等腰三角形综合练习题

合集下载

八年级数学经典压轴题:等腰三角形综合

八年级数学经典压轴题:等腰三角形综合

八年级数学经典压轴题:等腰三角形综合一、等腰三角形的概念等腰三角形是一种特殊的三角形,其中两边的边长相等。

它具有一些独特的性质和特点,我们将在接下来的题目中综合运用这些知识。

二、题目一:等腰三角形的边长计算已知一个等腰三角形的底边为10cm,腰边为12cm,请计算其顶角所对的边长。

解答步骤:1.根据等腰三角形的性质可知,顶角所对的边长也与底边相等。

2.因此,顶角所对的边长也为10cm。

三、题目二:等腰三角形的面积计算已知一个等腰三角形的底边为6cm,腰边为8cm,请计算其面积。

解答步骤:1.根据等腰三角形的性质可知,顶角所对的边长也与底边相等,设顶角所对的边长为x。

2.使用海伦公式计算三角形的面积:\[面积 = \sqrt{s(s-a)(s-b)(s-c)}\],其中s为半周长,\[s = \frac{a+b+c}{2}\]。

3.因此,半周长s为 \[s = \frac{6+8+x}{2}\]。

4.将已知条件代入海伦公式,得到 \[面积 =\sqrt{\frac{6+8+x}{2}\cdot\frac{6+8+x}{2}\cdot\frac{6+8+x}{2}\cdot\ frac{6+8+x}{2}}\]。

5.根据题目已知条件,求解方程得到x的值,然后代入公式计算面积。

请根据具体题目所给条件,进行类似的求解步骤。

四、题目三:等腰三角形的性质综合已知一个等腰三角形ABC,底边AB为8cm,腰边AC为10cm。

设D为AB边的中点,请计算以下问题:1.证明三角形ACD为等腰三角形;2.计算三角形ACD的顶角所对的边长;3.计算三角形ACD的面积。

解答步骤:1.由条件可知,AC=10cm,AD=4cm(由D为AB边中点可得)。

2.对比可知,AD=DC,所以三角形ACD为等腰三角形。

3.顶角所对的边为AC,所以顶角所对的边长为10cm。

4.根据等腰三角形的面积公式计算面积:\[面积 = \frac{1}{2}\times AC \times AD\]。

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础练习1、已知等腰三角形的一个内角为 70°,则它的另外两个内角的度数分别是()A 55°,55°B 70°,40°C 55°,55°或 70°,40°D 以上都不对解析:当 70°的角为顶角时,底角的度数为:(180° 70°)÷ 2 =55°;当 70°的角为底角时,另一个底角也是 70°,顶角的度数为 180°70°× 2 = 40°。

所以答案选择 C。

2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18解析:当腰长为 3 时,3 + 3 = 6,不能构成三角形;当腰长为 6 时,周长为 6 + 6 + 3 = 15。

所以答案选择 B。

(二)提高练习1、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,点 E 在 AD 上。

求证:△EBC 是等腰三角形。

证明:因为 AB = AC,AD 是∠BAC 的平分线,所以 AD⊥BC,BD = CD。

又因为点 E 在 AD 上,所以 EB = EC,即△EBC 是等腰三角形。

2、已知等腰三角形一腰上的中线将其周长分成 9 和 15 两部分,求这个等腰三角形的腰长和底边长。

设腰长为 2x,底边长为 y,则有两种情况:情况一:\(\begin{cases}2x + x = 9 \\ x + y = 15\end{cases}\),解得\(\begin{cases}x = 3 \\ y = 12\end{cases}\),此时腰长为 6,底边长为 12,因为 6 + 6 = 12,不符合三角形三边关系,舍去。

情况二:\(\begin{cases}2x + x = 15 \\ x + y = 9\end{cases}\),解得\(\begin{cases}x = 5 \\ y = 4\end{cases}\),此时腰长为 10,底边长为 4,符合三角形三边关系。

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。

2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。

3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。

4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。

5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。

6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。

证明:DE=DF。

第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。

2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。

3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。

4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。

5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。

证明:AB=AC。

6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。

证明:△EFG是等腰三角形。

等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。

2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。

能判定△ABC为等边三角形的有条件①、②、③。

3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。

等腰三角形经典练习题(5套)附带详细答案

等腰三角形经典练习题(5套)附带详细答案

练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( ) A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C =60°AQ CPB∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=BD AB =21(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50。

,则其顶角为________ ・2.如图,HABC中…13=∕C, BC=6cm, JD 平分ZBAC.则BD= _________________ c m.第3题图3.如图,'ABC中,-lδ=FC, D为EC中点,ZBAD=35。

,则ZC的度数为()A.35oB. 45。

C・ 55。

D・ 60o4.已知等腰三角形的一个内角为50。

,则这个等腰三角形的顶角为()A・ 50o B. 80oC. 50。

或80。

D・ 40。

或65。

5.如图,在Z∖J5C 中,D 是BC 边上一点,^AB=.-ID=DC, ZAW=40°,求ZC 的度数.6.如图,ΔJBCΦ, .IB=AC9 D 是EC 的中点,E, F分别是.1B. JC±的点,且AE=AF. 求证:DE=DF.1. 在 ∕∖ABC 中,ZJ=40% Z5 = 70o ,则 MBC 为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2. 已知ΔJPC 中,Z5=50% ZJ = 80c , -lδ=5cm.则 AC= _________________ ・3. 如图,在ΛABC 中,-Q 丄BC 于点Zh 请你再添加一个条件,使苴可以确定AlSC 为等腰三角形,则添加的条件是 ________ ・第3题图4. 如图,已知NlBC 中,ZJ = 36% AB=AC, BD 为ZABC 的平分线,则图中共有 _______________ 个等腰三角形.5. 如图,D 是ZXJ5C 的BC 边上的中点,DE 丄AC. DFLAB.垂足分别是E, F,且DE=DF 求证:AB=AC.6.如图,肋〃 CZ λ直线/交,松于点E,交CD 于点F, FG 平分ZEFD 交直线曲于点G 求证:ZLEFG 是等腰三角形.第4题图13・3.2等边三角形第1课时等边三角形的性质与判定1. ____________________________________________________________ 如图,a∕∕b.等边MBC的顶点D C在直线b上,则Zl的度数为_______________________第1题图第3题图2.在∕∖ABC中,ZJ=60°,现有下面三个条件:®ZB=ZC;③ZA=ZB.能判定Z∖J5C为等边三角形的有____________________________ .3・如图,在等边AABC中,BD丄AC于D∙若,松=4,则AD= ________________ ・4.如图,ΔJ J9C是等边三角形,ZCBD=90°. BD=BC.连接.10交BC于点求ZBAD 的度数.5・如图,E是等边AABC中JC边上的点,Z1 = Z2, BE=CD.求证: (I)ZUEE 竺ZUS⑵AADE为等边三角形.第2课时含30。

初一数学综合算式练习题解等腰三角形

初一数学综合算式练习题解等腰三角形

初一数学综合算式练习题解等腰三角形等腰三角形是我们数学学习中的一个重要概念,它具有特殊的性质和一些特定的算式练习题。

本文将通过解答一些初一数学综合算式来深入理解等腰三角形的性质和计算方法。

1. 题目:在等腰三角形ABC中,AB = AC,∠B = 70°,则∠A等于多少度?解析:由于等腰三角形的两边相等,因此∠B = ∠C。

所以,∠A = 180° - ∠B - ∠C = 180° - 70° - 70° = 40°。

答案:∠A = 40°。

2. 题目:在等腰三角形ABC中,AB = AC,AB = 8cm,BC = 5cm,求∠A的度数。

解析:由于AB = AC,所以∠B = ∠C。

又已知BC = 5cm,由此可以确定了三角形的形状。

根据余弦定理可以计算出∠B的度数。

余弦定理:c^2 = a^2 + b^2 - 2ab * cosC设∠B = x,则∠C = x,∠A = 180° - 2x。

根据余弦定理:8^2 = 5^2 + 5^2 - 2 * 5 * 5 * cosx64 = 25 + 25 - 50 * cosx64 = 50 - 50 * cosxcosx = -14/-50cosx = 0.28x ≈ arccos(0.28)x ≈ 73.74°∠A = 180° - 2 * 73.74°∠A ≈ 32.52°答案:∠A ≈ 32.52°。

3. 题目:在等腰三角形ABC中,AB = AC,AB = 10cm,BC = 6cm,求∠A、∠B、∠C的度数。

解析:由于AB = AC,所以∠B = ∠C。

又已知BC = 6cm,AB =10cm,由此可以确定了三角形的形状。

根据余弦定理可以计算出∠B的度数。

余弦定理:c^2 = a^2 + b^2 - 2ab * cosC设∠B = x,则∠C = x,∠A = 180° - 2x。

八年级数学下册等腰三角形综合练习题含答案

八年级数学下册等腰三角形综合练习题含答案
∴AD⊥BC,∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED==75°,
∴∠EDC=∠ADC-∠ADE=90°-75°=15°
10.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是( ).
A.60° B.80° C.100° D.120°
11.如图,在△ABC中,AB=AC,∠A=40°.如果P为三角形内一点,且∠PBC=∠PCA,那么∠BPC等于( )
22.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)△AOD能否为等边三角形?为什么?
(4)探究:当α为多少度时Fra bibliotek△AOD是等腰三角形.
20.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.
三、解答题
21.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ. (1)观察并猜想AP与CQ之间的大小关系,并说明理由.
(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.
A.2cm B.2.5cm C.3cm D.3.5cm
6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )
A. ∠B=∠C B. AD⊥BC C. AD平分∠BAC D. AB=2BD
7.已知等腰△ABC中,AD⊥BC于点D,且AD= BC,则△ABC底角的度数为( )

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF为()A.75°B.60°C.45°D.30°3.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°4.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是()A.70°B.80°C.90°D.100°5.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°6.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.7.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③8.下列说法正确的是()A.两个能重合的图形一定关于某条直线对称B.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧C.到角两边距离相等的点在这个角的平分线上D.如果三角形一边的垂直平分线经过它的一个顶点,那么这个三角形一定是等腰三角形9.用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为()米.A.B.C.D.10.在等腰直角△ABC(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,则满足此条件的点有()A.1个B.3个C.6个D.7个11.如图所示,在△ABC中,AB=AC,腰AB的垂直平分线交另一腰AC于点D,BD+CD=10cm,则AB的长为_________.12.如图,若等腰△ABC的腰长AB=10cm,AB的垂直平分线交另一腰AC于D,△BCD的周长为16cm,则底边BC是_________cm.13.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是_________.14.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有_________个.15.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为_________.16.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,则线段EB与线段EF的数量关系为_________.17.如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为_________.18.等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,则这个三角形的腰长为_________.19.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按图示方式折叠,则图中阴影部分是_________三角形.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_________.21.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.22.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.23.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.24.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.25.如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.27.如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.29.如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.30.如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.参考答案:1.解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B2.解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B3.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B4.解:∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴∠PMN=2∠C,∠PNM=2∠D,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D.5.解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣50°)÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=(180°﹣80°)÷2=50°.故选:B6.解:设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D7.解:在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B8.解:A、两个能重合的图形不一定关于某条直线对称,故错误;B、两个图形关于某条直线对称,它们的对应点有可能位于对称轴上,故错误;C、同一平面内,到角的两边距离相等的点在角的平分线上,故错误;D,正确,故选D9.解:等边三角形周长为a,则边长为,设P到等边三角形的三边分别为x、y、z,则等边三角形的面积为b=××(x+y+z)解得x+y+z=,故选C10.解:∵△ABC是等腰直角三角形,(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,∴有一个满足条件的点﹣斜边中点,∴符合条件的点有1个.故选A.11.解:∵ED是边AB边上的中垂线,∴AD=BD;又∵BD+CD=10cm,AB=AC,∴BD+CD=AD+DC=AC=AB=10cm,即AB=10cm.故答案是:10cm12.解:∵DE是线段AB的垂直平分线,∴AD=BD,∴BD+CD=AC,∵AB=AC=10cm,BD+CD+BC=AB+BC=16cm,∴BC=16﹣AB=16﹣10=6cm.故答案为:6cm13.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:2014.解:∵将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上.∴EF∥DG,∠E=∠D=60°,∴∠ENM=∠D=60°,∠MGD=∠E=60°,∴EM=NM=EN,DM=GM=DG,∴△MEN,△MDG是等边三角形.∵∠A=∠B=30°,∴MA=MB,∴△ABM是等腰三角形.∴图中等腰三角形有3个15.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.16.解:延长EF交AC于点Q,∵EF⊥AD,AD⊥BC∴EQ∥BC∴∠QEC=∠ECB∵CE平分∠ACB∴∠ECB=QCE∴∠QEC=∠QCE∴QE=QC∵QE∥BC,且△ABC为等腰三角形∴△AQE为等腰三角形∴AQ=AE,QE=2EF∴BE=CQ=2EF.故答案为:BE=2EF.17.解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=2318.解:设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:1、当3X=15,且X+Y=6,解得,X=5,Y=1,∴三边长分别为10,10,1;2、当X+Y=15且3X=6时,解得,X=2,Y=13,此时腰为4,根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴腰长只能是10.故答案为1019.解:∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,∵根据题意知道点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI=60°,∴阴影部分是等边三角形,故答案为:等边.20.答:由①③条件可判定△ABC是等腰三角形.证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)BE=CD,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形21.解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.22.解:∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF23.(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.24.解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°25.解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形26.①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);②∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH,在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH;③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形27.解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=728.(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).29.证明:∵AB=BC=CA,∴△ABC为等边三角形,∴∠BAC=∠C=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠BPQ=∠ABE+∠BAP,∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,∵BQ⊥AD∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.30.解:AD=EC.证明如下:∵△ABC和△BCD都是等边三角形,每个角是60°∴AB=EB,DB=BC,∠ABE=∠DBC=60°,∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC在△ABD和△EBC中∴△ABD≌△EBC(SAS)∴AD=EC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形综合练习卷
一、选择题(每小题3分,共30分)
1.下列图形中,不一定是轴对称图形的是( )
A.线段B.等腰三角形C.直角三角形D.圆
2.若等腰三角形的两边长分别为4和9,则周长为( ) A.17 B.22 C.13 D.17或22
3.如果三角形一边上的高平分这条边所对的角,那么此三角形一定是( )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
4.小明将两个全等且有一个角为60°的直角三角板拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是( )
A.4 B.3 C.2 D.1
5.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E为垂足,下列结论正确的是( )
A.AC=2AB B.AC=8EC C.CE=
1BD D.BC=2BD
2
6.有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角
之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;
(4)三边长分别为5,24,25.其中直角三角形有( )
A.1个B.2个C.3个D.4个
7.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:①DE=AC;②DE⊥AC;③∠CAB=30°;④∠EAF=∠ADE.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
8.如图,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出( )
A.2个B.4个C.6个D.8个
9.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2=MB2等于( )
A.9 B.35 C.45 D.无法计算
10.若△ABC是直角三角形,两条直角边分别为5和12,在三角形内有一
点D,D到△ABC各边的距离都相等,则这个距离等于( ) A.2 B.3 C.4 D.5
二、填空题(每小题4分,共24分)
11.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是________.
12.已知等腰△ABC的底边BC=8cm,且|AC-BC|=2cm,那么腰AC 的长为__________.
13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条小路,他们仅仅少走了_______步路,(假设2步为1m),却踩伤了花革.
14.如图,在△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC 边上的中线BD的长为______cm.
15.已知,如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出三个正确结论:
(1)____________;(2)_____________;(3)_____________.
16.已知,如图,正方形ABCD中,对角线AC和BD相交于点0,E,F分别是边AD,DC上的点,若AE=4cm,FC=3cm,且0E⊥0F,则EF=______cm.
三、解答题(共66分)
17.(6分)如图,在△ABC中,AB=AC,点D在BC边
上,DE⊥AB,DF⊥AC,垂足分别为E,F,添加
一个条件,使DE=DF.
18.(6分)如图,已知∠AOB=30°,0C平分∠AOB,P为OC上一点,PD∥0A交OB于D,PE⊥OA于E,如果OD=4,求PE的长.
19.(6分)如图,△ABC是等边三角形,ABCD是等腰
直角三角形,其中∠BCD=90°,求∠BAD的度数.
20.(8分)如图,E为等边三角形ABC边AC上的点,∠1=∠2,CD=BE,判断△ADE的形状.
21.(8分)如图所示,已知:在△ABC中,∠A=80°,BD=BE,CD=CF.求∠EDF的度数.
22.(10分)如图,已知点B,C,D在同一条直线
上,△ABC和△CDE都是等边三角形,BE交
AC于点F,AD交CE于点H.
(1)说明:△BCE≌△ACD;
(2)说明:CF=CH;
(3)判断△CFH的形状并说明理由.
23.(10分)如图,已知在△ABC中,∠ABC=90°,AB=BC,三角形的
顶点分别在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长.
24.(12分)如图(1)所示,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于D,CE⊥AE 于E.说明:
(1)BD=DE+EC:
(2)若直线AE绕点A旋转到图(2)位置时(BD<CE),其他条件不
变,则BD与DE,EC的关系又怎样?请写出结果,不必写过程.
(3)若直线AE绕点A旋转到
图(3)时(BD>CE),其余条
件不变,问BD与DE,CE
的关系如何?请直接写出结果.
参考答案
第2章水平测试
1.C 2.B 3.A 4.B 5.B 6.C 7.C 8.C 9.C l0.A ll .36° 12.6cm 或12cm 13.4 14.6.5 l5.解:答案不唯一,∠E=30°,∠ABD=∠DBC=30°,BD ⊥AC 等 l6.5 17.解:BD=CE 或BE=CF 说明△BDE ≌△CDF 18.解:作PF ⊥OB 于F ,∴PF=PE ∵OC 平分∠AOB ∴∠l=∠2 ∵PD ∥0A ∴∠2=∠3 ∴∠l=∠3 ∴PD=OD=4 ∴PE=PF=2
1PD=2 19.解:∵△ABC 是等边三角形 ∴AC=BC ∵△BCD 是等腰直角三角形,∠BCD=90°∴BC=CD ∴AC=CD ∴∠CAD=∠ADC=2
180A ∠-︒ =2
30180︒-︒ =75°∴∠BAD=∠CAD+∠BAC=75°+60°= l35°20.解:∵△ABC 为等边三角形 ∴⎪⎭⎪⎬⎫=∠=∠=BE CD AC AB 21⇒△
ABE ≌△ACD ∴AE=AD
∴∠DAE=∠BAC=60°∴△ADE 为等边三角形 21.解:∵BD=BE ∴∠l=∠2=2180B ∠-︒ ∵CD=CF ∴∠3=∠4=2
180C ∠-︒ ∵∠EDF+∠2+∠3=180°∴∠EDF=180°-(∠2+∠3)= 180°-(2180B ∠-︒+23180∠-︒ )=21(∠B+∠C )=21(180°-∠A)= 2
1(180°-80°)=50°
22.解:(1) ∵△ABC 和△CDE 都是正△ ∴BC=AC ,∠BCE=∠ACD=120° CE=CD ∴△BCE ≌△ACD(SAS)
(2)∵△BCE ≌∠ACD ∴∠CBF=∠CAH 又∵BC=AC ,∠BCF=∠ACH=60°∴△BCF ≌∠ACH(ASA) ∴CF=CH(3) △CFH 是等边
三角形,理由:∵CF=CH ,∠FCH=60°∴△CFH 是等边三角形
23.解:分别过A ,C 作AE ⊥l 3,CD ⊥l 3,垂足分别为E ,D 由题意
可知AE=3,CD=2+3=5 又∵AB=BC,∠ABE=∠BCD ∴Rt△AEB≌△CBD(AAS) ∴AE=BD=3 ∴CB2=BD2+CD2=32+52=34
∴AC2=AB2+CB2=34×2=68 ∵AC>0 ∴AC=68=17
2
24.解:(1) ∵△ABC为等腰直角三角形∴∠BAE+∠EAC=90°∵BD⊥AE,CE⊥AE ∴∠ADB=∠AEC=90°∠BAE+∠ABD=90°∴∠EAC=∠ABD ∵AB=AC ∴△ABD≌△CAE ∴BD=AE,AD=EC ∴BD=AD+DE=EC+DE (2)BD=EC+DE仍成立(3)BD=EC+DF仍成立。

相关文档
最新文档