数值计算方法各章节习题

合集下载

完整word版,《数值计算方法》试题集及答案(1-6) 2..

完整word版,《数值计算方法》试题集及答案(1-6) 2..

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值计算方法试题及答案解析

数值计算方法试题及答案解析

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案(1-6)#优选.

《数值计算方法》试题集及答案(1-6)#优选.

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法思考题和习题

数值计算方法思考题和习题

(4) 北京理工大学函大2004-2005学年第1学期计算机科学与技术专业专升本数值计算方法思考题和习题教科书:《科学与工程计算》廖晓钟赖汝编国防工业出版社 2003年版第1 章思考题p26 1,2,3,4,5第1 章习题pp26-27 1,3,4,5,6,11第2 章思考题p66 1,3,6,7,8,9,12.13第2 章习题pp67-68 2,3,4,5,7,11,12,13,14,17,18第3 章思考题p119 1,3,4,5,6,10,18,19第3 章习题pp119-121 1,2,3,4,5,12,13第4 章思考题p144 1,2,3,4,5,7,8第4 章习题pp144-146 1,2,3,4,5,6,7,10,11,12,13第5 章思考题p207 1,2,3,4,5,6,7,9,10,11,12.13第5 章习题pp208-209 1,2,3,4,5,6,7,8,9,10,11,12,13,15第6 章思考题p257 1,2,3,4,5,6,7,8,10,11,12.14第6 章习题pp257-259 1,2,3,4,5,6,7,8,11,12,13,15,16,17,18第7 章思考题p292 1,2,3,4,5,6,8,9第7 章习题pp293-295 1,2,3,4,5,6,7,8,11,12,20作业题第1 章习题pp26-27 1(1),(2),3(3),5,6第2 章习题pp67-68 2,4,5,11,13,17第3 章习题pp119-121 1(1),2(1),5(2),12第4 章习题pp144-146 1(1),2,10,11,12,13第5 章习题pp208-209 1,3,4,7,10,13,,15第6 章习题pp257-259 1(2),3,6(1),12,16第7 章习题pp293-295 1,3,6,11,20数值计算方法复习题第1 章绪论1.说明数值算法的意义,计算机解题步骤和数值算法的特点。

数值计算方法习题doc

数值计算方法习题doc

第一章 绪论1.把下列各数按四舍五入规则舍入为有3位小数的近似数,并写出近似数的绝对误差和相对误差,指出近似数有几位有效数字: 93.1822 4.32250 15.9477 17.3675 2.按四舍五入原则,将下列数舍成五位有效数字:816.9567 6.000015 17.32250 1.235651 93.18213 0.015236233.设 **,671.3,6716.3x x x 则==有几位有效数字? 4.若1/4用0.25来表示,问有多少位有效数字? 5.若 1.1062,0.947a b ==是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?6.设120.9863,0.0062y y ==是经过舍入后作为12,x x 的近似值, 求11y 和21y 的计算值与真值的相对误差限及12y y 和得到真值的相对误差限. 7.设0,x x >的相对误差为δ,求ln x 的绝对误差.8.正方形的边长约为100cm ,应该怎样测量,才能使其面积的误差不超过12cm . 9.设x 的相对误差为a %,求x n 的相对误差.10.计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何?11.5631.2*=x 是经四舍五入得到的近似值,则其相对误差≤*r e __________ 12. 设 0000073.0,1416.3,1415926.3**=-==x x x x 则称_________误差13.设⎰+=1061dx xx I nn ,设计一个计算10I 的算法,并说明你的算法的合理性。

14.设028Y =,按递推公式1n n Y Y -= (1,2,n = ), 计算到100Y27.982≈(5位有效数字),试问计算100Y 将有多大误差. 15.求方程25610x x -+=的两个根,使它至少具有4位有效数字27.982≈).16.当N 充分大时,怎样求121d 1N N x x ++⎰?17.序列{}n y 满足递推关系101n n y y =- (1,2,n = ),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?18.计算61)f =1.41≈,利用下列算式计算,哪一个得到的结果最好?,3(3-,99- 19.()ln(f x x =,求(30)f 的值,若开平方用6位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =- 计算,求对数时误差有多大?第二章 解线性方程组的直接方法1.用高斯消去法解方程组123234011921261x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 2.用LU 分解,将上题系数矩阵分解为L 和U 的乘积,L 是对角线元素为1的下三角矩阵,U 是上三角矩阵。

《数值计算方法》试题集及答案(1-6) 2

《数值计算方法》试题集及答案(1-6) 2

《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2。

367,0。

252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n ab );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为 199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次.2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( ).4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrang e插值基函数,则∑==nk k x l)(( ),∑==nk k j kx lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f . 6、5个节点的牛顿—柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法.10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法答案

数值计算方法答案

数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+=210⨯(2)+(+)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =210⨯易见++=210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

黄云清版数值计算方法习题解答

黄云清版数值计算方法习题解答

第一章 引论(习题)2. 证明 : 记 x x f =)( ,则)()(***x x x x x xx x f E r +-=-=)(21**x E x x x x x xr ≈-⋅+=.3. 证明: 令: )()()(b a fl b a fl b a **-*=δ可估计: 1|)(|-≥*c b a fl β (c 为b a *阶码), 故: 121||--≤c t c ββδt-=121β 于是: )1()()(δ+*=*b a b a fl .4. 解 (1) )21()1(22x x x ++. (2))11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-.6. 解 a 的相对误差:由于 31021|)(|-⋅≤-=a x x E . x a x x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r .9. 解 递推关系: 1101.100-+-=n n n y y y (1) 取初值 10=y , 01.01=y 计算可得: 11001.10022-⨯=-y 10001.1-=410-= 6310-=y , 8410-=y , 10510-=y , …(2) 取初值 50101-+=y , 2110-=y , 记: n n n y y -=ε,序列 {}n ε ,满足递推关系,且 5010--=ε , 01=ε1101.100-+-=n n n εεε, 于是: 5210-=ε,531001.100-⨯=ε, 55241010)01.100(---⨯=ε,55351002.20010)01.100(--⨯-⨯=ε, 可见随着 n ε 的主项 5210)01.100(--⨯n 的增长,说明该递推关系式是不稳定的.第二章 多项式插值 (习 题)1. 方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅=)1)((31)2)()(1()1)(()(123210---=-----=x x x x x x x l , ))(1(2)1)()(1()(21221211--=--+=x x x x x x l , x x x x x x l )1()()1()1!()(2382121232--=-⋅⋅-+=, )()1(12)()1()(2121213-+=⋅⋅-+=x x x x x x x l . 可得: )21()(23-=x x x L方法二. 令:)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法)2. 证明(1) 由于 j i j i x l ,)(δ= 故: =)(x L n ∑=ni i k i x l x0)( ,当 j x x = 时 有: k j j n x x L =)( , n j ,,1,0 =)(x L n 也即为 kx 的插值多项式,由唯一性,有:∑==ni k i ki x x l x)( , n k ,,1,0 =证明(2):利用Newton 插值多项式)(],[)()(0100x x x x f x f x N n -+=)()(],,[100---++n n x x x x x x f )()()()()()(00101x l x x x x x x x x x f n n =----=差商表:f(x) 一阶 二阶 … n 阶差商0x 1 1x 0101x x -)()(11020x x x x --n x 0 0)()(1010n x x x x --代入)(*式有:)()()()()(1)(020*******n n n x x x x x x x x x x x x x x x N -----++--+=- . )(0x l 为n 次代数多项式,由插值多项式的唯一性:有 )()(0x N x l n ≡.4. 解 作)(x f 以b a a ,,ε+为节点的Lagrange 插值多项式,有: )()()(22x R x L x f +=, 其中:)()()()()()()()()()(2εεεεε+-+--+-----=a fb a b x a x a f b a b x a x x L)()()()()(b f a b a b a x a x εε------+,)()()(!3)()(2b x a x a x f x R ----'''=εζ , b a <<ζ 令: 0→ε 有 )()(6)()()(22b x a x f x R x R --'''=→ζ, 又:)()()()([)()(2a f a b ax a f a b a x x b x L εεεεε----+----= )]()()()()(a f a b a x a f a b a x -------+εεεε )()()()()(b f a b a b a x a x εε------+)()()2()(2a f ab a b x x b --+-→)()()()(a f a b a x x b '---+ )()()()(22x P b f a b a x =--+ 故当 0→ε 时,成立公式: )()()(x R x P x f +=.5. 解:因为34)(3'-=x x f ,2''12)(x x f =)(x f 为凹函数.又从数值表可见:当]5.0,1.0[∈x 时,)(x f 单调下降.有反函数)(1y fx -=)(y f的Newton 插值多项式:)17440.0)(10810.0)(40160.0)(70010.0(01225.0)10810.0)(40160.0)(70010.0(01531.0)40160.0)(70010.0(0096436.0)70010.0(33500.01.0)(4+---+------+--=y y y y y y y y y y y N.337.0)0(4*≈=N x7. 解 1)(37++=x x x f .有:=]2,,2,2[71f !7)()7(ξf =1, !8)(]2,,2,2[)8(810ηf f = 0=.9. 证明:(1) =⋅-⋅=⋅∆++i i i i i i g f g f g f 11)(i i i i i i i i g f g f g f g f ⋅-⋅+⋅-⋅++++1111i i i i f g g f ∆+∆=+1.(3) n x n n)1()1(-=∆!)()(nh x h x x h n ++此题可利用数学归纳法:设 k n = 成立,证明 1+=k n 成立.又 1=n 时是成立的.10. 证明: 记: 2]2/)1([)(+=n n n f ,33321)(n n g +++=有: 3)1()()1()(+=-+=∆n n f n f n f 故: ∑-=∆=10)()(n k k f n g ∑-=-+=1)]()1([n k k f k f2]2/)1([)0()(+=-=n n f n f .13. 解 作重节点差商的Newton 插值公式)1(]1,1[)1()(+--+-=x f f x P 22)1(]1,0,1,1[)1(]0,1,1[+--++--+x x f x f )1()1(]1,1,0,1,1[2-+--+x x x f 重节点差商表:i x i f 一阶 二阶 三阶 四阶10-=x 110-=x 1 201=x 1 0 -212=x 1 0 0 112=x 1 2 2 1 0得 22)1()1(2)1(21)(+++-++=x x x x x P 13+-=x x .17. 证: 取 ,00=x 211=x , 12=x , 21=h00=f , 11=f , 12=f 记: )(i i x s M ''= , 2,1,0=i有 hx x M h x x M x S 01101)(-+-=''x M x M 102)21(2+-= )21(2)1(2)(212-+-=''x M x M x S 又三弯矩方程为:( 2],,[210-=x x x f )244210-=++M M M , )24(41201M M M ++-=.分段积分:⎰⎰+''=''∆1021221)]([)]([dx x s dx x s ⎰''12221)]([dx x s ⎰+-+=21201)]21([4dx x M x M ⎰-+-121221)]21()1([4dx x M x M⎰⎰-+-+-+-=121121221201)]21()1([4)]1()21([4dxx M x M dx x M x M由于 ⎰=-1212241)21(dx x ,⎰=-1212241)1(dx x ,⎰=--121481)1()21(dx x x ,于是:⎰++++=''∆1022212110202]2[61))((M M M M M M M dx x S 又: )24(41201M M M ++-=记 =),(20M M I ⎰∆''12))((dx x S=)()24(41[6120202220M M M M M M +++-+ ])24(81220M M +++由00=∂∂M I, 02=∂∂M I . 得:⎩⎨⎧=+-=-07072020M M M M 即当: 020==M M 时, ),(20M M I 达最小故:⎰=⋅⋅≥''∆102212)24(8161))((dx x S ,由最小模原理: ⎰≥''1212)]([dx x f .20. 解 利用三弯矩方法 )(i i x s M ''= , 2,1,0=i 10=x , 22=x , 32=x⎪⎩⎪⎨⎧-=+=++=+542364622121010M M M M M M M解得: 70-=M , 201=M , 372-=M]2,1[∈x 72431729)(231-+-=x x x x s ]3,2[∈x 105229367219)(232+-+-=x x x x s .第三章 最佳逼近及其实现 (习 题)2. 解 (1) ⎰'⋅'=badx x g x f g f )()(),( 不是 ),(b a c '中的内积,事实上容易验证:),(),(f g g f = , ),(),(g f g f λλ= ),(),(),(w g w f w g f +=+但是 0),(=f f 当且仅当 0)(≡x f . 条件不满足,因为: ⎰='⋅'=badx x f x f f f 0)()(),(推出0)(≡'x f ,0)(≠=const x f . 因而 ),(g f 不是 ),(b a C '中的内积.(2) ),(g f 是 =],[10b a C {}],[)(,0)(:)(b a C x f a f x f '∈'=空间的内积,这是因为: 0),(=f f 推出 0)(='x f , C x f =)(,又],[10b a C f ∈ ,故 0)(=x f .4. 解:由于 0)(],,[2≠''∈x f b a c f ,则)(x f ''于],[b a 上保号,由定理5的推论2可知:)()(1x P x f -的交错点组恰有三个交错点,且 a x =1,b x =3,即: ⎪⎪⎩⎪⎪⎨⎧=-'='-=+-==+-==+-=0)()(,)()()(,)()()(,)()()(122210223103311011αρααρααρααx f x e x x f x e x x f x e x x f x e 故: a b a f b f x f --='=)()()(21α,2)()(2)()(220x a a b a f b f x f a f +⋅---+=α 记 c x =2 ,即证得(1).(2) 若 x x f cos )(= ,]2,0[],[π=b a此时由 ab a f b fc f --=')()()( 得:π2sin =c , )2sin(πarc c =,πα21-=πππα2)4(2120-+=2)/2sin(2ππarc ⋅+)4(212-+=πππππ)2sin(arc +. 误差估计:)()(10b f b f E -+=-=ααρ)4(212-+=πππ1)2sin(-+ππarc5. 解:选取α ,使得:=)(αI ||max 211x x x α-≤≤ ,达到极小,即要求 x x *)(*αϕ= ,于]1,0[上一致逼近于2x ,如图 应选 *α ,使得:x x x *)(2αϕ-=,于 ]1,0[ 上有两个轮流为正负偏差点,其中之一为1,另一个假设为 ζ 于是: )()1(ζϕα-=, 0)(='ζϕ , ( ζ为)(x ϕ的极值点) 得: αζζα+-=-2102=-αζ 解得:ζα2= ,0122=-+ζζ, 212,1±-=ζ取12-=ζ , 222-=α. 又: α 是唯一的.6. 证明:由最佳一致逼近的特征定理,)(*x P n 为)(x f 的最佳一致逼近多项式,则存在2+n 个点b x x x a n ≤<<<≤+110使得: )()()(*k n k k x P x f x e -==*)1(n kP f --σ.又由于 ],[)(b a C x f ∈ ,于 ),(1+i i x x 中有一个点 i η ,1+<<i i i x x η , 使得: 0)()()(*=-=i n i i P f e ηηη, n i ,,1,0 =即: )(*x P n 为)(x f 满足插值条件: )()(*i i n f P ηη= , n i ,,1,0 = 的插值多项式.7. 解:求C*,使得:C x f C I bx a R C -=≤≤∈)(max min *)(记 C x f x e -=)()(, 依最佳一致逼近的特征定理:应取 )](min )(max [21*],[],[x f x f C b a b a +=*)()(C x f x e -=于 ],[b a 才有两个轮流正负的偏差点,(即 )(x f 于],[b a 上的最大值点和最小值点)1x ,2x )(max )(],[1x f x f b a = , )(min )(],[2x f x f b a =此时: *)(m a x )1()(],[C x f x e b a ii --=σ即 *C 为)(x f 的零次最佳逼近多项式.8. 解: 436)(23+++=x x x x f 2)(34)3(62031T T T T +++=014T T ++01232112112323T T T T +++= 因为)(413x T 与零偏差最小,故: 012221121123)(T T T x P ++=421132++=x x . 为)(x f 的最佳一致逼近多项式.9. 证明:我们仅证明)(x f 是偶函数时,)(x P n 亦是偶函数.由于)(x P n 为)(x f的最佳一致逼近多项式,有:)()()(max ],[f E x P x f n n a a =--和: [,max ()()()]n n a af x P x E f ----=即: )()()(m a x ],[f E x P x f n n a a =---)(x P n -亦是)(x f 的最佳一致逼近多项式,由最佳一致逼近多项式的惟一性,有: )()(x P x P n n =-即: )(x P n 为偶函数.11. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程在区间内的根精确到三位小数,需对分( )次。

2、迭代格式局部收敛的充分条件是取值在().3、已知是三次样条函数,则=(),=(),=()。

4、是以整数点为节点的Lagrange插值基函数,则(),(),当时( ).5、设和节点则和.6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。

7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。

8、给定方程组,为实数,当满足,且时,SOR迭代法收敛.9、解初值问题的改进欧拉法是阶方法。

10、设,当( )时,必有分解式,其中为下三角阵,当其对角线元素满足( )条件时,这种分解是唯一的。

二、二、选择题(每题2分)1、解方程组的简单迭代格式收敛的充要条件是( )。

(1),(2), (3), (4)2、在牛顿—柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿—柯特斯求积公式不使用。

(1),(2),(3),(4),3(1)二次; (2)三次;(3)四次;(4)五次4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。

(1), (2),(3), (4)三、1、(82、(15分)(1)(1)试用余项估计其误差。

(2)用的复化梯形公式(或复化Simpson公式)计算出该积分的近似值.四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式.判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。

选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。

2、(8分)已知方程组,其中,(1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。

(2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR迭代法。

数值计算方法》习题答案

数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

数值分析计算方法试题集及答案

数值分析计算方法试题集及答案

数值分析复习试题第一章绪论一.填空题1.为精确值的近似值;为一元函数的近似值;*xx ()**x f y =()x f y =1为二元函数的近似值,请写出下面的公式::()**,*y x f y =()y x f y ,2=**e x x =-***r x xe x -=()()()*'1**y f x x εε≈⋅()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂2、计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫舍入误差。

3、分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和7(三位有效数字)。

1.73≈-211.73 10 2-≤⨯4、设均具有3位有效数字,则的相对误差限为 0.0055 。

121.216, 3.654x x ==12x x 5、设均具有3位有效数字,则的误差限为 0.01 。

121.216, 3.654x x ==12x x +6、已知近似值是由真值经四舍五入得到,则相对误差限为0.0000204 .2.4560A x =T x 7、递推公式如果取作计算,则计算到时,误差为,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,0 1.41y =≈10y ;这个计算公式数值稳定不稳定 不稳定 .8110 2⨯8、精确值,则近似值和分别有 3 位和14159265.3*=π141.3*1=π1415.3*2=π4 位有效数字。

9、若,则x 有 6 位有效数字,其绝对误差限为1/2*10-5 。

*2.71828x e x =≈=10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差;13、为了使计算 的乘除法次数尽量地少,应将该表达式()()2334610111y x x x =++----改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

黄云清版数值计算方法习题解答

黄云清版数值计算方法习题解答

第一章引论(习题)2. 明 :f ( x)x ,xx * x x * xx x * 1E r ( f )xx( x x * )xx *x2E r( x) .3. 明:令:(a b)fl (a b)fl (a b)可估 : | fl (a b) |c 1( c a b ),故:| |1c t c 11 1 t22于是:fl ( a b) (a b) (1) .4.解 (1)2x 2 (1 x) (1 2x) .(2)2 x.( x 1 xx 1 x )1 cos xsin 2 xsin x .(3) xx(1 cos x)1 cos x6.解a 的相 差:由于| E( x) | x a1 10 3 . E r ( x)x a ,2xE r (x)1 102 1 10 2 . ( Th1)2 918f (a) 于 f (x) 的 差和相 差 .| E( f ) | | 1 x1 a |=a x 2110 3 =10 3x1 a 21| E r ( f ) | 10 3 1 a 4 10 3 .9.解 推关系: y n 1 100.01 y ny n 1(1)取初y 01, y 1算可得:y 210 2 1 1.0001 1 10 4y 310 6 , y 4 10 8 , y 5 10 10, ⋯(2)取初值y0110 5, y110 2,记:n y n y n,序列n,满足递推关系,且010 5,1 0n 1100.01 n n 1 ,于是:210 5,310 5,4 (100.01) 210 510 5,5(100.01)3 10 5 200.02 10 5 ,可见随着n的主项(100.01)n 2105的增添,说明该递推关系式是不牢固的.第二章多项式插值 ( 习题)1.方法一 . 由 Lagrange 插值公式L3 ( x) f 0 l 0 ( x) f 1 l1 (x) f 2 l 2 ( x)f3 l 3 ( x)l 0 (x)x(x 21 )( x1)111) , (1)(23 )(2)x( x2 )( x3(x 1)( x21 )( x 1)2(x21)( x21 ) ,l1 (x)12l 2 (x)(x !1) x( x1)821) x , l 3( x1)x( x21 )13 113 ( x( x)1( x 1)x( x2 ) .2 2( 2 ) 2 1 2可得:L3 ( x)x 2 ( x 1 2)方法二 . 令:L3(x)x( x 1 2) (Ax B)由 L3 (1)31, L3(1),定 A, B (称之为待定系数法)222.证明 (1)由于l i ( x j )i , j故: L n ( x)nx i k l i (x)x k j,j 0,1,i 0,当x x j时有:L n( x j), nL n ( x) 也即为x k的插值多项式,由独一性,有:nx i k l i (x)x k,k0,1,, ni 0明 (2) :利用 Newton 插 多 式N n ( x) f (x 0 ) f [ x 0 , x 1 ] ( x x 0 )f [ x 0 , , x n ] ( x x 0 )(x x n 1 )f ( x)( x x 1 ) (x x n ) (x)(x 0 x 1 ) (x 0l 0x n )差商表:f(x)一二⋯n差商x 01x 11x 0 x 11( x 0x 2 ) ( x 0x 1 )x n1(x 0x 1 ) ( x 0 x n )代入 ( ) 式有: N n ( x)x x 0 (x x 0 ) ( x x n 1 )1( x 0 x 1 ) (x 0 x 2 ) ( x 0.x 0 x 1x n )l 0 ( x)n 次代数多 式,由插 多 式的独一性:有l 0 ( x) N n (x) .4.解作 f ( x) 以 a, a , b 点的Lagrange 插 多 式,有:f ( x) L 2 ( x) R 2 (x) ,其中:L 2 ( x) ( x a) ( x b) f ( a) ( x a) (x b) f (a )( ) ( a b)( a b) ( x a) (x a )f (b) ,(b a) (b a)R 2 ( x)f ( )( x a) ( x a) ( x b) , ab3!f ( ) (x令:0 有 R 2 ( x)R( x)a) 2 ( x b) ,x a6a又: L 2 ( x)(b x) [f (a)x (a)(b (b fa)a )xa( x a)(b a f ( a)(bf (a)])a)( x a) ( x a )f (b)(b a) (b a)(b x) ( x b 2a) f (a)(b x) ( x a) f ( a)(b a) 2(b a)( x a)2f (b)P( x)(b a) 2故当0 时,建立公式: f (x)P(x)R( x) .5.解:由于 f ' ( x)4x33, f '' (x)12x 2f ( x) 为凹函数.又从数值表可见:当 x [0.1,0.5] 时, f (x) 单调下降.有反函数 x f 1 ( y)x 于及之间有一个根y if 1 ( y i )作差商表:y i f1 ( y i )一阶差商二阶差商三阶差商四阶差商-------f1( y)的 Newton 插值多项式:N 40.33500( y 0.70010)0.0096436 ( y0.70010)( y 0.40160)0.01531( y0.70010)( y0.40160 )( y 0.10810)0.01225( y0.70010)( y0.40160)( y0.10810)( y0.17440)x*N 4 (0)0.337.7.解 f (x) x7x 31.有:f [ 20 , 21 ,, 27 ]f ( 7) ()=1, f [ 20 , 21 , , 28 ] f (8) ( )0 .7!8!9.证明: (1)( f i g i ) f i1gi 1fi g ifi 1gi 1figi 1figi 1figif ig i gi 1f i.(3)n( 1x )( 1)n n! h nh)( x nh)x( x此题可利用数学归纳法:设 n k建立,证明n k 1 建立.又 n1时是建立的 . 10.证明:记: f (n)[n(n1) / 2]2, g(n)1323n3有: f (n)f ( n 1)f ( n) ( n 1)3n 1n 1故:g( n)f (k) [ f ( k 1)f (k)]k 0k 0f (n)f (0) [ n(n 1) / 2] 2 .13.解 作重节点差商的 Newton 插值公式P(x)f ( 1) f [ 1, 1] ( x 1) f [ 1, 1, 0] ( x1) 2f [ 1, 1, 0, 1] x(x 1) 2f [ 1, 1, 0, 1, 1] x( x 1) 2 ( x 1)重节点差商表:x if i一阶二阶三阶四阶x 0 1 1x 0 11 2x 1 0 1 0 -2x 2 1 1 0 0 1x 21 1221得 P( x) 12( x1) 2(x 1) 2 x(x 1) 2 x 3x 1 .17.证: 取 x 00,x 11 , x2 1 , h 122f 0 0 , f 1 1 ,f 21记:M is ( x i ), i0, 1, 2有x 1 x x x 01S 1 ( x) M 0hM 1h2M 0 (2x) 2M 1 xS 2 ( x) 2M 1 (1 x) 2M 2 ( x1 )2又三弯矩方程为: (f [ x 0 , x 1 , x 2 ]2 )M 0 4M 1M 224, M 11(24 M 0 M 2 ) .41 [ s ( x)] 2dx121[ s 2 ( x)] 2dx2分段积分:[ s 1 (x)] dx121 21 x)] 2dx1[ M 1 (1 x) M 2 (x1)] 2dx4M 0 (0 [ M 1 x 4 1 22211x)] 2 dx 11 )]2 dx 4 1 [ M 1 ( x2) M 0 (1 4 1 [ M 1 (1 x)M 2 (x2221 ( x 1 ) 2dx1 1(1 x) 2dx 1由于2 ,, 224 1 22411( x 1 ) (1 x)dx12,于是: 2 48112dx1[ M 02M 0 M 12M 12M 1 M 2 M 22 ](S (x))6又: M 11(24 M 0M 2 )4记I (M 0 , M 2 )1 (S (x)) 2dx= 1[ M 02M 221(24 M 0M 2 ) ( M 0 M 2 )641( 24M 0M 2 ) 2 ]8由I0 ,I0 .7M 0 M 2 0M 0 M 2 得:M 0 7M 2即当:M 0M 2 0 时,I ( M 0 , M 2 ) 达最小1( x)) 2dx 1 1 (24) 212 ,由最小模原理:故:( S6 81(x)] 2dx 12[ f .20.解利用三弯矩方法M i s ( x i ) , i 0, 1, 2x 0 1 , x 22 , x 232M 0 MM 0 4MM 1 2M161 M2 362 54解得:M 0 7 , M 1 20 , M 2 37x [1, 2]s 1 (x) 9 x 3 17x 2 43 x 72 2 x [ 2, 3]s 2 ( x)19 x 3 67x 2293 x105.22第三章 最正确逼近及其实现 ( 习 题)2.解 (1)( f , g )b (x) g ( x) dxc (a, b) 中的内积,f不是a事实上简单考据:( f , g ) (g,f ) , (f ,g )( f , g )( fg, w)( f , w)( g, w)但是( f , f ) 0 当且仅当f (x)0.条件不满足,由于:b( f , f )f ( x) f ( x)dx 0a推出 f ( x) 0 , f ( x) const 0. 所以 ( f , g ) 不是 C (a, b) 中的内积 . (2)( f , g) 是 C 01 [ a, b]f (x) : f (a)0, f (x) C [a, b]空间的内积,这是由于:( f , f ) 0 推出 f (x) 0 , f ( x) C ,又fC 01 [a, b] ,故 f (x) 0 .4.解:由于f c 2 [a, b], f ( x)0 ,则 f ( x) 于 [a, b] 上保号,由定理 5 的推论 2 可知: f (x) P 1 (x) 的交叉点组恰有三个交叉点,且 x 1a ,x 3b ,即:e( x 1 ) f (x 1 ) ( e( x 3 ) f (x 3 ) ( e( x 2 ) f (x 2 ) ( e ( x 2 ) f (x 2 )0 1x 1 ),1 x 3 ),1 f (x2 )f (b) f (a)1x 2 )故 :b ,0 ,a1f (a) f (x 2 )f (b) f (a) ax 2 记x 2 c ,即证得 (1).b a22(2) 若 f (x) cos x , [ a, b] [ 0,2]此时由f (b) f (a)f (c)得:b asin c2 , c arc sin( 2) , 12( 212 arc sin( 2 / )1 4) 22(22误差估计: E ( f )b f (b) 1(125.解:采用,使得:2 2arc sin( 2)4 ).arc sin(2)4)1I ( )max | x 2x | ,达到极小,1 x 1即要求 * (x)* x ,于 [ 0, 1] 上一致逼近于 x 2 ,如图应选* ,使得:( x)x 2* x ,于 [ 0, 1] 上有两个轮流为正负误差点,其中之一为1,另一个假设为 于是: (1) () ,( )0 , (为 (x) 的极值点)得:122解得: 2,22 10 ,1, 212取2 1 ,2 2 2 . 又:是独一的 .6.证明:由最正确一致逼近的特色定理, P n * ( x) 为 f ( x) 的最正确一致逼近多项式,则存在 n2 个点ax 0x 1x n 1 b使得: e( x k ) f (x k ) P n * ( x k ) = ( 1) kfP n * .又由于 f ( x)C[ a, b] ,于 ( x i , x i 1 ) 中有一个点i, x iix i 1 ,使得:e( i ) f ( i) P n * ( i )0 , i0, 1, , n即: P n *( x) 为 f (x) 满足插值条件:P n * ( i )f ( i ) , i 0, 1, , n的插值多项式 .7.解:求 C* ,使得:I (C*) min max f ( x) CC R a x b记e( x) f ( x) C , 依最正确一致逼近的特色定理:应取C*1[ max f (x) min f (x)]2[ a ,b][ a ,b]e(x) f (x) C *于 [a, b] 才有两个轮流正负的误差点,(即f ( x) 于 [a, b] 上的最大值点和最小值点)x 1 , x 2f ( x 1 ) max f ( x) , f (x 2 )min f (x)[ a, b][ a, b]此时:e( x i ) ( 1) i max f (x)C *[ a, b]即 C * 为 f ( x) 的零次最正确逼近多项式 .8.解:f (x) 6 x 3 3x 2 x 46(3T 1T 3)43(T 0 T 2 ) 2T 1 4T 03311 112T32T22 T 12 T 0由于1T 3 (x) 与零误差最小,故:4311 1111P 2 (x)3x2 x 42 T 22 T12 T2.为 f (x) 的最正确一致逼近多项式 .9.证明:我们仅证明f (x) 是偶函数时, P n ( x) 亦是偶函数 .由于 P n ( x) 为 f ( x)的最正确一致逼近多项式,有:max f ( x) P n ( x)E n ( f )[ a,a ]和:max f ( x ) P n ( x ) E n ( f )[ a ,a ]即:max f ( x)P n ( x)E n ( f )[ a ,a ]P n ( x) 亦是 f ( x) 的最正确一致逼近多项式,由最正确一致逼近多项式的独一性,有: P n ( x)P n ( x)即: P n ( x) 为偶函数 .11.解: 设P * ( x) a0 a x , P * ( x) bb x b x 21121 2分别为 f ( x) 的一次、二次最正确平方逼近多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∗ ∗

三、(13 分)对于有效数 x1 = −3.105, x2 = 0.001, x3 = 0.100 ,估计下列算式是相对误差限
∗ ∗ ∗ y1 = x1 + x2 + x3 ; ∗ ∗ ∗ y2 = x1 x2 x3 ;
y3 =
∗ x2
∗ x3

四、(16 分)写出下列各题的合理计算路径,使计算结果更精确(不必计算结果),并说明 理由。 (1)
∗ ∗ ∗ er ( x1 ) = 0.00016, er ( x2 ) = 0.5, er ( x3 ) = 0.005 , ∗ ∗ ∗ ∗ er ( y1 ) ≈ e( x1 ) + e( x2 ) + e ( x3 ) = 0.0015 ,
--------------------------------(4 分)
(1/2*10^-3)/3.142
5、(2)
1 1 1 × 10−3 ;2、 ;3、 ;4、33;5、截断(方法)误差 2 2 30
∗ ∗ ∗
三、(13 分) 解:已知有效数的绝对误差限为 e( x1 ) = e( x2 ) = e( x3 ) = 0.0005 ,-------------(2 分) 从而相对误差限为
*
m
∗ ∗
∗ ∗

则其相对误差不超过 。
1 1 ∗ ∗ −k × 10− ( k −1) ; 若已知相对误差 er , 且 er ≤ × 10 , 则 ak 必为有效数字。 2 2
1
第 1 章 绪论 参考答案
一、选择题(15 分,每小题 3 分) 1、(2) 2、 (3) 3、(3) 4、(4) 二、填空题(15 分,每小题 3 分) 1、
Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 For Evaluation Only.
第 1 章 绪论
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分) 1、近似数 x = 0.231 关于真值 x = 0.229 有( (1)1;(2)2;(3)3;(4)4。 2、取 3 ≈ 1.732 计算 x = ( 3 − 1) ,下列方法中哪种最好?(
由绝对误差限的传播关系式得
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e ( y2 ) ≈ x2 x3 e( x1 ) + x1 x3 e( x2 ) + x1 x 2 e ( x3 ) , e ( y3 )≈
∗ x2 1 ∗ ∗ ), e ( x2 ) + ∗ 2 e( x3 ∗ ((1) 28 − 16 3 ;
(2) ( 4 − 2 3 ) ;
2
(3)
16 ( 4 + 2 3 )2

(4)
16 ( 3 + 1)4

3、下列说法中不属于数值方法设计中的可靠性分析的是( )。 (1)方法收敛性;(2)方法的稳定性;(3)方法的计算量;(4)方法的误差估计。 4、下列说法错误的是( )。 (1)如果一个近似数的每一位都是有效数字,则称该近似数为有效数; (2)凡是经“四舍五入”得到的近似数都是有效数; (3)数值方法的稳定性是指初始数据的扰动对计算结果的影响; (4)病态问题是由数学问题本身的性质决定的,与数值方法有关。 5、已知近似数 x 的相对误差限为 0.3%,则 x 至少有( (1)1; (2)2 ; (3)3; (4)5。 二、填空题(每小题 3 分,共计 15 分) 1、设 π 的近似数 π 有 4 位有效数字,则其相对误差限为______
2 ≈ 1.41 ,计
算到 y10 时误差有多大?计算过程是否稳定?如果不稳定,试给出一种稳定的计算方法,并说 明理由。 六、 (13 分) 已测得某场地长 x 的值为 x = 110 米, 宽 y 的值为 y = 80 米, 已知 x − x ≤ 0.2 米, y − y ≤ 0.1 米。试求面积 s = xy 的绝对误差限和相对误差限。 七、(13 分)设 x 的近似数 x 表示为 x = ±0.a1a2 L ak L an × 10 ,证明:若 ak 是有效数字,
∗ er ( y3 )≈
∗ e ( y3 )
∗ y3
∗ ∗ ≈ er ( x2 ) + er ( x 3 ) = 0.505 。 --------------------------------(13 分)
四、(16 分)
1 − cos x 解:(1) = sin x
2 sin 2 2 sin
x x cox 2 2
1 − cos x , sin x
x ≠ 0且 x << 1 ;
(2)
1 1− x , − 1+ 2x 1+ x
x << 1 ;
(3)
x+
1 1 − x− , x x
x >> 1 ;
(4)

x +1 x
dt , 1+ t 2
x << 1 ;
五、(15 分)设序列 { yn } 满足递推关系 yn = 10 yn −1 − 1, n = 1, 2,L ,若 y0 =
x 2
= tan
x (避免很小的数作除数);------(4 分) 2
1 1− x 2 x2 (2) (避免相近的数相减);-----------------(8 分) − = 1 + 2 x 1 + x (1 + 2 x )(1 + x )
∗ ∗

)位有效数字。
_。
2、
x ∗ 的相对误差约是 x ∗ 的相对误差的
倍。 。
3、计算球体积时要使相对误差限为 10%,问测量半径时允许的相对误差限是 4、规格化浮点数系 F = ( 2, 4, −1, 2) 中一共有 5、用数 [1 + e ] 作为计算积分 I =

个数
1 2
−1

1
0
e − x dx 的近似值,产生的主要误差是
--------------------------------(7 分) 所求算式的相对误差限为
∗ er ( y1 )≈ ∗ e( y1 )
∗ y1
≤ 0.0015
3.004
≈ 0.0005 ,
∗ er ( y2 )≈
∗ e ( y2 )
∗ y2
∗ ∗ ∗ ) + er ( x 2 ) + er ( x3 ) ≈ 0.50516 , ≤ er ( x1
相关文档
最新文档