2012-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)
历届高考直线与圆试题汇编
![历届高考直线与圆试题汇编](https://img.taocdn.com/s3/m/d08e36d880c758f5f61fb7360b4c2e3f572725dc.png)
历届高考直线与圆试题汇编专题九:解析几何第二十五讲直线与圆一、选择题1.(2018全国卷Ⅲ) 直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆 (x-2)²+y²=2 上,则ΔABP 面积的取值范围是:A。
[2,6]B。
[4,8]C。
[2,32]D。
[22,32]2.(2018天津) 已知圆 x+y-2x=0 的圆心为 C,直线 y=3-x相交于 A,B 两点,则ΔABC 的面积为:3.(2018北京) 在平面直角坐标系中,记 d 为点P(cosθ,sinθ) 到直线 x-my-2=0 的距离,当θ,m 变化时,d 的最大值为:A。
1B。
2C。
3D。
44.(2017新课标Ⅲ)已知椭圆C:(x²/a²)+(y²/b²)=1 (a>b>0) 的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的圆与直线 bx-ay+2ab=0 相切,则 C 的离心率为:A。
√(3/32)B。
1/√(3/32)C。
√(3/8)D。
1/√(3/8)5.(2017新课标Ⅲ)在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上。
若AP=λAB+μAD,则λ+μ 的最大值为:A。
3B。
2√2C。
5D。
26.(2015山东)一条光线从点 (-2,-3) 射出,经 y 轴反射后与圆 (x+3)²+(y-2)²=1 相切,则反射光线所在直线的斜率为:A。
-2/5 或 5/2B。
-5/2 或 2/5C。
-2/3 或 3/2D。
-3/2 或 2/37.(2015新课标2)已知圆 C1:(x-1)²+y²=1,圆 C2:(x-2)²+y²=4,则圆 C1 与圆 C2 的公共弦所在直线的斜率为:A。
1/3B。
1/2C。
2/3D。
3/48.(2015新课标2)过三点 A(1,3),B(4,2),C(1,-7) 的圆交于 y 轴于 M、N 两点,则 MN 的长度为:A。
20122017年高考文科数学真题汇编坐标系和参数方程老师版
![20122017年高考文科数学真题汇编坐标系和参数方程老师版](https://img.taocdn.com/s3/m/1ddba0bb3968011ca2009171.png)
学科教师辅导教案 学员姓名 年 级高三 辅导科目 数 学授课老师课时数2h第 次课授课日期及时段 2017年 月 日 : — :1.(2015年广东文)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 ()2,4- .2.(2015年新课标2文)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标; (II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y x +-=,联立解历年高考试题集锦——坐标系和参数方程3.(2015年陕西文)在直角坐标版权法xOy 吕,直线l 的参数方程为132(32x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e 的极坐标方程为23sin ρθ=.(I)写出C e 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.试题解析:(I)由23sin ρθ=,得223sin ρρθ=,从而有2223x y y +=所以()2233x y +-=(II)设133,22P t t ⎛⎫+ ⎪⎝⎭,又(0,3)C ,则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭,故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).4、(2015新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1222,2ρρ==.故122ρρ-=,即2MN =由于2C 的半径为1,所以2C MN ∆的面积为12.5、(2016年全国I )在直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:⑴ cos 1sin x a t y a t=⎧⎨=+⎩ (t 均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-=即为1C 的极坐标方程⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -=∴1a =6、(2016年全国II )在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭, 即22369014k k =+,整理得253k =,则153k =±. 7、(2016年全国III )在直角坐标系xOy 中,曲线1C 的参数方程为3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+= .(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.8、(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为11232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩ (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解:椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t t ++=,即27160t t +=,解得10t =,2167t =-.所以1216||7AB t t =-=.9.(2013江苏理)在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=t y t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标。
2012年高考真题文科数学汇编8:直线与圆
![2012年高考真题文科数学汇编8:直线与圆](https://img.taocdn.com/s3/m/a4ffc242804d2b160b4ec0f0.png)
2012高考文科试题解析分类汇编:直线与圆一、选择题1.【2012高考山东文9】圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B考点:圆的位置关系解析:通过求出两圆心的距离为:17<5,因此选B2.【2012高考安徽文9】若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是 (A ) [-3,-1] (B )[-1,3] (C ) [ -3,1] (D )(-∞,-3]U[1,+∞) 【答案】C【解析】圆22()2x a y -+=的圆心(,0)C a 到直线10x y -+=的距离为d则 1231d r a a ≤=⇔≤+≤⇔-≤≤3.【2012高考重庆文3】设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =(A )1 (B (C (D )2 【答案】D【解析】:直线y x =过圆221x y +=的圆心(0,0)C 则||AB =2【考点定位】本题考查圆的性质,属于基础题.4.【2012高考浙江文4】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件 【答案】A【命题意图】本题考查的知识为依托于简易逻辑的直线平行问题的考查。
【解析】当121a a =+,解得1a =或2a =-.所以,当a =1是,两直线平行成立,因此是充分条件;当两直线平行时,1a =或2a =-,不是必要条件,故选A.5.【2012高考陕西文6】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A.l 与C 相交 B. l 与C 相切 C.l 与C 相离 D. 以上三个选项均有可能 【答案】A.【解析】点(3,0)P 在圆内,则l 必与C 相交,故选A . 6.【2012高考辽宁文7】将圆x 2+y 2-2x-4y+1=0平分的直线是 (A )x+y-1=0 (B ) x+y+3=0 (C )x-y+1=0 (D )x-y+3=0【答案】C【解析】圆心坐标为(1,2),将圆平分的直线必经过圆心,故选C 【点评】本题主要考查直线和圆的方程,难度适中。
2012-2017年高考文科数学真题汇编:圆锥曲线老师版
![2012-2017年高考文科数学真题汇编:圆锥曲线老师版](https://img.taocdn.com/s3/m/4ac06f473b3567ec102d8aa3.png)
(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率112131BM y y k -+==-.17.(2015年安徽文)设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510。
(1)求E 的离心率e;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。
∴a b3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a b(Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a ba a bb K MN 56652322131==-+= abK AB-=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB18.(2015年福建文)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( A ) A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4119.(2015年新课标2文)已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线的标准方程为 .2214x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.21.(2015年陕西文科)如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,且离心率为22.(I)求椭圆E 的方程;2212x y += 22.(2015年天津文)已知双曲线22221(0,0)x y a b ab 的一个焦点为(2,0)F ,且双曲线的渐近线与圆222y 3x 相切,则双曲线的方程为( D )(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x的等腰三角形,则新标2文221y b 0,0a b 的一条渐近线平行于直线210x ,双曲上,则双曲线的方程为( A )2120y (B )221205x y (C )2233125100x y 2233110025x y新标1) 已知双曲线2221x y =(0,0a b >>)的离心率为52,则14x B .13y =±12x ± D .y x[9,)+∞[9,)+∞C .(0,1][4,)+∞D .(0,3][4,)+∞【答案】A 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab≥=,即33m≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=,即33m ≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A. 41、(2017·全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)3.【答案】C 【解析】由题意得双曲线的离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a 2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C.42.(2017·全国Ⅱ文,12)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A. 5 B .2 2 C .2 3 D .3 34.【答案】C 【解析】抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF的方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23).∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4的等边三角形.∴点M 到直线NF 的距离为2 3. 故选C.43.(2017·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则椭圆C 的离心率为( ) A .63 B .33 C .23 D .135.【答案】A 【解析】由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b , ∴b a =13,∴e =ca =a 2-b 2a = 1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63. 44.(2017·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=1 6.【答案】D 【解析】根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.故选D. 45.(2017·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3a x .又双曲线的一条渐近线方程为y =35x ,∴a =5.46、(2017·北京文,10)若双曲线x 2-y 2m=1的离心率为3,则实数m =________. 【答案】2【解析】由双曲线的标准方程知a =1,b 2=m ,c =1+m ,故双曲线的离心率e =ca =1+m =3,∴1+m =3,∴m =2.47、(2017·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.【解析】如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.48、(2017新课标1文)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414AB x x y y x x K x x x x --+====-- (2)设200,4x M x ⎛⎫ ⎪⎝⎭,则C 在M 处的切线斜率'00112AB y K K x x x ====- ∴02x = 则()12,1A ,又AM ⊥BM ,22121212121111442222AM BMx x y y K K x x x x ----==---- ()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y=x +m 代入24x y = 得2440x x m --= ∴124x x +=,124x x m =- -4m +8+20=0∴m=7故AB :x +y=749.(2017年新课标Ⅱ文)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P满足→NP =2→NM . (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且→OP ·→PQ =1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【解析】(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),→NP =(x -x 0,y ),→NM =(0,y 0).由→NP =2→NM 得x 0=x ,y 0=22y .∵M (x 0,y 0)在C 上,∴x 22+y 22=1,∴点P 的轨迹方程为x 2+y 2=2.(2)由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则→OQ =Q (-3,t ),→PF =(-1-m ,-n ),→OQ ·→PF =3+3m -tn , →OP =(m ,n ),→PQ =(-3-m ,-tn ).由→OP ·→PQ =1得-3m -m 2+tn -n 2=1,。
历年高考直线与圆真题以及解析
![历年高考直线与圆真题以及解析](https://img.taocdn.com/s3/m/2c437ba4ad02de80d4d840f8.png)
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即
2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版
![2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版](https://img.taocdn.com/s3/m/47be1a10376baf1ffc4fad9e.png)
C的极坐标方程为C的直角坐标方程;为直线l上一动点,当到圆心C的距离最小时,求点ρ=(I)由2:化为普通方程为2=由题意:y x,(I )求直线l 和圆C 的普通方程;(II )若直线l 与圆C 有公共点,求实数a 的取值范围.【简解】(I )直线l 的普通方程为220x y a --=.圆C 的普通方程为2216x y +=. (II )因为直线l 与圆有公共点,故圆C 的圆心到直线l 的距离245a d -=≤,解得2525a -≤≤12. (2014新标1理)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值. 【简解】.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数), 直线l 的普通方程为:260x y +-=(Ⅱ)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 取得最大值,最大值为2255; 当()sin 1θα+=时,||PA 取得最小值,最小值为255. 13.(2013新标2理) 已知动点P 、Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【简解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为{x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π,d =0,故M 的轨迹过坐标原点.14、已知点A 的极坐标为(2,)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;。
2012-2017年高考文科数学真题汇编:基本不等式和线性规划老师版
![2012-2017年高考文科数学真题汇编:基本不等式和线性规划老师版](https://img.taocdn.com/s3/m/cac2ad6a80eb6294dc886c8f.png)
学科教师辅导教案 学员 年 级高三 辅导科目数 学授课老师课时数2h第 次课授课日期及时段 2018年 月 日 : — :1.(2013文)设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 【答案】D2.(2013沪春招)如果0a b <<,那么下列不等式成立的是( ) (A)11a b < (B) 2ab b < (C) 2ab a -<- (D) 11a b-<- 【答案】D3.(2014) 若0a b >>,0c d <<,则一定有( ) A 、a b c d > B 、a b c d < C 、a b d c > D 、a b d c< 【答案】D4.(2013理)不等式220x x +-<的解集为 . 【答案】(-2,1)5.(2012文)不等式x 2-5x+6≤0的解集为______. 【答案】{}23x x ≤≤6.(2012文)不等式的解集是___________。
【答案】(3,2)(3,)-⋃+∞ 4.(2013文)不等式021xx <-的解为 . 【答案】(0,1/2)7.(2014新标1文) 设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值围是________【简解】作图象,得x ≤8历年高考试题集锦——基本不等式和线性规划20.(2012文) 设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x ,则目标函数z=3x-2y 的最小值为(A )-5 (B )-4 (C )-2 (D )3【答案】B21.(2013)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2 【答案】A22.(2013新标2文) 设x ,y 满足约束条件{ x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( ) A .-7B .-6C .-5D .-3【答案】B23.(2014新标2理) 设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】B24.(2014新标2文)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1 【答案】B25.(2012) 若函数y =2x图象上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( )A .12B .1C .32D .2【简解】作图,由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值;即得2x=3-x ,即x =1=m .选B 26.(2013文)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为A .31200元B .36000元C .36800元D .38400元A .10B .8C .5D .2 【答案】C48.(2015年文科)变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C49.(2015年新课标1理科)若x,y 满足约束条件则yx的最大值为 . 【答案】350.(2015年新课标2文科)若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】851、(2016年高考)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12 【答案】C52、(2016年高考)设x ∈R ,则不等式31x -<的解集为_______. 【答案】)4,2(53、(2016高考)若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为____2-___.54.(2013文)若122=+yx,则y x +的取值围是( ) A .]2,0[ B .]0,2[- C .),2[+∞- D .]2,(--∞ 【简解】用均值不等式,选D55.(2012文) 若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是 A.245B.285C.5D.6【简解】135y x +=,3x+4y=113131213(34)()()555x y x y y x y x +⋅+=++≥113236555⨯⨯+=.选C 56.(2015年文科)若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C57、(2016全国II 卷高考)若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为__________【答案】5-58、(2016全国III 卷高考)若,x y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则235z x y =+-的最大值为_____________. 【答案】10-59、(2016省高考)函数y =232x x --的定义域是 . 【答案】[]3,1-60、(2017全国I 卷文)设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( D )A .0B .1C .2D .361.(2017年新课标Ⅱ文)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( A )A.-15B.-9C.1D.962、(2017·)设变量x ,y 满足约束条件 ,则目标函数z=x+y 的最大值为( D )A、 B、1 C、 D、363、(2017•)已知x,y满足约束条件,则z=x+2y的最大值是( C )A、0B、2C、5D、664、(2017•新课标Ⅲ)若x,y满足约束条件,则z=3x﹣4y的最小值为____-1____。
20122017年高考文科数学真题汇编:坐标系和参数方程老师版.doc
![20122017年高考文科数学真题汇编:坐标系和参数方程老师版.doc](https://img.taocdn.com/s3/m/b3b5ed5616fc700abb68fce1.png)
C的极坐标方程为C的直角坐标方程;为直线l上一动点,当到圆心C的距离最小时,求点ρ=(I)由2:化为普通方程为2=由题意:y x,(I )求直线l 和圆C 的普通方程;(II )若直线l 与圆C 有公共点,求实数a 的取值范围.【简解】(I )直线l 的普通方程为220x y a --=.圆C 的普通方程为2216x y +=. (II )因为直线l 与圆有公共点,故圆C 的圆心到直线l 的距离245a d -=≤,解得2525a -≤≤12. (2014新标1理)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值. 【简解】.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数), 直线l 的普通方程为:260x y +-=(Ⅱ)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 取得最大值,最大值为2255; 当()sin 1θα+=时,||PA 取得最小值,最小值为255. 13.(2013新标2理)已知动点P 、Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【简解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为{ x =cos α+cos 2α,=sin α+sin 2α,(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x2+y2=2+2cos α(0<α<2π).当α=π,d =0,故M 的轨迹过坐标原点. 14、已知点A 的极坐标为(2,)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程; (2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.2=,15.(2012辽宁)在直角坐标-3)(-3≤≤3) 16.(2013新标1) 已知曲线⎝⎛⎭⎫2,π4⎭⎫,π217.(2013辽宁)⎭⎪⎫-422. =2t3解⎨⎪⎧x2+-=4,得⎨⎪⎧x1=0,⎨⎪⎧x2=2,所以C 与C 交点的一个极坐标为 ⎛⎪⎫4,π,=12|OA ⎭⎫-π3⎪⎪⎭⎫-π3-32+ 3. =-π12时,+ 3.+ 3.23.(2017·全国Ⅲ文,22)在直角坐标系=m k -2==1k (设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =-,y =1k+消去k 得x -y =4(y ≠0).所以C 的普通方程为x -y =4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧-=4,+-2=0,得=-13,从而=910,=110.的极径为 5.24.(2017·江苏,21)在平面直角坐标系中=t222s22s 从而点P 到直线的距离d =|2s2-42s +8|5=-2+4|,当s =2时,d =45.。
20122017年高考文科数学真题汇编基本初等函数老师版
![20122017年高考文科数学真题汇编基本初等函数老师版](https://img.taocdn.com/s3/m/7fb5d8bc67ec102de3bd8976.png)
11、(2016年山东)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)=( D ) (A )-2 (B )-1 (C )0 (D )212、(2016年天津)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足)2()2(|1|->-f f a ,则a 的取值范围是( C )(A ))21,(-∞(B )),23()21,(+∞-∞Y (C ))23,21( (D )),23(+∞13、(2016年全国I 卷)若a>b>0,0<c<1,则( B )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b 14、(2016年全国I 卷高考)函数y =2x 2–e |x |在[–2,2]的图像大致为( D )(A )(B )(C )(D )15、(2016年全国II 卷)下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( D )(A )y =x (B )y =lg x (C )y =2x (D )1y x=16、(2016年全国III 卷)已知4213332,3,25a b c ===,则( A )(A) b a c << (B)a b c <<(C) b c a << (D) c a b <<17、(2016年江苏)函数y =232x x --的定义域是 []3,1- .18、(2016年江苏)设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 25- . 19、(2016年四川高考)若函数f (x )是定义R 上的周期为2的奇函数,当0<x<1时,f (x )=x 4,则f (25-)+f (2)= -2 。
高考数学真题汇编---专题9_直线和圆_理
![高考数学真题汇编---专题9_直线和圆_理](https://img.taocdn.com/s3/m/27c594d5dd88d0d233d46a75.png)
【2012年高考试题】1.【2012高考真题重庆理3】任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系一定是(1) 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心2.【2012高考真题浙江理3】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4.【2012高考真题陕西理4】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A.l 与C 相交 B. l 与C 相切 C.l 与C 相离 D. 以上三个选项均有可能 【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.5.【2012高考真题天津理8】设,若直线与圆相切,则m+n 的取值范围是(A ) (B ) (C ) (D ) 【答案】D【解析】圆心为)1,1(,半径为 1.直线与圆相切,所以圆心到直线的距离满足R n m ∈,02)1()1(=-+++y n x m 1)1()1(22=-+-y x ]31,31[+-),31[]31,(+∞+⋃--∞]222,222[+-),222[]222,(+∞+⋃--∞1)1()1(|2)1()1|22=+++-+++n m n m (,即2)2(1n m mn n m +≤=++,设z n m =+,即01412≥--z z ,解得,222-≤z 或,222+≥z6.【2012高考江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .8.【2012高考真题湖南理21】(本小题满分13分) 在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【答案】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【2011年高考试题】 一、选择题:1.(2011年高考江西卷理科9)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是 A .(.(-0)∪(0) c .[.(-∞,+∞) 、解析:选 B ,由题意,AC 为直径,设圆心为F ,则FE BD ⊥,圆的标准方程为()()221310x y -+-=,故()1,3F ,由此,易得:AC =又31210EF k -==-,所以直线BD 的方程为112y x =-+,F 到BD=BD =四边形ABCD的面积为1122AC BD =⨯=g 二、填空题:1.(2011年高考安徽卷理科15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线2.(2011年高考重庆卷理科15)设圆C 位于抛物线22y x =与直线3x =所组成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为1。
历届高考直线与椭球试题汇编
![历届高考直线与椭球试题汇编](https://img.taocdn.com/s3/m/fb262e251fd9ad51f01dc281e53a580216fc5002.png)
历届高考直线与椭球试题汇编
本文档汇编了历届高考中与直线和椭球相关的试题,旨在帮助考生进行复备考。
以下是试题内容的总结:
直线
1. 2008年高考数学试题
- 题目:已知直线L1:2x-3y=7,直线L2:x+2y=2,求L1、L2的交点坐标。
- 解析:通过联立两条直线的方程,求得交点坐标。
2. 2012年高考数学试题
- 题目:直线L: 3x-4y=5,过点A(-1,2)的直线与直线L平行,求相应的方程。
- 解析:通过直线的斜率判断两条直线是否平行,然后根据已知条件构建方程。
椭球
1. 2010年高考数学试题
- 题目:已知椭球E:x^2/16 + y^2/9 = 1,点A(4,0)在椭球上,求A点在椭球上到x轴和y轴的距离。
- 解析:求点到坐标轴的距离可以根据已知条件和几何性质进行求解。
2. 2015年高考数学试题
- 题目:将椭球E:x^2/9 + y^2/4 + z^2/1 = 1,展开后得到的方程是什么?
- 解析:将椭球的方程按照特定顺序展开,最终得到展开后的方程。
以上是部分历届高考中与直线和椭球相关的试题,希望对考生的复习备考有所帮助。
请注意理解题意,并熟悉解题思路和方法。
高考数学真题汇编7 直线与圆 文(解析版)
![高考数学真题汇编7 直线与圆 文(解析版)](https://img.taocdn.com/s3/m/080485e92cc58bd63186bd9f.png)
2012高考试题分类汇编:7:直线与圆一、选择题1.【2012高考山东文9】圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.2.【2012高考安徽文9】若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是(A ) [-3,-1] (B )[-1,3] (C ) [ -3,1] (D )(-∞,-3]U[1,+∞) 【答案】C【解析】圆22()2x a y -+=的圆心(,0)C a 到直线10x y -+=的距离为d ,则 1231d r a a ≤=⇔≤⇔+≤⇔-≤≤。
3.【2012高考重庆文3】设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =(A )1 (B (C (D )2 【答案】D【解析】直线y x =过圆221x y +=的圆心(0,0)C ,则AB 为圆的直径,所以||AB =2,选D.4.【2012高考浙江文4】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 【答案】A【解析】当121a a =+,解得1a =或2a =-.所以,当a =1是,两直线平行成立,因此是充分条件;当两直线平行时,1a =或2a =-,不是必要条件,故选A.5.【2012高考陕西文6】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A.l 与C 相交 B. l 与C 相切 C.l 与C 相离 D. 以上三个选项均有可能 6.【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.6.【2012高考辽宁文7】将圆x 2+y 2-2x-4y+1=0平分的直线是 (A )x+y-1=0 (B ) x+y+3=0 (C )x-y+1=0 (D )x-y+3=0 【答案】C【解析】圆心坐标为(1,2),将圆平分的直线必经过圆心,故选C 【点评】本题主要考查直线和圆的方程,难度适中。
历届高考数学真题汇编专题9_直线和圆最新模拟_理
![历届高考数学真题汇编专题9_直线和圆最新模拟_理](https://img.taocdn.com/s3/m/2c00a2c16f1aff00bed51e29.png)
【备战2017年】历届高考数学真题汇编专题9 直线和圆最新模拟 理1、(2017济南一中模拟)直线1l :kx +(1-k )y -3=0和2l :(k -1)x +(2k +3)y -2=0互相垂直,则k =A. -3或-1B. 3或1C. -3或1D. -1或32、(2017滨州二模)直线l 与圆x 2+y 2+2x -4y +1=0相交于A ,B 两点,若弦AB 的中点(-2,3),则直线l 的方程为:(A )x +y -3=0 (B )x +y -1=0 (C )x -y +5=0 (D )x -y -5=03、(2017德州一模)若直线100ax by (a,b (,))+-=∈+∞平分圆222220x y x y +---=,则12a b+的最小值是( )A ..3+.2 D .5 答案:B解析:圆方程化为:(x -1)2+(y -1)2=4,圆心坐标为(1,1),因为直线平分圆,所以它必过圆心,因此,有:a +b =1,12a b +=121()a b +⨯=12()(a b )a b ++=3+2b a a b+≥3+3+,故选B 。
4、(2017临沂3月模拟)直线l 过点)04(,且与圆25)2()1(22=-+-y x 交于B A 、两点,如果8=AB ,那么直线l 的方程为____________。
【答案】020125=--y x 或4=x5、(2017临沂二模)设圆222x y +=的切线l 与x 轴的正半轴、y 轴的正半轴分别交于点A B 、,当AB 取最小值时,切线l 的方程为________________。
6、(2017青岛二模)函数y =等比数列,则以下不可能成为该等比数列的公比的数是A .34B C D 【答案】D【解析】函数等价为0,9)5(22≥=+-y y x ,表示为圆心在)0,5(半径为3的上半圆,圆上点到原点的最短距离为2,最大距离为8,若存在三点成等比数列,则最大的公比q 应有228q =,即2,42==q q ,最小的公比应满足282q =,所以21,412==q q ,所以公比的取值范围为221≤≤q ,所以选D. 7、(2017青岛二模)已知直线y x a =+与圆224x y +=交于A 、B 两点,且0OA OB ⋅=,其中O 为坐标原点,则正实数a 的值为 .8、(2017青岛3月模拟)已知圆222()()x a y b r -+-=的圆心为抛物线24y x =的焦点,且与直线3420x y ++=相切,则该圆的方程为A.2264(1)25x y -+=B.2264(1)25x y +-= C. 22(1)1x y -+= D.22(1)1x y +-=9、(2017日照5月模拟)直线kx y =与函数)10(<<=a a y x 的图象交与A ,B 两点(点B 在A 上方),过B 点做x 轴平行线交函数x b y =图象于C 点,若直线y AC //轴,且3a b =,且A 点纵坐标为 .答案:3.【解析】设A 点的横坐标为)0(00≠x x ,由题意C 点的纵坐标为0xb ,又0033,x x a ba b ==∴B 点横坐标为03x ,又O B A ,,三点共线,3,3000003==∴x x x a x a x a .10、(2017泰安一模)过点A (2,3)且垂直于直线052=-+y x 的直线方程为 A.042=+-y x B.072=-+y x C.032=+-y xD.052=+-y x11、(2017烟台二模)已知倾斜角为α的直线l 与直线x 2y 20-+=平行,则tan 2α的值为A.45B.43C.34D.23答案:B解析:依题意,得:tan α=12,22tan tan 21tan ααα=-=1114-=43。
2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版
![2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版](https://img.taocdn.com/s3/m/54c0d53b0c22590103029dbc.png)
学科教师辅导教案 学员姓名 年 级高三 辅导科目 数 学授课老师课时数2h第 次课授课日期及时段 2017年 月 日 : - :1。
(2015年广东文)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 ()2,4- .2.(2015年新课标2文)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I)求2C 与3C 交点的直角坐标; (II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y x +-=,联立解历年高考试题集锦——坐标系和参数方程3.(2015年陕西文)在直角坐标版权法xOy 吕,直线l 的参数方程为132(32x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C 的极坐标方程为23sin ρθ=.(I)写出C 的直角坐标方程;(II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.试题解析:(I )由23sin ρθ=,得223sin ρρθ=,从而有2223x y y +=所以()2233x y +-=(II)设133,22P t t ⎛⎫+ ⎪⎝⎭,又(0,3)C ,则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭,故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
95 4 3
x
3
;
31(2016 年新课标 1 理)设圆 x2 y2 2x 15 0 的圆心为 A,直线 l 过点 B(1,0)且与 x 轴不重合,l
交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E.(I)证明 EA EB 为定值,并写出点 E 的轨迹
方程。
【详细解答】(I)圆心为 A(1, 0) ,圆的半径为 AD 4 , AD AC ,
22.(2015 北京文)圆心为 1,1 且过原点的圆的方程是( D )
A. x 12 y 12 1
B. x 12 y 12 1
C. x 12 y 12 2
D. x 12 y 12 2
23.(2015 年广东理)平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是( D )
学员姓名 授课老师
授课日期及时段
学科教师辅导教案
年级
高三
辅导科目
课时数
2h
第
2017 年 月 日 : — :
数学 次课
历年高考试题集锦——直线和圆
1.(2012 辽宁文)将圆 x2+y2 -2x-4y+1=0 平分的直线是( C )
(A)x)x-y+1=0 (D)x-y+3=0
4 的距离为
5 ,则圆 C 的方程为____ (x 2)2 y2 9. ______
5
19、(2016 年全国 I 卷)设直线 y=x+2a 与圆 C:x2+y2-2ay-2=0 相交于 A,B 两点,若
,则圆 C
的面积为 4π . 20、(2016 年全国 III 卷)已知直线 l : x 3y 6 0 与圆 x2 y2 12 交于 A, B 两点,过 A, B 分别作 l
第 2 页(共 6 页)
的垂线与 x 轴交于 C, D 两点,则| CD | ____4_________.
21、(2016 年浙江)已知 a R ,方程 a2 x2 (a 2) y2 4x 8 y 5a 0 表示圆,则圆心坐标是_____,
半径是______.【答案】 (2, 4) ;5.
A.21 B.19 C.9 D. 11
4.(2012 山东文)圆 (x 2)2 y2 4 与圆 (x 2)2 ( y 1)2 9 的位置关系为( B )
(A)内切 (B)相交 (C)外切 (D)相离
5.(2013 江西文)若圆 C 经过坐标原点和点(4,0),且与直线 y=1 相切,则圆 C 的方程是
。
【答案】 (x 2)2 ( y 3)2 25 24
6.(2012 安徽文)若直线 x y 1 0 与圆 (x a)2 y2 2 有公共点,则实数 a 取值范围是( C )
( A) [3, 1]
(B) [1,3]
(C) [3,1]
(D) (, 3] [1, )
7.(2013 安徽文)直线 x 2 y 5 5 0 被圆 x2 y2 2x 4 y 0 截得的弦长为( C )
第 4 页(共 6 页)
ADC ACD ,又 BE / / AC ,ACD EBD ADC , BE ED , EA EB AD 4 .
所以点 E 的轨迹是以点 A(1, 0) 和点 B(1, 0) 为焦点,以 4 为长轴长的椭圆,
即 a 2, c 1 b 3 ,
所以点 E 的轨迹方程为: x2 y2 1 ( y 0) . 43
2.(2012 浙江文)设 a∈R ,则“a=1”是“直线 l1:ax+2y=0 与直线 l2 :x+(a+1)y+4=0 平行的( A )
A 充分不必要条件 B 必要不充分条件 C 充分必要条件
D 既不充分也不必要条件
3.(2014 湖南文)若圆 C1 : x2 y2 1 与圆 C2 : x2 y2 6x 8 y m 0 外切,则 m ( C )
段 AB 的中点为 M , O 为坐标原点.(I)求 M 的轨迹方程;(II)当 OP OM 时,求 l 的方程及 POM
的面积。
第 3 页(共 6 页)
【解析】(I)圆C的方程可化为 x2 y 42 16 ,所以圆心为 C(0,4),半径为 4.
设M(x,y),则 CM (x, y 4) , MP (2 x, 2 y) ,,由题设知 CM AMP 0 ,故
则圆 C 的标准方程为 (x 2)2 ( y 1)2 4 。
15、(2016 年北京)圆(x+1)2+y2=2 的圆心到直线 y=x+3 的距离为( C )
(A)1 (B)2 (C) 2 (D)2 2
16、(2016 年山东)已知圆 M: x2 + y2 - 2ay = 0(a > 0) 截直线 x + y = 0 所得线段的长度是 2 2 ,则圆 M
(A)1
(B)2 (C)4
(D) 4 6
8.(2014 安徽文)过点 P( 3,1)的直线 l 与圆 x2 y2 1有公共点,则直线 l 的倾斜角的取值范围是(
D)
A(. 0, ]
6
B(. 0, ]
3
C.[0, ]
6
D.[0, ]
3
9.(2012 福建文)直线 x 3y 2 0 与圆 x2 y 2 4 相交于 A, B 两点,则弦 AB 的长度等于( B )
因此,圆 N 的标准方程为 x 62 y 12 1.
(2)因为直线 l∥OA,所以直线 l 的斜率为 4 0 2 .设直线 l 的方程为 y=2x+m,即 2x-y+m=0, 20
则圆心 M 到直线 l 的距离 d
26 7 m
m5 .
5
5
因为 BC OA
32、(2016
年江苏) 如图,在平面直角坐标系
xOy
中,已知以
M
为圆心的圆
M:
x2
y2
12x
14
y
60
0
及其上一点 A(2,4)
(1)设圆 N 与 x 轴相切,与圆 M 外切,且圆心 N 在直线 x=6 上,求圆 N 的标准方程;
(2)设平行于 OA 的直线 l 与圆 M 相交于 B、C 两点,且 BC=OA,求直线 l 的方程;
1
29.(2015
年天津文)已知椭圆
x2 a2
+ y2 b2
=1(a > b > 0) 的上顶点为 B,左焦点为 F ,离心率为
5
,
5
(I)求直线 BF 的斜率; 【答案】(I)2;
30.(2015 年广东理)已知过原点的动直线 l 与圆 C1 : x2 + y2 - 6x +5 = 0 相交于不同的两点 A , B . (1)求圆 C1 的圆心坐标;(2)求线段 AB 的中点 M 的轨迹 C 的方程;
A. 2x y 5 0 或 2x y 5 0 C. 2x y 5 0 或 2x y 5 0
B. 2x y 5 0 或 2x y 5 0 D. 2x y 5 0 或 2x y 5 0
24.(2015 年新课标 2 文)已知三点 A(1, 0), B(0, 3), C(2, 3) ,则△ ABC 外接圆的圆心到原点的距离为(
与圆 N:(x- 1)2 + ( y - 1)2 = 1 的位置关系是( B )
(A)内切(B)相交(C)外切(D)相离
17、(2016
年上海)已知平行直线
l1
:
2x
y
1
0, l2
:
2x
y
1
0
,则
l1, l2
的距离___
25 5
____
18、(2016 年天津)已知圆 C 的圆心在 x 轴的正半轴上,点 M (0, 5) 在圆 C 上,且圆心到直线 2x y 0
B)
A. 5 B. 21 C. 2 5 D. 4
3
3
3
3
25.(2013 新标 2 文) 在平面直角坐标系 xOy 中,已知圆 P 在 x 轴上截得线段长为 2 2,在 y 轴上截得线段长
2 为 2 3.(1)求圆心 P 的轨迹方程; (2)若 P 点到直线 y=x 的距离为 ,求圆 P 的方程.
2 【简解】(1)设 P(x,y),圆 P 的半径为 r.则 y2+2=r2,x2+3=r2.∴y2+2=x2+3,即 y2-x2=1.
x 2 x y 42 y 0 ,即 x 12 y 32 2
由于点P在圆C 的内部,所以M 的轨迹方程是 x 12 y 32 2
(Ⅱ)由(Ⅰ)可知M 的轨迹是以点N(1,3)为圆心, 2 为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P 在
圆N 上,从而ON⊥PM.因为ON 的斜率为3,所以 l 的斜率为 1 ,直线 l 的方程为: y 1 x 8
解:圆 M 的标准方程为 x 62 y 72 25 ,所以圆心 M(6,7),半径为 5,.
(1)由圆心 N 在直线 x=6 上,可设 N 6, y0 .因为圆 N 与 x 轴相切,与圆 M 外切,
所以 0 y0 7 ,于是圆 N 的半径为 y0 ,从而 7 y0 5 y0 ,解得 y0 1 .
|x0-y0| 2 (2)设 P 的坐标为(x0,y0),则 2 = 2 ,即|x0-y0|=1.∴y0-x0=±1,即 y0=x0±1. ①当 y0=x0+1 时,由 y20-x20=1 得(x0+1)2-x20=1.∴Error!∴r2=3. ∴圆 P 的方程为 x2+(y-1)2=3.
②当 y0=x0-1 时,由 y20-x20=1 得(x0-1)2-x20=1∴Error!∴r2=3. ∴圆 P 的方程为 x2+(y+1)2=3.综上所述,圆 P 的方程为 x2+(y±1)2=3.