定圆的条件  (教学设计)  九年级数学下册(北师大版)

3.5确定圆的条件教学设计(1)线段垂直平分线上的点有怎样的性质?(2)怎样用尺规作一条线段的垂直平分线多媒体出示垂直平分线的画法(3)构成圆的基本要素有哪些?车间工人要将一个如图所示的破损的圆盘复原,确定它的尺寸(圆盘的大小),你有办法吗?思考:那么过几点可以确定一个圆呢?探究2 过两点作圆作圆,使它经过已知点A,B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?探究3 过三点作圆问题1:经过同一直线上的A,B,C三点能作圆吗?问题2:作圆,使它经过已知点A,B,C(A,B,C 三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?归纳:不在同一条直线上的三点确定一个圆讨论:如果三个点在同一直线时可以作圆吗?为什么?当A,B,C三点在同一条直线上时,因为到A,B 两点距离相等的点的集合是线段AB的垂直平分线,到B,C两点距离相等的点的集合是线段BC的垂直平分线,两条直线垂直于同一条直线,所以线段AB 的垂直平分线与线段BC的垂直平分线平行,没有交点,故没有一点到A,B,C三点的距离相等,不存在圆心,从而经过同一直线上的三点不能作圆,当A,B,C三点不在同一条直线上时,这两条垂直平分线的交点满足到A,B,C三点的距离相等,就是所作圆的圆心.OA或OB或OC是半径.因为这两条直线的交点只有一个,所以只有一个圆心,半径也唯一确定,所以只能作出一个满足条件的圆。

试一试:已知△ABC,用直尺与圆规作出过A、B、C三点的圆.由上可知,三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆.这个三角形叫这个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.分别作出锐角三角形、直角三角形、钝角三角形的外接圆,并说明它们外心的位置情况.1.以已知点O为圆心、线段a为半径作圆,可以作( )A.1个圆B.2个圆C.3个圆D.无数个圆2.下列语句正确的是( )A.直径是弦,弦是直径B.相等的圆心角所对的弦相等C.经过圆心的每一条直线都是圆的对称轴D.三点确定一个圆3.三角形的外心具有的性质是()A.到三边的距离相等.B.到三个顶点的距离相等.C.外心在三角形的外.D.外心在三角形内.4.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C 的度数是________.5.如图,△ABC的高AD、BE相交于点H,延长AD 交△ABC的外接圆于点G,连接BG.求证:HD=GD.。

人教版第24章圆的知识点及典型例题

人教版第24章圆的知识点及典型例题

圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;#2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.*3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.…圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.【圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半. 5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. :五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 2.其它正确结论:⑴ 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. ⑶ 圆的两条平行弦所夹的弧相等. \3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT △,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分. 相关题目: {1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径 2.(08郴州)已知在O ⊙中,半径5r =,AB CD ,是两条平行弦,且86AB CD ==,,则弦AC 的长为__________.. 六.点与圆的位置关系 1.点与圆的位置有三种:⑴点在圆外⇔d r >;⑵点在圆上⇔d r =;⑶点在圆内⇔d r <.》2.过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. ⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. ⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆. —注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.|⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.、2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.:五.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定设O O、⊙⊙的半径分别为(其中),两圆圆心距为,则两圆位置关系如下表:|位置关系图形定义性质及判定外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部.—d R r>+⇔两圆外离外切两个圆有唯一公共点,并且除了这个公共点之外,每个圆上的点都在另一个圆的外部.d R r=+⇔两圆外切相交#两个圆有两个公共点.R r d R r-<<+⇔两圆相交内切两个圆有唯一公共点,并且除了这个公共点之外,一个圆上的点都在另一个圆的内部.d R r=-⇔两圆内切内含>两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,两圆同心是两圆内含的一种特例.0d R r≤<-⇔两圆内含说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆,1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.⑵正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.⑷正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.~3. 正多边形的性质:⑴正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,、1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。

圆的知识点

圆的知识点

圆的知识点1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。

其中,定点称为圆心,定长称为半径的长。

以点O为圆心的圆记作⊙O。

读作“圆O”。

(注意:圆指的是圆周,而非圆面)2、确定圆的两个条件是圆心和半径:圆心确定圆的位置,半径确定圆的大小。

3、圆的内部可以看作是到圆心的距离小于半径的所有点组成的图形。

4、圆的外部可以看作是到圆心的距离大于半径的所有点组成的图形。

5、点与圆的位置关系有三种:点在圆外、点在圆上、点在圆内.点在圆外,即这个点到圆心的距离>半径;点在圆上,即这个点到圆心的距离=半径;点在圆内,即这个点到圆心的距离<半径;由以上性质可知:如果设⊙O的半径为r,点到圆心O的距离为d,那么(1)点在圆外⇔d > r(2)点在圆上⇔d = r(3)点在圆内⇔d < r6、圆内一点到圆上的最小距离为沿圆心与该点的射线方向与圆相交的点与该点间的线段长度.7、圆是轴对称图形,其对称轴是任意一条过圆心的直线。

(注意:不能说直径是它的对称轴,而应该说直径所在的直线是圆的对称轴,圆的对称轴有无数条。

)8、圆上任意两点间的部分叫做圆弧,简称弧,弧包括优弧和劣弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

9、连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

(注意:直径是弦,但弦不一定是直径;直径等于半径的2倍。

)10、由弦及其所对的弧组成的图形叫做弓形。

11、圆心相同、半径不相等的两个圆叫做同心圆12、半径相等,圆心不同的两个圆叫做等圆(同圆或等圆的半径相等)13、在同圆或等圆中,能够相互重合的弧叫做等弧。

(长度相等的弧不一定是等弧)14、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

(“垂直于弦的直径”可以是直径,也可以是半径,甚至是可以是过圆心的直线)推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;(2)弦的垂直平分线经过圆心,并且平分弦所对两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对另一条弧。

初中数学九年级下册《确定圆的条件》教案设计

初中数学九年级下册《确定圆的条件》教案设计
8.对于三角形的外心,下列说法错误的是()
A.它到三角形三个顶点的距离相等
B.它与三角形三个顶点的连线平分三内角
C.它到任一顶点的距离等于这三角形的外接圆半径
D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点
9.下列说法错误的是()
A.过直线上两点和直线外一点,可以确定一个圆
B.任意一个圆都有无数个内接三角形
探究二:过两点作圆.
作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
处理方式:学生在教师的指导下画图,两分钟后教师实物投影并请学生说明原因:已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离 相等.根据前面学到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点 的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,有无数个圆心,作出的 圆有无数个.如图(2).
【例1】下面四个命题中真命题的个数是()
①经过三点一定可以做圆;
②任意一个三角形一定有一个外接圆,而且只有一个外接圆;
③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;
④三角形的外心到三角形三个顶点的距离相等.
A.4个B.3个C.2个D.1个
【例2】在△ABC中,BC=24cm,外心O到BC的距离为6cm,求△ABC的外接圆半径.
(1)点P在⊙O外 ______;(2)点P在⊙O上 ______;(3)点P在⊙O内 ______.

圆3

圆3

5、确定圆的条件【知识要点】1、确定圆的条件:不在同一直线上的三点确定一个圆.【典型例题】1. 判断题.(1)经过三个点一定可以作圆.()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆.()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形.()(4)三角形的外心到三角形各顶点的距离相等.()2. 如图,已知一条直线L和直线L外两定点A、B,且AB在l两旁,则经过A、B两点且圆心在直线L上面的圆有()A.0个B.1个C.无数个D.0个或1个或无数个3. 如图,A,B,C表示三个工厂,要建一个供水站,使它到这三个工厂的距离相等,求作供水站的位置。

2、三角形的外接圆及外心(1)三角形的三个顶点确实一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.(2)锐角三角形的外心在这个锐角三角形的内部,直角三角形的外心就是这个直角三角形的斜边的中点,钝角三角形的外心在这个钝角三角形的外部.【典型例题】1. 某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(保留作图痕迹)2. 你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?3. 已知等腰三角形ABC的底边BC的长为10cm,顶角为120,求它的外接圆直径.【课堂练习】1. 判断题.经过三个点一定可以作圆()三角形的外心到三角形各顶点的距离都相等()任意一个三角形一定有一个外接圆,并且只有一个外接圆()任意一个圆一定有一个内接三角形,并且只有一个内接三角形()2. 三角形的外心是()(A)三条边中线的交点(B)三条边高的交点(C)三条边垂直平分线的交点(D)三条角平分线的交点3. 在同一个圆中画两条直径,依次连接四个端点得到的四边形是()(A ) 菱形 (B ) 等腰梯形 (C ) 正方形 (D )矩形 4. 如图,P 为正三角形ABC 外接圆上一点,则∠APB 等于( )(A )150° (B )135° (C )115° (D )120°5. 若△ABC 的外接圆的圆心在△ABC 的外部,则△ABC 是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定 6. 下列命题中,正确的是( )A. 三点可确定一个圆B. 三角形的外心是三角形三边中线的交点C. 一个三角形有且只有一个外接圆D. 三角形的外心必在三角形的内部或外部 7. 等腰直角三角形的外接圆的半径为 ( )A. 腰长B. 腰长的2倍 C. 底边长的2倍 D. 腰上的高 8. Rt △ABC 中,∠C =90°,BC =5 ,AC =12 则其外接圆半径为 9. 若直角三角形的两直角边长分别为6,8,则这个三角形的外接圆直径是10. 等腰三角形ABC 内接于半径为5cm 的⊙O 中,若底边BC =8cm ,则△ABC 的面积是 11. 在Rt △ABC 中,如果两条直角边的长分别为3、4,那么Rt △ABC 的外接圆的面积为 12. 等边三角形的边长为4,则此三角形外接圆的半径为13. 已知:如图,在△ABC 中,∠BAC =120°,AB =AC ,BC =43,以A 为圆心,2为半径作⊙A ,试问:直线BC 与⊙A 的关系如何?并证明你的结论.ABC14.如图,⊙O 的半径为4 cm ,点P 是⊙O 外一点,OP =6 cm ,求:(1)以P 为圆心作⊙P 与⊙O 外切,小圆⊙P 的半径是多少? (2)以P 为圆心作⊙P 与⊙O 内切,大圆⊙P 的半径是多少? (分别作出图形,并解答)6、直线与圆的位置关系命题人:陈汝佳审题人:【知识要点】1、直线与圆的位置关系【典型例题】1. 在ΔABC中,∠C为直角,AC=6 cm,BC=8cm,以C为圆心,4 cm长为半径的圆与斜边AB的位置关系为()A、相切B、相交且交点在BC的延长线上C、相离D、相交且交点在BC边上2、切线的性质(1)当直线与圆相切时,圆的切线垂直于过切点的直径.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点,③直线与圆的切线垂直.“见切点,连半径,见垂直”3、切线的判断:常用判断方法(1)圆心到直线的距离等于半径,这条直线是圆的切线(2)经过半径的外端且垂直于半径的直线是圆的切线“切线必须满足两个条件:①经过半径的外端;②垂直于这条半径”【典型例题】1. 如图所示,OA、OB是⊙O的半径,OA⊥OB,点C是OB延长线上一点,过点C作⊙O的切线,点D是切点,连结AD交OB于点E。

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

考点13 确定圆的条件(解析版)

考点13 确定圆的条件(解析版)

2021年八年级数学《暑假作业�新课程无忧衔接》(苏科版)考点13确定圆的条件【知识点梳理】确定圆的条件1.经过一个已知点能作无数个圆2.经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;3.不在同一直线上的三个点确定一个圆.4.经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.【新课程预习练·无忧衔接】一、单选题1.小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是()A.①B.①C.①D.①【答案】A【分析】要确定圆的大小需知道其半径.根据三角形外接圆的圆心的确定方法知第①块可确定半径的大小.【详解】解:第①块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【点睛】考查了确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.2.已知O的半径为6cm,点P在O上,则OP的长为()A.4cm B.5cm C.6cm D.8cm【答案】C【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】①①O的半径为6cm,点P在①O上,①OP=6cm.故选:C.【点睛】考查了点与圆的位置关系:设①O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外①d>r;点P在圆上①d=r;点P在圆内①d<r.3.O的直径为10cm,圆心O到点A的距离为6cm,则点A与O的位置关系是()A.点A在O外B.点A在O上C.点A在O内D.无法确定【答案】A,点在圆上,d<r,点在【分析】由点与圆心的距离d与圆的半径r的关系:d>r,点在圆外,d r圆内,可得答案.【详解】解:O的直径为10cm,∴O的半径为5cm,圆心O到点A的距离为6cm,而6>5,∴点A在O外,故选:.A=,【点睛】考查的是点与圆的位置关系,掌握点与圆心的距离d与圆的半径r的关系:d>r,点在圆外,d r 点在圆上,d<r,点在圆内,是解题的关键.4.在ABC中,①C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与①A的位置关系是()A.在①A外B.在①A上C.在①A内D.不能确定【答案】B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:3,AC===①AC=半径=3,①点C与①A的位置关系是:点C在①A上,故选:B.【点睛】考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外5.下列四个命题:①等边三角形是中心对称图形;①在同圆或等圆中,相等的弦所对的圆周角相等;①三角形有且只有一个外接圆;①平分弦的直径垂直于弦;①过三点有且只有一个圆.其中真命题的个数有()A.1个B.2个C.3个D.4个【答案】A【分析】根据中心对称图形的定义、圆周角的性质、三角形的外接圆、垂径定理、圆的确定依次判断即可.【详解】①等边三角形是中心对称图形不是中心对称图形,故错误;①在圆中一条弦所对的圆周角有两个,则在同圆或等圆中,相等的弦所对的圆周角不一定相等,故错误;①三角形有且只有一个外接圆,故正确;①平分弦(不是直径)的直径垂直于弦,故错误;①过不在同一直线上的三点有且只有一个圆,故错误;故是真命题的是①,故选:A.【点睛】考查真命题:正确的命题是真命题,正确掌握中心对称图形的定义、圆周角的性质、三角形的外接圆、垂径定理、圆的确定是解此题的关键.6.如图,在等边①ABC中,AB=12,点D在AB边上,AD=4,E为AC中点,P为①ABC内一点,且①BPD =90°,则线段PE的最小值为()A.2B.2C.4D.8【答案】C【分析】以BD为直径作①O,连接OE交①O于点P,则OE的长度最小,即EP最小,根据勾股定理即可求出答案.【详解】解:以BD为直径作①O,连接OE交①O于点P,则OE的长度最小,即EP最小,过点E作EF①AB于点F,在Rt①AEF中,①A=60°,AE=6,①AF=3,EF=在Rt①OEF中,EF=OF=5,①OE=①PE=4,即线段PE的最小值为4,故选:C.【点睛】考查了圆的性质,等边三角形的性质,勾股定理,根据题意判断出EP最小的情况是解题关键.7.已知①ABC的外接圆①O,那么点O是①ABC的()A.三条中线交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线交点【答案】C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【详解】已知①O是①ABC的外接圆,那么点O一定是①ABC的三边的垂直平分线的交点,故选:C.【点睛】考查三角形外接圆圆心的确定,属基础题.8.下列说法正确的是()A.经过三个点一定可以作一个圆B.圆中优弧所对的弦一定比劣弧所对的弦长C.圆上任意两点都能将圆分成一条劣弧和一条优弧D.任意一个三角形有且只有一个外接圆【答案】D【分析】根据优弧,劣弧的定义,“不在同一条直线上的三点,确定一个圆”,三角形的外接圆的定义,逐一判断选项,即可得到答案.【详解】①经过不在同一条直线上的三点,一定可以作一个圆,①A错误,①在同一个圆中,优弧所对的弦一定比劣弧所对的弦长,不同圆中,无法比较,①B错误,①当圆上两点的连线是直径时,两条弧都是半圆,①C错误,①任意一个三角形有且只有一个外接圆,①D正确.故选D.【点睛】考查圆的相关概念,掌握优弧,劣弧的定义,“不在同一条直线上的三点,确定一个圆”,三角形的外接圆的定义9.小明不慎把家里的圆形玻璃打碎了,带如图的玻璃碎片到商店配到与原来大小一样的圆形玻璃,以下是工作人员排乱的操作步骤:①连接AB和BC;①在玻璃碎片上任意找不在同一直线上的三点A、B、C;①以点O为圆心,OA为半径作O;①分别作出AB和BC的垂直平分线,并且相交于点O;正确的操作步骤是()A.①①①①B.①①①①C.①①①①D.①①①①【答案】B【分析】根据题意可知所求的圆形玻璃是①ABC的外接圆,从而可以解答本题.【详解】由题意可得,所求的圆形玻璃是①ABC的外接圆,①这块玻璃镜的圆心是①ABC三边垂直平分线的交点,①正确的操作步骤是①①①①故选:B.【点睛】考查垂径定理的应用.10.下列语句中,正确的是A.同一平面上三点确定一个圆B.菱形的四个顶点在同一个圆上C.三角形的外心是三角形三边垂直平分线的交点D.三角形的外心到三角形三边的距离相等【答案】C【分析】根据确定圆的条件,三角形的外心的定义,以及圆内接四边形的对角互补的性质对各选项分析判断后利用排除法.【详解】A选项:同一平面上三点必须不在同一直线上才可以确定一个圆,故选项A错误;B选项:菱形的对角相等,但不一定互补,所以四个顶点不一定在同一个圆上,故选项B错误;C选项:三角形的外心是三角形三边中垂线的交点,是外心定义,故选项C正确;D选项:三角形的外心到三角形三个定点的距离相等,到三边的距离不一定相等,故选项D错误;故选C.【点睛】考查了三角形的外接圆与外心,圆内接四边形的性质,确定圆的条件,掌握三角形的外接圆与外心,圆内接四边形的性质,确定圆的条件是解题的关键.11.如图①,若BC是Rt①ABC和Rt①DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图①,①ABC的三条高AD、BE、CF相交于点H,则图①中“四点共圆”的组数为()A.2B.3C.4D.6【答案】D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【详解】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选D.【点睛】考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.12.下列四个命题中,正确的个数有()①圆的对称轴是直径所在的直线;①经过三点可以确定一个圆;①弦长相等,则弦所对的弦心距也相等;①平分弦的直径垂直于弦;①三角形的外心到三角形各顶点的距离都相等.A.1个B.2个C.3个D.4个【答案】B【分析】根据对称轴的概念、过三点的圆、弧、弦、圆心角的关系定理、三角形的外心的概念、垂径定理判断即可.【详解】解:圆的对称轴是直径所在的直线,①正确;经过不在同一直线上的三点可以确定一个圆,①错误;在同圆或等圆中弦长相等,则弦所对的弦心距也相等,①错误;平分弦(不是直径)的直径垂直于弦,①错误;三角形的外心到三角形各顶点的距离都相等,①正确;故选B.【点睛】考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是_____【答案】(﹣2,﹣1)【分析】根据外心的定义作图即可.【详解】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.①点A的坐标为(﹣3,2),①点O的坐标为(﹣2,﹣1).【点睛】考查了三角形外心,熟练掌握外心的定义,准确求作线段的垂直平分线是解题的关键.14.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为________.【答案】5个【分析】连接AB、BC,然后分别作AC、AB的垂直平分线,进而可作①ABC的外接圆,然后根据图形可求解.【详解】如解图,连接AB、BC,先作AC,AB边的垂直平分线,两条垂直平分线的交点即为圆心O,再以OA 为半径作圆.格点与圆相交的有8个点.除A,B,C三点外,还有5个点.故答案为5个.【点睛】考查圆的作图,熟练掌握圆的尺规作图是解题的关键.15.如图,在平面直角坐标系x O y中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0),那么①ABC的外接圆的圆心坐标为____.【答案】(5,5)【分析】分别作出三角形任意两边的垂直平分线得到圆心的位置,进而得出答案.【详解】①B(0,3),C(3,0),①在网格中,BC可以看作边长为3的正方形的对角线,根据网格特征及正方形对角线互相垂直平分,分别作出AB、BC的垂直平分线,交于点E,则点E即为外接圆的圆心,如图所示,①A(0,7),B(0,3),①点E纵坐标为5,①由图可得,E(5,5).故答案为:(5,5).【点睛】考查了坐标与图形,三角形的外接圆与外心,熟练掌握定义及性质是解题的关键.16.如图1是一扇旋转门,它由一个圆柱形空间的三片旋转翼组成,三片旋转翼将圆柱形空间等分为三个扇形空间,AB与CD处为出入口,在旋转过程中,当某一片旋转翼的一端与点B重合时,另两片中的一片旋转翼的一端与点D重合;继续旋转,当某一片旋转翼的一端与点A重合时,另两片中的一片旋转翼的一端则与点C重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定圆的条件教案(蔡飞)
教学内容与过程:
一、创设问题情境,引入新课
1、问题:
车间工人要将一个破损的圆形文物复原,你有办法吗?
2、引入新课:
(1)这个问题就是本节课的学习的一个知识点,相信同学们通过本节课的学习一定能解决这个问题。

(2)出示课题:3.4确定圆的条件
二、探索新知
类比确定直线的条件
我们知道经过一点可以作无数条直线;经过两点只能作一条直线.想一想,经过一点可以作几个圆?经过两点,三点,…,呢?
1.作圆,使它过已知点A.你能作出几个这样的圆?(提问)
2.作圆,使它过已知点A,B.你能作出几个这样的圆?(提问)
作法:(1)连结AB,作线段AB的垂直平分线MN;
(2)在直线MN上任取一点O,以O为圆心,以OA为半径作圆,即为所求。

证明:因为O为圆心,OA为半径,所以A在圆上。

又因为O在线段的AB的垂
直平分线上,而垂直平分线上的所有点到线段两端点的距离相等,故OB=OA,
所以B在圆上。

所以,圆O是经过两点A、B的圆。

师:现在,请同学回答以下两个问题:
(1)你是怎样想到上述作法的?(作圆的问题实质上就是圆心和半径的问题,确
定了圆心和半径,圆就随之确定。

在教学中,解决过已知点作圆的问题,应紧紧
抓住对圆心和半径的探讨,已知圆心和半径就可以作一个圆,这是从圆的定义引
出的基本思路,因此作圆的问题就是如何根据已知条件去找圆心和半径的问题.由
于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定,因此作
圆的问题又变成了找圆心的问题,是否可以作圆以及能作多少个圆,都取决于能
否确定圆心的位置和圆心的个数.)
(2)经过两个已知点A、B的圆有多少个?其圆心的分布有什么特点?与线段AB
有什么关系?为什么?
(在学生回答后,教师把上述两个问题的结果作一个小结。


师:“经过两已知点A、B的圆心在线段AB的垂直平分线上”(板书)由于经过已知点A、B的圆,圆心可以取线段AB的垂直平分线上的任意点,圆心不确定,而半径也不确定,所以,“经过两个已知点A、B的圆有无穷多个,圆的大小是不确定的”(板书)。

这是很重要的结论,以后经常要用到,希望同学们记下来。

发现新问题:
既然经过两已知点A、B的圆是不确定的,那么经过几个点的圆才是确定的呢?我们将“经过两个已知点A、B”换成“经过三点A、B、C”,这里新增了第三点C。

这三点的位置要进行讨论.有两种情况:①在一条直线上三点;②不在一条直线上三点,通过学生小组的讨论认为不在同一条直线上三点能确定一个圆.
解决新问题
怎样才能做出这个圆呢?下面,我们来研究这个问题。

2.请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上).你是如何做的?你能作出几个这样的圆?
分析:作圆可以先找圆心,前面已学过,经过两点A、B的圆的圆心在线段AB的垂直平分线上。

这垂直平分线如果设为DE,那么DE上哪一点是既经过A、B两点又经过第三点C的圆的圆心呢?同学们想一下,圆心是否应该在线段AC(或BC的垂直平分线上)呢?那么圆心怎样找呢?
生:圆心应在线段AB的垂直平分线DE与线段BC的垂直平分线FG的交点上。

师:要作经过不共线三点A、B、C的圆,找圆心时,把经过三点A、B、C分解为先要求经过两点A、B,再要求经过两点A、C,两次一结合。

问题就得到解决了。

这是数学上常用的思考方法。

对于这个问题小华是这样做的
作法:
1.连结AB,BC。

2.分别作线段AB,BC的垂直平分线DE和FG,DE与FG相交于点O。

3.以O为圆心、以OA为半径作圆。

⊙O就是所求作的圆。

他作的圆符合要求吗?与同伴进行交流。

师:“证明”就是根据“作法”,从理论上说清所作圆确实经过不共线的三点A、B、C。

因为O为圆心,OB为半径,所以B在⊙O上,即⊙O过点B。

又因为O在线段AB的垂直平分线上,而线段垂直平分线上的点到线段两端的距离相等,所以OA=OB。

故A 在⊙O上,即⊙O经过点A。

同理,⊙O经过点C。

因此,⊙O确实是经过不共线三点
A、B、C的圆。

现在,请同学们考虑:经过不共线三点A、B、C的圆只有一个。

生:经过不共线的三点A、B、C的圆只有一个。

师:这就得到了定理“过不共线三点决定一个圆”(板书)。

这里的“决定”包含两层意思:一是能够作出一个圆;二是仅能作出一个圆。

怎样证明这一个结论?
(1)要证明“存在性”,说明能作出一个圆,这包含刚才的“作法”、“证明”两部分的所有内容。

(2)要证明“唯一性”,说明仅能作一个圆,这由于AB、AC的垂直平分线DE、FG有唯一的交点O,从而圆心O是唯一的。

进一步又知OA=OB=OC半径是唯一的,所以,这样所作的圆是唯一的,“唯一性”得到了证明。

师:请同学们再考虑,如果三点A、B、C是在同一直线上,那么存在不存在经过三点
A、B、C的圆?考虑一下圆心在哪里?
生:若A、B、C三点共线,线段AB、BC、CA的垂直平分线平行而无交点,因而找不到圆心,于是不存在经过共线三点的圆。

(不共线三点能确定一个圆。

这里的“不共线”
是极重要的条件,要再一次强调。

引导学生观察
这个圆与三角形的顶点的关系,得出:经过三角形各项点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.
强调“接”指三角形的顶点在圆上,“内接”、“外接”指在一个图形的“里面”和“外面”.
三、应用和拓展
(1)我在黑板上画个圆,把圆心拭去,你们能找到圆心吗?怎样找?为了节省时间,你说一下怎样找圆心就行,试试看。

(2)车间工人要将一个破损的圆形文物复原,你有办法吗?
(3)不共线三点可以确定一个圆,那么三个以上的点呢?如:不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?(用三角形外接圆、圆外、圆内各一点说明四个点或四个点以上未必在同一圆上,如右图所示。


四、新知巩固
师:我们学会了定理“不共线三点能确定一个圆”有什么用呢?可以用来作出三角形
的外接圆。

(请同学们在准备好的画有锐角三角形、钝角三角形、直角三角形卡片上,画出它们的外接圆,看谁最快)作三角形的外接圆是必备基本技能,定要熟练掌握.
(学生画图,教师巡视、指导。


师:画完后,请同学们观察一下,圆心的位置有什么特点?
生:直角三角形的外心在斜边的中点上;锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部。

(板书:
师:画得较快的同学是不是每个三角形只画了两边的垂直平分线,用交点确定圆心O,画外接圆;而画得稍慢的是不是每个三角形都画了三边的垂直平分线,用交点确定圆心O,画外接圆?但这样的同学也有另外的收获,又重现了过去学过的“三角形三边的垂直平分线三线共点”这个事实。

五、新知理解
请回答下列填空题和判断题。

(完成后可让学生读出)
1.填空题:
(1)经过两点A、B,可用_____个圆,其圆心在____。

(2)经过不共线三点A、B、C可作____个圆,其圆心在_____。

2.判断题:
(1)过三点确定一个圆。

(2)多边形的顶点都在圆内时,叫做这个圆的内接多边形。

(3)以线段AB为直径可以作一个确定了位置和大小的圆。

所以说,两点A、B确定一个圆。

所以,推广到一般,可以说“两点确定一个圆”。

(4)任意一个三角形一定有一个外接圆,并且只有一个外接圆;
(5)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;
(6)三角形的外心是三角形三边中线的交点;
(7)三角形的外心到三角形各项点的距离相等.
六、感悟与收获
师:请同学们说出本节课学会了哪些知识、技能。

生:(1)不共线三点能确定一个圆;(2)三角形外接圆的圆心就是三边垂直平分线的交点,可以通过作任意两边的垂直平分线而找到的。

七、作业
1、P111习题3.6 1 2 3
2.任画一个直角梯形,再画出经过它的每三个顶点的圆。

3、如图3-4-2,CD所在的直线垂直平分线段AB,怎样使用这样的工具找到圆形工件的圆心?
八、探究活动
确定圆的个数
1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A
2、A3……An和直线外一点P可以确定多少个圆?
2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?
3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?。

相关文档
最新文档