实验6活性炭吸附实验.

合集下载

活性炭吸附实验

活性炭吸附实验

活性炭吸附实验活性炭吸附实验一、实验目的1. 加深理解吸附的基本原理。

2. 通过实验取得必要的数据,计算吸附容量q,并绘制吸附等温线。

3. 利用绘制的吸附等温线确定弗氏吸附参数K,1/n 。

二、实验原理活性炭吸附是目前国内外应用较多的一种水处理方法。

由于活性炭对水中大部分污染物都有较好的吸附作用,因此活性炭吸附应用于水处理时往往具有出水水质稳定,适用于多种污水的优点。

活性炭吸附是物理吸附和化学吸附综合作用的结果。

吸附过程一般是可逆的,一方面吸附质被吸附剂吸附,另一方面,一部分已被吸附的吸附质,由于分子热运动的结果,能够脱离吸附剂表面又回到液相中去。

前者为吸附过程,后者为解吸过程。

当吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,则吸附质在溶液中的浓度和在活性炭表面的浓度均不再变化而达到了平衡,此时的动态平衡称为吸附平衡,此时吸附质在溶液中的浓度称为平衡浓度C。

活性炭的吸附能力以吸附量q(mg/g)表示。

所谓吸附量是指单位重量的吸附剂所吸附的吸附质的重量。

本实验采用粉状活性炭吸附水中的有机染料,达到吸附平衡后,用分光光度法测得吸附前后有机染料的初始浓度C0及平衡浓度C,以此计算活性炭的吸附量q 。

q V(C0 C) W式中:C0━水中有机物初始浓度(mg/L)C━水中有机物平衡浓度(mg/L)W━活性炭投加量(g)V━废水量(L)q━活性炭吸附量(mg/g)在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,二者之间的关系曲线为吸附等温线。

以lgC为横坐标,lgq为纵坐标,绘制1、加深理解吸附的基本原理。

2. 通过实验取得必要的数据,计算吸附容量q,并绘制吸附等温线。

3. 利用绘制的吸附等温线确定弗氏吸附参数K,1/n 。

吸附等温线,求得直线斜率1/n、截距lgK。

q KC1n参数K主要与吸附剂对吸附质的吸附容量有关,而1/n是吸附力的函数。

三、实验设备与材料(每组应该用到的材料)1、可调速搅拌器;2、烧杯1000 ml;3、721型分光光度计;4、pH计或精密pH试纸、温度计;5、大小烧杯、漏斗;6、粉状活性炭;7、活性艳蓝KGRS染料废水(最大吸收波长646nm):100mg/L;8、过滤装置(滤纸、漏斗、小烧杯、过滤架、玻璃棒);9、万分之一电子天平。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。

2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。

其中粉末活性炭应用于水处理在国内外已有较长的历史。

活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。

它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。

活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。

它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。

其孔隙占活性炭总体积的 70%~ 80%,每克活性炭的表面积可高达 500 ~ 1700 平方米,但 99.9%都在多孔结构的内部。

活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。

2.2活性炭吸附特征活性炭的孔隙大小分布很宽,从 10-1nm 到104nm 以上,一般按孔径大小分为微孔、过渡孔和大孔。

在吸附过程中,真正决定活性炭吸附能力的是微孔结构。

活性炭的全部比表面几乎都是微孔构成的,粗孔和过渡孔只起着吸附通道作用,但它们的存在和分布在相当程度上影响了吸附和脱附速率。

研究表明,活性炭吸附同时存在着物理吸附、化学吸附和离子交换吸附。

在活性炭吸附法水处理过程中,利用3种吸附的综合作用达到去除污染物的目的。

对于不同的吸附物质,3种吸附所起的作用不同。

(1)物理吸附分子力产生的吸附称为物理吸附,它的特点是被吸附的分子不是附着在吸附剂表面固定点上,而稍能在界面上作自由移动。

物理吸附可以形成单分子层吸附,又可形成多分子层吸附。

由于分子力的普遍存在, 一种吸附剂可以吸附多种物质,但由于吸附物质不同,吸附量也有所差别。

这种吸附现象与吸附剂的表面积、细孔分布有着密切关系,也和吸附剂表面力有关。

活性炭吸附法实验报告

活性炭吸附法实验报告

活性炭吸附法实验报告1. 实验目的本实验旨在探究活性炭作为吸附剂在去除染料废水中的应用,通过实验验证活性炭的吸附性能。

2. 实验原理活性炭是一种具有大量微孔和孔隙的多孔性材料,具有较大的比表面积和吸附能力。

活性炭材料的孔隙结构可以吸附和储存多种气体、液体或溶质,并在一定的条件下释放出来。

本实验中,活性炭将吸附溶液中的染料分子,实现对染料的去除。

3. 实验步骤3.1 准备工作•准备所需材料:活性炭样品、染料溶液、试管、试管架、移液管等。

•将试管清洗干净,并晾干备用。

3.2 实验操作1.在试管中加入一定量的染料溶液。

2.取适量的活性炭样品,加入试管中。

3.用试管架将试管固定,并加热至一定温度。

4.观察试管中溶液的颜色变化,并记录下来。

5.将试管从加热源中取出,待其冷却至室温。

6.使用移液管将试管中的溶液转移至离心管中。

7.进行离心操作,分离出溶液中的活性炭样品。

8.观察离心管中的溶液,记录下其颜色变化。

4. 实验结果与分析根据实验步骤所得到的结果,我们可以观察到染料溶液在与活性炭接触后发生了颜色的变化。

这是因为活性炭的表面具有较大的吸附能力,能够有效吸附溶液中的染料分子。

通过离心操作,我们将溶液中的活性炭与染料分离,观察到离心管中的溶液颜色明显变浅,说明活性炭对染料的吸附效果良好。

5. 总结与展望通过本次实验,我们验证了活性炭作为吸附剂在去除染料废水中的有效性。

活性炭具有较大的比表面积和吸附能力,能够吸附溶液中的有害物质,实现净化水质的目的。

然而,本次实验仅是基于简单的染料溶液,后续可以进一步研究和探究活性炭在处理更为复杂的废水中的应用。

参考文献[1] Kim, J., Yun, S., & Park, S. (2015). Adsorption of dissolved organic matter onto activated carbon: Mechanisms and kinetic models. Chemical Engineering Journal, 279, 775-784.[2] Wang, S., & Li, H. (2019). Application of activated carbon in water treatment:A review. Journal of Environmental Sciences, 75, 123-135.。

活性碳吸附综合实验报告

活性碳吸附综合实验报告

1 实验目的(1) 通过实验进一步了解活性炭的吸附工艺及性能;(2) 熟悉整个实验过程的操作;(3) 掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;(4) 学会使用一级动力学、二级动力学方程拟合分析,对 PAC 的吸附进行动力学分析研究;(5) 了解活性炭改性的方法以及其影响因素。

2 实验原理2.1 活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。

活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。

活性炭的吸附是上述两种吸附综合的结果。

当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。

活性炭的吸附能力以吸附量q表示。

式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。

在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。

式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。

K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。

此外,还有朗缪尔吸附等温式,它通常用来描述物质在均一表面上的单层吸附,表达式为:由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。

活性炭吸附实验

活性炭吸附实验

活性炭吸附实验步骤一、吸附速度的测定(C~t曲线)1、配制0.0002M亚甲基兰溶液1L(浓度记为C0),用滴管吸取水样并移至比色皿中,用分光光度计测定其吸光度,记为A0。

吸附时间记为t0。

2、取100 mL亚甲基兰溶液置于1只碘量瓶中,加入400 mg颗粒活性炭(用分析天平称取),盖塞,置于振荡器上振荡。

3、分别在0.25,0.5,1.0,1.5,2.0小时(t1-t5)时用滴管吸取水样并移至比色皿中(取样时要将水样静置一会儿,不要将活性炭混入),用分光光度计测定其吸光度(λ=520nm),记为A1、A2、A3、A4和A5,以C0和A0为标准,根据朗伯-比耳定律分别计算浓度,记为C1、C2、C3、C4和C5。

注意:测完后立即冲洗比色皿。

4、根据C0~C5和t0~t5六组数据绘制C~t曲线。

二、静态吸附试验(绘制等温吸附线)1、将颗粒活性炭40/60目用蒸馏水洗去细粉,并在l05℃烘干、恒重(已准备好,直接用即可)。

2、用分析天平分别称取25,50,100,150,200(mg)粒状活性炭装入6只碘量瓶中。

3、将浓度为0.0002M亚甲基兰溶液各100 mL分别加入碘量瓶中,盖塞。

4、将碘量瓶置于振荡器振荡一定时间(即达到吸附平衡所需的时间,以C~t曲线的平衡时间为准),然后用滴管吸取水样并移至比色皿中,用分光光度计测定其吸光度,记为A’1、A’2、A’3、A’4和A’5,以C0和A0为标准,根据朗伯-比耳定律分别计算浓度,记为C’1、C’2、C’3、C’4和C’5。

注意:测完后立即冲洗比色皿、碘量瓶和其他接触有亚甲基兰溶液的器具。

5、以1gq为纵坐标,1gC为横坐标(C为各吸附平衡浓度,C’1、C’2、C’3、C’4和C’5),绘制吸附等温线。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验报告一、实验目的活性炭处理工艺是运用吸附的方法来去除异味、色度、某些离子以及难生物降解的有机物。

在吸附过程中,活性炭的比表面积起着主要作用,同时被吸附物质在溶剂中的溶解度也直接影响吸附速率,被吸附物质浓度对吸附也有影响。

此外,PH值的高低、温度的变化和被吸附物质的分散程度也对吸附速率有一定的影响。

本实验采用活性炭间隙和连续吸附的方法确定活性炭对水中某些杂质的吸附能力。

通过本实验,希望达到以下目的:1、加深理解吸附的基本原理;2、掌握活性炭吸附设备操作步骤,包括吸附工作过程和再生过程。

二、实验原理吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。

大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回液相或气相中去,这种现象称为解吸或脱附。

在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称为吸附剂。

活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

活性炭吸附的作用产生于两个方面:一方面由于活性炭内部分子在各个方面都受着同等大小而在表面的分子则受到不平衡的力,这使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由活性炭与被吸附物质之间的化学作用,此过程为化学吸附。

活性炭的吸附是上述两种吸附综合的结果。

当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡。

此时的动态平衡称为活性炭吸附平衡。

三、实验装置与设备(1) PH计或精密PH试纸、温度计;(2)大小烧杯、漏斗;(3)活性炭吸附柱;(4)自配废水;(5)恒位箱注:A、B都为活性炭活性炭吸附工艺流程图四、实验步骤1、配制水样,使其含COD50~100mg/L;2、用高锰酸盐指数法测定原水的COD含量,同时测水温和PH;3、在活性炭吸附柱中各装入活性炭并进行洗清,至出水不含炭粉为止;4、启动水泵,将配制好的水样连续不断地送入活性炭柱内,控制好流量;5、运行稳定5min后测定并记录各活性炭柱出水COD或浊度、色度;6、连续运行2~3h,并每隔60min取样测定和记录各活性炭柱出水COD、浊度或色度;7、停泵,关闭活性炭柱进、出水阀门,并进行活性炭再生;8、打开反冲洗阀门与反冲洗进水阀门;9、启动水泵,将清水以较大的速度送入活性炭柱内,带走活性炭中的杂质实现再生目的;10、运行5min后,停泵,关闭反冲洗阀门及进水阀门。

活性炭吸附实验实验报告[活性炭吸附实验]

活性炭吸附实验实验报告[活性炭吸附实验]

活性炭吸附实验实验报告[活性炭吸附实验] 活性炭吸附实验一实验目的1、通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作2、掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法二实验原理活性炭吸附过程包括物理吸附和化学吸附。

其基?原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。

当吸附和解吸处于动态平衡状态时,称为吸附平衡。

这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。

重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:V(C0?C)qe?m式中 qe—活性炭吸附量,即单位重量的吸附剂所吸附的物质量,mg/g;V—污水体积,L;C0、C—分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L;m—活性炭投加量,g;在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用Fruendlich式加以表达。

qe?K?Cn式中 K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的性质有关的常数;K、n值求法如下:通过间歇式活性炭吸附实验测得qe、C相应之值,将式上式到对数后变换为下式:1lgqe?lgK?lgCn将qe、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。

三实验设备及用具1、振荡器一台;2、分析天平一台;3、分光光度计一台;4、250mL三角烧杯5个;5、100mL容量瓶6个;6、活性炭(粉状和粒状);7、亚甲基兰。

8、活性炭连续流吸附实验装置四实验步骤1、间歇式活性炭吸附实验①配制浓度为50mg/L的亚甲兰溶液于1000mL容量瓶中;②用十倍稀释法依次配制浓度为5mg/L、1mg/L、0.5mg/L、0.1mg/L、0.05mg/L、0.01mg/L的亚甲兰溶液于100mL容量瓶中;③用分光光度计测定其吸光度值(吸附波长为665nm),记录到表1中,绘制标准曲线;④取5个250mL的三角瓶,用天平分别称取100mg、200mg、300mg、400mg、500mg的粉活性炭投入三角瓶中,每瓶中加入100mL50mg/L 亚甲基兰溶液;⑤将三角烧瓶放在振荡器上振荡(震荡器的速度要由小变大,但也不能太大,否则会将活性碳粉粘到瓶壁上),当达到吸附平衡时停止振荡。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验1.实验目的本实验用亚甲基蓝(C16H18ClN3S)代替工业废水中有机污染物,采用活性炭吸附法,探究活性炭投放量、吸附时间等因素对活性炭吸附性的影响,探究活性炭处理有机污染水体时的最优工艺参数。

2.实验原理2.1活性炭特性活性炭是水处理吸附法中广泛应用的吸附剂之一,有粒状和粉状两种。

其中粉末活性炭应用于水处理在国内外已有较长的历史。

活性炭是一种暗黑色含炭物质,具有发达的微孔构造和巨大的比表面积。

它化学性质稳定,可耐强酸强碱,具有良好吸附性能,是多孔的疏水性吸附剂。

活性炭最初用于制糖业,后来广泛用于去除受污染水中的有机物和某些无机物。

它几乎可以用含有碳的任何物质做原材料来制造,活性炭在制造过程中,其挥发性有机物被去除,晶格间生成空隙,形成许多形状各异的细孔。

其孔隙占活性炭总体积的 70%~ 80%,每克活性炭的表面积可高达 500 ~ 1700 平方米,但 99.9%都在多孔结构的内部。

活性炭的极大吸附能力即在于它具有这样大的吸附面积[1,2]。

2.2活性炭吸附特征活性炭的孔隙大小分布很宽,从 10-1nm 到104nm 以上,一般按孔径大小分为微孔、过渡孔和大孔。

在吸附过程中,真正决定活性炭吸附能力的是微孔结构。

活性炭的全部比表面几乎都是微孔构成的,粗孔和过渡孔只起着吸附通道作用,但它们的存在和分布在相当程度上影响了吸附和脱附速率。

研究表明,活性炭吸附同时存在着物理吸附、化学吸附和离子交换吸附。

在活性炭吸附法水处理过程中,利用3种吸附的综合作用达到去除污染物的目的。

对于不同的吸附物质,3种吸附所起的作用不同。

(1)物理吸附分子力产生的吸附称为物理吸附,它的特点是被吸附的分子不是附着在吸附剂表面固定点上,而稍能在界面上作自由移动。

物理吸附可以形成单分子层吸附,又可形成多分子层吸附。

由于分子力的普遍存在, 一种吸附剂可以吸附多种物质,但由于吸附物质不同,吸附量也有所差别。

这种吸附现象与吸附剂的表面积、细孔分布有着密切关系,也和吸附剂表面力有关。

吸附实验的实验报告

吸附实验的实验报告

一、实验目的1. 熟悉吸附实验的基本原理和方法。

2. 掌握活性炭吸附实验的操作步骤和数据处理方法。

3. 分析活性炭吸附实验的影响因素,并优化吸附条件。

二、实验原理吸附是指吸附剂表面吸附质的过程。

活性炭作为一种常用的吸附剂,具有发达的孔隙结构和较大的比表面积,能有效去除水中的有机污染物、重金属离子等。

本实验采用活性炭吸附实验,研究活性炭对水中有机污染物的吸附效果。

三、实验仪器与试剂1. 仪器:锥形瓶、振荡器、滤纸、电子天平、移液管、比色计等。

2. 试剂:活性炭、有机污染物溶液、去离子水、pH缓冲溶液等。

四、实验步骤1. 配制一定浓度的有机污染物溶液,作为实验样品。

2. 称取一定量的活性炭,放入锥形瓶中。

3. 将配制好的有机污染物溶液加入锥形瓶中,搅拌均匀。

4. 将锥形瓶放入振荡器中,在一定温度下振荡一定时间。

5. 振荡结束后,用滤纸过滤溶液,测定滤液中的有机污染物浓度。

6. 计算活性炭对有机污染物的吸附率,并绘制吸附等温线。

7. 分析影响吸附效果的因素,并优化吸附条件。

五、实验结果与分析1. 吸附等温线根据实验数据,绘制活性炭对有机污染物的吸附等温线,如下所示:吸附等温线图由图可知,活性炭对有机污染物的吸附过程符合Langmuir吸附模型。

在低浓度范围内,吸附速率较快;在高浓度范围内,吸附速率较慢。

2. 影响吸附效果的因素(1)吸附剂用量:实验结果表明,随着吸附剂用量的增加,吸附率逐渐提高。

但吸附剂用量达到一定值后,吸附率变化不大。

(2)振荡时间:实验结果表明,在一定时间内,随着振荡时间的增加,吸附率逐渐提高。

但振荡时间达到一定值后,吸附率变化不大。

(3)pH值:实验结果表明,pH值对吸附效果有一定影响。

当pH值为中性时,吸附效果最佳。

(4)温度:实验结果表明,在一定温度范围内,随着温度的升高,吸附率逐渐提高。

但温度过高时,吸附率反而下降。

六、实验结论1. 活性炭对有机污染物具有良好的吸附效果,吸附过程符合Langmuir吸附模型。

最新活性炭吸附实验报告

最新活性炭吸附实验报告

最新活性炭吸附实验报告
实验目的:
本实验旨在探究活性炭对水中有机污染物的吸附能力,以及影响吸附效果的各种因素,如活性炭的类型、粒径、吸附时间、污染物浓度和pH值等。

实验方法:
1. 材料准备:选取两种不同来源的活性炭样品,分别为木质活性炭和果壳活性炭。

2. 仪器设备:电子天平、恒温水浴、磁力搅拌器、pH计、紫外分光光度计等。

3. 实验步骤:
a. 配制一定浓度的目标污染物溶液。

b. 称取一定质量的活性炭样品,加入到含有污染物的溶液中。

c. 在设定的pH值和温度条件下,使用磁力搅拌器进行搅拌,使活性炭充分吸附。

d. 经过一定时间后,使用离心机分离活性炭和溶液。

e. 采用紫外分光光度计测定上清液中污染物的浓度,从而计算吸附率。

f. 改变实验条件(如活性炭粒径、pH值、吸附时间等),重复上述步骤,获取不同条件下的吸附数据。

实验结果:
实验数据显示,木质活性炭和果壳活性炭对目标污染物均有一定的吸附效果,但木质活性炭的吸附容量略高于果壳活性炭。

吸附效果随活性炭粒径的减小而增加,且在pH值为7左右时达到最佳。

随着吸附时间的延长,吸附率逐渐增加,但在达到某个时间点后,吸附率的提升趋于平缓。

污染物初始浓度的增加会导致吸附率的下降。

结论:
通过本次实验,我们得出了活性炭对水中有机污染物的吸附特性,并找到了优化吸附效果的条件。

这些发现对于实际的水处理工艺具有重要的参考价值。

未来的工作可以进一步探索其他影响因素,如共存污染物的影响、活性炭的再生能力等,以提高活性炭在水处理领域的应用效率。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验报告活性炭吸附实验报告引言:活性炭是一种常见的吸附剂,广泛应用于水处理、空气净化、食品加工等领域。

本实验旨在研究活性炭对某种有机溶剂的吸附性能,并探讨吸附过程中的影响因素。

实验方法:1. 实验材料准备:活性炭样品、某种有机溶剂(甲醇)、量筒、烧杯、计时器等。

2. 实验步骤:a. 将一定量的活性炭样品加入烧杯中,并称量其质量。

b. 将一定量的甲醇倒入量筒中,并记录其初始体积。

c. 将烧杯中的活性炭与甲醇接触,开始计时。

d. 每隔一段时间,记录甲醇体积的变化。

e. 当甲醇体积不再变化时,停止计时,并记录此时甲醇体积。

f. 重复实验步骤2-5,以获得可靠的数据。

实验结果:通过实验,我们得到了活性炭对甲醇的吸附曲线,如图1所示。

实验结果显示,在初始阶段,活性炭对甲醇的吸附速度较快,随着时间的推移,吸附速度逐渐减慢,直至达到平衡吸附。

[插入图1]实验讨论:1. 吸附速率与吸附量之间的关系:根据实验结果,我们可以看到活性炭对甲醇的吸附速率随着时间的增加而减慢。

这是因为在初始阶段,活性炭表面上的吸附位点较多,吸附速率较快;随着吸附位点逐渐饱和,吸附速率逐渐减慢。

吸附量与吸附速率呈正相关关系,即吸附速率越快,吸附量越大。

2. 吸附平衡与吸附容量:实验结果显示,当甲醇体积不再变化时,活性炭对甲醇的吸附已达到平衡状态。

这表明活性炭的吸附容量有限,即活性炭表面上的吸附位点有限。

吸附容量是评价活性炭吸附性能的重要指标,吸附容量越大,表示活性炭对目标物质的吸附能力越强。

3. 影响因素:活性炭吸附性能受多种因素的影响,包括活性炭的孔径、表面性质、温度等。

孔径是影响吸附性能的关键因素之一,孔径越大,活性炭的吸附容量越大。

表面性质也是影响吸附性能的重要因素,活性炭表面的化学性质和电荷分布会影响目标物质与活性炭之间的相互作用。

温度对吸附性能的影响较为复杂,一般情况下,温度升高会增加吸附速率,但对吸附容量的影响不确定。

活性炭吸附实验

活性炭吸附实验

实验五 活性炭吸附实验一 实验目的本实验采用活性炭间歇和连续吸附的方法通过本实验确定活性炭对水中所含某些杂质的吸附能力。

希望达到下述目的:(1)加深理解吸附的基本原理;(2)掌握活性炭吸附公式中常数的确定方法.二 实验原理活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。

在吸附过程中,活性炭比表面积起着主要作用。

同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。

此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。

活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。

有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。

当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。

当吸附和解吸处于动态平衡状态时,称为吸附平衡。

这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。

如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量e q ,即吸附容量可按下式计算mx q e = (1) e q 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。

一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,e q 值就比较大。

描述吸附容量e q 与吸附平衡时溶液浓度C 的关系有Langmuir 、BET 和Fruendlieh 吸附等温式。

在水和污水处理中通常用Fruendlich 表达式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即ne KC q 1= (2) 式中:e q ——吸附容量(mg/g);K ——与吸附比表面积、温度有关的系数;n ——与温度有关的常数,n>1;C ——吸附平衡时的溶液浓度(mg/L)。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验报告
引言概述:
本实验旨在研究活性炭材料在吸附过程中的性能和效果。

活性炭是一种具有高孔隙度和高吸附能力的材料,广泛应用于水处理、空气净化、废气处理等领域。

通过实验确定活性炭的吸附性能,可以为其在工业和环境应用中提供科学依据。

正文内容:
1.活性炭的原理和特性
1.1活性炭的制备方法
1.2活性炭的物理特性和表面结构
1.3活性炭的吸附原理
2.实验设计和方法
2.1活性炭的选择和准备
2.2吸附试剂的选择和制备
2.3实验装置和操作流程
3.吸附实验结果与分析
3.1吸附平衡实验
3.1.1吸附剂用量对吸附效果的影响
3.1.2吸附剂颗粒大小对吸附效果的影响
3.1.3吸附剂pH值对吸附效果的影响
3.2吸附动力学实验
3.2.1吸附速率对吸附效果的影响
3.2.2吸附温度对吸附效果的影响
3.2.3吸附剂可重复使用性能的评估
4.吸附实验的结果讨论
4.1吸附平衡实验结果分析
4.2吸附动力学实验结果分析
4.3吸附剂的选择和应用前景
5.实验改进和未来研究方向
5.1实验方法的改进和优化
5.2活性炭的改良和性能提升
5.3活性炭在环境治理中的应用研究
总结:
通过本实验,我们对活性炭吸附过程的性能和效果进行了研究。

实验结果表明,活性炭吸附效果受到吸附剂用量、颗粒大小、pH值、吸附速率和温度等因素的影响。

活性炭作为一种有潜力的吸附材料,在水处理、空气净化、废气处理等领域具有广阔的应用前
景。

未来的研究可以着重于改进实验方法、提升活性炭的吸附性能,并进一步探索其在环境治理中的应用。

实验6活性炭吸附实验.

实验6活性炭吸附实验.

实验6 活性炭吸附实验1.实验目的了解活性炭吸附工艺,掌握测定吸附等温线的操作过程。

2.实验原理活性炭吸附是利用活性炭固体表面对水中一种或几种物质的吸附作用,达到净化水质的目的。

活性炭对水中所含杂质的吸附既有物理吸附也有化学吸附。

当活性炭对水中所含物质吸附时,水中的溶解性物质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中,即同时发生解吸现象。

当吸附和解吸处于动态平衡状态时,称为吸附平衡。

而此时被吸附物质在溶液中的浓度称为平衡浓度C。

活性炭的吸附能力以吸附量表示,用m克活性炭吸附溶液中的溶质,被吸附的溶质为毫克,则吸附量可按下式计算:(1式中,q e为平衡吸附量(mg/g;C0与C e分别为吸附质的初始浓度与平衡浓度(mg/L;V为溶液的体积(L;m为所用的活性炭的质量(g。

的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH值有关。

一般说来,当被吸附的物质不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,值就比较大。

由吸附量和平衡浓度C的关系所绘出的曲线称为吸附等温线,表示吸附等温线的公式称为吸附等温式,比较常用的吸附等温式有有Langmuir、BET和Fruendlich吸附等温式。

在水和废水处理中通常用Fruendlich吸附等温式来比较不同温度和不同溶液浓度时的活性炭的吸附容量,即(2式中:——吸附容量(mg/g;K——与吸附比表面积、温度有关的系数;n——与温度有关的常数,n>1;C——吸附平衡时的溶液浓度(mg/L。

这是一个经验公式,通常用图解方法求出K,n的值.为了方便易解,往往将式(2变换成线性对数关系式(3式中:C0——水中被吸附物质原始浓度(mg/L;C——被吸附物质的平衡浓度(mg/L;m——活性炭投加量(g/L。

3.实验设备与试剂(1)间歇式活性炭吸附装置,间歇式吸附采用三角烧瓶,在烧瓶内放入活性炭和水样进行振荡。

最新小组实验报告活性炭吸附实验

最新小组实验报告活性炭吸附实验

最新小组实验报告活性炭吸附实验实验目的:本实验旨在探究活性炭对水中有机污染物的吸附能力,通过定量分析,确定活性炭的吸附效率和最佳使用条件。

实验材料:- 活性炭样品- 水中有机污染物模拟溶液- 电子天平- 恒温水浴- 漏斗和滤纸- 离心机- 紫外可见分光光度计- 容量瓶和移液管- 试剂(如甲醇、氢氧化钠等)实验方法:1. 准备不同浓度的有机污染物模拟溶液,记录初始浓度。

2. 分别取适量的活性炭样品,称重后加入到模拟溶液中。

3. 将含有活性炭和模拟溶液的试管放入恒温水浴中,控制在一定温度下进行吸附实验,时间设定为1小时。

4. 实验结束后,使用离心机将活性炭和溶液分离,并通过滤纸过滤。

5. 取滤液,使用紫外可见分光光度计测定滤液中有机污染物的浓度。

6. 根据初始浓度和滤液中浓度的差值,计算活性炭的吸附率。

实验结果:- 记录各组实验数据,包括活性炭的质量、初始污染物浓度、最终污染物浓度以及计算得到的吸附率。

- 利用图表形式展示不同条件下活性炭的吸附效率,分析温度、时间、活性炭用量等因素对吸附效率的影响。

实验讨论:- 分析活性炭吸附有机污染物的机理,包括物理吸附和化学吸附。

- 探讨实验中可能存在的误差来源,如操作误差、仪器精度等,并提出改进措施。

- 根据实验结果,提出活性炭在实际水处理中的应用建议。

结论:通过本次实验,我们得出了活性炭对特定有机污染物的吸附效率,并找到了最佳的吸附条件。

这些发现对于优化活性炭在水处理领域的应用具有重要意义。

未来的研究可以进一步探索活性炭对其他类型污染物的吸附性能,以及如何提高其吸附效率和使用寿命。

活性炭气体吸附试验

活性炭气体吸附试验

五、操作步骤
1、首先检查设备系统外况和电气连接线有无异常,一切正常后开始操作;
2、根据实验要求装填一定高度的活性炭;
3、小流量计入口阀关闭,启动风机,吸附塔入口阀关闭后调节旁路阀至 使主气流流量计指示到所需的试验流量;
4、关闭SO2钢瓶减压阀,小心拧开SO2钢瓶主阀门,再慢慢开启减压阀, 通过调节小转子流量计,观察小转子流量计刻度读数和配气污染物检测采 样口处SO2测定仪所指示的气体SO2浓度至所需的入口浓度;
4、吸附了有机组份的吸附剂,在温度、压力等条件改变时,被吸附组份 可以脱离吸附剂表面,利用这一点,使吸附剂得到净化而能重复使用。
三、实验流程
实验流程如下图所示,该流程可分为如下几部分:
序号
设备名称
作用
1
SO2 气体钢瓶
配制入口气体
2
风机一台
为实验系统提供动力
3
主气流流量计
用于实验主气流的计量
4
气体混合缓冲装置
用于使试验气体混合均匀稳定
5 配气污染物检测采样口
用于实验准备阶段配气的采样分析
6
气体管路三通及阀门
气体流量调节和实验配气
7
活性炭吸附塔
含可拆卸有机玻璃塔体,不锈钢支架等
8
U型压差计
用于活性炭床压降的测定
9
排气管
排气
四、技术指标及参数
1、实验气量5~12m3/h; 2、对有机物的净化效率大于95%; 3、吸附塔尺寸 Φ100×1000 mm; 4、实验台架外型总尺寸 1200×400×1800 mm
五、操作步骤
6、在吸附开始后的不同时刻采集各采样口的气体浓度,在所有浓度测定工作结 束前通过U型压差计测定吸附床层压降; 7、通过调节气体组分、浓度和空塔气速进行实验; 8、实验操作结束后,先关闭SO2气瓶主阀,待压力表指数回零关闭减压阀,然 后关闭切断风机的外接电源; 9、检查设备状况,记录尾气处理设施的使用时间,没有问题后离开。

实验6醋酸在活性炭上的吸附--物理化学实验

实验6醋酸在活性炭上的吸附--物理化学实验

实验6 醋酸在活性炭上的吸附一、实验目的1.用溶液吸附法测定活性炭的比表面。

2.了解溶液吸附法测定比表面的基本原理。

三、实验原理实验表明在一定浓度范围内,活性炭对有机酸的吸附符合朗格缪尔(Langmuir)吸附方程:(1)将(1)式整理可得如下形式:(2)作C/Г—C图,得一直线,由此直线的斜率和截距可求常数K。

如果用醋酸作吸附质测定活性炭的比表面则可按下式计算:(3)式中,S0为比表面(m2·kg-1);Г∞为饱和吸附量(mol·kg-1);6.023×1023为阿佛加德罗常数;24.3×10-20为每个醋酸分子所占据的面积(m2)。

四、仪器与药品1.仪器带塞三角瓶(250mL)5个;三角瓶(150mL)5个;滴定管1只;漏斗;移液管;电动振荡器1台。

2药品活性炭;HAc溶液);标准NaOH 溶液(0.1mol·dm-3);酚酞指示剂。

五、实验步骤1.准备5个洗净干燥的带塞三角瓶,分别称取约1g(准确到0.001g)的活性炭,并将5个三角瓶标明号数,用一移液管分别按下列数量加入蒸馏水与醋酸溶液。

2.将各瓶溶液配好以后,用磨口瓶塞塞好,并在塞上加橡皮筋以防塞子脱落,摇动三角瓶,使活性炭均匀悬浮于醋酸溶液中,然后将瓶放在振荡器上,盖好固定板,振荡30min。

3.振荡结束后,用干燥漏斗过滤,为了减少滤纸吸附影响,将开始过滤的约5mL滤液弃去,其余溶液滤于干燥三角瓶中。

4.从1,2号瓶中各取15.00mL,从3,4,5号瓶中各取30.00mL 的醋酸溶液,用标准NaOH溶液滴定,以酚酞为指示剂,每瓶滴二份,求出吸附平衡后醋酸的浓度。

5.用取5.00mL原始HAc溶液并标定其准确浓度。

六、数据处理1.将实验数据列表。

2.计算各瓶中醋酸的起始浓度C0,平衡浓度C及吸附量Г(mol·kg-1)。

式中,V为溶液的总体积(dm3);m为加入溶液中吸附剂质量(kg)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验6 活性炭吸附实验
1.实验目的
了解活性炭吸附工艺,掌握测定吸附等温线的操作过程。

2.实验原理
活性炭吸附是利用活性炭固体表面对水中一种或几种物质的吸附作用,达到净化水质的目的。

活性炭对水中所含杂质的吸附既有物理吸附也有化学吸附。

当活性炭对水中所含物质吸附时,水中的溶解性物质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中,即同时发生解吸现象。

当吸附和解吸处于动态平衡状态时,称为吸附平衡。

而此时被吸附物质在溶液中的浓度称为平衡浓度C。

活性炭的吸附能力以吸附量表示,用m克活性炭吸附溶液中的溶质,被吸附的溶质
为毫克,则吸附量可按下式计算:
(1
式中,q e为平衡吸附量(mg/g;C0与C e分别为吸附质的初始浓度与平衡浓度(mg/L;V 为溶液的体积(L;m为所用的活性炭的质量(g。

的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH值有关。

一般说来,当被吸附的物质不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,值就比较大。

由吸附量和平衡浓度C的关系所绘出的曲线称为吸附等温线,表示吸附等温线的公式称为吸附等温式,比较常用的吸附等温式有有Langmuir、BET和Fruendlich吸附等温式。

在水和废水处理中通常用Fruendlich吸附等温式来比较不同温度和不同溶液浓度时的活性炭的
吸附容量,即
(2
式中:——吸附容量(mg/g;
K——与吸附比表面积、温度有关的系数;
n——与温度有关的常数,n>1;
C——吸附平衡时的溶液浓度(mg/L。

这是一个经验公式,通常用图解方法求出K,n的值.为了方便易解,往往将式(2变换成线性
对数关系式
(3
式中:C0——水中被吸附物质原始浓度(mg/L;
C——被吸附物质的平衡浓度(mg/L;
m——活性炭投加量(g/L。

3.实验设备与试剂
(1)间歇式活性炭吸附装置,间歇式吸附采用三角烧瓶,在烧瓶内放入活性炭和水样进行振荡。

(2)振荡箱
(3)天平
(4)烘箱
(5)分光光度计
(6)注射器、塑料滤头、滤膜等
(7)活性炭
4.实验方法
(1)标准曲线的绘制
向一系列50mL比色管中分别加入0、0.2、0.4、0.6、0.8、1.0mL的250mg/L亚甲基蓝标准溶液,用蒸馏水稀释至刻度,摇匀后在660nm波长处,以蒸馏水为参比测定吸光度。

以亚甲基蓝浓度为横坐标,吸光度为纵坐标,绘制亚甲基蓝标准曲线。

(2)间歇式吸附实验
将活性炭放在蒸馏水中浸泡24h,然后在105℃烘箱内烘24h,再将烘干的活性炭研碎,使其能通过200目以下筛孔的粉状活性炭。

因为粒状活性炭要达到吸附平衡耗时太久,为了使实验能在短时间内结束,所以多用粉状炭。

在6个锥形瓶中分别加入0.01~0.15g(如,0.01、0.03、0.05、0.07、0.1、0.15g)不同量粉状活性炭。

在每个锥形瓶中加入50ml的亚甲基蓝模拟废水。

将上述6个锥形瓶放在振荡箱内振荡,温度控制在20℃,振荡速度约100~150r/min,振荡40min后取出锥形瓶(近似认为达到吸附平衡)。

过滤锥形瓶中的废水,测定其浓度,求出吸附量。

实验记录表见表3-6-1。

表3-6-1 间歇式活性炭吸附实验记录表
编号活性炭的投加量m
(g)水样体积
V(mL)
原水浓度
C0(mg/L
平衡后的浓度
C (mg/L
吸附量
(C0-C×V/m
1 2 3
4
5
6
5.实验结果整理
(1)根据表记录的数据,根据公式(1)计算吸附量。

以C为横坐标,为纵坐标做吸附等温线。

(2)根据公式(3),以lg为纵坐标,lg C为横坐标,求出Fruendlich公式中的常数K、n 值。

6.思考题
(1)为什么要将活性炭磨细?其吸附能力及吸附速度与原状活性炭相同吗?
(2)吸附等温线有何实际意义?。

相关文档
最新文档