二次函数与距离最小值问题
二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。
在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。
关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。
小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。
变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。
分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。
,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。
分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。
变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。
二次函数的最大值与最小值

二次函数的最大值与最小值在数学的世界中,函数是关系,它都是把输入值映射到另一个值的方法。
其中,二次函数是最重要的一类函数之一,广泛应用于数学、物理、统计学、经济学和其他领域。
本文将主要讨论二次函数的最大值与最小值问题。
首先,让我们来了解一下什么是二次函数。
二次函数是一类函数的简称,也就是满足如下形式的函数:y = ax + bx + c其中a、b、c为常数。
最重要的是,当a不等于0时,它是一个平方函数,如果a等于0,它就变成一个一次函数。
若a>0,函数图像开口向上;若a<0,函数图像开口向下。
接下来,让我们来讨论二次函数的最大值与最小值问题。
无论是最大值还是最小值,它们都是依靠函数的极值点来求得的。
通常,要找到极值点,首先需要求出函数的导数,然后将求出来的导数等于零,极值点就在d/dx=0的位置。
在二次函数y=ax+bx+c中,它的导数为:dy/dx = 2ax + b设dy/dx=0,可解得:2ax+b=0=>x = -b/2a将x的值代入二次函数中,可得:y = f(-b/2a)这里的y即为二次函数的极值点,也就是最大值或最小值,具体取决于二次函数的系数a的正负值,若a>0,极值点即为最小值;若a<0,极值点即为最大值。
有了极值点,我们就可以求得二次函数的最大值与最小值,比如有这样一个二次函数:y = 6x + 8x + 10它的导数为:dy/dx = 12x + 8将其等于零,可求出极值点的位置:=>12x + 8 = 0=>x = -8/12即极值点的位置为x = -2/3。
将x = -2/3代入原函数中,可求得极值:y = 6(-2/3) + 8(-2/3) + 10=>y = 10 - 8/3=>y = 10 - 2.66667=>y = 7.33333故二次函数y = 6x + 8x + 10的极小值y = 7.33333。
二次函数的最值问题与问题解决技巧

二次函数的最值问题与问题解决技巧二次函数是高中数学中一个重要的概念,它有许多实际应用并且涉及到最值问题。
解决这类问题需要一定的技巧和方法。
本文将介绍二次函数的最值问题以及解决这些问题的技巧。
一、二次函数的最值问题最值问题在数学中非常常见,它代表了在一定条件下,函数的最大值或最小值。
对于二次函数而言,最值问题可以通过确定二次函数的开口方向以及顶点位置来解决。
1. 二次函数的开口方向对于二次函数y=ax²+bx+c,其中a,b,c为常数,a不等于0。
通过a的正负可以判断二次函数的开口方向。
当a大于0时,二次函数的开口是向上的,形状像一个U;当a小于0时,二次函数的开口是向下的,形状像一个倒U。
2. 顶点的横坐标和纵坐标二次函数的最值就出现在顶点处,因此需要确定顶点的横坐标和纵坐标。
对于一般形式的二次函数y=ax²+bx+c,顶点的横坐标为x=-b/2a,可以通过对称轴求得;顶点的纵坐标为y=f(-b/2a),即将x=-b/2a代入函数中计算得到。
3. 最值问题的解答根据二次函数的开口方向和顶点的位置,可以得到最值问题的解答。
当二次函数开口向上时,顶点是函数的最小值;当二次函数开口向下时,顶点是函数的最大值。
二、解决二次函数最值问题的技巧解决二次函数最值问题的技巧主要包括图像法、配方法、导数法等。
1. 图像法通过绘制二次函数的图像,可以直观地找出函数的最值。
根据二次函数的开口方向和顶点的位置,可以判断最值是最小值还是最大值。
2. 配方法当二次函数的系数a不为1时,可以使用配方法将其转化为完全平方的形式,从而更容易找到最值。
例如对于二次函数y=ax²+bx+c,可以将x²+bx转化为(x+b/2a)²-b²/4a,然后再根据顶点的位置判断最值。
3. 导数法通过对二次函数求导,可以得到导函数,进而求出极值点。
导数为0处的x值就是函数的极值点,通过计算可以得到相应的y值。
二次函数中线段最值问题

二次函数中线段最值问题二次函数中的线段最值问题(一)例1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3),顶点为M。
求抛物线的解析式和对称轴上使得PA+PC最小的点P的坐标。
解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c3=a(0)^2+b(0)+c化简后可得:y=x^2-2x-32)对称轴为x=1,因此P的横坐标为1.设P的纵坐标为y,则根据距离公式可得:PA+PC=sqrt[(1+1)^2+y^2]+sqrt[(1-0)^2+(y+3)^2]对其求导并令其为0,可得y=-1/2.因此P的坐标为(1,-1/2),PA+PC的最小值为3.练1:如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x^2+2x+3经过点B、C,与x轴另一交点为A,顶点为D。
在x轴上找一点E,使得EC+ED的值最小,求EC+ED的最小值。
解:(1)由已知点可列出四个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c0=a(1)^2+b(1)+cy=aD^2+bD+c化简后可得:y=-x^2+2x+32)对称轴为x=1,因此D的横坐标为1.设E的横坐标为x,则EC+ED=sqrt[x^2+(3-(-x+3))^2]+sqrt[(1-x)^2+D^2]。
对其求导并令其为0,可得x=1/2.因此E的坐标为(1/2,0),EC+ED的最小值为2sqrt(10)。
练2:如图,抛物线经过点A(-1,0)、B(1,0)、C (0,-3),顶点为D。
点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标。
解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(1)^2+b(1)+c3=aD^2+bD+c化简后可得:y=x^2-2x-32)设M的横坐标为x,则△ACM的周长为AC+CM+MA=sqrt[(x+1)^2+9]+2sqrt[(x-D)^2+1]。
最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
专题06 二次函数最小值问题(解析版)

∴△QEF周长的最小值为 ,此时Q( , ).
4.如图1,二次函数y= x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且AO:BN=1:7.
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上的任意一点,过点P作直线l的垂线,垂足为M.求证:点P在线段FM的垂直平分线上;
(3)点E为线段OA的中点,在抛物线上是否存在点Q,使△QEF周长最小?若存在,求点Q的坐标和△QEF周长的最小值;若不存在,请说明理由.
【解答】解:(1)∵y=ax2+bx+c(a≠0)过原点O和点A(3,﹣3),
=(m﹣1)4+ (m﹣1)2+ ,
∴PM2=PF2,
∴PM=PF,
∴点P在MF的垂直平分线上,
(3)如图,E( ),EF= ,
作QN⊥l于N,由(2)知:QN=QF,
∴要想△QEF的周长最小,只要使EQ+QN最小,
作EN'⊥l于N',交抛物线于Q',
∵EQ+QN≥EN',
∴E、Q、N三点共线时,EQ+QN最小,
∴PE×PF最大时,PE×PD也最大,
∴PE×PD=(k+1)(3﹣ k)=﹣ k2+ k+3,
∴当k= 时,PE×PD最大,即:PE×PF最大,
此时G(5, ),
∵△MNB是等腰直角三角形,过B作x轴的平行线,
∴ BH=B1H,GH+ BH的最小值转化为求GH+HB1的最小值,
2021年中考复习: 二次函数压轴题——线段问题

二次函数压轴题——线段问题解析类型一:距离最值常见模型1. “变动的两线段之和的最小值”时大都应用“两点之间的连线中,线段最短”这一模型.2. “变动的两线段之差的最大值”时大都应用“三角形两边之差小于第三边”这一模型.1. 如图,抛物线y =-14x 2+bx +c 的图象过点A (4,0),B (-4,-4),且抛物线与y 轴交于点C ,连接AB ,BC ,AC .(1)求抛物线的解析式;(2)点P 是抛物线对称轴上的点,求△PBC 周长的最小值及此时点P 的坐标;答案:(1)y =−14x 2+12x +2;(2)2√13+6√22.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y =kx +n 与y 轴交于点C ,与抛物线y =﹣x 2+bx +c 的另一个交点为D ,已知A (﹣1,0),D (5,﹣6),P 点为抛物线y =﹣x 2+bx +c 上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作PF ∥y 轴交直线l 于点F ,求PE +PF 的最大值;答案(1)y=−x2+3x+4 ;(2)当x=2时,其最大值为18;3.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.求DE的最大值;【解答】解:(1)y=−x2−4x−3;(2)44.如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P 的坐标及△PAC的周长;若不存在,请说明理由;答案(1)y=−x2+2x+3;(2)p(1,2),√10+3√25.如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;答案:(1)y=−12x2+x+72;(2)32√56.直线132y x=-与抛物线2y x bx c=-++相交于A(),4m-和B(4,n)两点,点P是抛物线位于线段AB上方异于点A,B的一个动点,过点P作PQ⊥x轴,交线段AB于点Q.(1)求抛物线的解析式;(2)在P点运动过程中,线段PQ的长是否存在最大值?若存在,求出这个最大值,并求出此时P点的坐标;若不存在,请说明理由;答案(1)y=−x2+52x+5;(2)P(1,132),最大值9类型二距离和差积关系利用坐标的几何意义求距离1.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.【解答】解:(Ⅰ)(1,﹣4);(Ⅱ)3√2−1(Ⅲ)42.抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|最大?若存在,请求出点M的坐标,若不存在,请说明理由.答案(1)y=x2−4x+3 (2)94;(3)存在.M(2,-3)3.抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.答案(1)14x2+12x−2 ;(2)58。
二次函数最值问题及解题技巧(个人整理)

二次函数最值问题及解题技巧(个人整理)一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值规模判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可2、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)使用二次函数轴对称性及两点之间线段最短找到两条变革的边,并求其和的最小值3)周长最小值即为两条变革的边的和最小值加上不变的边长3、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)使用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值规模判断最值2、不划定规矩图形面积最值问题1)支解。
二次函数压轴题专题一 最短路径问题

二次函数压轴题专题一最短路径问题——和最小知识梳理最短路径就是无论在立体图形还是平面图形中,两点间的最短距离,常涉及以下 两个方面:1、两点之间,线段最短;2、垂线段最短。
常用思考的方式:1、把立体转化为平面;2、通过轴对称寻找对称点。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
例题导航例1:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。
证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。
例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。
作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。
证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD,··CDA BEa∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB所以抽水站应建在河边的点D 处,常见问题归纳“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.【方法归纳】①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求.④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DElBAllllBAOBOB+EF +CF 最小,则点E ,F 即为所求.⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2)上的一点,点A (0,1)在y轴正半轴.点P 在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.二次函数中最短路径例题例1.(13广东)已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.BOB Oll练习1.(11菏泽)如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.练习2.(12滨州)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.例2.(14海南)如图,对称轴为直线x =2的抛物线经过A (-1,0),C (0,5)两点,与x 轴另一交点为B .已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a =1时,求四边形MEFP 的面积的最大值,并求此时点P 的坐标;(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.【思路点拨】 (1)由对称轴为直线x =2,可以得出顶点横坐标为2,设二次函数的解析式为y =a (x -2)2+k ,再把点A ,B 的代入即可求出抛物线的解析式;(2)求四边形MEFP 的面积的最大值,要先表示出四边形MEFP 面积.直接求不好求,可以考虑用割补法来求,过点P 作PN ⊥y 轴于点N ,由S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME 即可得出; (3)四边形PMEF 的四条边中,线段PM ,EF 长度固定,当ME +PF 取最小值时,四边形PMEF 的周长取得最小值.将点M 向右平移1个单位长度(EF 的长度),得到点M 1(1,1),作点M 1关于x 轴的对称点M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 【解题过程】解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =a (x -2)2+k .将A (-1,0),C (0,5)代入得:⎩⎨⎧9a +k =04a +k =5,解得⎩⎨⎧a =-1k =9,∴y =-(x -2)2+9=-x 2+4x +5.(2)当a =1时,E (1,0),F (2,0),OE =1,OF =2.设P (x ,-x 2+4x +5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN =x ,ON =-x 2+4x +5,∴MN =ON -OM =-x 2+4x +4.S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(PN +OF )•ON -12PN•MN -12OM •OE =12(x +2)(-x 2+4x +5)-12x •(-x 2+4x +4)-12×1×1=-x 2+92x +92 =-(x -94)2+15316 ∴当x =94时,四边形MEFP 的面积有最大值为15316,此时点P 坐标为(94,15316). (3)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3).四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME +PF 最小,则PMEF 的周长将取得最小值. 如答图3,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1);作点M 1关于x 轴的对称点M 2,则M 2(1,-1);连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得:⎩⎨⎧(2+6)m +n =3m +n =-1,解得:m =46-45 ,n =46+45,∴y =46-45x -46+45.当y =0时,解得x =6+54.∴F (6+54,0).∵a +1=6+54,∴a =6+14. ∴a =6+14时,四边形PMEF 周长最小.图1 图2练习3.(11眉山)如图,在直角坐标系中,已知点A (0,1),B (﹣4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B . (1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.例4.(14福州)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了. (1)求点A ,B ,D 的坐标; (2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【思路点拨】(1)由顶点式直接得出点D 的坐标,再令y =0,得12(x -3)2-1=0解出方程,即可得出点A ,B 的坐标;(2)设HD 与AE 相交于点F ,可以发现△HEF 与△ADF 组成一个“8字型”.对顶角∠HFE =∠AFD ,只要∠FHE =∠FAD 即可.因为∠EHF =90°,只需证明∠EAD =90°即可.由勾股定理的逆定理即可得出△ADE 为直角三角形,得∠FHE =∠FAD =90°即可得出结论;(3)先画出图形.因为PQ 为⊙E 的切线,所以△PEQ 为直角三角形,半径EQ 长度不变,当斜边PE 最小时,PQ 的长度最小.设出点P 的坐标,然后表示出PE ,求出PE 的最小值,得到点P 的坐标,再求出点Q 的坐标即可.【解题过程】解:(1)顶点D 的坐标为(3,-1).令y =0,得12 (x -3)2-1=0,解得x 1=3+2,x 2=3-2.∵点A 在点B 的左侧,∴A 点坐标(3-2,0),B 点坐标(3+2,0).(2)过D 作DG ⊥y 轴,垂足为G .则G (0,-1),GD =3.令x =0,则y =72,∴C 点坐标为(0,72).∴GC =72-(-1) = 92.设对称轴交x 轴于点M .∵OE ⊥CD ,∴∠GCD +∠COH =90︒.∵∠MOE +∠COH =90︒,∴∠MOE =∠GCD .又∵∠CGD =∠OMN =90︒,∴△DCG ∽△EOM . ∴CG OM =DGEM ,即923=3EM .∴EM =2,即点E 坐标为(3,2),ED =3. 由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2. ∴△AED 是直角三角形,即∠DAE =90︒.设AE 交CD 于点F .∴∠ADC +∠AFD =90︒.又∵∠AEO +∠HFE =90︒, ∴∠AFD =∠HFE ,∴∠AEO =∠ADC .(3)由⊙E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小.设P 坐标为(x ,y ),由勾股定理,得EP 2=(x -3)2+(y -2)2.∵y =12 (x -3)2-1,∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2+5.当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)21=1,解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上,∴x 1=1舍去.∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).例5.(14遂宁)已知:直线l :y =﹣2,抛物线y =ax 2+bx +c 的对称轴是y 轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q ,求证:PO =PQ .(3)请你参考(2)中结论解决下列问题:(i )如图②,过原点作任意直线AB ,交抛物线y =ax 2+bx +c 于点A 、B ,分别过A 、B 两点作直线l 的垂线,垂足分别是点M 、N ,连结ON 、OM ,求证:ON ⊥OM . (ii )已知:如图③,点D (1,1),试探究在该抛物线上是否存在点F ,使得FD +FO 取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.【解题过程】解:(1)由题意,得⎩⎨⎧-b 2a =0-1=c 0=4a +2b +c ,解得:⎩⎨⎧a =14b =0c =-1,∴抛物线的解析式为:y =14x 2-1; (2)如图①,设P (a ,14a 2﹣1),就有OE =a ,PE =14a 2﹣1,∵PQ ⊥l ,∴EQ =2,∴QP =14a 2+1.在Rt △POE 中,由勾股定理,得PO =a 2+(14a 2-1)2=14a 2+1,∴PO =PQ ; (3)(i )如图②,∵BN ⊥l ,AM ⊥l ,∴BN =BO ,AM =AO ,BN ∥AM ,∴∠BNO =∠BON ,∠AOM =∠AMO ,∠ABN +∠BAM =180°.∵∠BNO +∠BON +∠NBO =180°,∠AOM +∠AMO +∠OAM =180°,∴∠BNO +∠BON +∠NBO +∠AOM +∠AMO +∠OAM =360°,∴2∠BON +2∠AOM =180°, ∴∠BON +∠AOM =90°,∴∠MON =90°,∴ON ⊥OM ;(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,∴∠EGH =∠GHF ′=∠F ′EG =90°,FO =FG ,F ′H =F ′O ,∴四边形GHF ′E 是矩形,FO +FD =FG +FD =DG ,F ′O +F ′D =F ′H +F ′D ,∴EG =F ′H ,∴DE <DF ′,∴DE +GE <HF ′+DF ′,∴DG <F ′O +DF ′,∴FO +FD <F ′O +DF ′,∴F 是所求作的点.∵D (1,1),∴F 的横坐标为1,∴F (1,54).l。
九年级数学上册复习专题15二次函数中最短路径问题

专题15二次函数中最短路径问题【做题思路】:一般在二次函数中,会求PA+PC的最小值,且点P为动点;对于这类问题,首先将动点所在直线作为“河”,根据“将军饮马问题”的作图步骤,作出图形。
【做题步骤】:①首先找出“河”:动点所在直线就是“河”;②选出其中一个特殊定点,做关于“河”的对称点;③连接对称点与另一个定点;④连线与河的交点即为动点所在位置,连线长度即为最短路径长(可以用两点之间距离公式);【变换类型】求一个三角形的周长最短:周长就是三条线段相加,其中有一条线段是确定的,两条线段长随着动点运动而变化,那么只需要求出与动点相连两定点的线段最小值即可,也就是求两个线段的最小值。
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】1.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 2.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M,N 分别是AB,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C D .23.如图,在平面直角坐标系中,已知点A (2,3),点B (﹣2,1),在x 轴上存在点P 到A ,B 两点的距离之和最小,则P 点的坐标是 .4.如图,A (3,4),B (0,1),C 为x 轴上一动点,当△ABC 的周长最小时,则点C 的坐标为_________.1.如图,已知直线y=12x+1与y 轴交于点A ,与x 轴交于点D ,抛物线y= 12x 2+bx+c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).在抛物线的对称轴上找一点M ,使|AM ﹣MC|的值最大,求出点M 的坐标__________.2.如图,抛物线y=﹣x 2﹣2x+3与x 轴交于A 、B 两点,与y 轴交于C 点,M 点在抛物线的对称轴上,当点M 到点B 的距离与到点C 的距离之和最小时,点M 的坐标为_____.3.如图,已知直线1y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).在抛物线的对称轴上找一点M ,使AM MC -的值最大,求出点M 的坐标___阅读材料:例:说明代数式的几何意义,并求它的最小值.P (x ,0)是x 轴上P 与点A (0,1P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA +PB 的最小值.设点A 关于x 轴的对称点为A′,则PA =PA′,因此,求PA +PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB,因为A′C=3,CB =3,所以A′B=.根据以上阅读材料,解答下列问题:(1)P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)(2)代数式已知()()1,2,7,4A B ,M ,N 是x 轴上两动点(M 在N 左边),3MN =,请在x 轴上画出当AM MN NB ++的值最小时,M ,N 两点的位置.1.如图1,抛物线2y ax bx =+与x 轴交于点A ,对称轴与抛物线交于点()2,2B -,与x 轴交于点C .(1)求抛物线的解析式.(2)点D 是y 轴上的动点,求DAB ∆的最小周长.(3)如图2,点P 是抛物线上一个动点,,PA PO 分别与BC 交于点,M N .①若动点P 在第一象限,问MC NC -的值是否发生变化.若不变,求出其值;若发生变化,请说明理由. ②若动点P 在第二象限,请给出①中类似的关于MC 与NC 长的结论(不必证明).2.已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A 、B 两点,与y 轴交于点C ,其中()30A -,、()0,2C -.(1)求这条抛物线的函数表达式.(2)在对称轴上是否存在一点P ,使得PBC ∆的周长最小.若存在请求出点P 的坐标.若不存在请说明理由.3.如图,已知直线33y x =-分别交x 轴、y 轴于A 、B 两点,抛物线2y x bx c =++经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与A 点不重合).(1)求抛物线的解析式;(2)在抛物线的对称轴上求一点P ,使ABP ∆的周长最小,并求出最小周长和P 点的坐标;(3)在抛物线的对称轴上,是否存在点M ,使ABM ∆为等腰三角形?若不存在,请说明理由;若存在,求出点M 的坐标.4.如图,一元二次方程x 2+2x,3=0的两根x 1,x 2,x 1,x 2)是抛物线y=ax 2+bx+c 与x 轴的两个交点C,B 的横坐标,且此抛物线过点A,3,6,, ,1)求此二次函数的解析式;,2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点G ,则P 点坐标为 ,G 点坐标为 , ,3)在x 轴上有一动点M ,当MG+MA 取得最小值时,求点M 的坐标.5.如图,以D 为顶点的抛物线2y ax 2x c =++交x 轴于点A ,(6,0)B ,交y 轴于点(0,6)C .(1)求抛物线的解析式;(2)在直线BC 上有一点P ,使PO PA +的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由. 6.如图,抛物线y=12x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A(一1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.7.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A,,1,0,B,3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.,1)求抛物线的解析式和直线AC 的解析式;,2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;,3)试探究:在拋物线上是否存在点P ,使以点A,P,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.8.在平面直角坐标系中,O 为原点,抛物线2(0)y ax x a =≠经过点3)A -,对称轴为直线l ,点O 关于直线l 的对称点为点B .过点A 作直线//AC x 轴,交y 轴于点C . (Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P 在y 轴上,当PA PB +的值最小时,求点P 的坐标; (Ⅲ)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=,若存在,求出点Q 的坐标;若不存在,请说明理由. 9.如图,直线43y x =与抛物线268y x x =-+交于A ,B 两点(其中点A 在点B 的左侧),与抛物线的对称轴交于点C ,抛物线的顶点为D ,点B 的坐标为()6,8,在抛物线的对称轴上找一点F ,使35BF CF +的值最小,求满足条件的点F 的坐标.试卷第11页,总11页。
二次函数最值题分类精选---取值范围

二次函数最值题分类精选---取值范围二次函数是中学数学中比较基础和重要的一章,对于二次函数最值问题的分类和解决具有重要的意义。
在许多情况下,我们需要讨论二次函数的取值范围来解决最值问题。
一、二次函数与取值范围对于标准的二次函数 $f(x)=ax^2+bx+c(a \neq 0, x \in R)$,其对称轴为 $x=-\frac{b}{2a}$,开口方向由系数 $a$ 的正负号决定。
当 $a>0$ 时,二次函数开口向上,最小值为 $\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
当 $a<0$ 时,二次函数开口向下,最大值为 $\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
二、二次函数最值问题分类在讨论二次函数的最值问题时,可以把问题分为以下两类:1. 二次函数最小值问题当二次函数开口向上时,函数存在最小值,最小值为$\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
2. 二次函数最大值问题当二次函数开口向下时,函数存在最大值,最大值为$\frac{4ac-b^2}{4a}$,当 $x=-\frac{b}{2a}$ 时取到。
三、应用案例1. 数列问题在一个数列中,第 $n$ 项为 $a_n=n^2-2n+3(n \in N^*)$,求该数列的最大值。
分析:将 $a_n$ 化为标准的二次函数形式,得 $a_n=(n-1)^2+2$,开口向上,最小值为 $2$,当 $n=1$ 时取到。
因此,该数列的最大值为 $a_1=2$。
2. 圆外切正方形问题已知一个半径为 $r$ 的圆,内切一个边长为 $a$ 的正方形。
现在把正方形边长加倍成 $2a$,请问圆心到正方形顶点的距离 $d$ 的最小值是多少?分析:圆心到正方形顶点的长度就是圆形半径到正方形顶点的长度,最小值即为圆心到正方形的最远距离,可以证明正方形对于圆心的影响取决于正方形对角线与圆的位置关系。
二次函数求线段最值问题

二次函数求线段最值问题二次函数求线段最值问题是指给定一个二次函数,要求求出函数在某个线段上的最大值或最小值。
以下是求解二次函数线段最值问题的详细步骤:1. 确定二次函数公式:首先,确定二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b和c分别为常数。
根据具体问题的条件,可以得到函数的具体表达式。
2. 确定线段的范围:根据问题中给定的线段范围,确定函数的自变量x的取值区间。
这个区间必须在函数的定义域内。
3. 确定最值类型:判断问题中要求求解的是最大值还是最小值。
这可以通过问题的描述或背景来确定。
4. 求解最值点:针对求解最大值或最小值的情况,进行以下步骤:- 求解函数的导数f'(x)。
导数可以通过对函数f(x)进行求导得到。
- 解求导函数f'(x)的解析解或数值解。
这些解即为函数的驻点,也就是函数取得最值的可能点。
- 验证驻点是否在线段范围内。
检查求得的驻点是否在给定的线段范围内。
如果在范围内,则进入下一步;如果不在范围内,则取线段端点的函数值作为最值点。
- 计算驻点或线段端点的函数值。
将驻点或线段端点的x值代入二次函数,计算对应的函数值。
- 比较函数值大小,找出最值点。
比较上一步中得到的函数值,找出最大值或最小值点。
5. 补充边界情况:除了在线段内求解最值以外,还需要检查函数在线段的端点处的函数值。
比较端点的函数值与之前求得的最值点的函数值,确定最终的最值点。
6. 验证最值点:最后,将求得的最值点代入二次函数,验证它们是否为最大值或最小值。
即比较最值点的函数值与其他可能的函数值,以确定最值点的正确性。
以上是求解二次函数线段最值问题的详细步骤。
通过这些步骤,可以找到函数在给定线段上的最大值或最小值点。
注意,在具体的问题中,可能需要对步骤进行一些适当的调整和修改,以适应不同的求解需求。
二次函数最大值最小值应用题

1. 应用背景二次函数是一种常见的数学函数形式,由于其形态简单而又具有一定的灵活性,因此在实际应用中得到广泛运用。
其中,二次函数的最大值和最小值问题是最常见的一个应用情况。
实际上,这个问题可以涉及到很多不同的领域,如物理、经济、工程等。
下面将以一个物理问题为例来解释二次函数最大值最小值应用题的实际应用情况。
2. 应用过程假设有一个运动员从空中跳下,其高度与距离的关系可以用二次函数来表示。
我们将建立一个简单的物理模型,来解释这个问题。
(1)建立模型假设运动员从跳下的一瞬间开始计时,下落的过程中,其高度(h)与时间(t)的关系可以描述为:h = -5t^2 + 10t,其中,t的取值范围是大于0小于等于内率10秒的实数。
(2)求最大值我们的目标是求得运动员下落过程中的最大高度。
在这个问题中,需要求解二次函数h = -5t^2 + 10t的最大值。
首先,我们可以将二次函数用标准形式表示:h = -5t^2 + 10t = -5(t^2 - 2t) = -5(t - 1)^2 + 5。
根据二次函数的性质,当t = 1时,二次函数取得最大值,且最大值为5。
利用二次函数最大值的性质,我们可以得知,从跳下开始,运动员的高度会不断增加,直到达到5米的最大高度,之后又会开始减小。
(3)求最小值我们再来看一看运动员的最小高度。
在这个问题中,需要求解二次函数h = -5t^2 + 10t的最小值。
同样地,我们可以将二次函数用标准形式表示:h = -5t^2 + 10t = -5(t^2 - 2t) = -5(t - 1)^2 + 5。
根据二次函数的性质,当t = 1时,二次函数取得最小值,且最小值为5。
我们可以得知,在运动员下落的过程中,他达到5米的最大高度之前,高度不断增加,直到达到5米的最大高度。
然后,高度又会减小,直到到达5米的最小高度,之后开始重新上升。
3. 应用效果这个简单的物理模型说明了二次函数最大值最小值应用题的实际应用情况。
九年级数学 二次函数的最大值与最小值

二次函数的最大值与最小值许多人都知道当把一个苹果抛向空中时,苹果会飞向空中,但它的速度会逐渐减小,并最终不向上运动(瞬间静止在空中),之后再加速落下。
这是因为物体受重力的缘故。
但其实,将苹果运行的时间与高度在坐标系中画出来,就是一个弧线,而且不是一般的弧线,是二次函数。
对于一个二次函数来说,它有正向的弧,也有倒的弧。
正弧的最高点是函数的最大值,而倒向的最低点则是最小值。
今天,我们就围绕着二次函数的最大与最小值来到论一下。
摘要:通过对二次函数的一些研究,来了解并掌握求二次函数的最大与最小值的方法。
一、出现的原因二次函数之所以会出现最大至于最小值,我们就要从它的根源说起。
二次函数的表达式可写为y=ax2+bx+c(abc均为常数,a≠0),其中的ax2+bx+c与我们所学一元二次方程有几分相像。
其实,二次函数与一元二次方程的就如同一次函数与二元一次方程的关系基本一致。
我们可以把原式写为ax2+bx+c+y=0,为了方便讨论且自变量与因变量的影响是互相的,所以我们就先假设y是改变x的自变量。
那么每一次在求值时我们都会先取一个y的值。
这时,y就可以看做一个常数那么我们就把它与常数项c写在一起,即ax2+bx+(c+y)=0,这下子整个式子中只有x是一个变量,这个式子也就是一个地地道道的一员二次方程了。
而这个方程中abc 是固定不变的,因而y的改变会改变式子的常数项,这样一来,在解方程的时候, (c+y)的值与前面的ab相配合组成的方程可能有两个不相等的实根或两个相等的实根或没有实根。
这也就说明了当y值固定时,可能有两个x满足,或只有一个,或没有。
再从x的角度来说,有两个x可以造成同一个y值,但这两个点关于一个点对称,这个点就是特殊点,即最大(小)值,而不论x如何变化,y总有一道不可逾越的鸿沟,到达固定点后就会折返。
因此二次函数的这一特性造就了它的最大(小)值。
二、判定最大还是最小既然二次函数有最大或最小值,那么那种会有最大值,那种会有最小值呢?我们就来讨论一下。
二次函数中最值问题(教师版)

二次函数与几何综合专题----线段最值问题将军饮马:这个将军饮的不是马,是数学!原理:两点间线段最短;点到直线的垂直距离最短;对称(翻折)、平移.策略:对称(翻折)→化同为异、化异为同;化折为直.两村一路(异侧)和最小两村一路(同侧)和最小两路一村和最小两村两路和最小两村一路和最小两村一路(同侧)差最大两村一路(异侧)差最大例:如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.PN y轴交AC于N,求线段PN的最大值及此时点P (2)直线AC下方的抛物线上有一动点P,过点P作//的坐标.于H,求线段PH的最大值及此时点P的坐标.(3)直线AC下方的抛物线上有一动点P,过点P作PH AC(4)直线AC 下方的抛物线上有一动点P ,过点P 作//PN y 轴交AC 于N ,过点P 作PH AC 于H ,求PNH △周长的最大值及此时点P 的坐标.(5)在抛物线对称轴上找一点N ,使得BCN △的周长最小,求BCN △周长的最小值及此时点N 的坐标.⊥交AC于点M,求CM的最小值.(6)在线段OA上找一点N,连接NC,作NM NCMN=,求四边形BNMC周长的最小值及(7)在抛物线对称轴上有两动点N、M(点N在点M上方),且1此时M的坐标.(8)在对称轴上找一点N ,使得NA NC -最大,求点N 的坐标.【答案】(1)223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4);(2)PN 的最大值为94,此时P (-32,154-);(3)当PN 最大为94时,PH 92P (-32,154-);(4)当PNH △周9294,此时P (-32,154-);(5)1032N (-1,-2);(6)1262-(7)6105(8)10131,M (713-,-);(9)N 的坐标为:(-1,-6). 【详解】(1)解:∵3OA OC ==, ∴A (-3,0),C (0,-3),∴()20333b c c ⎧=--+⎪⎨-=⎪⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4). (2)解:设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,此时P (-32,154-).(3)解:过点P 作PN ∥y 轴,交AC 于点N , ∵OA =OC =3, ∴∠ACO =45°, ∵PN ∥y 轴,∴∠PNH =45°,即:PNH 是等腰直角三角形,∴PH 2PN , 设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,∴当PN 最大为94时,PH 最大值=94×22=928,此时P (-32,154-).(4)解:∵OA =OC =3, ∴∠ACO =45°, ∵PN ∥y 轴,∴∠PNH =45°,即:PNH 是等腰直角三角形, ∴PH =NH 2, ∴PNH △周长= PH +NH +PN 22PN 22PN + PN =(21)PN , 设P (x ,223x x +-),则N (x ,-x -3),∴PN =-x -3-(223x x +-)=23x x --=23924x ⎛⎫-++ ⎪⎝⎭,∴当x =-32时,PN 的最大值为94,∴当PN 最大为94时,PNH △周长最大值=94×)219294,此时P (-32,154-).(5)解:连接AC 交对称轴于点N ′,∵A、B关于对称轴对称,∴AN′=BN′∴BCN△的周长=BC+CN′+BN′=BC+CN′+AN′=BC+AC,∴此时BCN△的周长最小值=BCN'的周长=BC+AC222213331032++∵直线AC的解析式为:y=-x-3,∴当x=-1时,y=-2,即N(-1,-2).(6)解:由题意得:点N在以CM为直径的圆上,设CM的中点为E,连接EN,则当圆E与x轴相切时,即:EN⊥x轴时,EN最小,此时CM=2EN最小,设M(x,-x-3),则E(622x x--,),∴EN=62x+,CM()222332x x x+--+=∴2×62x +22x 662x =-62x =+, ∴M (662-629), ∴CM ()()2266262931262-+-+-(7)解:过点N 作作NQ ∥MC 交y 轴于点Q ,连接AQ 交DE 于点N ′,连接BN ′,则Q (-2,0),∵NQ ∥MC ,MN ∥CQ , ∴四边形MNQC 是平行四边形, ∴CM =QN ,∴四边形BNMC 的周长=BC +BN +MN +CM =BC +BN +1+QN 101+BN +QN , ∵B 、A 关于DE 对称, ∴AN ′=BN ′,∴四边形BNMC 101+BN ′+QN ′101+AN ′+QN 101+AQ 101+222310131+,∵直线AQ 的解析式为:223y x =--,∴N ′(413-,-),∴此时M (713-,-).(8)解:连接BC ,并延长交ED 于点N ′,连接BN ,∵A 、B 关于DE 对称, ∴AN =BN ,∴NA NC -=NB NC -≤BC =N B N C ''-, ∵B (1,0),C (0,-3), ∴直线BC 的解析式为:33y x =-, 令x =-1代入33y x =-得:y =-6, ∴N ′(-1,-6),∴NA NC -最大时,N 的坐标为:(-1,-6).二次函数与几何综合专题---- 胡不归和阿氏圆问题【胡不归最值问题】 求BC +kAC 的最小值.解决思路:构造射线AD 使得sin ∠DAN=k ,即CHk AC,CH=kAC .将问题转化为求BC+CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC+CH 取到最小值,即BC+kAC 最小.1.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且tan ∠CBD =43,如图所示. (1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连结FB 、FC ,求△BCF 的面积的最大值;②连结PB ,求35PC +PB 的最小值.CH=kACsin α=CH AC=kHDαA BCM MCBAαDH2.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M 为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+14OQ的最小值.3.如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,−83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AE AB的值.(3)在(2)的条件下,点F (0,y )是y 轴上一动点,当y 为何值时,√55FC +BF 的值最小.并求出这个最小值.(4)点C 关于x 轴的对称点为H ,当√55FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B左边),与y轴交于点C.连接AC,BC.且△ABC的面积为8.(1)求m的值;(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使∠ATC=60°.求(t﹣1)2的值.(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标.【阿氏圆最值问题】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: ①如图,将系数不为1的线段两端点与圆心相连即OP ,OB ②计算出这两条线段的长度比OPk OB= ③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB = ④则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值1.如图,抛物线2y ax bx c =++与x 轴交于(3A 0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且33OB OA OC ==,OAC ∠的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ⊥轴,垂足为F ,交直线AD 于点H . (1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值; (3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作H ,点Q 为H 上的一个动点,求14AQ EQ +的最小值.2.如图1,抛物线y=ax2+bx+c与x轴正半轴交于点A,点B(点A在点B的左侧),与y轴交于点C.若线段AB绕点A逆时针旋转120°,点B刚好与点C重合,点B的坐标为(3,0).(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,以点B为圆心,以1为半径画圆,若点Q为⊙B上的一个动点,连接AQ,CQ,求AQ+CQ 的最小值.3.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.(1)如图①,若点D为抛物线的顶点,以点B为圆心,3为半径作⊙B.点E为⊙B上的动点,连接A,DE,求DE+AE的最小值.(2)如图②,若点H是直线AC与抛物线对称轴的交点,以点H为圆心,1为半径作⊙H,点Q是⊙H 上一动点,连接OQ,AQ,求OQ+AQ的最小值;(3)如图③,点D是抛物线上横坐标为2的点,过点D作DE⊥x轴于点E,点P是以O为圆心,1为半径的⊙O上的动点,连接CD,DP,PE,求PD﹣PE的最大值.4.如图1,抛物线y=ax2+bx﹣4与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;(2)若点P是直线BC下方的抛物线上一个动点,是否存在点P使四边形ABPC的面积为16,若存在,求出点P的坐标若不存在,请说明理由;(3)如图2,过点B作BF⊥BC交抛物线的对称轴于点F,以点C为圆心,2为半径作⊙C,点Q为⊙C 上的一个动点,求BQ+FQ的最小值.【课后训练】1.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+QB的最小值.2.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.3.抛物线y=ax2+bx﹣5的图象与x轴交于A、B两点,与y轴交于点C,其中点A坐标为(﹣1,0),一次函数y=x+k的图象经过点B、C.(1)试求二次函数及一次函数的解析式;(2)如图1,点D(2,0)为x轴上一点,P为抛物线上的动点,过点P、D作直线PD交线段CB于点Q,连接PC、DC,若S△CPD=3S△CQD,求点P的坐标;(3)如图2,点E为抛物线位于直线BC下方图象上的一个动点,过点E作直线EG⊥x轴于点G,交直线BC于点F,当EF+√22CF的值最大时,求点E的坐标.4.如图①,直线y=﹣x﹣3分别与x轴、y轴交于点B,C,抛物线y=ax2+bx+c经过B,C两点,且与x轴的另一交点为A(1,0).(1)求抛物线的函数解析式;(2)如图①,点P在第三象限内的抛物线上.①连接AC,PB,PC,当四边形ABPC的面积最大时,求点P的坐标;②在①的条件下,G为x轴上一点,当PG+√55AG取得最小值时,求点G的坐标;(3)如图②,Q为x轴下方抛物线上任意一点,D是抛物线的对称轴与x轴的交点,直线AQ,BQ分别交抛物线的对称轴于点M,N.问:DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.21Math唐老师22。
二次函数动点最值问题

二次函数动点最值问题我们有一个二次函数,并且知道它的顶点坐标。
现在,我们想找到一个动点,使得这个点到顶点的距离与到直线的距离之和最小。
假设二次函数的顶点坐标为 (h, k),动点的坐标为 (x, y)。
根据题目,我们可以建立以下模型:1. 动点到顶点的距离是 sqrt((x-h)^2 + (y-k)^2)。
2. 动点到直线的距离是 Ax + By + C / sqrt(A^2 + B^2),其中直线方程为Ax + By + C = 0。
我们要找的是这两个距离之和的最小值。
用数学公式,我们可以表示为:最小值 = min(sqrt((x-h)^2 + (y-k)^2) + Ax + By + C / sqrt(A^2 +B^2))现在我们要来解这个问题,找出动点的坐标使得这个距离之和最小。
为了解决这个问题,我们可以使用几何和代数的方法。
首先,我们观察到动点到顶点的距离和动点到直线的距离都是关于动点坐标(x, y) 的函数。
为了找到这两个距离之和的最小值,我们可以使用拉格朗日乘数法。
设拉格朗日函数为:F(x, y) = sqrt((x-h)^2 + (y-k)^2) + λ ( Ax + By + C / sqrt(A^2 + B^2) - d )其中,λ 是拉格朗日乘数,d 是我们要找的最小值。
接下来,我们对 F(x, y) 求偏导数,并令其为0,以找到极值点。
偏导数分别为:∂F/∂x = (x-h)/sqrt((x-h)^2 + (y-k)^2) + λ A / sqrt(A^2 + B^2) (Ax + By + C) / Ax + By + C和∂F/∂y = (y-k)/sqrt((x-h)^2 + (y-k)^2) + λ B / sqrt(A^2 + B^2) (Ax + By + C) / Ax + By + C令这两个偏导数等于0,我们可以得到一个关于 x 和 y 的方程组。
解这个方程组,我们可以找到动点的坐标 (x, y),使得到顶点的距离与到直线的距离之和最小。
二次函数与曲线的最小值求解方法

二次函数与曲线的最小值求解方法二次函数是数学中的重要概念,它的图像是一条抛物线。
在解决实际问题中,我们经常需要求解二次函数曲线的最小值。
本文将介绍一些常见的求解二次函数最小值的方法。
方法一:配方法配方法是一种常用的求解二次函数最小值的方法。
具体步骤如下:步骤一:将二次函数表示成标准形式y=ax^2+bx+c,其中a、b、c为常数。
步骤二:通过配方法将二次函数表示为y=a(x-h)^2+k的形式,其中h、k为待求的坐标。
步骤三:通过变量置换的方法,令u=x-h,则原方程可化简为y=a(u^2)+k。
步骤四:当u=0时,y=k,即最小值为k。
因此,求解二次函数的最小值只需要求解常数k的值即可。
方法二:求导法求导法是另一种常用的求解二次函数最小值的方法。
具体步骤如下:步骤一:将二次函数表示成标准形式y=ax^2+bx+c,其中a、b、c为常数。
步骤二:对二次函数进行求导,得到一次导数函数y'=2ax+b。
步骤三:令一次导数函数y'=0,解得x的值。
步骤四:将求得的x值代入二次函数中,求得对应的y值,即为二次函数的最小值。
需要注意的是,当a>0时,最小值为函数的顶点;当a<0时,最小值为函数的最大值。
方法三:完全平方法完全平方法也是一种常见的求解二次函数最小值的方法。
具体步骤如下:步骤一:将二次函数表示成标准形式y=ax^2+bx+c,其中a、b、c 为常数。
步骤二:将二次函数的前两项进行完全平方,得到y=a(x^2+2px+p^2)-a*p^2+c。
步骤三:将括号内的部分表示为一个完全平方的形式,得到y=a(x+p)^2-a*p^2+c。
步骤四:由完全平方的性质可知,当x=-p时,函数取得最小值。
综上所述,配方法、求导法和完全平方法是常见的二次函数最小值的求解方法。
不同的方法适用于不同的情况,具体的选择需要根据实际问题来决定。
在解题过程中,要注意对二次函数进行化简和变形,从而得到最简单的形式,以便求解最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与距离最小值问题 知识点:在对称轴或二次函数的对称轴两边的点到对称轴或坐标轴上的点的距离最小值时,这个点就是直接连接两已知点与轴的交线的交点即是轴上的点到两已知点距离的最小值点;当两已知点是在轴的一边时,先把其中一点作轴的对称点,再把对称点与另一交点相连,交点即是所要找的点。
1.如图,抛物线22
12-+=bx x y 与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标;
⑵判断△ABC 的形状,证明你的结论;
⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.
2.(9分)(2013•广东线的两边的点到线之间距离最短问题)已知二次函数y=x 2﹣2mx+m 2﹣1.
(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;
(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC+PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.
3、(扬州)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.。