大学物理课后答案第七章静电场中的导体和电介质
大学物理课后答案第七章.doc
第七章静电场中的导体和电介质一、基本要求1. 掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2. 学会计算电容器的电容;3. 了解介质的极化现象及其微观解释;4. 了解各向同性介质中D和E的关系和区别;5. 了解介质中电场的高斯定理;6. 理解电场能量密度的概念。
二、基本内容1. 导体静电平衡(1) 静电平衡条件:导体任一点的电场强度为零(2) 导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3) 导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2. 电容(1) 孤立导体的电容c=勺V电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2) 电容器的电容C =—9-V A~ Vq为构成电容器两极板上所带等量异号电荷的绝对值。
V A-V B为A、B两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3) 电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之111 1和。
等效电容由一=—+—+川+一进行计算。
C C C C1 2 n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为C=C +C ,川*C o 1 2 n(4) 计算电容的一般步骤+ 一%1设两极带电分别为q和q,由电荷分布求出两极间电场分布。
~ = J B%1由V V E dl求两极板间的电势差。
A B A%1根据电容定义求c wV A VB3. 电位移矢量D=£ +人为引入的辅助物理量,定义D E P, D既与E有关,又与P有关。
说明D 0不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向号惟会质都适用。
静电场中的导体和电介质
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
大学物理课后答案
第七章 静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律; 2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释; 4.了解各向同性介质中D 和E 的关系和区别; 5.了解介质中电场的高斯定理; 6.理解电场能量密度的概念。
二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2.电容(1)孤立导体的电容 q C V=电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。
B A V V -为A 、B 两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。
等效电容由121111nC C C C =+++进行计算。
并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为12n C C C C =+++。
(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。
②由BA B A V V d -=⋅⎰E l 求两极板间的电势差。
③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关。
说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向异性介质都适用。
大学物理同步训练第2版第七章静电场中的导体详解
第七章 静电场中的导体和电介质一、选择题1. (★★)一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处(a <R )放一点电荷+q ,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为(A )q 2πε0a ⁄ (B )0(C )−q 4πε0R ⁄ (D )q 4πε0⁄∙(1a ⁄−1R ⁄)答案:D分析:由静电平衡的知识可知:①当空腔导体内放入点电荷+q 时,空腔导体的内表面会带上等量异号的电荷−q ,由电荷守恒可知不带电的空腔导体的外表面带有的+q 电荷;②当球壳接地后,球壳电势变为零,故球壳外表面电量变为零。
因此接地后去掉地线,该体系的电荷分布如图所示,球壳内表面带有−q 的电量,外表面不带电。
由电势叠加原理可得球心O 处的电势为V O =q 4πε0a +∫dq 4πε0R 内=q 4πε0a +14πε0R ∫dq 内=q 4πε0(1a −1R ) 故选项D 正确。
注:式中∫dq 内=−q 为内表面的电量之和。
【补充】带电量为Q 半径为R 的球面(电荷分布无论均匀或不均匀)在球心处产生的电势为V =Q 4πε0R ⁄。
2. 三块互相平行的导体板之间的距离d 1和d 2比板间面积线度小得多,如果d 2=2d 1,外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为σ1和σ2,如图2所示,则σ1σ2⁄为(A )1 (B )2 (C )3 (D )4答案:B分析:【知识点】达到静电平衡的导体:①内部电场强度为E =0,表面附近电场强度垂直于导体表面,大小为E =σε0⁄,其中σ为导体表面电荷面密度;②导体是一个等势体,导体表面为等势面;③导体内部处处无净电荷,即电荷只分布在导体的表面上,电荷面密度与导体表面的曲率有关,曲率越大(越尖)电荷面密度越大。
由静电平衡的知识点①可知,中间导体板左侧电场强度为σ1ε0⁄,右侧为σ2ε0⁄;由静电平衡的知识点②可知,用导线连接起来的左右两个导体板等势,即中间导体板与左右两导体板的电势差U 相同,由U =Ed 可得σ1ε0⁄∙d 1=σ2ε0⁄∙d 2,故σ1σ2⁄=d 2d 1⁄=2,故选项B 正确。
大学物理课后习题答案第七篇
第7章 静电场中的导体和电介质 习题及答案1. 半径别离为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度别离为1σ和2σ。
忽略两个导体球的静电彼此作用和细导线上电荷对导体球上电荷散布的阻碍。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,因此半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,因此Rr =21σσ 2. 证明:关于两个无穷大的平行平面带电导体板来讲,(1)相向的两面上,电荷的面密度老是大小相等而符号相反;(2)相背的两面上,电荷的面密度老是大小相等而符号相同。
证明: 如下图,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面别离在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,那么其场强为零,而且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
解:如下图,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为=O V Rq dq R3π4π4100εε+⎰03π4π400=+'=RqR q εε故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径别离为2R 、3R 的同心导体球壳,球壳带有电量Q 。
大学物理A静电场中的导体和电介质习题答案及解法201064
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==•+•=•=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。
习题解答---大学物理第7章习题--2
专业班级_____ ________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔的一点,如下图所示。
则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的、外表面的感应电荷在C点产生的合电场强度为零。
解答单一就带电体A来说,它在C点产生的电场强度是不为零的。
对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其部没有带电体)此感应电荷也是要在C点产生电场强度的。
由导体的静电屏蔽现象,导体壳空腔C点的合电场强度为零,故选(B)。
2,在一孤立导体球壳,如果在偏离球心处放一点电荷+q,则在球壳、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳表面分布均匀,外表面也均匀;(B)球壳表面分布不均匀,外表面均匀;(C)球壳表面分布均匀,外表面不均匀;(D)球壳的、外表面分布都不均匀。
解答 由于静电感应,球壳表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳部的点电荷+q 和表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。
故选(B )。
3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。
(C)导体部的电势比导体表面的电势高。
(D)导体任一点与其表面上任一点的电势差等于零。
4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳半径为r 的P 点处的场强和电势为: [ D ](A )E=r Q U r Q 0204,4πεπε=(B )E=0,104r Q U πε= (C )E=0,rQ U 04πε=(D )E=0,204r Q U πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面不包围自由电荷,则面上各点电位移矢量D为零。
大学物理课后答案第七章静电场中的导体和电介质(精)
习题727-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少?解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ2题7-2图(1)∵ UAC=UAB,即∴ EACdAC=EABdAB∴ σ1EACdAB===2 σ2EABdACqA S且σ1+σ2=得σ2=qA2q, σ1=A 3S3S而 qC=-σ1S=-2qA=-2⨯10-7C 3qB=-σ2S=-1⨯10-7C(2) UA=EACdAC= σ1dAC=2.3⨯103V ε07-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势题7-3图U=⎰∞R2 ∞E⋅dr=⎰qdrq= R24πεr24πε0R0(2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生:U=q4πε0R2-q4πε0R2=0(3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且UA=q'4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2得 q'=外球壳上电势 R1q R2-q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势UO=07-4图由电势叠加原理有:UO=q'q+=0 4πε0R4πε03Rq 3得 q'=-7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为F0.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.q2解: 由题意知F0= 24πε0r(1)小球3接触小球1后,小球3和小球1均带电q, 2小球3再与小球2接触后,小球2与小球3均带电3q''=q 4∴此时小球1与小球2间相互作用力 q'=32qq'q"3F1=-=F0 2284πε0r4πε0r(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为2q. 322qq4∴小球1、2间的作用力F2==F0 4πε0r297-6如题7-6图所示,一平行板电容器两极板面积都是S,相距为d,分别维持电势UA=U,UB=0不变.现把一块带有电量q的导体薄片平行地放在两极板正中间,片的面积也是S,片的厚度略去不计.求导体薄片的电势.解: 依次设A,C,B从上到下的6个表面的面电荷密度分别为σ1,σ2,σ3,由静电平衡条件,电荷守恒定律及维持UAB=Uσ4,σ5,σ6如图所示.可得以下6个方程题7-6图ε0UqA1⎧σ+σ==CU=20⎪1SSd⎪⎪σ+σ=q4⎪3S⎪⎨σ+σ=qB=-ε0U56⎪Sd⎪σ+σ=03⎪2⎪σ4+σ5=0⎪⎩σ1=σ2+σ3+σ4+σ5+σ6q解得σ1=σ6= 2Sσ2=-σ3=ε0Ud-q 2Sσ4=-σ5=ε0Ud+q 2S所以CB间电场E2=σ4Uq=+ ε0d2ε0Sd1qd=(U+) 222ε0SUC=UCB=E2注意:因为C片带电,所以UC≠UU,若C片不带电,显然UC= 227-7 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球壳,介质相对介电常数为εr,金属球带电Q.试求:(1)电介质内、外的场强;(2)电介质层内、外的电势;(3)金属球的电势.解: 利用有介质时的高斯定理D⋅dS=∑q S(1)介质内(R1<r<R2)场强Qr QrD=,E内=; 334πr4πε0εrr介质外(r<R2)场强Qr QrD=,E外= 334πr4πε0r(2)介质外(r>R2)电势U=⎰介质内(R1<r<R2)电势∞r E外⋅dr=Q 4πε0rU=⎰∞r ∞ E内⋅dr+⎰E外⋅drr=11Q (-)+4πε0εrrR24πε0R21ε-1(+r) 4πε0εrrR2Qq=(3)金属球的电势R2 ∞ U=⎰E内⋅dr+⎰E外⋅dr R1R2R2=⎰=Qdr4πε0εrr2Q(R+⎰∞R2Qdr 4πε0r24πε0εr1εr-1+) R1R27-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为εr的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为E2,真空部分场强为E1,自由电荷面密度分别为σ2与σ1 由D⋅dS=∑q0得D1=σ1,D2=σ2而D1=ε0E1,D2=ε0εrE2E1=E2=∴ U dσ2D2==εr σ1D1题7-8图7-9 金属球壳A和B的中心相距为r,A和B原来都不带电.现在A的中心放一点电荷q1,在B的中心放一点电荷q2,如题8-30图所示.试求:(1) q1对q2作用的库仑力,q2有无加速度;(2)去掉金属壳B,求q1作用在q2上的库仑力,此时q2有无加速度.解: (1)q1作用在q2的库仑力仍满足库仑定律,即F=1q1q2 4πε0r2但q2处于金属球壳中心,它受合力为零,没有加速度...(2)去掉金属壳B,q1作用在q2上的库仑力仍是F=受合力不为零,有加速度.1q1q2,但此时q24πε0r2题7-9图 7-10 半径为R1=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2=4.0cm和R3=5.0cm,当内球带电荷Q=3.0×10C 时,求: -8(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q,外球壳内表面带电-Q,外表面带电Q题7-10图(1)在r<R1和R2<r<R3区域E=0在R1<r<R2时E1= Qr 34πε0rr>R3时 E2=∴在R1<r<R2区域Qr 4πε0r3W1=⎰R2R11Qε0()24πr2dr 224πε0rQ2drQ211=(-) 8πε0r28πε0R1R2=⎰在r>R3区域 R2R11QQ2122W2=⎰ε0()4πrdr= 2R328πε0R34πε0r∞Q2111(-+) ∴总能量W=W1+W2=8πε0R1R2R3 =1.82⨯10-4J(2)电容器电容C=2W11=4πε/(-) 02R1R2Q=4.49⨯10-12F。
《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
大物AI作业参考解答_No.08 静电场中的导体和电介质
《大学物理AI 》作业No.08静电场中的导体和电介质班级________学号________姓名_________成绩______--------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解静电平衡的条件,理解静电感应、静电屏蔽的原理;2、掌握静电平衡时导体表面感应电荷的分布和电场、电势的计算;3、了解电介质的极化现象和微观解释,理解电位移矢量D的定义,确切理解电介质中的高斯定理,并能利用它求解有电介质存在时具有一定对称性的电场问题;4、理解电容的定义,掌握电容器电容的计算方法;5、掌握电容器的储能公式,理解电场能量密度的概念,并能计算电荷系的静电能;6、理解电流强度和电流密度的概念,理解恒定电场的特点及电源电动势的概念。
--------------------------------------------------------------------------------------------------------------------一、选择题:1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。
设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[D ](A)U B >U A ≠0(B)U B >U A =0(C)U B =U A (D)U B <U A解:电力线如图所示,电力线指向电势降低的方向,所以U B <U A 。
2.半径分别为R 和r 的两个金属球,相距很远。
用一根细长导线将两球连接在一起并使它们带电。
在忽略导线的影响下,两球表面的电荷面密度之比为[D ](A)R/r (B)R 2/r 2(C)r 2/R 2(D)r/R解:两个金属球用导线相接意味着它们的电势相等,设它们各自带电为21q q 、,选无穷远处为电势0点,那么有:rq Rq 020144,我们对这个等式变下形r R rr r q R R R q 21020144 ,即面电荷密度与半径成反比。
大学物理第七章和第八章习题答案
2
R2 R1
(5) C'
rC
4 0 r R1R2 R2 R1
2. 如图所示,,两块分别带有等量异号电荷的平行金属平板 A 和 B,相距为 d=5.0mm,两板 面积均为 S=150 cm2。所带电量均为 q=2.66×10-8C, A 板带正电并接地。求:(1)B 板的电 势;(2)A、B 板间距 A 板 1.0mm 处的电势。
(4)该电容存储的电场能量;
(5)若在两极板之间充满相对介电常数为r 的各向同性均匀电介质,则电容值变为多少?
解:(1)设极板上分别带电量+Q 和-Q,距离为 d,极板间产生均匀电场,
E Q /( 0 S ) 方向为由带+Q 的极板指向带-Q 的极板
极板外侧 E' 0
(2)两极板间的电势差为U12
金属球壳、设无穷远处为电势零点,则在
球壳内半径为 r 的 P 点处的场强和电势为:
[D]
(A)E= Q ,U Q (B)E=0,U Q
4 0r 2
4 0r
4 0 r1
(C)E=0,U Q 4 0 r
(D)E=0,U Q 40r2
r1
+Q
r
r2
P
5. 关于高斯定理,下列说法中哪一个是正确的? [ C ]
专业班级_____ 姓名________ 学号________
第七章 静电场中的导体和电介质
一、选择题:
1,在带电体 A 旁有一不带电的导体壳 B,C 为导体壳空腔内的一点,如下图所示。则由静电 屏蔽可知:[ B ]
(A)带电体 A 在 C 点产生的电场强度为零; (B)带电体 A 与导体壳 B 的外表面的感应电荷在 C 点所产生的
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
《静电场中的导体与电介质》选择题解答与分析
13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。
给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。
(2) 该处场强改变,公式0/εσ=E 不能用。
上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。
给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
大学物理答案第7~8章
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q ,2q ,—4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向—4q 。
7-2 如图,均匀带电细棒,长为L,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
习题7-1图dqξd ξ习题7-2 图aθθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强.解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
大学物理下 静电场中的导体和电介质习题解答
q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为
,
电势 (选U∞=0)为
。
D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02
大学物理静电场中的导体和电介质
03
在静电场中,导体和电介质的 性质和行为表现出显著的差异 ,因此了解它们的特性是学习 大学物理静电场的重要基础。
学习目标
01
掌握导体和电介质的定义、性质和分类。
02
理解静电场中导体和电介质的电场分布和电荷分布。
03
掌握导体和电介质在静电场中的行为和相互作用, 以及它们在电路中的作用。
02
导体
导体的定义与性质
感应电荷的产生是由于导体内 部自由电荷受到电场力的作用 而重新分布,这种效应称为静 电感应现象。
静电感应现象在生产和生活中 的应用十分广泛,如静电除尘、 静电喷涂等。
导体的静电平衡状态
当导体放入静电场中并达到稳定状态时,导体内部的自由电荷不再发生定向移动, 此时导体的状态称为静电平衡状态。
在静电平衡状态下,感应电荷在导体内、外表面产生附加电场,该电场与外界电场 相抵消,使得导体内部的总电场为零。
应用
了解电场强度在电介质中 的分布和变化规律,有助 于理解电子设备和器件的 工作原理。
电介质的电位移矢量
01
02
03
04
定义
电位移矢量是指描述电场中电 荷分布情况的物理量。
特点
在静电场中,电位移矢量与电 场强度之间存在线性关系,可
以用介电常数表示。
计算
根据电位移矢量的定义和电场 强度的计算公式,可以计算出
定义
导体是指能够让电流通过的物质。在 静电场中,导体内部自由电荷会受到 电场力的作用而发生移动,从而形成 电流。
性质
导体具有导电性,其导电能力与温度 、光照、化学状态等因素有关。金属 导体是电导率最高的物质之一,而绝 缘体则几乎不导电。
导体的静电感应现象
当导体放入静电场中时,导体 表面会产生感应电荷,感应电 荷的分布与外界电场有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理课后答案第七章静电场中的导体和电介质-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2习题77-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题7-2图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV37-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题7-3图⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε4得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=7-4 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U7-4图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;5(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε7-6如题7-6图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程6题7-6图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 7-7 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;7(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεεrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内8)11(π4210R R Q r r-+=εεε 7-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E == ∴r D D εσσ==1212题7-8图7-9 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:9(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题7-9图7-10 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量; (2)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q10题7-10图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)电容器电容 )11/(π422102R R Q W C -==ε12⨯=F.4-491011。