离散数学复习资料
离散数学期末复习

离散数学内容总结大纲第一篇 数理逻辑第1章 命题逻辑求命题公式的主析取范式及主合取范式例 求()()p r q p ∨⌝∧∨的主析取范式及主合取范式。
例 求(P →Q)∧R 的主析取范式及主合取范式。
例 求命题公式R Q P ∨∧)(的主析取范式和主合取范式。
例 求公式A =(p →⌝q )→r 的主析取范式与主合取范式。
例 求()r q p →→的主析取范式。
判断公式类型例 用等值演算法判断公式q ∧⌝ (p →q )的类型例 判断下列命题公式的类型(永真式、永假式、可满足式),方法不限。
(1)(2)证明例 证明:()()()r q r p r q p →∧→⇔→∨ 例 证明:r q p r q p →∧⇔→→)()( 例 推证:⌝Q ∧(P →Q)⇒⌝P例 前提:q p s q r p ∨→→,,,结论:s r ∨。
该结论是否有效?请说明原因。
在命题逻辑中构造下面推理的证明:例 如果小张守第一垒并且小李向B 队投球,则A 队获胜。
或者A 队未获胜,或者A 队成为联赛的第一名。
小张守第一垒。
A 队没有成为联赛的第一名。
因此小李没有向B 队投球。
解:先将简单命题符号化。
P:小张守第一垒;Q:小李向B队投球;R:A队取胜;S:A 队成为联赛第一名。
前提:(P∧Q)→R,R∨S,P,S结论:Q证明:(1) R∨S 前提引入(2) S 前提引入(3) R (1)(2)析取三段论(4) (P∧Q)→R 前提引入(5) (P∧Q) (3)(4)拒取式(6) P∨Q (5)置换(7) P 前提引入(8) Q (6)(7)析取三段论例一个公安人员审查一件盗窃案,已知下列事实:(1)甲或乙盗窃了录像机;(2)若甲盗窃了录像机,则作案时间不能发生在午夜前;(3)若乙的证词正确,则午夜时屋里灯光未灭;(4)若乙的证词不正确,则作案时间发生在午夜前;(5)午夜时屋里灯光灭了。
根据以上事实,推断谁是盗窃犯。
(在命题逻辑中构造推理证明。
离散数学 复习资料

第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。
命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表“⌝”否定联结词,P是命题,⌝P是P的否命题,是由联结词⌝和命题P组成的复合命题.P取真值1,⌝P取真值0,P取真值0,⌝P取真值1. 它是一元联结词.“∧”合取联结词,P∧Q是命题P,Q的合取式,是“∧”和P,Q组成的复合命题. “∧”在语句中相当于“不但…而且…”,“既…又…”. P∧Q取值1,当且仅当P,Q均取1;P∧Q取值为0,只有P,Q之一取0.“∨”析取联结词,“⎺∨”不可兼析取(异或)联结词,P∨Q是命题P,Q的析取式,是“∨”和P,Q组成的复合命题. P⎺∨Q是联结词“⎺∨”和P,Q组成的复合命题. 联结词“∨”或“⎺∨”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P⎺∨Q”↔“(⌝P∧Q)∨(P∧⌝Q)”. P∨Q取值1,只要P,Q之一取值1,P∨Q取值0,只有P,Q都取值0.“→”蕴含联结词,P→Q是“→”和P,Q组成的复合命题,只有P取值为1,Q 取值为0时,P→Q取值为0;其余各种情况,均有P→Q的真值为1,亦即1→0的真值为0,0→1,1→1,0→0的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P→Q”.“↔” 等价联结词,P↔Q是P,Q的等价式,是“↔”和P,Q组成的复合命题. “↔”在语句中相当于“…当且仅当…”,P↔Q取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P 的真指派;若使P的真值为0,则称这组值称为P的假指派.命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材P.16的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.等值式A⇔B,命题公式A,B在任何赋值下,它们的真值均相同,称A,B等值。
离散数学综合复习资料

离散数学综合复习资料一、判断题1.()命题联结词{⌝,∧,∨}是最小联结词组。
2.()(P∧Q)∧⌝P为矛盾式。
3.()((⌝P∨Q)∧(Q→R))→(P→R)为重言式。
4.()A、B、C是任意命题公式,如果A∨C⇔B∨C,一定有A⇔B。
5.()若集合A上的二元关系R是对称的,R C一定是对称的。
6.()R是A上的二元关系,R是自反的,当且仅当r(R)=R。
7.()集合A上的等价关系确定了A的一个划分。
8.()有理数集是可数的。
9.()若函数f,g为入射则其复合函数也为入射。
10.()R是集合A上的关系,R有传递性的充要条件是RoR⊆R。
11.()设<A,*>是一个代数系统,且集合A中元素的个数大于1。
如果该代数系统中存在幺元e和零元θ,则e≠θ。
12.()交换群必是循环群。
13.()一个群可以有多个等幂元。
14.()模格一定是分配格。
15.()每个有向图中,结点入度数总和等于结点出度总和。
16.()图G的邻接矩阵A,A l中的i行j列表示结点v i到v j长度为l路的数目。
17.()任何图中必有偶数个度数为奇数的结点。
18.()有向图中,它的每一个结点位于且只位于一个单侧分图中。
19.()任意平面图最多是四色的。
20.()不存在既有欧拉回路又有汉密尔顿回路的图。
二、填空题1.设P:“天下雨”,Q:“他骑自行车上班”,R:“他乘公共汽车上班”。
则命题“除非下雨,否则他就骑自行车上班”可符号化为。
“他或者骑自行车,或者乘公共汽车上班”可符号化为2.设N(x):x是自然数;J(x):x是奇数;Q(x):x是偶数,用谓词公式符号化命题“任何自然数不是偶数就是奇数”。
3.设P(x):x是运动员,Q(x):x是教练。
则命题“不是所有运动员都是教练”可符号化为。
4.设D={a,b};P(a,a)=P(b,b)=T;P(a,b)=P(b,a)=F。
则公式(∀x)(∃y)(P(x,y)→P(y,x))的真值是。
离散数学复习资料

离散数学复习资料一、考试内容(1)考试内容以课堂上讲的内容为范围;(2)每次课后布置的作业。
二、各章节提要教学目的及要求:教学内容:命题及表示、联结词、命题公式与翻译、真值表与等价公式、重言式与蕴含式、对偶与范式、推理理论。
教学重点:命题逻辑中的基本概念和基本推理方法。
教学难点:推理理论小结:学习第一章要注意以下几点:(1)弄清命题与陈述句的关系。
(2)弄清由5种基本联结词联结的复合命题的逻辑关系及其真值。
特别是要弄清蕴含式”P→Q“的逻辑关系及其真值。
(3)记住常用的蕴含式和等价式,这是学好命题逻辑的关键问题。
(4)会准确地求出给定公式的主析取范式和主合取范式。
掌握主析取范式与真值表、成真赋值、主合取范式的关系。
(5)会用多种方法判断公式的类型及判断两个公式是否等价。
(6)会用等价变换法将一个联结词集中的公式等价地化为另一个联结词全功能集中的公式。
(7)掌握推理和判断推理是否正确的方法。
教学目的及要求:深刻理解和掌握谓词逻辑的基本概念和基本推理方法。
教学内容:谓词的概念与表示、命题函数与量词、谓词公式与翻译、变量的约束、谓词演算的等价式与蕴涵式、前束范式、谓词演算的推理理论。
教学重点:谓词逻辑中的基本概念和基本推理方法。
教学难点:谓词演算的推理理论。
小结:学习第二章要注意以下几点:(1)同一个命题在不同个体域内可能有不同的符号化形式,同时也可能有不同的真值,因而在将一个命题符号化之前,必须弄清个体域。
(2)在将命题符号化时,要特别注意量词与联结词的搭配。
经常的情况是全称量词∀与蕴含词→搭配,存在量词∃与合取词∧搭配。
因此有下面两种形式的公式:(∀x)(A(x) →B(x)) ①(∃x)(A(x) ∧ B(x)) ②而(∀x)(A(x) ∧ B(x)) ③(∃x)(A(x) → B(x)) ④③与①,④与②的含义完全不同。
(3)记住主要的等价式。
会用约束变元和自由变元换名规则进行等价演算,求出给定公式的前束范式。
离散数学复习资料 最新 优质资料

离散数学复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。
命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表“⌝”否定联结词,P是命题,⌝P是P的否命题,是由联结词⌝和命题P组成的复合命题.P取真值1,⌝P取真值0,P取真值0,⌝P 取真值1. 它是一元联结词.“∧”合取联结词,P∧Q是命题P,Q的合取式,是“∧”和P,Q组成的复合命题. “∧”在语句中相当于“不但…而且…”,“既…又…”. P∧Q取值1,当且仅当P,Q均取1;P∧Q取值为0,只有P,Q之一取0.“∨”析取联结词,“⎺∨”不可兼析取(异或)联结词, P∨Q 是命题P,Q的析取式,是“∨”和P,Q组成的复合命题. P⎺∨Q是联结词“⎺∨”和P,Q组成的复合命题. 联结词“∨”或“⎺∨”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P⎺∨Q”↔“(⌝P∧Q)∨(P∧⌝Q)”. P∨Q取值1,只要P,Q之一取值1,P∨Q取值0,只有P,Q都取值0.“→”蕴含联结词, P→Q是“→”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P→Q取值为0;其余各种情况,均有P→Q的真值为1,亦即1→0的真值为0,0→1,1→1,0→0的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P→Q”.“↔”等价联结词,P↔Q是P,Q的等价式,是“↔”和P,Q组成的复合命题. “↔”在语句中相当于“…当且仅当…”,P↔Q 取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材P.16的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真。
离散数学复习知识点

复习知识点: 第1章1. 命题、真命题、假命题 2. 命题符号化〔连接词〕设P :天下大雨,Q :他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为〔 D 〕A .Q P ∧⌝B .Q P →⌝C .Q P ⌝→⌝D .Q P ⌝→设P :只有你通过了大学英语六级考试,Q :你是英语专业的学生,R :你可以选修这门课程。
命题“只有你通过了大学英语六级考试而且不是英语专业的学生,才可以选修这门课程”( B )A .R Q)(P →∧B .R Q)(P →⌝∧C .R Q)(P ↔⌝∧D .R Q)(P ↔∧3. 什么是命题公式 4. 命题公式的等价式5. 利用逻辑等价关系证明下面的等价关系 Q P Q)(P P))(Q Q)((P ∨⇔∧→→∧→证明:6. 用真值表法求命题公式的主析取范式和主合取范式 7. 符号化以下语句,并推证结论的有效性。
有些学生相信所有的老师,任何一个学生都不相信骗子,所以老师都不是骗子。
解:设论述域为全总个体域,S(x):x 是学生,T(x):x 是老师,P(x):x 是骗子,L(x,y):x 相信y 。
将前提和结论符号化为P(x))x(T(x)y)))L(x,y(P(y)x(S (x)y))),L(x,y(T(y)x(S (x)⌝→∀⇒⌝→∀→∀→∀∧∃〔1〕y)))L(x,y(T(y)x(S (x)→∀∧∃ P 〔2〕y))L(a,y(T(y)S (a)→∀∧T1,ESQ)(P TQ)(P Q)Q (Q)(P Q Q)(P T)(Q Q)(P P))P ((Q Q)(P Q)(P P)(Q Q)(P Q)(P P)Q (Q)P (Q)(P P))Q (Q)P ((Q)(P P)Q (Q)P (Q)(P P))(Q Q)((P ∨⇔∧∨⇔∨⌝∧∨⇔∨⌝∧⇔∧∨⌝∧⇔∨⌝∧∨⌝∧⇔∧∨⌝∧∨⌝∧⇔∧∨∨⌝⌝∨∨⌝⌝⇔∧∨∨⌝∧∨⌝⌝⇔∧→∨⌝∧∨⌝⇔∧→→∧→〔3〕S(a) T2,I 〔4〕y))L(a,y(T(y)→∀ T2,I 〔5〕b)L(a,T(b)→T4,US 〔6〕y)))L(x,y(P(y)x(S (x)⌝→∀→∀ P 〔7〕y))L(a,y(P(y)S (a)⌝→∀→ T6,US 〔8〕y))L(a,y(P(y)⌝→∀ T3,7,I 〔9〕b)L(a,P(b)⌝→ T8,US 〔10〕P(b)b)L(a,⌝→ T9,E 〔11〕P(b)T(b)⌝→T5,10,I 〔12〕P(x))x(T(x)⌝→∀T11,UG侦查员在调查了某珠宝店的珠宝失窃案现场以及询问了认证之后,得到以下事实: (1) 是营业员甲或营业员乙作案。
离散数学--总复习

第一部分:集合论知识点:集合关系(∈,⊆,⊂,∉,=)集合运算(并、交、差、对称差、补集、幂集),特殊集合(∅,E,P(A))集合恒等式(幂等律、交换律、结合律、分配律、吸收律、德摩根律、补交转换律(A-B=A⋂~B)、德·摩根律~(B⋃C)=~B~⋂C,A-(B⋃C)=(A-B)⋂(A-C))证明集合包含或相等(根据定义, 通过逻辑等值演算证明、利用已知集合等式或包含式, 通过集合演算证明)1. 证:A⋃(B⋂C)=(A⋃B)⋂(A⋃C)证∀x x∈A⋃(B⋂C)⇔ x∈A∨(x∈B∧ x∈C) (并,交的定义)⇔(x∈A∨x∈B)∧(x∈A∨x∈C) (逻辑演算的分配律)⇔x∈(A⋃B)⋂(A⋃C)2. 证明(A-B)-C=(A-C)-(B-C)证(A-C)-(B-C)= (A ⋂ ~C) ⋂ ~(B ⋂ ~C) (补交转换律)= (A ⋂ ~C) ⋂ (~B ⋃ ~~C) (德摩根律)= (A ⋂ ~C) ⋂ (~B ⋃ C) (双重否定律)= (A ⋂ ~C ⋂ ~B) ⋃(A ⋂ ~C ⋂ C) (分配律)= (A ⋂ ~C ⋂ ~B) ⋃(A ⋂∅) (矛盾律)= A ⋂ ~C ⋂ ~B (零律,同一律)= (A ⋂ ~B) ⋂ ~C (交换律,结合律)= (A – B) – C第二部分:逻辑学命题的定义(凡具有确定真假意义的陈述句均称为命题。
)联结词(⌝、∧、∨、→、↔、↑、↓(公式转化为只含↑、↓的表达形式))例:将p → q化为只含↑的公式p → q ⇔⌝p ∨q⇔⌝(p∧⌝q) ⇔ p↑⌝q⇔p↑⌝( q∧q)⇔ p↑ q↑ q命题符号化(1、王晓虽然聪明,但不用功.2、张辉与王丽都是三好生.3、张辉与王丽是同学.4、除非天冷,小王才穿羽绒服.5、除非小王穿羽绒服,否则天不冷.)等值演算(幂等律、交换律、结合律、分配律、吸收律、蕴涵等值式A→B⇔⌝A∨B等价等值式A↔B⇔(A→B)∧(B→A)假言易位等值式A→B⇔⌝B→⌝A等价否定等值式A↔B⇔⌝A↔⌝B)证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式)⇔ (⌝p⌝∨q)∨r (结合律)⇔⌝(p∧q)∨r (德摩根律)⇔ (p∧q) →r (蕴涵等值式)判断下列公式的类型q⌝∧(p→q)解q⌝∧(p→q)⇔ q⌝∧(⌝p∨q) (蕴涵等值式)⇔ q∧(p⌝∧q) (德摩根律)⇔ p∧(q⌝∧q) (交换律,结合律)⇔ p∧0 (矛盾律)⇔ 0 (零律)该式为矛盾式.命题公式(重言式、矛盾式、可满足式),利用真值表判断,等值演算,范式。
离散数学复习资料

1.证明永真公式Q14,Q15,Q16,Q17和Q18。
2.证明P(x)∧任意xQ(x)==>存在x(P(x)∧Q(x))3.设论述域是{a1,a2,a3,…an},试证明下列关系式。
(a) 任意xA(x)∧P<==>任意x(A(x)∧P)(b) 任意x(A(x)∧B(x))<==>任意xA(x)∧任意xB(x)(c) 存在x(A(x)∧B(x))<==>存在xA(x)∧存在xB(x)4.证明下列关系式(a) 任意x任意y(P(x)∨P(y))<==>任意xP(x)∨任意yP(y)(b) 存在x存在y(P(x)∧Q(y))==>存在xP(x)(c) 任意x任意y(P(x)∧Q(y))<==>任意xP(x)∧任意yQ(y)(d) 存在x存在y(P(x)->P(y)) <==>任意xP(x)->存在yP(y)(e) 任意x任意y(P(x) ->Q(y)) <==>(存在xP(x)->任意yQ(y))5.写出limf(x)=k的定义的符号形式,并用形成定理两边的否定的方法,找出limf(x)不等x->c x->c于k的条件。
6.给定自然数集合N的下列子集:A={1,2,7,8}B={i|i平方<50}C={i|i可被30整除}D={i|i=2的k次方∧k∈I∧0≤k≤6}求下列集合(a)A∪(B∪(C∪D))(b)A∩(B∩(C∩D))(c)B-(A∪C)(d)(非A∩B) ∪D7.假定A≠空集和A∪B=A∪C,证明这不能得出B=C,假设中增加A∩B=A∩C,你能得出B=C吗?8.(a)证明“相对补”不是一个可交换运算,即证明存在一个论述域包含集合A和B,使A-B≠B-A。
(b)A-B=B-A可能吗?刻划上式出现的全部条件。
(c)“相对补”是一个可结合的运算马?证明你的断言。
9.证明下列恒等式(a)A∪(A∩B)=A(b)A∩(A∪B)=A(c)A-B=A∩非B(d)A∪(非A∩B)=A∪B(e)A∩(非A∪B)=A∩B10.设Sn={a0,a1,…,an}和Sn+1={a0,a1, …,an,an+1},试用p(Sn)和an+1表达出p(Sn+1)。
《离散数学》总复习上课讲义

第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))
离散数学复习整理

百度文库离散数学复习整理离散数学复习整理离散数学复习整理函数***重点掌握:单射、满射、双射函数的概念一、函数的概念(和数学里面函数的概念差不多)A为函数f的定义域,记为domf=A;f(A)为函数f的值域,记为ranf。
|f|=|A|f(x)表示一个变值,f代表一个集合,因此f≠f(x)。
⨯|A||B||A|从A到B的不同的关系有2个;但从A到B的不同的函数却仅有|B|个。
(个数差别) 每一个函数的基数都为|A|个(|f|=|A|),但关系的基数却为从零一直到|A|×|B|。
二、特殊函数单射:对任意x,x∈A,如果x≠x,有f(x)≠f(x),则称f为从A到B的单射(不同的x对应121212不同的y);满射:如果ranf=B,则称f为从A到B的满射;(B的定义域都能通过函数f(x)求到)双射:若f是满射且是单射,则称f为从A到B的双射。
若A=B,则称f为A上的函数;当A上的函数f是双射时,称f为一个变换。
定理:8.2.1设A,B是有限集合,且|A|=|B|,f是A到B的函数,则f是单射当且仅当f是满射。
典型(自然)映射:设R是集合A上的一个等价关系,g:A→A/R称为A对商集A/R的典型(自然) 映射,其定义为g(a)=[a],a∈A.R恒等函数:如果A=B,且对任意x∈A,都有f(x)=x,则称f为A上的恒等函数,记为I。
A常值函数:如果∃b∈B,且对任意x∈A,都有f(x)=b,则称f为常值函数。
上取整函数:对有理数x,f(x)为大于等于x的最小的整数,则称f(x)为上取整函数(强取整函数),记为f(x)= ;下取整函数:对有理数x,f(x)为小于等于x的最大的整数,则称f(x)为下取整函数(弱取整函数),记为f(x)= ;三、函数的复合运算不满足交换律,但满足结合律1.函数f和g可以复合⇔ranf⊆domg;2.dom(fog)=domf,ran(fog)⊆rang;3.对任意x∈A,有fog(x)=g(f(x))。
离散数学复习

极小项的记号(n=3)
极小项
¬p∧¬q∧¬r ¬p∧¬q∧r ¬p∧q∧¬r ¬p∧q∧r
成真赋值
000 001 010 011
名称
m0 m1 m2 m3
p∧¬q∧¬r
p∧¬q∧r p∧q∧¬r p∧q∧r
100
101 110 111
m4
m5 m6 m7
极大项的记号 (n=2,3)
极大项 p∨q∨r p∨q∨¬r 成假赋值 000 001 名称 M0 M1
关系的定义。 什么是“自反性”? 设A、B是任意两个命题公式,若等价式 什么是“对称性”? A ↔ B为重言式,则称 A与B是等值的, 什么是“传递性”? 记作:A B 等价关系、等价类,等价类的个数?
自反性,即对任意命题公式A, AA 对称性,即对任意命题公式A和B, 若AB,则BA 传递性,即对任意命题公式A,B和C, 若AB,BC,则AC
定义2.10 设 S 是一个合取范式,C否证也是“证明” 1,C2, …,Cn 是 一个如下生成的子句序列:
对每一个i(1≤i≤n),Ci是S中的一个子句 (简单析取式); 或者 Ci 是它之前的某两个子句(简单析取式) Cj,Ck(1≤j<k<i)的消解结果。
则称此序列是由 S 导出的消解序列。 当 Cn=λ (空子句)时, 称此序列是 S 的一个否证。 “消解规则”
范式存在定理
任一命题公式都存在着与之等值的 析取范式 任一命题公式都存在着与之等值的 合取范式
求范式的步骤如下: ⑴ 消去联结词“→”和“↔” ⑵ 利用双重否定律消去否定联结词“¬”或 利用德摩根律将否定联结词“¬”移到各命题变 元前(¬内移)。 ⑶ 利用分配律,结合律将公式归约为合取 范式和析取范式。
离散数学总复习-知识点

离散数学总复习第1章命题逻辑一、命题的判断例:1、仁者无敌!2、x+y<23、如果雪是红的,那么地球是月亮的卫星。
4、我正在说谎。
二、命题符号化例:1、蓝色和黄色可以调成绿色。
2、付明和杨进都是运动员。
3、刘易斯是百米游泳冠军或百米跨栏冠军。
4、李飞现在在宿舍或在图书馆。
5、只要天不下雨,我就步行上学校。
6、只有天不下雨,我才步行上学校。
7、并非只要你努力了,就一定成功。
三、主范式1、会等值演算;2、主合取和主析取范式的相互转换。
例:求命题公式P∨Q的主析取范式和主合取范式。
3、根据主范式进行方案的选择例1:某科研所要从3名科研骨干A,B,C中挑选1-2名出国进修,由于工作需要,选派需同时满足条件:(1)若A去,则C同去;(2)只有C不去,B才去;(3)只要C不去,则A或B就可以去。
问有哪些选派方案?例2:甲、乙、丙、丁四人有且仅有两个人参加比赛,下列四个条件均要满足:(1)甲和乙有且只有一人参加;(2)丙参加,则丁必参加;(3)乙和丁至多有一人参加;(4)丁不参加,甲也不会参加。
问哪两个人参加了比赛?四、简单的推理例1:如果明天天气好我们就去爬长城。
明天天气好。
所以我们去爬长城。
例3:课后习题16第2章谓词逻辑一、谓词逻辑中的命题符号化例:1、所有运动员都是强壮的2、并非每个实数都是有理数3、有些实数是有理数二、量词的辖域,约束变元换名、自由变元代替例:1、∀x(P(x)∨∃yR(x,y))→Q(x)2、∀x(P(x,z)∨∃yR(x,y))→Q(x)中量词的辖域,重名情况,改名等三、命题逻辑永真式的任何代换实例必是谓词逻辑的永真式。
同样,命题逻辑永假式的任何代换实例必是谓词逻辑的永假式。
例:1、(∀xP(x)→∃xQ(x))↔(⌝∀xP(x)∨∃xQ(x))2、(∀xP(x)→∃xQ(x))∧(∃xQ(x))→∀zR(z)))→(∀xP(x) →∀zR(z))1-2是永真式(重言式)3、⌝(∀xF(x) ∃yG(y)) ∧ ∃yG(y) 永假式(矛盾式)四、消量词例:个体域D={1,2},对∀x∀y(P(x)→Q(y))消量词五、简单的前束范式会判断即可。
离散数学复习提纲

离散数学复习提纲第一章1、集合的三种表示法:①穷举列表法;例A={a,b,c};B={1,2,3,……,200};②特性刻划法;例A={x|x∈I并且I<0};③由计算规则定义;例设a1=1,a2=2,ai+1=ai+ai-1 S={ak|k>0}。
2、没有元素的的集合称为空集。
3、设A和B是两个集合,A B,表示A中的每个元素都可以在B中找到,称A是B 的一个子集(A被B包含),如果A中至少有一个元素不属于B,则A B。
4、幂集ρ(s)就是S的所有子集组成的集合(共2S个),例:S={1,{2,3}},则ρ(s)={{1},{{2,3}},{1,{2,3}},φ}5、文氏图是一种集合的图形表示。
|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| 第二章1、笛卡尔积A×B={(a,b)|a∈A,b∈B},即A到B的所有有序偶构成的集合。
2、(a,b)称为有序偶,若(a,b)= (c,d),当且仅当a=c,b=d,通常(a,b)≠(b,a),除非a=b。
3、A到B的二元关系R是A×B的一个子集,R A×B,若R= A×B,称R为全关系,R=φ称为空关系。
4、两个元素的有序偶(x,y)∈R,称x和y具有关系R,例:A上的小于关系定义为:L={(a1,a2)| a1,a2∈A∩a1<a2}。
5、对于每个x∈A,有(x,x)∈R,称R是A上的自反关系;对于每个x,y∈A,如有(x,y)∈R,有(y,x)∈R,则称R是A上的对称关系;对于每个x,y,z∈A,如有(x,y)∈R,并且(y,z)∈R,便有(x,z)∈R,则称R是A上的传递关系;例:A={1,2,3},R1={(1,1),(2,2),(3,3),…},R2={(1,2),(2,1),(3,3)},R3={(1,2),(2,3),(1,3)},则R1是自反的,R2是对称的,R3是传递的。
离散数学复习资料

离散数学复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。
命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表h“”否定联结词,P是命题,P是P的否命题,是由联结词和命题P组成的复合命题.P取真值1,P取真值0,P取真值0,P取真值1. 它是一元联结词.h “”合取联结词,P Q是命题P,Q的合取式,是“”和P,Q组成的复合命题. “”在语句中相当于“不但…而且…”,“既…又…”. P Q取值1,当且仅当P,Q均取1;P Q取值为0,只有P,Q之一取0.h “”析取联结词,“”不可兼析取(异或)联结词, P Q是命题P,Q的析取式,是“”和P,Q组成的复合命题. P Q是联结词“”和P,Q组成的复合命题. 联结词“”或“”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P Q”“(P Q)(P Q)”. P Q取值1,只要P,Q之一取值1,P Q取值0,只有P,Q都取值0.h “”蕴含联结词, P Q是“”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P Q取值为0;其余各种情况,均有P Q的真值为1,亦即10的真值为0,01,11,00的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P Q”.h “” 等价联结词,P Q是P,Q的等价式,是“”和P,Q组成的复合命题. “”在语句中相当于“…当且仅当…”,P Q取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别h命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.h命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.h等值式A B,命题公式A,B在任何赋值下,它们的真值均相同,称A,B等值。
离散数学复习资料

《离散数学》习题与解答第一篇数理逻辑第一章命题逻辑1-1(1)指出下列语句哪些是命题,哪些不是命题,如果是命题指出他的真值a)离散数学是计算机科学系的一门必修棵b)∏> 2 吗?c)明天我去看电影d)请勿随地吐痰e)不存在最大质数f)如果我掌握了英语,法语,那么学习其他欧洲的语言就容易多了g)9+5<12h)x<3i)月球上有水j)我正在说假话[解]a)不是命题b)是命题,真值视具体情况而定c)不是命题d)是命题,真值为te)是命题,真值为tf)是命题,真值为fg)不是命题h)是命题, 真值视具体情况而定i)不是命题1-2(1)用P表示命题“天下雪”,(又表示命题“我将去镇上”,R表示命题“我有时间”.以符号形式写出下列命题:(a)如果天不下雪和我有时间,那么我将去镇上.(b)我将去镇上,仅当我有时间.(c)天不下雪(d)天下雪,那么我不去镇上[解]a)(┐P∧R)→Qb)Q→Rc)┐Pd)P→┐Q1-2(2)将下面这段陈述中所出现的原子命题符号化,并指出他们的真值,然后将这段陈述中的每一命题符号化 2 是有理数是不对的.2是偶素数.2或4是素数.如果2是素数则3也是素数.2是素数当且仅当3也是素数.[解]:陈述中出现5个原子命题,将他们符号化为:P: 2 是有理数其真值为FQ:2是素数其真值为TR:2是偶数其真值为TS:3是素数其真值为TU:4是素数其真值为F陈述中各命题符号化为:┐P;Q∧R;Q∨U;Q→S;Q<=>S1-2(3)将下列命题符号化a)如果3+3=6,则雪是白色的.b)如果3+3≠6,则雪是白色的c)如果3+3=6,则雪不是白色的.d)如果3+3≠6,则雪不是白色的e)王强身体很好,成绩也很好.f)四边形ABCD是平行四边形,仅当其对边平行[解]:设P:3+3=6 Q:雪是白色的R:王强成绩很好S:王强身体很好U: 四边形ABCD是平行四边形V: 四边形ABCD的对边是平行的于是:a)可表示为:P→Qb)可表示为: ┐P→Qc)可表示为: P→┐Qd)可表示为:┐P→┐Qe)可表示为:S∧Rf)可表示为:U<=>V1-3(1)判别下列公式中哪些是合式公式,那些不是合式公式a) (Q→R∧S)b) (P<=>(R→S))c) ((┐P→Q)→(Q→P)))d) (RS→T)e)((P→(Q→R))→((P→Q)→(P→R)))[解]:a)不是合式公式(若规定运算符优先级后也可以作为合式公式)b)是合式公式c)不是合式公式(括号不配对)d)不是合式公式e)是合式公式1-3(2)对下列各式用指定的公式进行代换:a) (((A→B)→B)→A),用(A→C)代换A,用((B∧C)→A代换B。
离散数学期末考试复习资料

《离散数学》课程综合复习资料一、判断题1.R1,R2是集合A上的二元关系,若R1和R2都是反自反的,则R1R2也是反自反的。
答案:√2.对任意集合A,A。
答案:×3.设<G,*>是一个群,B是G的非空子集,如果B是一个有限集,则<B,*>必定是<G,*>的子群。
答案:×4.A、B、C为任意集合,已知A⋂B=A⋂C,必须有B=C。
答案:×5.对于任意一个集合A,空集。
答案:√6.设E为全集,对任意集合A,A。
答案:×7.设A、B为任意两个集合,A答案:×8.R是集合A上的二元关系,若R是自反的,则R c也是自反的。
答案:√9.对于任意一个集合A,空集。
答案:×图是平面图。
10.K3,3答案:×11.“你去图书馆吗?”是一个命题。
答案:×12.如果有限集合A有n个元素,则其幂集p(A)有2n个元素。
答案:×13.群中可以有零元。
14.集合A的一个划分确定A的元素间的一个等价关系。
答案:√15.含有幺元的半群为独异点。
答案:√二、基本题1.将下列命题符号化:(1)只要不下雨,他就骑自行车上班。
(2)他或者骑自行车上班,或者乘公共汽车上班。
(3)有些大学生运动员是国家选手。
答案:(1)(⌝P→ Q)(2)(Q ∇ R 或 (Q∧⌝R)∨(⌝Q∧R))(3)((∃x)(P(x)∧Q(x)))2.求命题公式P∧(P→Q)的主析取范式。
答案:原式⇔P∧(⌝P∨Q)⇔(P∧⌝P) ∨ (P∧Q)⇔T∨ (P∧Q)⇔P∧Q3.求⌝(P→Q)的主合取范式。
答案:原式⇔⌝(⌝P∨Q)⇔⌝(⌝P∨Q)⇔P∧⌝Q⇔(P∨(⌝Q ∧Q))∧(⌝Q∨(⌝P∧P))⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)∧(P∨⌝Q)⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)4.设A={3,4},试构成集合P(A)⨯A。
离散数学复习提纲

一、数理逻辑(第1章、第2章)·命题定义、联结词(与、或、非、单条件、双条件)·命题公式、真值、真值表、符号化·谓词、量词(全称、存在)、谓词公式·一阶逻辑符号化(所有的。
是。
,、和有些。
是。
特性谓词)·谓词公式求真值(在某种解释下)·命题公式的等值(等价)演算(十大定律)·命题公式的主范式·谓词公式的前束范式·命题逻辑应用·命题逻辑推理(推理定律、推理规则:P,T,CP)·谓词逻辑推理(推理定律、推理规则:P,T,CP,UI,EI,UG,EG)····························二、集合论(第3章)·集合的定义与表示方法(解析法、枚举法、文氏图法)·集合间的相互关系(定义,符号:⊆⊂ =)·集合的运算定义与图示(⋂⋃ - ~⊕⨯ P / )——入集条件·集合定律(十大定律)·集合恒等式的证明法一:直接利用定律及已证等式法二:利用集合相等的定义(①左⊆右∧右⊆左②x∈左⇔ x∈右)·集合的元素计数与应用(包容排斥原理)·································三、关系论(第4章)·二元关系的定义及其表示(解析法、集合法、图示法、矩阵法)·关系的运算(集合的所有运算+左复合、求逆、求闭包)·关系的性质(定义、关系图特点、矩阵的特点、证明)·等价关系(定义、等价类、上集、划分)·偏序关系与偏序集(定义、哈斯图)·全序集(线序集、定义、最元、极元、界元、确界)·································四、函数论(第4章)·定义(唯一性)·A到B的函数(唯一性、良定性)·特殊函数(常、恒等、单增、单减、特征、自然映射)·BA的计数·函数的性质(单、满、双,判断)·函数的复合(左复合)·反函数(只有双设才有)·······························五、代数系统(第5章、第6章)·二元运算(定义,封闭性)、运算表·各种定律(交换、结合、幂等、分配、吸收、消去、幺元、零元、逆元)·代数系统、子代数、积代数(定义、特殊元素、代数常数)·同态与同构(同态等式、证明)·半群、独异点·群、子群、阿贝尔群、生成子群、元素的阶(周期)、循环群(定义与证明)·环、含幺环、零因子、无零因子环、整环、除环与域·格(两种定义)、分配格、有界格、布尔格(判断)·······························六、图论(第7张、第8张、第9张)·无向图、有向图、零图、平凡图、完全图、子图、生成子图、补图·第一握手定理、度数序列·通路、回路、简单。
离散数学 复习资料

离散数学复习资料离散数学复习资料离散数学是计算机科学和数学领域的重要基础课程,它涉及到离散结构和离散对象的研究,如集合论、图论、逻辑、代数和组合数学等。
在计算机科学领域,离散数学为算法设计、数据结构和计算机网络等问题提供了理论基础。
本文将为大家提供一些离散数学复习资料,帮助大家更好地掌握这门课程。
一、集合论集合论是离散数学的基础,它研究的是集合及其元素之间的关系。
在集合论中,我们需要了解集合的定义、运算、关系和函数等基本概念。
此外,还需要熟悉集合的证明方法,如直接证明、间接证明、归谬证明等。
在复习集合论时,可以通过做一些练习题来加深理解,同时也可以查阅一些相关的教材和参考资料。
二、图论图论是离散数学中的一个重要分支,它研究的是图及其性质和应用。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
在图论中,我们需要了解图的基本概念,如有向图和无向图、路径和回路、连通性和强连通性等。
此外,还需要掌握一些图的算法,如最短路径算法、最小生成树算法和网络流算法等。
复习图论时,可以通过绘制图和解决一些图的实际问题来加深理解。
三、逻辑逻辑是离散数学中的另一个重要分支,它研究的是推理和证明的规则。
在逻辑中,我们需要了解命题逻辑和谓词逻辑的基本概念,如命题、命题变量、逻辑连接词、真值表和推理规则等。
此外,还需要熟悉一些逻辑证明的方法,如直接证明、间接证明和数学归纳法等。
复习逻辑时,可以通过做一些逻辑推理题和证明题来提高逻辑思维能力。
四、代数代数是离散数学中的一个重要分支,它研究的是代数结构和运算。
在代数中,我们需要了解集合的代数结构,如半群、幺半群、群、环和域等。
此外,还需要掌握一些代数运算,如集合的并、交和补运算,以及代数方程的求解方法。
复习代数时,可以通过做一些代数运算题和代数方程的求解题来加深理解。
五、组合数学组合数学是离散数学中的一个重要分支,它研究的是离散对象的组合和排列问题。
在组合数学中,我们需要了解组合和排列的基本概念,如组合数、排列数、二项式系数和多项式系数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
离散数学
第四章 关 系 重点要求
掌握序偶和笛卡尔积的概念。(元组 叉积) 掌握二元关系的形式定义及其各种表示方法:序偶,矩阵,关系图 等;能正确使用集合表达式,关系距阵,关系图等表示给定的关系, 并要求能够从一种形式写出另一种形式。 特殊关系:全关系、空关系、幺关系 掌握关系的运算,包括集合运算以及关系的复合和关系的逆运算。
半序格, 定理4 (a≼b a*b = a ab = b);
9
离散数学
掌握分配不等式、模不等式等性质的证明及应用。 掌握分配律、零壹律、互补律等的定义,并清楚它们之间的关系, 对于具体给出的格所对应的哈斯图,应能判断是否为分配格、有界 格或有补格等。
分配格,分配律; 有界格,最小元,最大元, (aL)(0≼a ≼1) 即 0*a=0 a*1=a 有补格,补元,互补律,唯一性,定理12,有界分配格补元唯一 掌握布尔代数的概念和几个重要的特例,熟记布尔代数的许多重 要的基本性质及其与序的关系,并会灵活运用。 掌握格和布尔代数的对偶原理,并会灵活运用。 掌握布尔代数的原子概念,和布尔表达式的原子表示的概念,并会灵 活运用。熟悉布尔代数的斯笃定理的内容及证明。
8
离散数学
第七章 格与布尔代数 重点要求
掌握格的两种定义(半序格、代数格)及其等价性证明,能够对由 半序集所确定的哈斯图判定其是否为格,能够对有关格的一些论 题进行证明或构造反例而将其否证。 熟记格运算的基本运算性质(交换律、结合律、吸收律、幂等律) 及其与序的关系(等价性、保序性),并会灵活运用。 格同态
离散数学
西安交通大学 电子与信息工程学院
计算机系
1
离散数学
第三章 集 合
重点要求
掌握集合、子集、全集、空集、单元素集等概念,掌握集合的四大 性质:任意性(抽象性)、确定性、无序性、无重复性,熟悉常用的表 示集合的方法以及用文氏图来表示集合的方法,能够判定元素与集 合,集合与集合之间的关系.理解两个集合间的包含关系和相等关系 (外延性原理)的定义和性质,能够利用这些定义、性质来证明两个更 复杂的集合的包含和相等。
掌握幂集的定义及计算有限集的幂集所含元素个数,所使用的计 算、证明的方法和思想。
理解差别在于级别!的判定集合间关系的思想。
掌握集合的五种基本运算:交、并、余(补)、差和对称差(环和)的 定义,并熟记集合运算的基本定理(公式),能够熟练的利用它们来证 明更复杂的集合公式。
属于 包含 相等 并集 差集 对称差(环和) 幂集
封闭性,幺元,逆元,反身律,鞋袜律,交换律,结合律,交换
群,循环群、左右陪ห้องสมุดไป่ตู้,幂等元 ,群的阶、元素的阶
反身律:(a-1)-1 =a
鞋袜律:(a*b)-1 = b-1*a-1
掌握子群的概念并清楚其判别方法。
掌握环、整环、除环的定义,并熟悉环的基本性质。给定集合及两 个二元运算能够判断其是否为环、整环、除环等。
掌握代数系统的同态和同构的定义能判断两个给定代数系统间的 某个映射是否为同态同构映射。
同态公式:x1, x2X,f(x1*x2)= f(x1) f(x2) 满同态,定理3 (同态遗传性定理(五条));
掌握半群及含幺半群等概念。
6
离散数学
掌握群的概念,并能灵活运用群的一些基本性质,理解群的同态和同 构。给定一个代数系统及其运算,能够判断是否为半群、含幺半群、 群等。
10
离散数学
重点要求
第八章 图 论
掌握图、无向图、有向图、结点及边的关联、邻接、结点的进度、 出度、度、一些特殊的图、子图、完全图、同构、路、圈、路及
等价关系(RA2)
自反性:xA,(x, x)R
对称性:x, yA,(x,y)R (y,x)R
传递性:x, y, zA,(x,y)R且(y,z)R (x,z)R
代表元,等价类[a]R = {x : xA xRa} 反对称性:x, yA,(x,y)R且(y,x)R x=y
掌握半序、半序集等概念,以及半序集的可比较性、极大元、 极小元、最大元、最小元、上界、下界、最大下界、最小上界、 直接后继等概念。牢记半序关系的非线性特性。
能画出有限半序集的哈斯图,并根据图讨论半序集的某些性质。
掌握全序集、良序集等概念;良序集定理3;
4
离散数学
第五章 函 数
重点要求
要求掌握函数、元素的像、集合的像等基本概念,理解元素及集合 的象及原象的定义及相关的性质。给定一个函数,能够确定一个点 的象,一个集合的象,能够确定一个点的原象,一个集合的原象。 弄清单射、满射、双射之间的区别。给定一个函数,要能够确定它 是否是单射、满射、双射等。 单射函数:x1, x2X,f(x1)= f(x2) x1 = x2 满射函数:yY,xX,使f(x)= y 掌握逆函数和复合函数的定义和性质,并弄清楚它们存在的条件和 相关定理。能够确定两个函数的复合函数等。
关系,反对称关系, 对称差(环和)关系,传递关系, 并关系 掌握二元关系的各种特殊性质:自反,反自反,对称,反对称,传 递等,并理解这些性质如何反映在关系图上,关系矩阵上等。
掌握集合中二元关系的闭包的意义和其基本性质,能求出有限集上 的二元关系的闭包。
3
离散数学
掌握等价关系的概念,并掌握覆盖、划分、等价类、商集的定 义和基本性质,弄清楚等价关系与划分之间的关系。牢记等价关 系的分类作用。
双射函数的逆函数定理 复合函数定理 掌握集合的势、可数集、不可数集等概念。无限集合 可数集合 5
离散数学
第六章 代数系统
重点要求
掌握代数系统的概念,定义: 运算的封闭性、幺元、零元、逆元及 相关的结论有清晰的理解。给定集合和集合上的运算能够判断该 集合对运算是否封闭;能够通过运算表确定幺元、零元、逆元等(如 果存在的话); 对交换律、结合律、分配律、吸收律、消去律等的 表示要十分清楚;给定集合和二元运算表能够判断运算是否满足结 合律等等。
牢记消去律、无零因子、有逆元三者间的两层关系及其运用。 环(R),子环(S) 非空性:S 包含性:S R
7
离散数学
减法封闭性:x, yS,xS yS xyS 乘法封闭性:x, yS,xS yS xyS 无零因子环(S);x, yS,x, y 0 xy 0 掌握域及有限域的定义。 域,素域,有限域;