最大气泡压力法测定溶液表面张力.
最大气泡发测定溶液表面张力
最大气泡发测定溶液表面张力实验名称:最大气泡法测定溶液表面张力实验目的:1. 学习和掌握气泡法测定液面张力的实验原理和方法;2. 了解表面张力相关概念和公式;3. 掌握实验数据处理和分析方法。
实验原理:表面张力是液体表面所受到的分子间的一种力,它使液面趋于最小面积的状态。
根据杨氏定律,液体表面张力F的大小可表示为:F = γL其中γ为表面张力系数,L为液体表面的周长。
最大气泡法测定溶液表面张力,是将一根玻璃管塞在一溶液中,管口抬离液面后,通过吹气法在玻璃管内形成一个气泡,并逐渐加大压力,当气泡从玻璃管中抬出时,管口压力减小至最小值,并变为固定值。
此时气泡直径、管口边缘长度等数据均可用来计算出溶液的表面张力。
实验步骤:1.准备一根内径约为0.7~1mm的直玻璃管,两端均作过热处理并制成吸管型。
吸管要求口径尽量小,以便形成小的气泡。
2.用去离子水清洗玻璃管,再用酒精涂洗干净。
3.实验表面张力:(1)加入一定量的去离子水到三个试管中,分别加入0.1~0.3mL的酒精、苯、正丁醇。
(2)用吸球吸取被测溶液,直到牢固地充满了玻璃管,放在液面上,使液面把玻璃管口罩住,然后用手握住吸球以上提管子,使玻璃管口稍稍浮起,吸球松开,保证玻璃管内无气泡,玻璃管内液面刚好在液面之上。
(3)在玻璃管外侧,用一长管膜压力,直到液面在玻璃管上方,形成一气泡。
此时,按膜的位置调整气泡直径和液面周长的比值为0.9左右,再用一根呈45度角的玻璃管口吹气,增加气泡直径,同时测量管口长度、气泡直径和液面间的高度差,记录数据。
(4)重复2-3步骤不少于三次,取平均值,计算表面张力。
数据计算:1. 气泡直径d的平均值2. 玻璃管口边缘长度l的平均值3. 液面间高度差h的平均值4. 比值P = l/d5. 表面张力系数γ = πdP(ρgh+2ηv/d)/2实验结果:被测液体 | 气泡直径d/mm | 玻璃管口边长l/mm | 液面间高度差h/mm | P | γ/mN·m-1:---:|:---:|:---:|:---:|:---:|:---:去离子水 | 3.51 | 14.05 | 161.8 | 3.2 | 72.11酒精 | 2.12 | 8.73 | 116.5 | 4.11 | 21.44苯 | 2.40 | 9.57 | 197.6 | 4.0 | 34.74正丁醇 | 2.82 | 11.38 | 168.5 | 4.03 | 23.21结论:根据实验结果,不同液体的表面张力不同。
最大气泡压力法测定溶液表面张力
物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。
如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。
气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。
加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。
最大泡压法测定溶液的表面张力
(2)测定不同浓度乙醇溶液的表面张力 配制浓度分别为0.02,0.05,0.10,0.15,0.20, 0.25,0.30,0.35,0.50mol.L-1 正丁醇溶液各50ml。 按(1) 数据记录和处理
(1) 记录实验温度,大气压,以及蒸馏水和不 同浓度乙醇溶液的的△h。 (2) 按式(7-66)计算毛细管常数K。不同温度 下纯水的表面张力见附录14。
最大泡压法测表面张力
(3)求乙醇的分子截面积 饱和吸附量
kc 1 kc
(7-68)
c 作 ~c图,由直线斜率求
1 c 1 k
求乙醇分子截面积
1 = L
(7-69)
8
最大泡压法测表面张力
3. 实验步骤
(1) 测定毛细管常数K. 将蒸馏水装于带支管的毛细管,使毛细管的端 面与液面相切,打开滴液漏斗的活塞,使水缓慢滴 下而降低系统的压力,气泡均匀逸出,读取U形压 力计两臂最大高度差。
2
最大泡压法测表面张力
2. 实验原理
体相分子:
(1)溶液的界面吸附 纯液体和其蒸气组成的体系 自由移动不消耗功
表面分子: 液体有自动收缩表面 而呈球形的趋势。
2 G (J m ) γ A T , P ,nB
g
l
比表面自由能(表面张力)
3
最大泡压法测表面张力
溶液: 体系可调节溶质在表面相的浓度来降低 表面自由能。
(3) 按式(7-66)计算不同浓度乙醇溶液的表 面张力。
10
最大泡压法测表面张力
(4)作 ~c/c 曲线,在曲线上分别取c / c 为0.03, 0.05,0.10,0.15,0.20,0.30,0.40的点作 d 切线,求切线斜率 。 dc / c
最大泡压法测定溶液的表面张力
数据处理
根据溶液温度查表可知水的表面张力。
根据公式
,可得各溶液的
表面张力。
p 曲线上取两个点 (C=0.05和0.20处),分别作出切线并求 相应的斜率,求出这两个点的吸附量。
根据方程(14-2)求算各浓度的吸附量,并 作出(c/ Γ)-c图,由直线斜率求其Γ ∞,并 计算横面积S0值。
仪器与试剂
实验装置见图1。 毛细管要求出泡均匀,最好在纯水中测量
hmax达14cm左右,不可内径太粗, 否则误差大,毛细管头部必须平整光滑, 不沾油污,以免出泡不均匀。 正丁醇(分析纯)。
实验步骤
仪器常数的测定
洗净试管,用蒸馏水淌洗后,再加蒸馏水,调节毛细 管高度,使毛细管刚接触液面,如图14-3接好仪器(不 能漏气)。试管安装在恒温槽中。
吴肇亮,蔺五正,杨国华等.物理化学实验[M], 北京,石油大学出版社 ,1993.
Hugh W. Salzberg et. al., Physical Chemistry Laboratory: Principles and Macmillan Publishing Co.,INC.(New York).1978.
思考问题
最大泡压法测定表面张力时为什么要测定仪器常数? 用最大泡压法测定易发泡液体的表面张力时应注意
哪些问题? 有些物质(如十二烷基硫酸钠)用最大泡压法测定
其溶液的表面张力往往和用其它方法(如滴重法) 测量结果相差较大,试简单分析其原因。
参考文献
李江中,罗志刚,通用化学实验技术[M], 广州,: 华南理工大学出版社,1997.
在σ—c曲线上任意选一点i做切线,即可 得该点所对应浓度ci的斜率(d/dci)T代 入(14-2)式,可求出不同浓度时的吸附 量Γ。
最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)
最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。
⽑细管中⼤⽓压为P0。
试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。
当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。
此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。
2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。
在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。
上式忽略了液体弯⽉⾯。
如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。
(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。
溶液表面张力的测定——最大气泡压力法
实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。
2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。
3. 学会镜面法作切线的方法。
二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。
为了求以上参数, 关键是测σ。
表面张力及界面张力, 矢量。
源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。
σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。
1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。
浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。
σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。
表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。
<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。
,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。
最大泡压法测溶液的表面张力
七、思考题
1、有哪些因素影响表面张力测定的结果?如 何减小以致消除这些因素对实验的影响?
2、用最大泡压法测定表面张力时,为什么要 读取最大压力差?
3、在测量中,如果抽气速度过快,对测量结 果有何影响?
六、数据处理
1、以纯水测得结果按(15~8)式计算仪器 常数K’值,水的表面张力由附录表中查出
2、用表格列出各浓度的溶液压力差值,并求 得其表面张力值。
3、在方格坐标纸上作σ-c图 ,并在σ-c曲线上 取10~20个点,分别作出切线,并求得对
应的斜率。
4、根据方程(15-2)求算各浓度的吸附量,并 作出(c/ Γ)-c图,由直线斜大气泡法表面张力测定装置 1-滴液漏斗,2-支管试管,3-毛细管,4-恒 温槽,5-压差计
根据拉普拉斯公式,气泡承受的压力差也最大。 (15-6)
三、仪器与试剂
表面张力测定装置 洗耳球 滴管 不同浓度的乙醇溶液
1套 1个 1个
四、实验步骤
仪器常数的测定 溶液的表面张力的测定
五、实验注意事项
1、测定用的毛细管一定要清洗干净,否则气泡 不能连续稳定地通过,而使压力计读书不稳定。
2、控制好出泡速度,不要使气泡一连串地脱 出,,读取压力计的压差时,应取气泡单个逸 出时的最大压力差。
3、洗涤毛细管时不能用热风吹干或烘烤,避免毛 细管的结构发生变化。
4、实验结束后要将所用仪器全部洗涤干净。
(情绪管理)最大气泡压力法测定溶液的表面张力最全版
(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。
如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。
在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。
()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
实验三十一表面张力测定最大气泡压力法测定溶液的表面张力
m
在实验中,若使用同一支毛细管和压力计,则
gr
2
是一个常数,称为仪器常数,用K来表示。
K hm
所以
(7) 在本实验中,用已知表面张力的水作为标准, hm 由实验测得其 后,就可求出仪器常数的值。 hm 然后只要用这一仪器测得其它液体的 值,通 过(7)式计算,即可求得各种液体的表面张力。
1. 最大气泡压力法测定表面张力的原理和技
术。 2.不同浓度正丁醇溶液表面张力的测定、吸 附量的计算。
三、实验原理
在本实验中,溶液浓度的测量是利用浓度与折光率的对 应关系,表面张力的测定是应用最大气泡压力法。 最大气泡压力法测定表面张力的装置示意如图1。将欲 测表面张力的液体装于支管试管2中,使毛细管3的端面 与液面相切,液面即沿毛细管上升,打开滴折光仪
1台 恒温槽装置 1套 滴液漏斗(250mL) 1个 支管试管(2.5×20cm) 1个 毛细管(0.2—0.3mm) 1支 酒精压力计 1个 T形管 1个 烧杯(250mL) 1个 放大镜 1个 重蒸馏水 正丁醇(A.R.) 丙酮(A.R.)
3.待测样品表面张力的测定
(1)用待测溶液洗净支管试管和毛细管后, 加入适量的样品于支管试管中。 (2)按仪器常数测定时的操作步骤,分别测 定各种未知浓度正丁醇溶液的值。
六、数据处理
1.将实验数据记录于下表,并求得其表面张力。
2.以浓度为横坐标,表面张力为纵坐标作表
面张力-浓度图(横坐标浓度从零开始)。 3.在表面张力-浓度图上选取6~8点作切线求 出Z值。 Z 4.由 RT 计算不同浓度溶液的吸附量值,并作 吸附量-浓度图。
七、思考题
1.为什么不能将毛细管插进液体里面? 2.本实验为什么选用酒精压力计而不用水银
最大泡压法测定溶液的表面张力
最大泡压法测定溶液的表面张力、实验目的1掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。
2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。
3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量醇分子的截由表面张力的实验数据求正丁面积及吸附层的厚度。
二、实验原理1表面张力的产生液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积。
在温度、压力、组成恒定时,每增加单位表面积,体系的表面自由能的增值称为单位表面的表面能(J ∙m2)。
若看作是垂直作用在单位长度相界面上的力,即表面张力(N∙ m1)。
事实上不仅在气液界面存在表面张力,在任何两相界面都存在表面张力。
表面张力的方向是与界面相切,垂直作用于某一边界,方向指向是表面积缩小的一侧。
液体的表面张力与液体的纯度有关。
在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。
由于表面张力的存在,产生很多特殊界面现象。
2、弯曲液面下的附加压力静止液体的表面在某些特殊情况下是一个弯曲表面。
由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。
弯曲液体表面平衡时表面张力将产生一合力P s,而使弯曲液面下的液体所受实际压力与外压力不同。
当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力为:P = P o - F S ;当液面为凸形时,合力指向液体内部,液面下的液体受到的实际压力为:P = P o + P S 。
这一合力P S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率中心。
附加压力与表面张力的关系用拉普拉斯方程表示:(式中σ为表面张力,R 为弯曲表面的曲率半径,该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况)。
气泡最大压力法测定溶液的表面张力实验报告
气泡最大压力法测定溶液的表面张力实验报告实验目的:通过气泡最大压力法测定溶液的表面张力,了解表面张力的概念和影响因素。
实验原理:气泡最大压力法是一种测定液体表面张力的方法。
当气泡在液体表面吸附时,空气和液体之间的表面张力使得气泡表面产生压力。
随着气泡的增大,表面张力也会增大,当气泡增大到一定大小时,表面张力将无法支持气泡继续增大而使气泡破裂。
这个时候,气泡的最大直径对应着液体的表面张力大小。
实验步骤:1.准备实验器材:气泡压力计、毛细管、洗涤瓶、滴管、等量筒、称量器等。
2.实验前准备:将需要测定的液体放入等量筒中,加入适量的去离子水混合均匀,然后将等量筒称量,记录液体的质量。
3.制备毛细管:将毛细管烤制成圆形并将两端磨平。
4.实验操作:将洗涤瓶中的液体吸入毛细管中,然后将毛细管浸入液体中,使其浸入到液面下方,然后轻轻地将毛细管取出来,观察毛细管内部是否存在气泡,若存在气泡,则需要重新制备毛细管。
5.测定表面张力:将毛细管蘸入液体中,使其与液面触碰,在液面上形成一个液体凸起,然后将气泡压力计放在凸起上,逐渐加压,直到气泡破裂,记录最大直径,并测量气泡的压力。
6.实验数据处理:根据测得的气泡最大直径和压力值,计算出液体的表面张力值。
实验结果:通过气泡最大压力法测定,得到液体的表面张力值为x N/m。
实验分析:根据实验数据分析得知,液体的表面张力受到多种因素的影响,如温度、溶液浓度、表面活性剂的种类和浓度等。
在相同的温度下,溶液的表面张力随溶液浓度的增加而增加。
表面活性剂可降低液体的表面张力,增加液体的润湿性。
实验总结:本实验通过气泡最大压力法测定溶液的表面张力,达到了目标,并深入了解了表面张力的概念和影响因素。
同时,也提高了实验操作的技能和实验数据分析的能力。
最大气泡压力法测定溶液表面张力
最大气泡压力法测定溶液表面张力一、前言表面张力是指液体表面处的分子间相互作用力,是液体表面能量和单位面积的量度。
在实际应用中,表面张力常常被用来描述液体与固体或气体之间的相互作用,如液滴形态、液滴与固体表面接触角等。
因此,测定溶液表面张力具有重要的理论和实际意义。
最大气泡压力法是一种常用的测定溶液表面张力的方法。
该方法基于气泡在液体中升降时所受到的阻力与气泡直径之间的关系,通过测量最大气泡升降速度和直径来计算溶液的表面张力。
二、实验步骤1. 实验仪器和试剂准备(1)实验仪器:最大气泡压力法测定仪、电子天平、恒温水槽。
(2)试剂:去离子水、丙酮、十二烷基硫酸钠(SDS)、甘油。
2. 样品制备将待测样品加入到清洁干燥的容器中,并在恒温水槽中调节至所需温度。
3. 测定最大气泡压力(1)在样品表面加入一定量的SDS和甘油,使得液面平整且不出现颗粒状物质。
(2)将测定仪的玻璃管插入到样品中,并通过注射器向玻璃管中注入空气,形成一个气泡。
(3)调节测定仪的升降速度,当气泡升至一定高度时停止升降,记录此时的气泡直径和压力。
(4)逐步增加气泡压力并记录相应的气泡直径和压力值,直至气泡破裂或者脱离液面为止。
4. 计算表面张力根据测得的最大气泡直径和压力值,可以通过下列公式计算溶液表面张力:γ = (4σ/3r) (ΔP/P0)其中,γ为溶液表面张力;σ为水-空气界面张力常数;r为最大气泡半径;ΔP为最大气泡压差;P0为大气压强。
5. 数据处理对于同一样品,在不同温度下进行多次测量,并取平均值计算出表面张力。
三、实验注意事项1. 实验前要仔细清洗测定仪和玻璃管,避免杂质对实验结果的影响。
2. 在加入SDS和甘油时要注意控制添加量,避免过量引起液面不平整。
3. 测定时要保持恒温,避免温度变化对实验结果的影响。
4. 测定时要保持气泡升降速度稳定,并逐步增加气泡压力,避免气泡破裂或脱离液面。
5. 测定同一样品时要进行多次测量,并取平均值计算表面张力,提高实验结果的准确性。
最大气泡压力法测定液体的表面张力数据处理方法
溶液表面张力及吸附分子横截面积的测定实验目的1. 学习用最大气泡压力法测定溶液的表面张力σ。
2.了解用吉布斯方程在溶液表面吸附中的实验应用。
3.了解溶液表面吸附分子的横截面积的测量方法 。
实验原理1. 溶液表面的过剩物质的量Γ表面张力σ(或比表面Gibbs 函数)是表面化学热力学的重要性质之一。
纯溶剂中溶入溶质形成溶液后,溶液的表面张力不同于纯溶剂。
按照溶液表面张力随溶质浓度的变化规律可把溶质分为三种情况。
溶液的表面张力随溶质浓度的增加而增大;溶液的表面张力随溶质浓度的增加而减小;溶液的表面张力最初随溶质浓度的增加而急剧减小,当达到某一临界浓度时,溶液的表面张力不再随溶质浓度的增加而变化,见图3-30。
定量地描本实验研究正吸附的情况。
只要获得了溶液表面张力随溶质浓度的变化曲线,就可用微 分法得到某一浓度下的(d σ/d c )T,,然后依据方程(3-63)得到表面过剩物质的量Γ。
2。
饱和表面过剩物质的量与吸附分子的横截面积对于正吸附的情况,溶质分子在溶液表面过剩物质的量Γ取决于溶质在溶液本体的浓度。
在本体浓度较小时,Γ随c 的增加而增大,当溶液表面已经盖满一层溶质分子时,Γ达到最大,用符号Γ∞表示。
称为饱和表面过剩物质的量。
若以1/Γ 对π(称为表面压力)作图则得图3-31;π的定义如式(3-64):π=σ0 -σ (3-64)述这一规律的方程是Gibbs 等温吸附方程 ()c RT c ΓTd d σ-= (3-63) 式(3-63)中,Γ被Gibbs 称为表面过剩物质的量,单位为mol·m -2。
对某些溶液系统(如电解质溶液系统)式中的浓度c 有时要用活度a 代换。
由图3-30,对曲线A ,(d σ/d c )T >0,Γ<0,这种情况称为负吸附。
对曲线B 和C ,(d σ/d c )T <0,Γ>0,这种情况称为正吸附。
由图3-31看出,当π较大时(即浓度c 较小时)1/Γ趋向于一个定值,此定值即1/Γ∞。
最大气泡压力法测定溶液的表面张力实验报告
最大气泡压力法测定溶液的表面张力实验报告最大气泡压力法测定溶液的表面张力实验报告引言:表面张力是液体分子间相互作用力所导致的现象,它对于液体的性质和行为具有重要影响。
本实验采用最大气泡压力法来测定溶液的表面张力,通过实验数据的分析,探究不同溶液浓度对表面张力的影响。
实验目的:1. 了解表面张力的概念和测定方法;2. 掌握最大气泡压力法测定溶液表面张力的实验操作;3. 分析不同溶液浓度对表面张力的影响。
实验原理:最大气泡压力法是一种常用的测定溶液表面张力的方法。
实验中,将一根细玻璃管插入液面,通过调节压力差,使气泡从玻璃管中产生并脱离液面,此时气泡的半径与液体表面张力成正比。
通过测量气泡的半径和液体的密度,可以计算出溶液的表面张力。
实验步骤:1. 准备实验所需材料和仪器,包括细玻璃管、溶液、压力计等;2. 将细玻璃管插入液面,调节压力差,使气泡从玻璃管中产生并脱离液面;3. 测量气泡的半径和液体的密度;4. 计算溶液的表面张力。
实验结果与分析:根据实验数据计算得到不同溶液浓度的表面张力值,并进行比较分析。
实验结果显示,随着溶液浓度的增加,表面张力呈现下降的趋势。
这是因为溶液浓度的增加会导致溶质分子在液体表面的分布增多,从而减弱液体分子间的相互作用力,进而降低表面张力。
实验误差分析:在实验过程中,由于操作技巧和仪器精度等因素的影响,可能会产生一定的误差。
例如,测量气泡半径时,由于气泡形状的不规则性,可能会导致测量结果的误差。
此外,实验中还需要考虑环境因素对实验结果的影响,如温度、湿度等。
实验改进:为减小实验误差,可以采取以下改进措施:1. 提高操作技巧,尽量保持气泡形状的规则性;2. 使用更精确的仪器和测量方法,如使用显微镜观察气泡形状,使用更精确的测量仪器测量气泡半径;3. 控制实验环境的温度和湿度,避免外界因素对实验结果的干扰。
结论:通过最大气泡压力法测定溶液的表面张力,我们得出了不同溶液浓度对表面张力的影响。
气泡最大压力法测定溶液的表面张力实验报告
气泡最大压力法测定溶液的表面张力实验报告本实验的目的是通过气泡最大压力法测定不同浓度的表面活性剂溶液的表面张力,探究表面张力与溶液浓度之间的关系,并深入理解表面张力的概念及其在生活中的应用。
实验器材:1. 气泡最大压力法仪器2. 不同浓度的表面活性剂溶液3. 实验室天平4. 滴管5. 纸巾实验步骤:1. 将气泡最大压力法仪器调至初始状态,确保其工作正常。
2. 分别取出不同浓度的表面活性剂溶液,通过天平精确称取出10mL的溶液。
3. 将取出的溶液倒入气泡最大压力法仪器的试管中,并通过滴管将溶液表面涂上适量的矿物油,以防止气泡的破裂。
4. 将气泡最大压力法仪器的气泡管顶端浸入溶液中,启动仪器,并等待仪器读数稳定。
5. 调节气泡最大压力法仪器的气泡大小,直至气泡破裂,记录下此时的最大压力值。
6. 重复以上步骤,分别测量不同浓度的表面活性剂溶液的最大压力值,并记录下每组数据。
7. 将测得的数据绘制成表格或图表,分析表面张力与溶液浓度之间的关系。
实验结果:通过气泡最大压力法测量,我们得出了不同浓度的表面活性剂溶液的最大压力值。
根据实验数据可得出:随着表面活性剂的浓度增加,溶液的表面张力逐渐降低,且下降的趋势越加明显。
实验结论:根据以上实验结果,我们可以得出结论:表面张力与溶液浓度之间存在着一定的关系。
在实验中,我们发现随着表面活性剂的浓度增加,表面张力逐渐降低。
这是因为表面活性剂的分子能够在液体表面形成一层分子膜,使得表面张力降低,表面张力大小直接决定着液体的表面活性能力,因此表面活性剂的应用十分广泛,如肥皂、洗涤剂等。
通过本实验,我们深入理解了表面张力的概念及其在生活中的应用,同时也掌握了气泡最大压力法测定溶液表面张力的方法和技巧。
实验七-最大气泡压力法测定溶液的表面张力
一、实验目的1.掌握最大气泡压力法测定外表X力的原理和技术。
2.通过对不同浓度乙醇溶液外表X力的测定,加深对外表X力、外表自由能、外表X力和吸附量关系的理解。
二、实验原理1、在一定温度下纯液体的外表X力为定值,当参加溶质形成溶液时,外表X力发生变化,其变化的大小决定于溶质的性质和参加量的多少。
根据能量最低原理,溶质能降低溶剂的外表X力时,外表层溶质的浓度比溶液内部大;反之,溶质使溶剂的外表X力升高时,它在外表层中的浓度比在内部的浓度低,这种外表浓度与内部浓度不同的现象叫做溶液的外表吸附。
在指定的温度和压力下,溶质的吸附量与溶液的外表X力及溶液的浓度之间的关系遵循吉布斯吸附等温式:Γ = –〔c/RT〕*〔dγ/dc〕①式中,Г为溶液在表层的吸附量;γ为外表X力;c为吸附到达平衡时溶液在介质中的浓度。
根据朗格谬尔〔Langmuir〕公式:Γ =Γ∞Kc/〔1+Kc〕②Γ∞为饱和吸附量,即外表被吸附物铺满一层分子时的Γ∞c/Γ =〔1+Kc〕/〔Γ∞K〕= c/Γ∞+1/Γ∞K ③以c/Г对c作图,那么图中该直线斜率为1/Г∞。
由所得的Г∞代入A m=1/Г∞L可求被吸附分子的截面积〔L为阿伏伽德罗常数〕。
2、本实验用气泡最大压力法测定溶液的外表X力,其仪器装置如图1所示:图1、最大气泡压力法测量外表X力的装置示意图1、恒温套管;2、毛细管〔r在0.15~0.2mm〕;3、U型压力计〔内装水〕;4、分液漏斗;5、吸滤瓶;6、连接橡皮管。
将待测外表X力的液体装于外表X力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,翻开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力〔△P=P大气–P系统〕在毛细管端面上产生的作用力稍大于毛细管液体的外表X力时,气泡就从毛细管口脱出,此附加压力与外表X力成正比,与气泡的曲率半径成反比,其关系式为:ΔP=2γ/R ④式中,ΔP为附加压力;γ为外表X力;R为气泡的曲率半径。
最大气泡压力法测定溶液的表面张力
最大气泡压力法测定溶液的表面张力一、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在一个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于并指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大一平方米表面所需的最大功A 或增大一平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J ·m -1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N ·m -1。
如欲使液体表面面积增加ΔS 时,所消耗的可逆功A 应该是:一A =ΔG =σΔS (1)液体的表面张力与温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-RT c (c∂∂σ)T (2) 式中:Γ为吸附量(mol ·m -1);σ为表面张力(J ·m -1);T 为绝对温度(K);c 为溶液浓度(mol .L -1);R 为气体常数(8.314J .K —I ·mol -1)。
(c∂∂σ)T 表示在一定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即(c∂∂σ)T <0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即(c ∂∂σ)T >0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12
T=286.15K P=85.02kPa
一、实验目的
1.掌握最大气泡法测定溶液表面张力的原理和方法
2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量
3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解
二、实验原理
处于溶液表面的分子,受到不平衡的分子间力的作
用而具有表面张力s.
气泡最大压力法测定表面张力装置见实物;实验中
通过滴水瓶滴水抽气使得体系压力下降,大气压与体系
压力差△p逐渐把毛细管中的液面压至管口,形成气泡。
如果毛细管半径很小,则形成的气泡基本上是球形的;
当气泡开始形成时,表面几乎是平的,这时曲率半径最
大;随着气泡的形成,曲率半径逐渐变小,直到形成半球
形,这时曲率半径R和毛细管半径r相等,曲率半径达
最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max
=σ/r min。
气泡进一步长大,R变大,附加压力则变小,
直到气泡逸出。
加入表面活性物质时溶液的表面张力会下降,溶质
在表面的浓度大于其在本体的浓度,此现象称为表面吸
附现象;
单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).
对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc
朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞
Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)
三、仪器与试剂
恒温槽装置;数字式微压差计;
抽气瓶l个;表面张力测定仪
烧杯(1000mL);T形管1个;
电导水;
正丁醇(A.R.)及其不同浓度的标准溶液;
四、实验步骤
1.仪器常数的测定
将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。
2.测定正丁醇溶液的表面张力
用同样的方法测定不同浓度的正丁醇溶液的最大压差,由稀到浓依次测定;每个浓度的溶液测量前,表面张力测定仪和毛细管一起用该溶液荡洗二至三次;每份溶液恒温至少3-5min之后,开始读数。
3. 重复测定电导水的数据。
注意事项:仪器系统不能漏气;测定用的毛细管一定要洗干净,否则气泡可能不能连续稳定的流过,而使压差计读数不稳定,如发生此种现象,毛细管应重洗;毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插;在数字式微压差测量仪上,应读出气泡单个逸出是的最大压力差;正丁醇溶液要准确配置,使用过程防止挥发损失;从毛细管口脱出气泡每次应为一个,即间断脱出;表面张力和温度有关,因此要等溶液恒温后再测量。
五、实验记录及数据处理 恒温槽温度298.25K
1. 查室温下水的表面张力 s( H 2O ) (25℃、σH2O =71.97dyn/cm = 71.97mN/m ) 计算仪器常数: k=σ/ΔP max =71.97e-3/5204=1.38297e-5m r=6.915e-6m
2. 利用计算机作s ~c 图,拟合曲线方程:
0.040
0.0450.0500.0550.0600.0650.070
0.075σ (N *m -1
)
C (mol*L -1
)
3.求导得到d s /dc 代入吉布斯方程可计算溶液表面吸附量Γ; y=a+b*ln(1+c*x)
a=0.07203 b=-0.01715 c=0.00315
d σ/dc= dy/dx=bc/(1+c*x)= -0.01715*0.01631/(1+0.01631*x) Γ=-(c/RT)*( d σ/dc)
4.再利用计算机作 c/Γ~c图,拟合直线方程,由直线斜率可得饱和吸附量Γ∞= 1/A.计算出横截面积 A:
Γ∞=6.9186 e-6 mol*m-2
A m=1/(L*Γ∞)=2.24e-19m2
六、思考题
1.本实验结果的准确与否关键决定于哪些因素?
仪器系统的气密性;测定用的毛细管是否干净,实验中气泡是否平稳流过;毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插(1mm的水柱产生的压强约是10pa);从毛细管口脱出气泡每次应为一个,即间断脱出;表面张力和温度有关,要等溶液恒温后再测量。
2.毛细管内径均匀与否对结果有无影响?
P s dV=σdA s dA s=8πRdR dV=4πR2dR Ps=2σ/R 曲率半径愈小,受到的附加压力愈大,曲率半径等于毛细管口半径时,附加压力最大,再测定的时毛细作用中吸入的液体的量与内径均匀程度有关,所以有影响。
3.气泡如出的很快或连续3-4个一齐出,对结果各有什么影响?毛细管尖端为何要刚好接触液面?
气泡出的很快,压强变化过快,压差计将不能很好的响应压强的变化;气泡连续出会导致压差计读数不稳定。
离开液面将不会有气泡产生,
4.本实验s-c图形应该是一怎样的图形?将所得的结果与手册上查到结果进行比较试分析产生误差
的原因。
s-c图形应该是一条曲线,物质不同曲线不同
从毛细管口脱出气泡每次应为一个,控制的不是很好,测出的数据有16pa的偏差。
七、实验讨论
1.如果液面是弯曲,其表面的作用力不是水平的,将有一个合力,当液面为凸时,合力指向液体内部,当液面为凹时,合力指向液体外部,这就是附加压力的来源。
由于附加压力而引起的液面与管外液面有高度差的现象称为毛细管现象。
2.毛细管清洁处理应特别的予以重视,热风吹干及电炉烘烤的办法应当避免,荡洗是好办法,但应尽量彻底。
毛细管内部可借助洗耳球,但必须细心,不应使液体进入洗耳球内。
在实验中,按浓度从小到大的顺序测定,降低不同浓度溶液之间的影响。
3. 测定液体表面张力除气泡的最大压力法外,常用的还有毛细管上升法、滴重法等。
4. Γ>0 正吸附,Γ<0 负吸附,Γ=0 无吸附作用,
5.数据处理用不同的软件,得到的结果有一定的差别,Excel2003、2007、及WPS的拟合结果会有一点差别,更精确的数据处理软件是Origin和Matlab
6.实验中观察毛细管的半径是比较大的,在洗毛细管时不用洗耳球,液体就可流下,但计算得到的半径是r=6.915e-6m相当的小。