第46讲 椭圆(解析版)
高考数学一轮复习考点题型课下层级训练46椭圆——椭圆的概念及其性质(含解析)
课下层级训练(四十六) 椭圆的概念及其性质[A 级 基础强化训练]1.(2019·山东滨州模拟)若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12 B .33 C .22D .24【答案】C [依题意可知,c =b ,又a =b 2+c 2=2c , ∴椭圆的离心率e =c a =22.] 2.(2018·广东惠州调研)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】C [把椭圆方程化成x 21m+y 21n=1.若m >n >0,则1n >1m>0.所以椭圆的焦点在y 轴上.反之,若椭圆的焦点在y 轴上,则1n >1m>0即有m >n >0.故为充要条件.]3.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2D .5【答案】A [由题意知|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.]4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点.若△AF 1B 的周长为43,则C 的方程为( ) A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 【答案】A [由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.] 5.(2019·山东烟台模拟)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6D .8【答案】C [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]6.焦距是8,离心率等于0.8的椭圆的标准方程为____________________.【答案】x 225+y 29=1或y 225+x 29=1 [由题意知⎩⎪⎨⎪⎧2c =8,c a=0.8,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,当焦点在x 轴上时,椭圆方程为x 225+y 29=1,当焦点在y 轴上时,椭圆方程为y 225+x 29=1.]7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________________.【答案】(-5,0) [∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c =3.又b =4,∴a =b 2+c 2=5.∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0).]8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为____________.【答案】7 [由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.]9.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.【答案】解 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12.10.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.【答案】解 椭圆方程可化为x 2m +y 2mm +3=1,m >0.∵m -mm +3=m m +m +3>0,∴m >mm +3,∴a 2=m ,b 2=mm +3,c =a 2-b 2= m m +m +3.由e =32,得 m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长和短轴长分别为2a =2和2b =1,焦点坐标为F 1⎝ ⎛⎭⎪⎫-32,0,F 2⎝ ⎛⎭⎪⎫32,0,四个顶点的坐标分别为A 1(-1,0),A 2(1,0),B 1⎝ ⎛⎭⎪⎫0,-12,B 2⎝ ⎛⎭⎪⎫0,12. [B 级 能力提升训练]11.(2019·山东德州模拟)已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP →的值等于( ) A .-12 B .12 C .-9D .9【答案】D [由题意易知A (0,-2),B (0,2)为椭圆x 212+y 216=1的两焦点,∴|AP →|+|BP →|=2×4=8.又|A P →|-|BP →|=2,∴|A P →|=5,|B P →|=3. ∵|A B →|=4∴△ABP 为直角三角形,∴A P →·B P →=(AB →+BP →)·BP →=|BP →|2=9.]12.(2019·山东临沂月考)过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是( ) A .14 B .16 C .18D .20【答案】C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]13.(2019·山东东营检测)已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin Csin A +sin B=____________.【答案】3 [由椭圆方程x 225+y 216=1,得长轴长2a =10,短轴长2b =8,焦距2c =6,则顶点A ,B 为椭圆的两个焦点.在△ABC 中,|AB |=6,|BC |+|AC |=10,由正弦正理可得,5sin C sin A +sin B =5|AB ||BC |+|AC |=5×610=3.]14.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是______________.【答案】⎝ ⎛⎭⎪⎫12,23 [如图所示,|AF 2|=a +c ,|BF 2|=a 2-c 2a ,∴k =tan ∠BAF 2=|BF 2||AF 2|=a 2-c 2a a +c =a -ca=1-e .又∵13<k <12,∴13<1-e <12,解得12<e <23.]15.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.【答案】解 (1)设椭圆半焦距为C .由题意AF ,AB 的中垂线方程分别为x =a -c2,y -b 2=a b (x -a2), 于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2.所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c2=1,设M (x ,y ),则-2c ≤x ≤2c ,所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2;当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72,解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1..。
椭圆基本知识PPT课件
(2)第二定义:动点 M 到定点 F 的距离和它到定直 线 l 的距离之比等于常数 e(0<e<1),则动点 M 的轨 迹是椭圆,定点 F 是椭圆的焦点,定直线 l 叫做椭 圆的准线,常数 e 是椭圆的离心率. 这里要注意:一是动点 M 到定点的距离除以它到定 直线的距离,其商是常数 e;二是这个常数 e 的取 值范围是(0,1);三是定点 F 不在定直线 l 上. 2.椭圆的两种标准方程 ax22+by22=1,ay22+bx22=1. (1)a>b>0;(2)a2-b2=c2.
第1页/共61页
3.椭圆的几何性质
标准 方程
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b 0)
图形
第2页/共61页
范围 对称性
顶点
-a≤x≤a -b≤y≤b
对称轴:坐标轴
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
-b≤x≤b -a≤y≤a
对称中心:原点
[8分]
设A,B的坐标分别为(x1,y1),(x2,y2).
由题意x1≠x2,
x12 y12 1
①
94
x22 y22 1 94
②
由①-②得:
(x1 x2 )( x1 x2 ) ( y1 y2 )( y1 y2 ) 0.
60°=
3 b2 , 3
即△PF1F2的面积只与短轴长有关.
第23页/共61页
探究提高 (1)椭圆上一点与两焦点构成的三角
形,称为椭圆的焦点三角形,与焦点三角形有关的
第46讲 超几何分布与二项分布(解析版)-【高考艺术生专用】2022年高考数学复习(,全国通用版)
第46讲 超几何分布与二项分布一、单选题1.(2021·全国高二单元测试)一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为A .49041001C C -B .0413109010904100C C C C C + C .1104100C CD .1310904100C C C【答案】D 【详解】由超几何分布概率公式可知,所求概率为3190104100C C C故选:D2.(2021·云南昆明一中高三月考(理))某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为12,13,14,则该同学从家到学校至少遇到一次红灯的概率为( ) A .124B .1124 C .23D .34【答案】D 【详解】解:由题意,该同学从家到学校至少遇到一次红灯的概率为111311112344P ⎛⎫⎛⎫⎛⎫=--⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:D.3.(2021·全国高二单元测试)设随机变量()~2,B p ξ,()~4,B p η,若()519P ξ≥=,则()2P η≥的值为( ) A .1127B .3281C .527D .1681【答案】A 【详解】因为随机变量()~2,B p ξ,所以()()()25110119P P p ξξ≥=-==--=,解得13p =, 所以1~4,3B η⎛⎫⎪⎝⎭,则()()()4311411111210111C 133327P P P ηηη⎛⎫⎛⎫⎛⎫≥=-=-==----=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A .4.(2021·全国高二单元测试)某校团委决定举办“鉴史知来”读书活动,经过选拔,共10名同学的作品被选为优秀作品,其中高一年级5名同学,高二年级5名同学,现从这10个优秀作品中随机抽7个,则高二年级5名同学的作品全被抽出的概率为( ) A .112 B .13C .12D .34【答案】A 【详解】从10个作品中抽7个,用X 表示抽到高二年级同学的作品数,则()5255710C C 15C 12P X ⋅===. 故选:A .5.(2021·全国高二单元测试)已知10名同学中有a 名女生,若从这10名同学中随机抽取2名作为学生代表,恰好抽到1名女生的概率是815,则a =( ) A .1 B .4或6C .4D .6【答案】B 【详解】设抽到的女生人数为X ,则X 服从超几何分布,()()111021010C C 81C 4515a a a a P X --====,解得4a =或6a =. 故选:B .6.(2021·黑龙江哈尔滨市第六中学校高二月考)一袋中装有除颜色外完全相同的3个黑球和3个红球,从袋中任取2球.已知取出的2球中有黑球,则取出的两个球都是黑球的概率为( ) A .14B .15C .12D .25【答案】A 【详解】 从袋中任取2球,取出的2球中有黑球,共有226312C C -=种基本事件,两个球都是黑球共有233C =种基本事件,∴已知取出的2球中有黑球,则取出的两个球都是黑球的概率为31124= 故选:A .7.(2021·全国高二课时练习)某校从学生会中的10名女生干部与5名男生干部中随机选取6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率为( )A .615615C AB .33105615C C CC.42105615C CCD.42105615C AA【答案】C 【详解】组成4女2男的“文明校园督察队”的概率为42105615C CPC=.故选:C8.(2021·广东电白·高二期中)围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵在某次国际围棋比赛中,甲、乙两人进入最后决赛比赛采取五局三胜制,即先胜三局的一方获得比赛冠军,比赛结束假设每局比赛甲胜乙的概率都为23,没有和局,且各局比赛的胜负互不影响,则甲在比赛中以3:1获得冠军的概率为()A.19B.827C.1627D.1781【答案】B【详解】甲在比赛中以3:1获得冠军,即前三局中甲胜两局,且第四局甲胜.所以,甲在比赛中以3:1获得冠军的概率2232128C33327P⎛⎫=⋅⋅⋅=⎪⎝⎭.故选:B.二、多选题9.(2021·全国高二课时练习)(多选)下列随机变量中,服从超几何分布的有()A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X B.从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的数为随机变量XD .从10名男生,5名女生中选3人参加植树活动,其中男生人数记为X 【答案】ABD 【详解】解:依据超几何分布模型定义可知,试验必须是不放回地抽取n 次,A 、B 、D 中随机变量X 服从超几何分布.而C 中显然不能看作一个不放回抽样问题,故随机变量X 不服从超几何分布. 故选:ABD10.(2021·全国高二单元测试)一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,下列变量服从超几何分布的是( ) A .X 表示取出的最大号码 B .X 表示取出的最小号码C .取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分D .X 表示取出的黑球个数 【答案】CD 【详解】AB 不符合超几何分布的定义,无法用超几何分布的数学模型计算概率,即AB 错;CD 选项符合超几何分布的定义,将黑球视作次品,白球视作正品,则可以用超几何分布的数学模型计算概率,即CD 正确; 故选:CD.11.(2021·山东潍坊·高二期末)袋子中有3个黑球2个白球现从袋子中有放回地随机取球4次取到白球记1分,黑球记0分,记4次取球的总分数为X ,则( ) A .2~4,5X B ⎛⎫ ⎪⎝⎭B .()1442625P X ==C .X 的期望()125E X = D .X 的方差()2425D X =【答案】AD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响,并且每次取到白球的概率相等,又取到白球记1分,取4次球的总分数,即为取到白球的个数, 对于A ,每次取球取到白球的概率为25P =,随机变量X 服从二项分布2~4,5X B ⎛⎫⎪⎝⎭,故A 正确; 对于B ,2X =,即4次取到2次白球,概率222423216(2)55625P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,故B 错误; 对于C ,因为2~4,5X B ⎛⎫⎪⎝⎭,所以X 的期望28()455E X =⨯=,故C 错误;对于D ,因为2~4,5X B ⎛⎫⎪⎝⎭,所以X 的方差32452()5254D X =⨯⨯=,故D 正确. 故选:AD .12.(2021·湖北武汉·高二期中)袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则( )A .2~4,3XB ⎛⎫⎪⎝⎭B .8(2)81P X ==C .X 的期望8()3E X = D .X 的方差8()9D X =【答案】ACD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响, 并且每次取到的黑球概率相等,又取到黑球记1分, 取4次球的总分数,即为取到黑球的个数,所以随机变量X 服从二项分布2~4,3X B ⎛⎫⎪⎝⎭,故A 正确;2X =,记其概率为22242124(2)3381P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,故B 错误; 因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的期望28()433E X =⨯=,故C 正确;因为2~4,3X B ⎛⎫⎪⎝⎭,所以X 的方差218()4339D X =⨯⨯=,故D 正确.故选:ACD . 三、填空题13.(2021·全国高二课时练习)某手机经销商从已购买某品牌手机的市民中抽取20人参加宣传活动,这20人中年龄低于30岁的有5人.现从这20人中随机选取2人各赠送一部手机,记X 为选取的年龄低于30岁的人数,则P (X =1)=________. 【答案】1538【详解】X =1是指选取的人中年龄低于30岁的有1人,所以()1151522015138C C P X C ===.故答案为:1538. 14.(2021·江苏滨湖·立人高中高二期中)若一个随机变量的分布列为()r n r M N MnNC C P r C ξ--⋅==,其中0,1,2,,,min(,)r l l n M ==则称ξ服从超几何分布,记为~(,,)H n M N ξ,并将()r n r M N MnNC C P r C ξ--⋅==记为(;,,)H r n M N ,则(1;3,2,10)H =___________.【答案】715【详解】根据题意,13210r n M N ====,,, ()()1228310·71;3,2,10115C C H P C ξ∴==== 故答案为:715. 15.(2021·全国高二专题练习)某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是________. 【答案】83【详解】在一轮投篮中,甲通过的概率为12228233339P =⨯⨯+⨯= ,未通过的概率为19.甲3个轮次通过的次数X 服从二项分布X ~83,9B ⎛⎫⎪⎝⎭,由二项分布的期望公式,得E (X )=3×83=83故答案为:8316.(2021·浙江省杭州第二中学高三开学考试)某学生在上学 路上要经过4人路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯停留的时间都是2分钟,则这名学生在上学路上因遇到红灯停留的总时间ξ的期望为__________,方差为___________. 【答案】83 329【详解】设变量η为这名学生在上学路上因遇到红灯的次数,则2ξη=, 由题意14,3B η⎛⎫ ⎪⎝⎭, 所以()14433E η=⨯=,()1284339D η=⨯⨯=,所以()()823E E ξη==,()()3249D D ξη==,故答案为:832;39四、解答题17.(2021·全国高二课时练习)一个袋中装有形状大小完全相同的8个球,其中红球2个,白球6个. (1)不放回地从袋中任取3个球,求恰有1个红球的概率;(2)有放回地每次取1球,直到取到2次红球即停止,求恰好取4次停止的概率;(3)有放回地每次取1球,共取3次,记取到红球的个数为ξ,求随机变量ξ的分布列及数学期望. 【答案】(1)1528;(2)27256;(3)分布列答案见解析,数学期望:34. 【详解】解:(1)由题意,从8个球中不放回地取3个球,有3856C =(种)不同的取法,其中恰有1个红球有122630C C ⋅=(种)不同的取法,所以恰有一个红球的概率1226381528C C P C ⋅==. (2)由题意,恰好取4次停止,即前3次中有1次取到红球, 且第4次取到红球,有放回地每次取1球,取到红球的概率为2184=, 根据独立重复试验的概率计算公式,可得所求概率213111271444256P C ⎛⎫=⋅⋅-⋅= ⎪⎝⎭.(3)随机变量ξ的可能取值为0,1,2,3,则()30312701464P C ξ⎛⎫==-= ⎪⎝⎭, ()2131127114464P C ξ⎛⎫==⋅⋅-=⎪⎝⎭, ()223119214464P C ξ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭, ()333113464P C ξ⎛⎫===⎪⎝⎭, ξ的分布列如表所示因为13,4B ξ⎛⎫~ ⎪⎝⎭,所以数学期望13344E ξ=⨯=.18.(2021·全国高二课时练习)某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到奖券1张,每张奖券的中奖概率为12,且每张奖券是否中奖是相互独立的,若中奖,则商场返回顾客现金100元某顾客现购买单价为2300元的台式电脑一台,得到奖券4张. (1)设4张奖券中中奖的张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望和方差. 【答案】(1)答案见解析 ;(2) 2300100ηξ=-, ()2100E η=,()10000D η=. 【详解】解:(1)每张奖券是否中奖是相互独立的,∴14,2B ξ⎛⎫⎪⎝⎭, ∴441()C 2i P i ξ⎛⎫== ⎪⎝⎭(0,1,2,3,4)i = ∴ξ的分布列为(2)14,2B ξ⎛⎫⎪⎝⎭,∴()422E ξ=⨯=,()4122D ξ=⨯⨯=.又由题意可知2300100ηξ=-,∴()(2300100)2300100()230010022100E E E ηξξ=-=-=-⨯=,2()100()10000D D ηξ==.19.(2021·全国高二单元测试)为了解甲、乙两厂的产品质量,采用分层抽样的方法,从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:mg ),已知甲厂生产的产品共有98件,下表是抽取的乙厂的5件产品的测量数据.(2)当产品中微量元素x ,y 满足175x ≥,75y ≥时,该产品为优质品,试估计乙厂生产的优质品的数量;(3)在(2)的条件下,若从乙厂抽出的5件产品中任取3件,求抽取的3件产品中优质品数ξ的分布列.【答案】(1)35m =;(2)14件;(3)分布列见解析. 【详解】(1)设乙厂生产的产品为m 件,依题意得14598m=,所以35m =. (2)由题意,知从乙厂抽取的5件产品中,优质品有2件, 所以估计乙厂生产的优质品有235145⨯=(件). (3)依题意,知ξ的取值为0,1,2,由超几何分布,则()33351010C P C ξ===,()213235315C C P C ξ===,()1232353210C C P C ξ===.所以ξ的分布列为:n 位优秀毕业生(包括x 位女学生,3位男学生)中选派2位学生到某贫困山区的一所中学担任第三批顶岗实习教师.每一位学生被派的机会是相同的. (1)若选派的2位学生中恰有1位女学生的概率为35,试求出n 与x 的值;(2)在(1)的条件下,记X 为选派的2位学生中女学生的人数,写出X 的分布列. 【答案】(1)n =5,x =2或n =6,x =3;(2)答案见解析. 【详解】(1)从n 位优秀毕业学生中选派2位学生担任第三批顶岗实习教师的总结果数为2(1)2n n n C -=, 2位学生中恰有1位女生的结果数为()113333n C C n -=-⨯依题意可得13213n n C C C -=(3)3(1)2n n n -⨯-=35, 化简得n 2-11n +30=0, 解得n 1=5,n 2=6. 当n =5时,x =5-3=2; 当n =6时,x =6-3=3,故所求的值为n=5,x=2或n=6,x=3;(2)①当n=5,x=2时,X可能的取值为0,1,2,P(X=0)=022325C CC=310,P(X=1)=112325C CC=35,P(X=2)=CC2225=110.故X的分布列为0,1,2.P(X=0)=023326C CC=15,P(X=1)=133261C CC=35,P(X=2)=23326C CC=15.故X的分布列为。
高中数学必修2:平面解析几何——椭圆
高中数学必修2:平面解析几何——椭圆今天接着给大家分享关于高中数学必修2平面解析几何中椭圆知识点讲解,从三个方面进行讲解:基础梳理、要点整理、经典高考习题解题过程及答案。
1.椭圆的定义2.椭圆的标准方程和几何性质1、辨明两个易误点2.求椭圆标准方程的两种方法1、椭圆的定义及应用(1)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|=( )(2)(2017·徐州模拟)已知F1、F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=________.2、椭圆的标准方程(2017·湖南省东部六校联考)已知椭圆的中心在原点,离心率e=,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为( )(2)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的标准方程为________.3、椭圆的几何性质(2016·高考全国卷丙)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF ⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )(2)(2017·合肥质检)如图,焦点在x轴上的椭圆+=1的离心率e =,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则·的最大值为________.4、直线与椭圆的位置关系(2016·高考全国卷甲改编)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,证明:4k3-6k2+3k-8=0.(2017·江西五市八校二模)已知正数m是2和8的等比中项,则圆锥曲线x2+=1的焦点坐标为( )(2017·湖北八校联考)设F1,F2分别为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( ) (2017·福建省毕业班质量检测)若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为( )。
第46讲 解析几何中的四点共圆问题(解析版)
第46讲 解析几何中的四点共圆问题一、单选题1.(2020·全国全国·模拟预测)已知1F ,2F 分别为双曲线22221x y a b -=(0a >,0b >)的左右焦点,点P 为双曲线右支上一点,直线1PF 交y 轴于点Q ,且点O ,Q ,P ,2F 四点共圆(其中O 为坐标原点),若射线2F Q 是21PF F ∠的角平分线,则双曲线的离心率为( ) A 21 B 31C .2D 5【答案】B 【分析】由O ,Q ,P ,2F 四点共圆得到222QPF QOF π∠∠==,结合射线2F Q 是21PF F ∠的角平分线以及双曲线的性质求得212126PF F QF F Q PF π∠=∠=∠=,由此求得12,PF PF ,结合双曲线的定义求得双曲线的离心率. 【详解】因为点O ,Q ,P ,2F 四点共圆,所以222QPF QOF π∠∠==.因为射线2F Q 是21PF F ∠的角平分线,所以221PF Q QF F ∠=∠,由双曲线的对称性知1221PF F QF F ∠=∠,所以212126PF F QF F Q PF π∠=∠=∠=,122F F c =,因此2PF c =,13PF c ,从而1223=-=-a PF PF c c , 因此离心率3131c e a ===-. 故选:B2.(2020·河北·张家口市宣化第一中学高三月考)在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的上下顶点分别为,A B ,右顶点为C ,右焦点为F ,延长BF 与AC 交于点P ,若,,,O F P A 四点共圆,则该椭圆的离心率为( ) A .212B 31- C 51- D 52- 【答案】C【分析】由,,,O F P A 四点共圆,可得AC BF ⊥,即1AC BF k k ⋅=-,列等式即可求解. 【详解】如图,()0,A b ,()0,B b -,(),0C a ,(),0F c , 因为,,,O F P A 四点共圆,2AOC π∠=,所以2APF π∠=,所以AC BF ⊥,即1AC BF k k ⋅=-,()00100b b ac ---⋅=---,整理可得2b ac =, 所以22a c ac -=,210e e +-=,解得15e -±= 因为01e <<,所以51e -= 故选:C 【点睛】本题考查了椭圆的简单几何性质,考查了基本运算能力,属于基础题.二、多选题3.(2021·山东菏泽·二模)已知1F ,2F 为双曲线C :x 2–24y=1的左、右焦点,在双曲线右支上取一点P ,使得PF 1⊥PF 2,直线PF 2与y 轴交于点Q ,连接QF 1,△PQF 1,的内切圆圆心为I ,则下列结论正确的有( ) A .F 1,F 2,P ,I 四点共圆 B .△PQF 1的内切圆半径为1 C .I 为线段OQ 的三等分点 D .PF 1与其中一条渐近线垂直【答案】ABD 【分析】根据双曲线的定义可得1||4PF =,2||2PF =,由双曲线的对称性可判断A ;由双曲线的定义可判断B ;根据122Rt Rt F PF QOF ∽可判断C 、D. 【详解】解析:由勾股定理及双曲线的定义可得:1||4PF =,2||2PF = 对于A :易知I 在y 轴上,由对称性可得112GF I EF I IF Q ∠=∠=∠,则1290F IF ∠=︒,可知1F ,2F ,P ,I 四点共于以12F F 为直径的圆上;A 正确对于B :11||||||2PF PQ FQ r +-=1212||||||||||122PF PQ F Q PF PF a +--====,正确对于C :121222||||Rt Rt ||252||||||F P PF F PF QOF QO OI QO OF ⇒=⇒==∽△△, 故I 为QO 中点,C 错误.D 显然正确.故选:ABD4.(2021·江苏海安·模拟预测)已知双曲线22145x y -=,)(00,P x y 为双曲线上一点,过P 点的切线为l ,双曲线的左右焦点1F ,2F 到直线l 的距离分别为1d ,2d ,则( ) A .125d d =B .直线l 与双曲线渐近线的交点为M ,N ,则M ,N ,1F ,2F 四点共圆C .该双曲线的共轭双曲线的方程为22145y x -=D .过2F 的弦长为5的直线有且只有1条 【答案】AB 【分析】对于A 中,求得切线l 的方程005420x x y y -=,结合点到直线的距离公式,可判定A 正确 对于B 中,联立方程组,分别求得,M N 坐标,结合斜率公式,可判定B 正确,根据共轭双曲线的定义,可判定C 错误;结合实轴长和通经,可判定D 错误. 【详解】由题意,双曲线22145x y -=的焦点坐标为)(13,0F -,)(23,0F , 对于A 中,由双曲线的性质,可得切线l 的方程为00145x x y y-=,即005420x x y y -=, 则)()()()()(22000012222222220025916259161520152052516255204251654x x x x d d x y x xx yx y -----====++-⋅++,所以A 正确对于B 中,联立方程组0054205x x y y y x -=⎧⎪⎨=⎪⎩,可得0000455252M x y x y ⎫--,又由0054205x x y y y x -=⎧⎪⎨=⎪⎩,可得0000455252N x y x y ⎫++, 1000000524545356352MF x y k x y x y -==+-+-2000000524545356352MF x y k x y x y -=-+--,)()())(00000012200000060524535645356tan 10018035614535645356x y x y x y F MF x y x y x y ---++-∠==--+-+,1000000524545356352NF x y k x y x y +==++++2000000524545356352NF x y k x y x y +==---+则()())(00000012200220060524535645356tan 100180********x y x y x y F NF x y x y ++++--∠==-++-+1212tan tan F MF F NF ∠+∠))())()()(2000000002200006052180356605218035618035618056x y x y x y x y x y x y ⎡⎤⎡⎤--+++--⎢⎥⎥⎢⎦⎣⎦⎣=⎡⎡⎤⎤---+⎢⎢⎥⎥⎦⎦⎣⎣)()))(2200000000605218095252180952x y x y x y x y ⎧⎫⎡⎡⎪⎤⎤=--+++--⎨⎬⎢⎢⎥⎥⎦⎦⎣⎣⎪⎭⎩))))2200000000540522052522052x y x y x y x y ⎧⎫⎡⎡⎪⎤⎤=--+++--⎨⎬⎢⎢⎥⎥⎦⎦⎣⎣⎪⎭⎩)())()2222000000000000540205405452205405452x y x y x y x y x y x y ⎡⎤=---+++---⎥⎢⎦⎣))00000540405205220520x x y x y ⎡⎤=-+--=⎢⎥⎦⎣, ∴1222tan tan 0F MF F NF ∠+∠=,1222180F MF F NF ∠+∠=︒, ∴M ,N ,1F ,2F 四点共圆,B 正确.对于C 中,双曲线22145x y -=的共轭双曲线为22154y x -=,所以C 错误对于D 中,由双曲线22145x y -=,可得2,a b ==3c =, 可得245a =<,且通经长225b a =,所以过2F 的弦长为5的直线有3条,所以D 错误.故选:AB. 【点睛】方法点拨:联立方程组,求得点M ⎫,N ⎫,结合斜率公式和倾斜角的定义,判定得到四点共面是解答的关键.三、双空题 5.(2021·全国·模拟预测)在平面直角坐标系xOy 中,抛物线24y x =上不同的三点(1,2)A ,()11,B x y ,()22,C x y ,满足AB BC ⊥,120y y ≠,且O ,A ,B ,C 四点共圆,则直线BC 的方程是___________;四边形OABC 的面积为___________. 【答案】224y x =-+ 90 【分析】结合AB BC ⊥,,,,O A B C 四点共圆,由1OA OC k k ⋅=-求得2y ,进而求得C 的坐标,由1AB BC k k ⋅=-求得1y ,进而求得B 点坐标.由,B C 的坐标求得直线BC 的方程.求得,,,OA OC AB BC ,由此求得四边形OABC 的面积. 【详解】依题意有π2AOC ABC ∠=∠=, 则22222222814OA OC y y k k y x y ====-⋅,得22228,164y y x =-==, 又有1112412AB y k x y -==-+, 1212121448BC y y k x x y y y -===-+-, 所以1144128y y ⋅=-+-,解得16y =或10y =(舍),21194y x ==. 故可知(9,6)B ,(16,8)C -, 则有直线BC 的方程为()8669169y x ---=--,即224y x =-+;易知OAOC =AB =BC =所以1()902OABC S OA OC AB BC =⨯+⨯=四边形.故答案为:224y x =-+;90四、填空题6.(2021·广西·模拟预测(理))过)F作与双曲线22221x y a b-=(0a >,0b >的两条渐近线平行的直线,分别交两渐近线于A 、B 两点,若OAFB 四点共圆(为坐标原点),则双曲线的离心率为______.【分析】联立OA 直线、与FA 直线,求出A 点的坐标,联立OB 直线、与FB 直线,求出B 点的坐标,观察坐标可知,四边形OAFB 为菱形,其外接圆圆心在AB 、OF 的交点处,再结合OA OB ⋅的数量积为0,即可求解. 【详解】解:由题意可得(),0F c , ∵直线OA 、OB 都平行于渐近线, ∴可设直线OA 的方程为b y x a =,直线OB 的方程为by x a=-, ∴过点F 平行与OA 的直线FB 的方程为()by x c a=-, 过点F 平行与OB 的直线FA 的方程为()by x c a=--, 分别联立方程()b y x ab y xc a ⎧=⎪⎪⎨⎪=--⎪⎩,()b y x a b y x c a ⎧=-⎪⎪⎨⎪=-⎪⎩,解得,22c bc A a ⎛⎫ ⎪⎝⎭,,22c bc B a ⎛⎫- ⎪⎝⎭,即线段AB 与OF 互相垂直平分,则四边形OAFB 为菱形,其外接圆圆心在AB 、OF 的交点处, ∴OA AF ⊥,则2222044c b c OA AF a ⋅⋅=-=即a b =,∵22222c a b a =+=,c =,∴双曲线的离心率c e a ===7.(2021·浙江·高二单元测试)在平面直角坐标系xOy 中,已知直线:24l x y +=与x 轴交于A 点,直线:10m kx y +-=与y 轴及直线l 分别交于B 点,C 点,且A ,B ,C ,O 四点共圆,则此圆的标准方程是__________.【答案】22117(2)24x y ⎛⎫-+-= ⎪⎝⎭【分析】由题意得AB 为直径,且直线l 与m 垂直故2k =-,得(0,1)B 所以圆心与半径可求,则圆方程易得. 【详解】由题意A ,B ,C ,O 四点共圆且OA OB ⊥,所以⊥CB CA ,则直线l 与m 垂直故2k =-,又(0,1)B ,()4,0A此圆的圆心为1(2,)2,半径为12r AB =17,所以圆的标准方程为22117(2)()24x y -+-=.故答案为:22117(2)24x y ⎛⎫-+-= ⎪⎝⎭五、解答题8.(2021·浙江省东阳市第二高级中学高二期中)已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 【答案】(1)22143x y += (2)①证明见解析,②9,116⎛⎫ ⎪⎝⎭.【分析】(1)设椭圆的左焦点为F ',利用2a EF EF '=+求解即可;(2)①设()11,A x y ,()22,B x y ,()00,M x y ,直线AB 的斜率为k ,由点差法可得直线MO 的斜率为34k-,然后根据斜率可证明PR OQ ⊥、QS OP ⊥,即可得证; ②由①可知:~QRF QSO ,所以2122RF S S SO =,然后可算出2221k RF k =+,22216916k SO k =+,然后()22122229161716161161RF S k S k k SO +⎛⎫===- ⎪++⎝⎭,即可求得答案. (1)设椭圆的左焦点为F ',由题意可知()1,0F '-,()1,0F 根据定义,可求得24a EF EF '=+=,∴2a =,∴b =∴椭圆的标准方程为22143x y +=(2)①设()11,A x y ,()22,B x y ,()00,M x y ,直线AB 的斜率为k ,则有22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,作差得:22221212043x x y y --+= 两边同除12x x -,可得:00043x y k +⋅=,即0034y k x ⋅=-,所以直线MO 的斜率为34k -,MO 的方程为3 4y x k=-所以34,P k ⎛⎫- ⎪⎝⎭,所以直线PF 的斜率为1k -,因为11k k ⎛⎫⋅-=- ⎪⎝⎭,所以PR OQ ⊥由//OQ AB 可求得()4,4Q k ,所以直线QF 的斜率为43k , 因为34143kk ⎛⎫-⋅=- ⎪⎝⎭,所以QS OP ⊥ 综上,O ,S ,F ,R 四点共圆,OF 为圆的一条直径. ②由①可知:~QRF QSO ,所以2122RFS S SO=,由于直线PF 的方程为10x ky +-=,直线OP 的方程为340x y +=,由垂径定理可知,222221421k RF k ⎡⎤⎢⎥⎛⎫⎢⎥=⋅-= ⎪⎢⎥+⎝⎭⎢⎥⎝⎭⎣⎦,22222311642916k SO k ⎡⎤⎛⎫⎢⎥ ⎪⎛⎫⎢⎥=⋅-= ⎪+⎝⎭⎢⎥⎢⎥⎣⎦,又因为0k ≠, 所以()221222291617916,116116161RF S k S k k SO+⎛⎫⎛⎫===-∈ ⎪ ⎪++⎝⎭⎝⎭, 综上,12S S 的取值范围为9,116⎛⎫⎪⎝⎭. 9.(2021·吉林·梅河口市第五中学高二月考)已知双曲线C :2222x y -=与点()1,2P . (1)是否存在过点P 的弦AB ,使得AB 的中点为P ;(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,证明:A 、B 、C 、D 四点共圆.【答案】(1)存在;(2)证明见解析. 【分析】(1)利用点差法求解;(2)利用点差法和弦长公式求出相关线段的长度,再利用距离公式证明线段相等,可求证得四点共圆. 【详解】解:(1)双曲线的标准方程为2212y x -=,21a ∴=,22b =.设存在过点P 的弦AB ,使得AB 的中点为P ,设()11,A x y ,()22,B x y ,221112-=y x ,222212-=y x 两式相减得2121221212y y y y b x x x x a -+⋅=-+,即2221AB b k a⋅=得:22k ⋅=,1k ∴=. ∴存在这样的弦.这时直线l 的方程为1y x =+.(2)设CD 直线方程为0x y m ++=,则点()1,2P 在直线CD 上. 则3m =-,直线CD 的方程为30x y +-=,设()33,C x y ,()44,D x y ,CD 的中点为()00,Q x y ,223312y x -=,224412y x -=两式相减得2020CD y b k x a⋅=,则0012y x -⋅=,则002y x =-又因为()00,Q x y 在直线CD 上有0030x y +-=,解得()3,6Q -,221022x y x y -+=⎧⎨-=⎩,解得()1,0A -,()3,4B , 223022x y x y +-=⎧⎨-=⎩,整理得26110x x +-=,则3434611x x x x +=-⎧⎨⋅=-⎩则34CD x =-=由距离公式得QA QB QC QD ====所以A 、B 、C 、D 四点共圆.10.(2021·福建福州·模拟预测)已知斜率为k 的直线交椭圆223(0)x y λλ+=>于A ,B 两点,AB 的垂直平分线与椭圆交于C ,D 两点,点()01,N y 是线段AB 的中点.(1)若03y =,求直线AB 的方程以及λ的取值范围;(2)不管λ怎么变化,都有A ,B ,C ,D 四点共圆,求0y 的取值范围. 【答案】(1)4y x =-+,12λ>;(2){}3,3-; 【分析】(1)当03y =时,写出直线AB 方程,联立韦达定理,根据点()01,N y 的横坐标求出直线AB 的斜率,进而写出直线方程,根据判别式求出λ的取值范围;(2)若A ,B ,C ,D 四点共圆,则有22222CD AB d ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭成立,联立直线与椭圆方程,利用弦长公式及点到直线的距离公式表示出来,因为不管λ怎么变化,式子恒成立,所以可以求得21k =,进而求得0y 的取值范围. 【详解】(1)因为直线AB 过点()1,3N , 所以直线AB 方程为:(1)3y k x =-+,联立椭圆方程223(0)x y λλ+=>得到:222(3)2(3)(3)0k x k k x k λ++-+--=, 设点()11,A x y ,()22,B x y , 由韦达定理可知:1222(3)23k k x x k -+==+,解得1k =-,所以直线AB 方程为:1(1)3y x =-⨯-+即4y x =-+, 将1k =-代入方程222(3)2(3)(3)0k x k k x k λ++-+--=, 得到248160x x λ-+-=,则()2844(16)0λ--⨯⨯∆=->,解得12λ>, 所以λ的取值范围为12λ>.(2)设直线AB 方程0(1)y k x y =-+,联立椭圆方程223(0)x y λλ+=>得到:22200(3)2()()0k x k y k x y k λ++-+--=,由韦达定理可知:01222()23k k y x x k -+==+,即03ky -=,20122()3y k x x kλ--=+,则12AB x =-=====所以23()CD k=+-= CD 中点P 坐标等于00322211()()12131313()y ky k k x k k k ---+-===+++-,点P 到AB距离等于22223(1)3113k d k k -+=-++, 因为A ,B ,C ,D 四点共圆等价于22222CD AB d ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,即222223(1)13k k ⎫+=+⎪⎪+⎝⎭ 整理得()()2222222222222119(1)1912(13)(3)33113k k k k k k k k k k λλ++++⎡⎤⨯-++=⨯+⨯--⎣⎦+++, 即不管λ怎么变化,都有上式成立,则222211313k k k k++=++,解得21k =, 代入方程22200(3)2()()0k x k y k x y k λ++-+--=,使得2222004()4(3)(())0k y k k y k λ∆=--+-->,解得12λ>,满足题意所以0y 的取值范围为:{}3,3-. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 11.(2021·重庆·高二期末)设动点P与定点)F 的距离和P到定直线:l x =(1)求动点P 的轨迹方程;(2)设动点P 的轨迹为曲线C ,不过原点O 且斜率为12的直线l 与曲线C 交于不同的两点A ,B ,线段AB 的中点为M,直线OM 与曲线C 交于C ,D 两点,证明:A ,B ,C ,D 四点共圆.【答案】(1)2214x y +=;(2)证明见解析.【分析】(1)根据题意列出关系式并整理化简即可;(2)联立直线与椭圆方程,分别求解,MA MB MC MD ⋅⋅,最后证明两者相等即可. 【详解】解:(1)设(,)P x y , 因为动点P与定点)F的距离和P到定直线:l x ==2214x y +=.所以动点P 的轨迹方程为:2214x y +=.(2)设直线l 的方程为()102y x m m =+≠,()11,A x y ,()22,B x y , 由方程组221,41,2x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩得222220x mx m ++-=,①方程①的判别式为()242m ∆=-,由0∆>,即220m ->,解得m .由①得122x x m +=-,21222x x m =-.所以M 点坐标为,2m m ⎛⎫- ⎪⎝⎭,直线OM 方程为12y x =-,由方程组221,41,2x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩得C ⎛ ⎝⎭,D ⎭.所以)()2524MC MD m m m ⋅=-=-. 又()()()22221212121211544416MA MB AB x x y y x x x x ⎡⎤⎡⎤⋅==-+-=+-⎣⎦⎣⎦()()2225544222164m m m ⎡⎤=--=-⎣⎦.所以MA MB MC MD ⋅=⋅. 所以A ,B ,C ,D 四点共圆. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.12.(2021·北京·中央民族大学附属中学三模)已知椭圆的两焦点分别为()11,0F -、()21,0F ,椭圆上的动点M 满足12122MF MF F F +=,A 、B 分别为椭圆的左、右顶点,O 为坐标原点.(1)求椭圆的方程及离心率;(2)若直线:6l x =与AM 交于点P ,l 与x 轴交于点H ,OP 与BM 的交点为S ,求证:B 、S 、P 、H 四点共圆.【答案】(1)椭圆的方程为22143x y +=,离心率为12;(2)证明见解析.【分析】(1)根据椭圆的定义求出a 的值,结合已知条件可得c 的值,进而可求得b 的值,可得出椭圆的方程及其离心率;(2)计算得出34AM BM k k ⋅=-,可设直线AM 的方程为()()20y k x k =+≠,与直线l 的方程联立,求出点P 的坐标,利用斜率关系得出OP BM ⊥,由此可证得结论成立. 【详解】(1)由椭圆的定义可得12122244a MF MF F F c =+===,2a ∴=,则223b a c =- 所以,椭圆的方程为22143x y +=,该椭圆的离心率为12c e a ==;(2)设点()00,M x y ,则2200143x y +=,则002AM y k x =+,002BM y k x =-, 所以,220022003444443AM BMy y k k x y ⋅===----,设直线AM 的方程为()()20y k x k =+≠,联立()26y k x x ⎧=+⎨=⎩,可得68x y k =⎧⎨=⎩, 即点()6,8P k ,8463OP k k k ==, 而3344BM AM k k k=-=-,所以,1OP BM k k =-,则90BSP ∠=, 易知90BHP ∠=,所以,B 、S 、P 、H 四点共圆. 【点睛】关键点点睛:本题考查四点共圆的证明,一般转化为证明四边形的对角互补,本题中注意到 13.(2021·上海黄浦·三模)已知直线:l y x m =+交抛物线2:4C y x =于、A B 两点. (1)设直线l 与x 轴的交点为T ,若2AT TB →→=,求实数m 的值;(2)若点M N 、在抛物线C 上,且关于直线l 对称,求证:AB M N 、、、四点共圆: (3)记F 为抛物线C 的焦点,过抛物线C 上的点P Q 、作准线的垂线,垂足分别为点U V 、,若UVF 的面积是PQF △的面积的两倍,求线段PQ 中点的轨迹方程.【答案】(1)8m =-;(2)证明见解析;(3)()222y x =-或()220y x x =≠.【分析】(1)联立直线:l y x m =+与抛物线2:4C y x =,韦达定理得到12124,4y y y y m +==,再利用2AT TB →→=化简得到240y +=,从而求出18y =,最后带回韦达定理求出实数m 的值;(2)通过证明0MA MB →→⋅=得到MA MB ⊥,同理NA NB ⊥,于是点,M N 在以AB 为直径的圆上,即,,,A B M N 四点共圆;(3)根据UVF 的面积是PQF △的面积的两倍求得直线PQ 与x 轴的交点为()0,0D 或()2,0D ,再根据直接法求出线段PQ 中点的轨迹方程,中间注意舍去不满足题意的点. 【详解】解:(1)由2,4,y x m y x =+⎧⎨=⎩得2440y y m -+=.设()()1122,,,A x y B x y ,则12124,4.y y y y m +== 因为直线l 与C 相交,所以16160m ∆=->,得 1.m <由2AT TB →→=,得1220y y +=,所以240y +=,解得24y =-,从而18y =,因为124y y m =,所以432m =-,故8m =-. (2)设()()3344,,,M x y N x y ,因为,M N 两点关于直线y x m =+对称,则4343344234324144y y y y y y x x y y --===--+-,故344y y +=-. 又4343,22y y x x m ++=+于是4322x x m +-=+, 即4342x m x =---.由点N 在抛物线上,有()()2334442y m x --=---.因为2334y x =,所以23341640y y m +++=,于是()()()()()()222233121323132313234444y y y y MA MB x x x x y y y y y y y y →→⎛⎫⎛⎫⋅=--+--=--+-- ⎪⎪⎝⎭⎝⎭()()()()()()()132313232132312312316161616y y y y y y y y y y y y y yy y y y ----⎡⎤⎡⎤=+++=++++⎣⎦⎣⎦()()()13232334416016y y y y m y y --=+++=因此MA MB ⊥,同理NA NB ⊥, 于是点,M N 在以AB 为直径的圆上, 即,,,A B M N 四点共圆.(3)易知()1,0.F 设()()22,2,,2P p p Q q q ,则()()1,2,1,2.U p V q --设直线PQ 与x 轴的交点为()1,0D x ,则 ()111221,11222PQFUVFSp q FD p q x S UV p q =-=--=--=- 由题设2UVFPQFSS=,可得111x -=,所以10x =或12x =.设线段PQ 的中点为(),R x y ,有 当12x =时,当PQ 与x 轴不垂直时, 由PQ DR k k =可得()()22222q p yx q p x -=≠--, 即()22.2yx q p x =≠+- 而222p qy p q +==+,所以()()2222y x x =-≠. 同理,当10x =时,()220y x x =≠.当PQ 与x 轴垂直时,R 与()2,0D 重合.符合()222.y x =- 综上,线段PQ 的中点的轨迹方程()222y x =-或()220y x x =≠.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的中点或中点弦问题,一般就是点差法,斜率公式,中点坐标公式求解问题;(3)验证四点共圆是要找直径,问题可转化成边与边垂直,不管用向量还是用斜率都可以解决.14.(2021·四川泸州·三模(理))从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P .(1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由.【答案】(1)曲线P 的方程为2y x =,曲线P 是焦点为1,04⎛⎫ ⎪⎝⎭的抛物线;(2)存在;圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【分析】(1)设抛物线2y x =上的任意点为()00,S x y ,垂线段的中点为(),x y ,根据中点坐标公式得出002x x y y =⎧⎪⎨=⎪⎩,代入等式2004y x =化简可得出曲线P 的方程,进而可得出曲线P 的形状;(2)设直线l 的方程为2x ty =+,将直线l 的方程与曲线P 的方程联立,列出韦达定理,求出AB ,求出线段AB 的中点的坐标,进一步求出线段AB 的中垂线CD 的方程,求出CD ,根据四点共圆结合垂径定理可得出关于t 的等式,求出t 的值,进一步可求得圆的方程,由此可得出结论. 【详解】(1)设抛物线2y x =上的任意点为()00,S x y ,垂线段的中点为(),x y ,故002x x y y =⎧⎪⎨=⎪⎩,则002x x y y =⎧⎨=⎩,代入2004y x =得()224y x =,得曲线P 的方程为2y x =, 所以曲线P 是焦点为1,04⎛⎫⎪⎝⎭的抛物线;(2)若直线l 与x 轴重合,则直线l 与曲线P 只有一个交点,不合乎题意. 设直线l 的方程为2x ty =+,根据题意知0t ≠,设()11,A x y 、()22,B x y ,联立22y x x ty ⎧=⎨=+⎩,得220y ty --=,280t ∆=+>,则12y y t +=,122y y ⋅=-,则12A y y B =-==,且线段AB 中点的纵坐标为1222y y t +=,即2121222222x x y y t t ++=⋅+=+, 所以线段AB 中点为22,22t t M ⎛⎫+ ⎪⎝⎭,因为直线CD 为线段AB 的垂直平分线,可设直线CD 的方程为1x y m t =-+,则21222t t m t ⎛⎫+=-⨯+ ⎪⎝⎭,故252t m +=, 联立22152y x t x y t ⎧=⎪⎨+=-+⎪⎩,得()222250ty y t t +-+=,设()33,C x y 、()44,D x y ,则341y y t +=-,()234152y y t ⋅=-+,故34y CD =-线段CD 中点为22151,222t N t t ⎛⎫++- ⎪⎝⎭, 假设A 、B 、C 、D 四点共圆,则弦AB 的中垂线与弦CD 中垂线的交点必为圆心,因为CD 为线段AB 的中垂线,则可知弦CD 的中点N 必为圆心,则12AN CD =, 在Rt AMN △中,222AN AM MN =+,所以22212CD AM MN ⎛⎫=+ ⎪⎝⎭,则()()222222221111111121018442222t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫+++=++++++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故4228810t t t +--=,即()()24264222198880t t t t t t t t -+++--==, 解得21t =,即1t =±,所以存在直线l ,使A 、B 、C 、D 四点共圆,且圆心为弦CD 的中点N ,圆N 的方程为227113222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭或227113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.15.(2021·四川泸州·三模(文))已知抛物线P :22y px =(0p >)上的点3,4a ⎛⎫⎪⎝⎭到其焦点的距离为1. (Ⅰ)求p 和a 的值;(Ⅰ)求直线l :y x m =+交抛物线P 于两点A 、B ,线段AB 的垂直平分线交抛物线P 于两点C 、D ,求证:A 、B 、C 、D 四点共圆.【答案】(Ⅰ)12p =,a =;(Ⅰ)证明见解析. 【分析】(Ⅰ)根据抛物线的定义可得点3,4a ⎛⎫⎪⎝⎭到其焦点的距离等于该点到准线距离,即可求出p ,从而得到抛物线方程,再计算出参数a 的值;(Ⅰ)设()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,即可求出线段AB 的中点M 的坐标,因为直线CD 为线段AB 的垂直平分线,直线CD 的方程为1y x m =-+-,设()33,C x y ,()44,D x y ,求出线段CD 的中点坐标,再利用勾股定理计算可得; 【详解】解:(Ⅰ)22y px =的准线为2px =-, 因为点3,4a ⎛⎫⎪⎝⎭到其焦点的距离等于该点到准线距离,所以3124p +=, 故12p =,即2y x =, 又3,4a ⎛⎫⎪⎝⎭在2y x =上,所以a =; (Ⅰ)设()11,A x y ,()22,B x y ,联立2y x x x m⎧=⎨=+⎩,得20y y m -+=,则121y y +=,12y y m ⋅=, 且140m ->,即14m <,则12A y B =- 且线段AB 中点的纵坐标为12122y y +=,则12x m =-,所以线段AB 中点为11,22M m ⎛⎫- ⎪⎝⎭,因为直线CD 为线段AB 的垂直平分线,直线CD 的方程为1y x m =-+-,联立21y xy x m⎧=⎨=-+-⎩,得210y y m ++-=,设()33,C x y ,()44,D x y , 则341y y +=-,341y y m ⋅=-故34D y C =-=线段CD 中点为31,22N m ⎛⎫-- ⎪⎝⎭,因为()21154108242m CD m -⎛⎫=-= ⎪⎝⎭,22225422AN AM m MN -==+=+, 所以12AN CD =, 所以点A 在以CD 为直径的圆上, 同理点B 在以CD 为直径的圆上, 所以A 、B 、C 、D 四点共圆. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.16.(2021·江苏·高二单元测试)已知直线:l y x m +=交抛物线2:4C y x =于,A B 两点. (1)设直线l 与x 轴的交点为T .若=2AT TB ,求实数m 的值;(2)若点,M N 在抛物线C 上,且关于直线l 对称,求证:,,,A B M N 四点共圆. 【答案】(1)8m =-;(2)证明见解析. 【分析】(1)设()()1122,,,A x y B x y ,直线方程代入抛物线方程后由判别式得m 的范围,由韦达定理得1212,y y y y +,再由向量的数乘可得122y y +=0,结合韦达定理可得12,,y y m 值; (2)设()()3344,,,M x y N x y ,由对称性得434y y =--,4342x m x =---.再由,M N 在抛物线上,代入变形得3y 与m 的关系,然后计算MA MB ⋅,得MA MB ⊥, 同理NA NB ⊥,得证四点共圆. 【详解】解:由24y x m y x =+⎧⎨=⎩得2440y y m -+=.设()()1122,,,A x y B x y , 则12124,4y y y y m +==. 因为直线l 与C 相交, 所以16160,m ∆->= 得1m <.(1)由2AT TB =,得1220y y +=, 所以240y +=,解得24,y =- 从而18y =, 因为124,y y m =所以432,m =-解得8m =-. (2)设()()3344,,,M x y N x y ,因为,M N 两点关于直线y x m =+对称, 则4343223443434=144y y y y y y x x y y --==-+-解得434y y =--. 又434322y y x x m ++=+ 于是3343422y y x x m --++=+ 解得4342x m x =---. 又点N 在抛物线上,于是233()()4442y m x --=---.因为2334,y x =所以23341640y y m =+++,于是13231323()()()()MA M x x x x y y y y B ⋅=--+--222233121323()()(-)(-)4444y y y y y y y y =--()()()13231323()1616y y y y y y y y --=--+⎡⎤⎣⎦ ()()132********()1616y y y y y y y y y y --⎡⎤=++++⎣⎦ ()()2231333404()1616y y y y y m y --==+++ 因此MA MB ⊥, 同理,NA NB ⊥于是点,M N 在以AB 为直径的圆上, 即,,,A B M N 四点共圆. 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,如设交点坐标为()()1122,,,A x y B x y ,直线方程代入抛物线方程后应用韦达定理可得1212,y y y y +,再利用向量的线性运算求得12,y y 关系,从而可求得12,,y y m 值.17.(2021·全国·高三专题练习(理))已知抛物线2:4E y x =的焦点为F ,准线为l O ,为坐标原点,过F 的直线m 与抛物线E 交于A B 、两点,过F 且与直线m 垂直的直线n 与准线l 交于点M .(1)若直线m ||||AF BF 的值; (2)设AB 的中点为N ,若O M N F 、、、四点共圆,求直线m 的方程.【答案】(1)||3||AF BF =或||1||3AF BF =;(2)1)y x =-.【分析】(1)由抛物线的定义建立方程即可.(2)设直线m 的方程为1x ty =+,用t 表示,M N 坐标,再结合条件得到0OM ON ⋅=,建立关于t 的方程即可获解. 【详解】 (1)设||||AF BF λ=,当1λ>时,设||0BF k =>,则||AF k λ=,直线m 直线m 的倾斜角为60︒,由抛物线的定义,有()()1cos60cos602AB AF BF k k k k λλ⋅︒=+⋅︒=+⨯=-, 112λλ+∴=-,解得:3λ=, 若01λ<<时,同理可得:13λ=,||3||AF BF ∴=或||1||3AF BF =.(2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=. 设()()1122,,,A x y B x y ,则12124,4y y t y y +==-.由2211224,4y x y x ==,得()22221212212122(4)2(4)424444y y y y y y t x x t +--⨯-+=+===+,所以()221,2N t t +.因为直线m 的斜率为1t,所以直线n 的斜率为t -, 则直线n 的方程为(1)t y x --=.由1(1)x y t x =-⎧⎨=--⎩,,解得(1,2)M t -.若O M N F 、、、四点共圆,再结合FN FM ⊥,得OM ON ⊥, 则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得2t =所以直线m 的方程为2(1)y x =-. 【点睛】(1)有些题目可以利用抛物线的定义结合几何关系建立方程获解;(2)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.18.(2020·浙江丽水·高三月考)如图,已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线交C 于A ,B 两点,以AB 为直径的圆交x 轴于M ,N ,且当AF x ⊥轴时,||4MN =.(1)求抛物线C 的方程;(2)若直线AN ,AM 分别交抛物线C 于G ,H (不同于A ),直线AB 交GH 于点P ,且直线AB 的斜率大于0,证明:存在唯一这样的直线AB 使得B ,H ,P ,M 四点共圆. 【答案】(1)24y x =;(2)证明见解析. 【分析】(1)当AF x ⊥轴时得A ,B 点坐标及圆的方程,即||||24MN AB p ===可得答案;(2)设点()11,A x y ,()22,B x y ,()3,0M x ,()4,0N x ,直线:1AB x my =+与抛物线方程联立12y y +、12y y ⋅,1y 和12x x +,圆的方程并令0y =,得34x x +,34x x ⋅,即B ,H ,P ,M 四点共圆等价于HG AB ⊥,再证明存在唯一直线AB 满足HG AB ⊥可得答案. 【详解】(1)当AF x ⊥轴时,,2p A p ⎛⎫⎪⎝⎭,,2p B p ⎛⎫- ⎪⎝⎭故圆的方程为2222p x y p ⎛⎫-+= ⎪⎝⎭,即||||24MN AB p ===,得2p =, 故抛物线C 的方程为24y x =;(2)设点()11,A x y ,()22,B x y ,()3,0M x ,()4,0N x ,直线:1AB x my =+,联立241y xx my ⎧=⎨=+⎩得:2440y my --=,()2Δ1610m =+>,124y y m +=,124y y ⋅=-,所以12y m ==+∴()21212242x x m y y m +=++=+,故圆心()221,2m m +, 半径()21||212r AB m ===+,即圆的方程为()()2222221(2)41x m y m m --+-=+,令0y =,则()()2222221441x m m m --+=+,化简得:()224230x m x -+-=,23442x x m +=+,343x x ⋅=-,若B ,H ,P ,M 四点共圆,则090BPH BMH ∠=∠=, 即B ,H ,P ,M 四点共圆等价于HG AB ⊥, 下证:存在唯一直线AB 满足HG AB ⊥, 设()55,H x y ,()66,B x y ,直线()111:AM x x t y y -=-和直线()121:AN x x t y y -=-, 联立()21114y x x x t y y ⎧=⎪⎨-=-⎪⎩,得:211114440y t y t y x -+-=,所以1514y y t +=,5114y t y =-,同理1624y y t +=,6214y t y =-, ∴()65652265656512144424HG y y y y k y y x x y y t t y --====--++-,又∵1311x x t y -=,1421x x t y -=,∴113434114242HGy k x x x x x y y ==-=--+- 又1AB km =,得HG k m =-=,所以32m m m +=, 即32m 62410m m --=,设3()41f x x x =--,(0,)x ∈+∞,2()121f x x '=-,故()f x 在3⎛ ⎝⎭单调递减,3⎫+∞⎪⎪⎝⎭单调递增, 又∵(0)10f =-<,30f <⎝⎭,且(1)20f =>,故存在唯一(0,)x ∈+∞满足()0f x =, 即存在唯一(0,)m ∈+∞,满足62410m m --=, 综上结论得证. 【点睛】本题考查了抛物线、圆的几何性质,解题的关键点是证明B ,H ,P ,M 四点共圆和证明存在唯一直线AB 满足HG AB ⊥,考查了学生分析问题、解决问题及推理能力.19.(2020·广西师范大学附属中学高三月考)已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B 6P 是C 上异于A ,B 的动点. (1)证明:直线AP ,BP 的斜率之积为定值,并求出该定值.(2)设||23AB =,直线AP ,BP 分别交直线l :x =3于M ,N 两点,O 为坐标原点,试问:在x 轴上是否存在定点T ,使得O ,M ,N ,T 四点共圆?若存在,求出点T 的坐标;若不存在,请说明理由.【答案】(1)证明见解析,定值13-;(2)存在,定点11,03T ⎛⎫⎪⎝⎭.【分析】(1)由题意知(,0),(,0)A a B a -,设P (x 0,y 0),y 0≠0,则2200221x y a b+=,然后利用斜率公式求200022000y y y x a x a x a ⋅=+--化简可得结果; (2)由题意先求出椭圆C 的方程为2213x y +=,设直线AP 的方程为(3)y k x =,则直线BP 的方程为1(3)3y x k =-,直线方程与椭圆方程联立可求出(3,33)M k k ,13N k k ⎛⎫ ⎪⎝⎭,假设△MNO 的外接圆恒过定点T (t ,0),t ≠0,然后求出线段MN 的垂直平分线所在直线的方程和线段OT 的垂直平分线所在直线的方程,从而可求出圆心113332k k t k k E ⎛++- ⎪ ⎪⎝⎭,再由|OE |=|ME |,可求出t 的值,进而得O ,M ,N ,T 四点共圆(1)由题意知(,0),(,0)A a B a -,设P (x 0,y 0),y 0≠0,则2200221x y a b+=,所以直线AP 与BP 的斜率之积22022222200022222200001131x b a y y y b a c x a x a x a x a a a ⎛⎫- ⎪-⎝⎭⋅===-=-=-+--⎭=--⎝,即直线AP ,BP 的斜率之积为定值13-.(2)存在.理由如下:由题意知2a =a =因为c a=c =所以b 2=1,所以椭圆C 的方程为2213x y +=.设直线AP的方程为(y k x =,则直线BP的方程为1(3y x k=-.联立(3,y k x x ⎧=⎪⎨=⎪⎩可得(3,3)M k,同理可得1N k ⎛⎫ ⎪⎝⎭. 假设△MNO 的外接圆恒过定点T (t ,0),t ≠0, 因为线段MN的垂直平分线所在直线的方程为y OT 的垂直平分线所在直线的方程为2t x =,所以圆心2t E ⎛⎪ ⎪⎝⎭. 又|OE |=|ME |= 解得t =113.所以存在定点11,03T ⎛⎫⎪⎝⎭,使得O ,M ,N ,T 四点共圆.【点睛】此题考查直线与椭圆的位置关系,考查椭圆中的定点问题,考查计算能力,属于中档题 20.(2020·甘肃·天水市第一中学二模(文))在平面直角坐标系xOy 中,已知抛物线()2:20E y px p =>的焦点为F ,准线为l ,P 是抛物线上E 上一点,且点P 的横坐标为2,3PF =.(1)求抛物线E 的方程;(2)过点F 的直线m 与抛物线E 交于A 、B 两点,过点F 且与直线m 垂直的直线n 与准线l 交于点M ,设AB 的中点为N ,若O 、M N 、F 四点共圆,求直线m 的方程.【答案】(1)24y x =(2))1y x =-(1)由抛物线的定义可得22pPF =+,即可求出p ,从而得到抛物线方程; (2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=.设()11,A x y ,()22,B x y ,列出韦达定理,表示出中点N 的坐标,若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥,则0OM ON ⋅=即可求出参数t ,从而得解; 【详解】解:(1)由抛物线定义,得232pPF =+=,解得2p =, 所以抛物线E 的方程为24y x =.(2)设直线m 的方程为1x ty =+,代入24y x =,得2440y ty --=. 设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-.由2114y x =,2224y x =,得()()()22222121212122424424444y y y y t y y x x t +--⨯-+=+===+, 所以()221,2N t t +.因为直线m 的斜率为1t,所以直线n 的斜率为t -,则直线n 的方程为()1y t x =--.由()1,1,x y t x =-⎧⎨=--⎩解得()1,2M t -.若O 、M 、N 、F 四点共圆,再结合FN FM ⊥,得OM ON ⊥,则()2212122210OM ON t t t t ⋅=-⨯++⋅=-=,解得t =所以直线m 的方程为)1y x =-. 【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题.21.(2020·江西师大附中三模(理))已知椭圆22:14x C y +=上三点A 、M 、B 与原点O 构成一个平行四边形AMBO .(1)若点B 是椭圆C 的左顶点,求点M 的坐标; (2)若A 、M 、B 、O 四点共圆,求直线AB 的斜率.【答案】(1)1,⎛- ⎝⎭;(2)2±. 【分析】(1)由已知可得()2,0B -,由//AM BO ,且AM BO =,设()00,M x y , ()002,A x y +代入椭圆方程解方程即可得解;(2)因为A 、M 、B 、O 四点共圆,则平行四边形AMBO 是矩形且OA OB ⊥,设直线AB 的方程为y kx m =+,与椭圆方程联立,根据韦达定理代入 12120OA OB x x y y →→⋅=+=,化简计算求解即可. 【详解】解析:(1)如图所示:因为()2,0B -,四边形AMBO 为平行四边形, 所以//AM BO ,且2AM BO ==. 设点()00,M x y ,则()002,A x y +因为点M 、A 在椭圆C 上,所以()220022014214x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001x y =-⎧⎪⎨=⎪⎩,所以1,M ⎛- ⎝⎭.(2)因为直线AB 的斜率存在, 所以设直线AB 的方程为y kx m =+,()11,A x y ,()22,B x y .由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得()222418440k x kmx m +++-=, 则有122814km x x k -+=+,21224414m x x k -=+.因为平行四边形AMBO ,所以()1212,OM OA OB x x y y →→→=+=++.因为122814kmx x k -+=+,所以()12122282221414km my y k x x m k m k k -+=++=⋅+=++,所以2282,1414km m M k k -⎛⎫ ⎪++⎝⎭. 因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程化得22441m k =+.① 因为A 、M 、B 、O 四点共圆,所以平行四边形AMBO 是矩形, 且OA OB ⊥,所以12120OA OB x x y y →→⋅=+=. 因为2222121212122414m k y y kx m kx mk x x km x x mk ,所以22212122244401414m m k x x y y k k--+=+=++,化得22544m k =+.② 由①②解得2114k =,23m =,此时0∆>,因此11k = 所以所求直线AB 的斜率为11. 【点睛】本题主要考查了联立直线与椭圆的方程利用韦达定理列式表达斜率以及垂直的方法进而代入求解的问题,考查计算能力和逻辑推理能力,属于难题.22.(2020·江苏南京·三模)如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(﹣2,0)和3⎛ ⎝⎭,椭圆C 上三点A ,M ,B 与原点O 构成一个平行四边形AMBO .(1)求椭圆C 的方程;(2)若点B 是椭圆C 左顶点,求点M 的坐标; (3)若A ,M ,B ,O 四点共圆,求直线AB 的斜率.【答案】(1)24x +y 2=1;(2)M (-3;(3)11【分析】(1)将点()2,0-和3⎛ ⎝⎭代入椭圆22x a +22y b=1求解即可.(2)根据平行四边形AMBO 可知AM ∥BO ,且AM =BO =2.再设点M (x 0,y 0),则A (x 0+2,y 0),代入椭圆C 求解即可.(3) 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB ,再联立直线与椭圆的方程,结合韦达定理代入OA ·OB =x 1x 2+y 1y 2=0求解即可. 【详解】(1)因为椭圆22x a +22y b =1(a >b >0)过点()2,0-和3⎛ ⎝⎭,所以a =2,21a +234b =1,解得b 2=1,所以椭圆C 的方程为24x +y 2=1.(2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2. 设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以()2200202014214x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩解得001x y =-⎧⎪⎨=⎪⎩所以M (-(3)因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, 则有x 1+x 2=2814km k -+,x 1x 2=224414m k -+. 因为平行四边形AMBO ,所以OM =OA +OB =(x 1+x 2,y 1+y 2). 因为x 1+x 2=2814km k -+,所以y 1+y 2=k (x 1+x 2)+2m =k ·2814km k -++2m =2214m k +,所以M (2814kmk -+,2214mk +).因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程,化得4m 2=4k 2+1.① 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB , 所以OA ·OB =x 1x 2+y 1y 2=0.因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=222414m k k-+, 所以x 1x 2+y 1y 2=224414m k -++222414m k k -+=0,化得5m 2=4k 2+4.② 由①②解得k 2=114,m 2=3,此时△>0,因此k =所以所求直线AB 的斜率为【点睛】本题主要考查了椭圆方程的基本求法,同时也考查了联立直线与椭圆的方程,利用韦达定理列式表达斜率以及垂直的方法,进而代入求解的问题.属于难题.23.(2020·江苏·高三专题练习)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的右焦点为F ,P 为右准线上一点.点Q 在椭圆上,且FQ FP ⊥.。
专题04 椭圆知识点和常见题型(解析版)
专题四:椭圆知识点和常见题型1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过(2,(2A B 两点 【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(22A B -两点代入, 得:14213241mnmn⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ⎪⎭⎫ ⎝⎛-2325,∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.已知ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如图所示,因为2c =,则(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:已知在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=, ∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:已知椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由已知得2c a =,∴21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.(Ⅱ)若0m =,则()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-= 得()2224240k x mkx m +++-=,由已知得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
专题50 椭圆及其性质-2020年领军高考数学一轮复习(文理通用)(解析版)
专题50椭圆及其性质最新考纲1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.基础知识融会贯通1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.重点难点突破【题型一】椭圆的定义及应用【典型例题】如图,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆【解答】解:由题意知,CD是线段MF的垂直平分线.∴|MP|=|PF|,∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),又显然|MO|>|FO|,∴根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.故选:A.【再练一题】已知F1(﹣3,0),F2(3,0),动点M满足|MF1|+|MF2|=5,则点M的轨迹是()A.双曲线B.椭圆C.线段D.不存在【解答】解:∵F1(﹣3,0),F2(3,0),∴|F1F2|=6,又|MF1|+|MF2|=5<6,∴点M的轨迹不存在.故选:D.思维升华椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.【题型二】椭圆的标准方程命题点1利用定义法求椭圆的标准方程【典型例题】已知椭圆的焦点F1(﹣1,0),F2(1,0),P是椭圆上一点,且|F1F2|是|PF1|,|PF2|等差中项,则椭圆的方程是()A. 1 B. 1C. 1 D. 1【解答】解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选:C.【再练一题】已知某椭圆的焦点是F1(﹣4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.(Ⅰ)求该椭圆的方程;(Ⅱ)求弦AC中点的横坐标.【解答】解:(1)由椭圆定义及条件,可得2a=|F1B|+|F2B|=10,得a=5.又∵c=4,∴b3.因此可得该椭圆方程为.(2)∵点B(4,y B)在椭圆上,∴将x=4,代入椭圆方程求得y B,可得|F2B|=|y B|.∵椭圆右准线方程为x,即x,离心率e.根据圆锥曲线统一定义,得|F2A|(x1),|F2C|(x2).由|F2A|、|F2B|、|F2C|成等差数列,得2|F2B|=|F2A|+|F2C| 即(x1)(x2)=2,由此解得x1+x2=8.设弦AC的中点为P(x0,y0),可得中点横坐标为则x0(x1+x2)=4.命题点2利用待定系数法求椭圆方程【典型例题】椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为()A. 1B. 1C.1或 1D.1或 1【解答】解:∵椭圆的长轴长为10,其焦点到中心的距离为4,∴,解得a=5,b2=25﹣16=9,∴当椭圆焦点在x轴时,椭圆方程为,当椭圆焦点在y轴时,椭圆方程为.故选:D.【再练一题】已知抛物线y2=4x的焦点F与椭圆C:1(a>b>0)的一个焦点重合,且点F关于直线y=x的对称点在椭圆上.(1)求椭圆C的标准方程;(2)过点Q(0,)且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB 为直径的圆恒过这个点?若存在,求出M点的坐标,若不存在,说明理由.【解答】解:(1)由抛物线的焦点可得:抛物线y2=4x的焦点F(1,0),点F关于直线y=x的对称点为(0,1),故b=1,c=1,因此,∴椭圆方程为:.(2)假设存在定点M,使以AB为直径的圆恒过这个点.当AB⊥x轴时,以AB为直径的圆的方程为:x2+y2=1 ①当AB⊥y轴时,以AB为直径的圆的方程为:②联立①②得,,∴定点M(0,1).证明:设直线l:,代入,有.设A(x1,y1),B(x2,y2),,.则,(x2,y2﹣1);(1+k2)x1x2k0,在y轴上存在定点M,使以AB为直径的圆恒过这个定点.思维升华(1)求椭圆的标准方程多采用定义法和待定系数法.(2)利用定义法求椭圆方程,要注意条件2a>|F1F2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.【题型三】椭圆的几何性质【典型例题】已知椭圆C:的左、右焦点分别为F1,F2,M为椭圆上异于长轴端点的一点,△MF1F2的内心为I,直线MI交x轴于点E,若,则椭圆C的离心率是()A.B.C.D.【解答】解:△MF1F2的内心为I,连接IF1和IF2,可得IF1为∠MF1F2的平分线,即有,,可得2,即有2,即有e,故选:B.【再练一题】已知AB是椭圆的长轴,若把线段AB五等份,过每个分点作AB的垂线,分别与椭圆的上半部分相交于C,D,E,G四点,设F是椭圆的左焦点,则|FC|+|FD|+|FE|+|FG|的值是()A.15 B.16 C.18 D.20【解答】解:椭圆的a=5,b,c=2,e,左准线方程为x,由题意可得x C=﹣3,x D=﹣1,x E=1,x G=3,由椭圆的第二定义可得,可得|FC|=5x C,同理可得|FD|=5x D,|FE|=5x E,|FG|=5x G,可得|FC|+|FD|+|FE|+|FG|=20(﹣3﹣1+1+3)=20.故选:D.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些范围问题时,经常用到x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,即可得离心率或离心率的范围.基础知识训练1.【山东省聊城市2019届高三三模】若方程2244x ky k +=表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A .4k > B .4k =C .4k <D .04k <<【答案】D 【解析】由题得2214x y k +=,因为方程2244x ky k +=表示焦点在y 轴上的椭圆,所以04k <<. 故选:D2.【河南省郑州市2019届高三第三次质量检测】“02m <<”是“方程2212x y m m+=−表示椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】方程2212x ym m +=−表示椭圆,即020022m m m m m>⎧⎪−>⇒<<⎨⎪≠−⎩且1m ≠所以“02m <<”是“方程2212x y m m+=−表示椭圆”的必要不充分条件故选C3.【安徽省定远中学2019届高三全国高考猜题预测卷一】已知椭圆C :2221(0)4x y a a +=>,1F ,2F 分别为椭圆C 的左、右焦点,P 为椭圆C上任一点,若12PF PF +=12F F =( ) A .4 B .23C .2D【答案】A 【解析】据题意,得a =24b =,所以有2c ==,所以124F F =,故选A.4.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】已知椭圆C :()222124x y a a +=>,直线:2l y x =−过C 的一个焦点,则C 的离心率为( )A .12B .13C.2D.3【答案】C 【解析】椭圆C :()222124x y a a +=>,直线:2l y x =−过椭圆C 的一个焦点,可得2c =,则a ==,所以椭圆的离心率为:2c e a ===.故选:C .5.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试】已知椭圆22221(0)x y a b a b+=>>的离心率为3,椭圆上一点P 到两焦点距离之和为12,则椭圆短轴长为( ). A .8 B .6C .5D .4【答案】A 【解析】椭圆()222210x y a b a b +=>>的离心率:3c e a ==椭圆上一点P 到两焦点距离之和为12,即:212a = 可得:6a =,c =4b ∴===则椭圆短轴长:28b = 本题正确选项:A6.【山东省烟台市2019届高三3月诊断性测试(一模)】已知圆锥曲线1C :221(0)mx ny n m +=>>与2C :221(0,0)px qy p q −=>>的公共焦点为1F ,2F .点M 为1C ,2C 的一个公共点,且满足1290F MF ∠=︒,若圆锥曲线1C 的离心率为34,则2C 的离心率为( ) A .92B.2C .32D .54【答案】B 【解析】1C :22111x y m n+=,2C :22111x y p q −=.设1a =2a =1MF s =,2MF t =,由椭圆的定义可得12s t a +=,由双曲线的定义可得22s t a −=, 解得12s a a =+,12t a a =−,由1290F MF ∠=︒,运用勾股定理,可得2224s t c +=,即为222122a a c +=,由离心率的公式可得,2212112e e +=, ∵134e =,∴2292e =,则22e =. 故选:B .7.【北京市昌平区2019届高三5月综合练习(二模)】嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为A .125B .340C .18D .35【答案】B 【解析】如下图,F 为月球的球心,月球半径为:12×3476=1738,依题意,|AF |=100+1738=1838, |BF |=400+1738=2138. 2a =1838+2138, a =1988, a +c =2138, c =2138-1988=150, 椭圆的离心率为:1503198840c e a ==≈, 选B .8.【2019年甘肃省兰州市高考数学一诊】已知点F 1,F 2是椭圆2222x y a b+=1(a >b >0)的左、右焦点,P 为椭圆上的动点,动点Q 在射线F 1P 的延长线上,且|PQ |=|2PF |,若|PQ |的最小值为1,最大值为9,则椭圆的离心率为( ) A .35B .13C .45D .19【答案】C 【解析】因为2||,||PQ PF PQ =的最小值为1,最大值为9,∴|PF 2|的最大值为a+c=9,最小值为a-c=1,∴a=5,c=4.∴椭圆的离心率为e=45c a =, 故选:C .9.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知椭圆C :()222210,0x y a b a b+=>>的右焦点为F ,过点F 作圆222x y b +=的切线,若两条切线互相垂直,则椭圆C 的离心率为( )A .12B .2C .3D .3【答案】D 【解析】 如图,c =,则2b 2=c 2, 即2(a 2﹣c 2)=c 2,则2a 2=3c 2,∴2223c a =,即e 3c a ==. 故选:D .10.【广东省深圳市高级中学2019届高三适应性考试(6月)】在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A 【解析】 如图设()()0000,,,P x y Q x y −−,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =000022y y x a c x c −∴=++−,即00002y y c x x a c=++−, 002c x x a c ∴+=+−,3a c ∴=,13c e a ∴==,故选A. 11.【广东省揭阳市2019届高三高考二模】设F 是椭圆2222:1(0)x y E a b a b+=>>的右焦点,A 是椭圆E 的左顶点,P 为直线32ax =上一点,APF ∆是底角为030的等腰三角形,则椭圆E 的离心率为 A .34B .23C .12D .13【答案】B 【解析】 如图,设直线32ax =与x 轴的交点为C , 因为由椭圆性质可知,3,2aPF AF a c FC OC OF c ==+=−=−, 由题意可知031260,cos ,2acFC PFx PFx PF a c −∠=∴∠===+解得23c e a ==,故选B.12.【安徽省蚌埠市2019届高三年级第一次教学质量检查考试】已知1F ,2F 是椭圆22x y143+=的左右焦点,点M 的坐标为31,2⎛⎫− ⎪⎝⎭,则12F MF ∠的角平分线所在直线的斜率为( ) A .2− B .1−C.D.【答案】A 【解析】31,2A ⎛⎫− ⎪⎝⎭,1F ,2F 是椭圆22143x y+=的左右焦点,()11,0F −, 1AF x ∴⊥轴, 132AF ∴=,252AF =,∴点()21,0F 关于12F AF ∠的角平分线l 对称的点F 在线段1AF 的延长线上,又252AF AF ==,11FF ∴=, ()1,1F ∴−−,线段2F F 的中点10,2⎛⎫− ⎪⎝⎭,12F AF ∠的角平分线l 的斜率13122210k ⎛⎫−− ⎪⎝⎭==−−−.故选A . 13.【江苏省高三泰州中学、宜兴中学、梁丰2019届高三第二学期联合调研测试】椭圆T :22221(0)x y a b a b+=>>的两个顶点(,0)A a ,(0,)B b ,过A ,B 分别作AB 的垂线交椭圆T 于D ,C (不同于顶点),若3BC AD =,则椭圆T 的离心率为_____.【答案】3【解析】依题意可得1BC AD AB a k k k b==−=, 因为过A ,B 分别作AB 的垂线交椭圆T 于D ,C (不同于顶点), 所以直线BC :a y x b b =+,直线AD :()ay x a b=−. 由()4423222222220ay x bba x ab x bb x a y a bì=+ï+=íï+=î,所以3232444422C B C a b a b x x x b a b a−−+=⇒=++. 由()4425624222222()20ay x a b a x a x a a b bb x a y a bì=-ï-+-=íï+=î,所以62444A D a a b x x a b −⋅=+,5444D a ab x b a−=+.因为()0C CB x =,()D AD a x ,由3BC AD =可得33D C x x a −=,所以223a b =,椭圆T的离心率3e ===,故答案为:3。
高二上学期数学人教A版2019选择性必修第一册3.椭圆的简单几何性质PPT全文课件(共39ppt)
2020-2021学年高二上学期数学人教A 版2019 选择性 必修第 一册3. 椭圆的 简单几 何性质P PT全文 课件( 共39pp t)【 完美课 件】
容易看出椭圆上的点都在一个特定的矩形内.为确定其具体的边
界,我们利用方程(代数方法)进行研究.
由椭圆标准方程可知,
y2 b2
1
x2 a2
≥0,
2020-2021学年高二上学期数学人教A 版2019 选择性 必修第 一册3. 椭圆的 简单几 何性质P PT全文 课件( 共39pp t)【 完美课 件】
在直角坐标系中,要证明一个图形关于坐标轴或原 点对称,就是要证明什么?
2020-2021学年高二上学期数学人教A 版2019 选择性 必修第 一册3. 椭圆的 简单几 何性质P PT全文 课件( 共39pp t)【 完美课 件】
同学们不难发现椭圆的扁平程度与短轴和长轴
之比,即
b a
有关.
我们也能发现椭圆的扁平程度与焦距和长轴之
比,即
c a
有关.
那这两个比值是否都可以刻画椭圆的扁平程度 呢?我们最终会选择哪个量呢?
b=
a2
c2
,因此
b a
与
c a
本质上是相关的,它们都
可以刻画椭圆的扁平程度.而两者对比,a 和 c 都来
椭圆的简单几何性质
温故知新 问题 1 椭圆的概念是什么?椭圆的标准方程是什么?
温故知新
问题 1 椭圆的概念是什么?椭圆的标准方程是什么? 我们把平面内与两个定点 F1,F2 的距离的和等于常数(大 于|F1F2|)的点的轨迹叫做椭圆(ellipse).
椭圆的标准方程:(a>b>0)
标准方程
x2 y2 a2 b2 1
椭圆中的定点、定值-2024年新高考数学(解析版)
椭圆中的定点、定值1(2023春·河北石家庄·高二校考开学考试)已知椭圆C:x28+y24=1,直线l:y=kx+n(k>0)与椭圆C交于M,N两点,且点M位于第一象限.(1)若点A是椭圆C的右顶点,当n=0时,证明:直线AM和AN的斜率之积为定值;(2)当直线l过椭圆C的右焦点F时,x轴上是否存在定点P,使点F到直线NP的距离与点F到直线MP的距离相等?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)见解析;(2)存在,P(4,0).【分析】(1)联立直线方程和椭圆方程得(1+2k2)x2-8=0,由韦达定理可得x1,x2的关系,再由k AM⋅k AN=y1x1-22⋅y2x2-22计算即可得证;(2)由题意可得直线l的方程为y=k(x-2),联立直线方程与椭圆方程得(1+2k2)x2-8k2x+8(k2-1)= 0,由韦达定理x3,x4之间的关系,假设存在满足题意的点P,设P(m,0),由题意可得k PM+k PN=0.代入计算,如果m有解,则存在,否则不存在.【详解】(1)证明:因为n=0,所以直线l:y=kx,联立直线方程和椭圆方程:y=kxx2+2y2-8=0,得(1+2k2)x2-8=0,设M(x1,y1),N(x2,y2),则有x1+x2=0,x1x2=-81+2k2,所以y1y2=k2x1x2=-8k21+2k2,又因为A(22,0),所以k AM=y1x1-22,k AN=y2x2-22,所以k AM⋅k AN=y1x1-22⋅y2x2-22=y1y2x1x2-22(x1+x2)+8=y1y2x1x2+8=-8k21+2k2-81+2k2+8=-8k21+2k216k21+2k2=-8k2 16k2=-12所以直线AM和AN的斜率之积为定值-1 2;(2)解:假设存在满足题意的点P,设P(m,0),因为椭圆C的右焦点F(2,0),所以2k+n=0,即有n=-2k,所以直线l的方程为y=k(x-2).由y=k(x-2)x2+2y2-8=0,可得(1+2k2)x2-8k2x+8(k2-1)=0,设M(x3,y3),N(x4,y4),则有x3+x4=8k21+2k2,x3x4=8(k2-1)1+2k2;因为点F到直线NP的距离与点F到直线MP的距离相等,所以PF平分∠MPN,所以k PM+k PN=0.即y 3x 3-m +y 4x 4-m =k (x 3-2)x 3-m +k (x 4-2)x 4-m =k (x 3-2)(x 4-m )+k (x 3-m )(x 4-2)(x 3-m )(x 4-m )=k [2x 3x 4-(m +2)(x 3+x 4)+4m ](x 3-m )(x 4-m )=0,又因为k >0,所以2x 3x 4-(m +2)(x 3+x 4)+4m =0,代入x 3+x 4=8k 21+2k 2,x 3x 4=8(k 2-1)1+2k 2,即有4m -161+2k 2=0,解得m =4.故x 轴上存在定点P (4,0),使得点F 到直线NP 的距离与点F 到直线MP 的距离相等.2(2023·全国·模拟预测)在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,M -1,0 ,N 1,0 ,点P 是平面内的动点,且以AB 为直径的圆O 与以PM 为直径的圆O 1内切.(1)证明PM +PN 为定值,并求点P 的轨迹Ω的方程.(2)过点A 的直线与轨迹Ω交于另一点Q (异于点B ),与直线x =2交于一点G ,∠QNB 的角平分线与直线x =2交于点H ,是否存在常数λ,使得BH =λBG恒成立?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)证明见解析,x 24+y 23=1(2)存在,λ=12【分析】(1)依题意可得OO 1 =2-PM 2,连接PN ,可得OO 1 =PN2,即可得到PM +PN 为定值,根据椭圆的定义得到点P 的轨迹是以M ,N 为焦点的椭圆,且2a =4,c =1,即可求出椭圆方程;(2)设Q x 0,y 0 ,G 2,y 1 ,H 2,y 2 ,直线AQ 的方程为x =my -2m ≠0 ,即可得到m =4y 1,再联立直线与椭圆方程,解出y 0,从而得到k QN ,k NH ,设∠BNH =θ,再根据二倍角的正切公式得到方程,即可得到y 2=12y 1,从而得解;【详解】(1)解:如图,以AB 为直径的圆O 与以PM 为直径的圆O 1内切,则OO 1 =AB 2-PM 2=2-PM2.连接PN ,因为点O 和O 1分别是MN 和PM 的中点,所以OO 1 =PN2.故有PN 2=2-PM2,即PN +PM =4,又4>2=MN,所以点P的轨迹是以M,N为焦点的椭圆.因为2a=4,c=1,所以b2=a2-c2=3,故Ω的方程为x24+y23=1.(2)解:存在λ=12满足题意.理由如下:设Q x0,y0,G2,y1,H2,y2.显然y1y2>0.依题意,直线AQ不与坐标轴垂直,设直线AQ的方程为x=my-2m≠0,因为点G在这条直线上,所以my1=4,m=4 y1 .联立x=my-2,3x2+4y2=12,得3m2+4y2-12my=0的两根分别为y0和0,则y0=12m3m2+4,x0=my0-2=6m2-83m2+4,所以k QN=y0x0-1=12m3m2+46m2-83m2+4-1=4mm2-4=4y14-y21,k NH=y2.设∠BNH=θ,则∠BNQ=2θ,则k QN=tan2θ,k NH=tanθ,所以tan2θ=2tanθ1-tan2θ=2y21-y22=4y14-y21,整理得y1-2y2y1y2+2=0,因为y1y2>0,所以y1-2y2=0,即y2=12y1.故存在常数λ=12,使得BH=λBG.3(2023·全国·高三专题练习)仿射变换是处理圆锥曲线综合问题中求点轨迹的一类特殊而又及其巧妙的方法,它充分利用了圆锥曲线与圆之间的关系,具体解题方法为将C:x2a2+y2b2=1(a>b>0)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1,直线的斜率与原斜率的关系为k =abk,然后联立圆的方程与直线方程通过计算韦达定理算出圆与直线的关系,最后转换回椭圆即可.已知椭圆C:x2 a2+y2b2=1(a>b>0)的离心率为55,过右焦点F2且垂直于x轴的直线与C相交于A,B两点且AB=855,过椭圆外一点P作椭圆C的两条切线l1,l2且l1⊥l2,切点分别为M,N.(1)求证:点P的轨迹方程为x2+y2=9;(2)若原点O到l1,l2的距离分别为d1,d2,延长表示距离d1,d2的两条直线,与椭圆C交于Y,W两点,过O作OZ⊥YW交YW于Z,试求:点Z所形成的轨迹与P所形成的轨迹的面积之差是否为定值,若是,求出此定值;若不是,请求出变化函数.【答案】(1)证明见解析(2)是定值,定值为619π【分析】(1)利用仿射变换将椭圆方程变为圆的方程,设原斜率分别为k1,k2,k1k2=-1,则变换后斜率k 1⋅k 2=a2b2k1k2,设变换后坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0,将圆的方程和直线方程联立,利用直线和圆相切结合韦达定理求解即可;(2)由图中的垂直关系,利用等面积法S△OYW=12OYOW=12YWOZ和1|OY|2+1|OW|2=OY|2+OW|2 OY|2OW|2=|YW|2OW|2OY|2,结合椭圆的性质求解即可.【详解】(1)由仿射变换得:x =xa,y=yb,则椭圆x2a2+y2b2=1变为x 2+y 2=1设原斜率存在分别为k1,k2,k1k2=-1,变换后为k 1=abk1,k 2=abk2,所以k 1⋅k 2=a2b2k1k2=-a2b2=e2-1,设变换后的坐标系动点Q x0,y0,过点Q x0,y0的直线为l:y-y0=k x-x0l:kx-y-kx0-y0=0到原点距离为d=kx0-y0k2+1=1,即kx0-y02=k2+1⇒x20-1k2-2x0y0k+y20-1=0,由韦达定理得:k 1k 2=y20-1x20-1=-a2b2,化简得:a2x20+b2y20=a2+b2由于原坐标系中x0=xa,y0=yb⇒x=ax0,y=by0所以在原坐标系中轨迹方程为:x2+y2=a2+b2,由e=ca=55b2a=455解得a2=5b2=4,所以点P的轨迹方程为x2+y2=9,当切线斜率不存在时,由椭圆方程x25+y24=1易得P点在x2+y2=9上.(2)如图所示延长OY交l1于N,延长OW交l2于M,由题意可知∠GPM=∠OGP=∠OHP=π2,所以四边形OGPH为矩形,∠YOW=π2,所以S△OYW=12OYOW=12YWOZ,且1|OY|2+1|OW|2=OY|2+OW|2OY|2OW|2=|YW|2OW|2OY|2,|YW |2OW |2OY |2分子分母同乘|OZ |2得4S 24OZ 2S 2=1OZ 2=1OY 2+1OW 2,因为OY ⊥OW ,当直线OY ,OW 斜率存在时,设l OY :y =k 3x ,l OW :y =-1k 3x ,由x 2a 2+y 2b 2=1y =k 3x解得x 2Y=a 2b 2b 2+a 2k 23,y 2Y =a 2b 2k 23b 2+a 2k 23,所以OY 2=a 2b 21+k 23 b 2+a 2k 23,由x 2a 2+y 2b 2=1y =-1k 3x解得x 2W=a 2b 2k 23b 2k 23+a 2,y 2W =a 2b 2b 2k 23+a 2,所以OW 2=a 2b 21+k 23 b 2k 23+a2,所以1OY 2+1OW 2=b 2+a 2k 23a 2b 2(1+k 23)+b 2k 23+a 2a 2b 2(1+k 23)=a 2+b 2a 2b 2,当斜率不存在时仍成立,所以1|OZ |2=a 2+b 2a 2b 2,OZ 2=x 2+y 2=a 2b 2a 2+b 2=209,所以Z 所形成的轨迹与P 所形成的轨迹的面积之差=9-209 π=619π是定值.4(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆W :x 2a 2+y 2b2=1(a >b >0)的离心率为22,椭圆W 上的点与点P 0,2 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线x =4上,点B 关于x 轴的对称点为B 1,直线PB ,PB 1分别交椭圆W 于C ,D 两点(不同于P 点).求证:直线CD 过定点.【答案】(1)x 28+y 24=1(2)证明见解析【分析】(1)根据离心率可得a =2b =2c ,设点T m ,n 结合椭圆方程整理得TP =-(n +2)2+8+2b 2,根据题意分类讨论求得b =2,即可得结果;(2)设直线CD 及C ,D 的坐标,根据题意结合韦达定理分析运算,注意讨论直线CD 的斜率是否存在.【详解】(1)设椭圆的半焦距为c ,由椭圆W 的离心率为22,得a =2b =2c ,设点T m ,n 为椭圆上一点,则m 22b 2+n 2b2=1,-b ≤n ≤b ,则m 2=2b 2-2n 2,因为P 0,2 ,所以TP =m 2+(n -2)2=2b 2-2n 2+n 2-4n +4=-(n +2)2+8+2b 2,①当0<b <2时,|TP |max =-(-b +2)2+8+2b 2=4,解得b =2(舍去);②当b ≥2时,|TP |max =8+2b 2=4,解得b =2;综上所述:b =2,则a =22,c =2,故椭圆W 的标准方程为x 28+y 24=1.(2)①当CD 斜率不存在时,设C x 0,y 0 ,-22<x 0<22且x 0≠0,则D x 0,-y 0 ,则直线CP 为y =y 0-2x 0x +2,令x =4,得y =4y 0-8x 0+2,即B 4,4y 0-8x 0+2,同理可得B 14,-4y 0-8x 0+2.∵B 与B 1关于x 轴对称,则4y 0-8x 0+2+-4y 0-8x 0+2=0,解得x 0=4>22,矛盾;②当直线CD 的斜率存在时,设直线CD 的方程为y =kx +m ,m ≠2,设C x 1,y 1 ,D x 2,y 2 ,其中x 1≠0且x 2≠0,联立方程组y =kx +mx 28+y 24=1,消去y 化简可得2k 2+1 x 2+4kmx +2m 2-8=0,Δ=16k 2m 2-42k 2+1 2m 2-8 =88k 2+4-m 2 >0,则m 2<8k 2+4,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,由P 0,2 ,可得k PC =y 1-2x 1,k PD =y 2-2x 2,所以直线PC 的方程为y =y 1-2x 1x +2,令x =4,得y =4y 1-8x 1+2,即4,4y 1-8x 1+2,直线PD 的方程为y =y 2-2x 2x +2,令x =4,得y =4y 2-8x 2+2,即4,4y 2-8x 2+2,因为B 1和B 关于x 轴对称,则4y 1-8x 1+2+4y 2-8x 2+2=0,把y 1=kx 1+m ,y 2=kx 2+m 代入上式,则4kx 1+m -8x 1+2+4kx 2+m -8x 2+2=0,整理可得1+2k x 1x 2+m -2 x 1+x 2 =0,则1+2k ×2m 2-81+2k 2+m -2 ×-4km1+2k2=0,∵m ≠2,则m -2≠0,可得1+2k ×m +2 -2km =0,化简可得m =-4k -2,则直线CD 的方程为y =kx -4k -2,即y +2=k x -4 ,所以直线CD 过定点4,-2 ;综上所述:直线CD 过定点4,-2 .【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.5(2023春·四川眉山·高二校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)点D (4,0),斜率为k 的直线l 不过点D ,且与椭圆C 交于A ,B 两点,∠ADO =∠BDO (O 为坐标原点).直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1)x 24+y 2=1;(2)过定点,1,0 .【分析】(1)根据已知条件列方程即可解得a ,b 值,方程可求解;(2)设直线l 的方程为y =kx +m ,联立椭圆方程结合韦达定理得x 1,x 2关系,又∠ADO =∠BDO 得k AD +k BD =0,代入坐标化简即可求解.【详解】(1)由题意可得2b =2ca =32c 2=a 2-b 2,解得a 2=4,b 2=1所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 联立y =kx +mx 24+y 2=1整理得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=8km 2-44k 2+1 (4m 2-4)>0,即4k 2-m 2+1>0又x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1因为∠ADO =∠BDO ,所以k AD +k BD =0,所以y 1x 1-4+y 2x 2-4=kx 1+m x 2-4 +kx 2+m x 1-4x 1-4 x 2-4 =0所以2kx 1x 2+(m -4k )x 1+x 2 -8m =0,即2k ⋅4m 2-44k 2+1+(m -4k )⋅-8km 4k 2+1-8m =0整理得8k +8m =0,即m =-k ,此时Δ=3k 2+1>0则直线l 的方程为y =kx -k ,故直线l 过定点1,0 .6(2023·内蒙古赤峰·校联考模拟预测)已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为12,且经过点6,2 ,椭圆C 的右顶点到抛物线E :y 2=2px p >0 的准线的距离为4.(1)求椭圆C 和抛物线E 的方程;(2)设与两坐标轴都不垂直的直线l 与抛物线E 相交于A ,B 两点,与椭圆C 相交于M ,N 两点,O 为坐标原点,若OA ⋅OB=-4,则在x 轴上是否存在点H ,使得x 轴平分∠MHN ?若存在,求出点H 的坐标;若不存在,请说明理由.【答案】(1)y 212+x 29=1;y 2=4x(2)存在;H 92,0 【分析】(1)依题意得到方程组,即可求出a 2,b 2,从而得到椭圆方程,再求出椭圆的右顶点,即可求出p ,从而求出抛物线方程;(2)设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立直线与抛物线方程,消元、列出韦达定理,根据OA ⋅OB=-4得到m =-2k ,再假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,联立直线与椭圆方程,消元、列出韦达定理,由y 3x 3-x 0+y 4x 4-x 0=0,即可求出x 0,从而求出H 的坐标;【详解】(1)解:由已知得c a =124a 2+6b 2=1a 2=b 2+c 2,∴a 2=12,b 2=9.∴椭圆C 的方程为y 212+x 29=1.∴椭圆C 的右顶点为3,0 .∴3+p2=4,解得p =2.∴抛物线E 的方程为y 2=4x .(2)解:由题意知直线l 的斜率存在且不为0.设直线l 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .由y =kx +my 2=4x消去y ,得k 2x 2+2km -4 x +m 2=0.∴Δ1=2km -4 2-4k 2m 2=-16km +16>0,∴km <1.∴x 1+x 2=4-2km k 2,x 1x 2=m 2k2.∴y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=km 4-2km k2+2m 2=4m k .∴OA ⋅OB =x 1x 2+y 1y 2=m 2k2+4m k =-4.∴m k +2 2=0,∴mk=-2.∴m =-2k ,此时km =-2k 2<1.∴直线l 的方程为y =k x -2 .假设在x 轴上存在点H x 0,0 ,使得x 轴平分∠MHN ,则直线HM 的斜率与直线HN 的斜率之和为0,设M x 3,y 3 ,N x 4,y 4 ,由y =k x -2y 212+x 29=1消去y ,得3k 2+4 x 2-12k 2x +12k 2-36=0.∴Δ2=12k 2 2-43k 2+4 12k 2-36 >0,即5k 2+12>0恒成立.∴x 3+x 4=12k 23k 2+4,x 3x 4=12k 2-363k 2+4.∵y 3x 3-x 0+y 4x 4-x 0=0,∴k x 3-2 x 4-x 0 +k x 4-2 x 3-x 0 =0.∴2x 3x 4-x 0+2 x 3+x 4 +4x 0=0.∴24k 2-723k 2+4-x 0+2 12k 23k 2+4+4x 0=0.∴16x 0-723k 2+4=0.解得x 0=92.∴在x 轴上存在点H 92,0 ,使得x 轴平分∠MHN .【点睛】本题考查直线与圆锥曲线的综合问题,考查椭圆的方程以及韦达定理法在圆锥曲线综合中的应用,属于难题;在解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.7(2023·宁夏·六盘山高级中学校考一模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为B 1,若△F 1B 1F 2为等边三角形,且点P 1,32在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为A 1,A 2,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线AA 1、BA 2与y 轴的交点分别为M 、N ,若|ON |=3|OM |,证明:直线过定点,并求该定点的坐标.【答案】(1)x 24+y 23=1(2)点1,0 或4,0【分析】(1)由已知条件,椭圆的定义及a ,b ,c 的关系可知a 2=4c 2和b 2=3c 2,再设出椭圆的方程,最后将点代入椭圆的方程即可求解;(2)设点A x 1,y 1 ,B x 2,y 2 ,由直线AA 1的方程即可求出点M 的坐标,由BA 2的方程即可求出点N 的坐标,由已知条件可知5x 1+x 2 -2x 1x 2-8=0,分直线AB 的斜率存在和直线AB 的斜率不存在两种情况分别求解,得出直线AB 的方程,即可判断出直线恒过定点的坐标.【详解】(1)∵△F 1B 1F 2为等边三角形,且B 1F 1 +B 1F 2 =2a ,∴a =2c ,又∵a 2=b 2+c 2,∴b 2=3c 2,设椭圆的方程为x 24c 2+y 23c 2=1,将点P 1,32 代入椭圆方程得14c 2+912c2=1,解得c 2=1,所以椭圆E 的方程为x 24+y 23=1.(2)由已知得A 1-2,0 ,A 22,0 ,设A x 1,y 1 ,B x 2,y 2 ,则直线AA 1的斜率为y 1x 1+2,直线AA 1的方程为y =y 1x 1+2x +2 ,即点M 坐标为0,2y 1x 1+2,直线BA 2的斜率为y 2x 2-2,直线AA 1的方程为y =y 2x 2-2x -2 ,即点N 坐标为0,-2y 2x 2-2,∵|ON |=3|OM |,∴|ON |2=9|OM |2,∴4y 22x 2-2 2=36y 21x 1+2 2,又∵y 21=3-3x 214=12-3x 214,y 22=3-3x 224=12-3x 224,∴4-x 22x 2-2 2=9×4-x 21x 1+22,即2+x 22-x 2=92-x 1 2+x 1,整理得5x 1+x 2 -2x 1x 2-8=0,①若直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,将直线方程与椭圆方程联立y =kx +bx 24+y 23=1得3+4k 2 x 2+8kbx +4b 2-12=0,其中Δ=64k 2b 2-43+4k 2 4b 2-12 =1612k 2-3b 2+9 >0,x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2,即-5×8kb 3+4k 2-2×4b 2-123+4k2-8=0,4k 2+5kb +b 2=0,4k +b k +b =0,所以b =-4k 或b =-k ,当b =-4k 时,直线AB 的方程为y =kx -4k =k x -4 ,此时直线AB 恒过点4,0 ,当b =-k 时,直线AB 的方程为y =kx -k =k x -1 ,此时直线AB 恒过点1,0 ,②若直线AB 的斜率不存在时x 1=x 2,由2+x 22-x 2=92-x 1 2+x 1得2+x 22-x 2=92-x 2 2+x 2,即x 22-5x 2+4=0,解得x 2=1或x 2=4,此时直线AB 的方程为x =1或x =4,所以此时直线AB 恒过点1,0 或4,0 ,综上所述,直线AB 恒过点1,0 或4,0 .8(2023·江苏扬州·仪征中学校考模拟预测)已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1(2)存在,D =(5,+∞),证明见解析【分析】(1)求出点A 2,53到两焦点的距离,再用椭圆的定义可得a =3,结合b 2=a 2-c 2可得b 2,从而可得椭圆的方程;(2)直线l 与抛物线联立,结合判别式有p +4t >0,要使得点F 1在以线段MN 为直径的圆内,根据题意,有F 1P ⋅F 1Q<0,结合韦达定理可得p >5,从而可证明问题.【详解】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2px y =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.9(2023·四川绵阳·四川省绵阳南山中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为M 1、M 2,短轴长为23,点C 上的点P 满足直线PM 1、PM 2的斜率之积为-34.(1)求C 的方程;(2)若过点1,0 且不与y 轴垂直的直线l 与C 交于A 、B 两点,记直线M 1A 、M 2B 交于点Q .探究:点Q是否在定直线上,若是,求出该定直线的方程;若不是,请说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线x =4上【分析】(1)设点P x 0,y 0 ,则x 0≠±a ,可得出y 20=b 21-x 20a2,利用斜率公式结合已知条件可得出b 2=34a 2,再利用椭圆的短轴长可得出b 2、a 2的值,即可得出椭圆C 的方程;(2)设l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,设点Q x ,y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,写出直线M 1A 、M 2B 的方程,联立这两条直线方程,可得出点Q 的横坐标,即可得出结论.【详解】(1)解:设P x 0,y 0 ,则x 0≠±a ,且x 20a 2+y 20b 2=1,所以,y 20=b 21-x 20a2,则k PM 1⋅k PM 2=y 0x 0+a ⋅y 0x 0-a =y20x 20-a 2=b 21-x 20a 2x 20-a2=-b 2a2=-34,故b 2=34a 2①,又2b =23②,联立①②,解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1.(2)解:结论:点Q 在定直线上x =4.由(1)得,M 1-2,0 、M 22,0 ,设Q x ,y ,设直线l 的方程为x =my +1,设点A x 1,y 1 、B x 2,y 2 ,联立x 24+y 23=1x =my +1,整理得3m 2+4 y 2+6my -9=0,Δ=36m 2+363m 2+4 =144m 2+1 >0,∴y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 直线M 1A 的方程为y =y 1x 1+2x +2 ,直线M 2B 的方程为y =y 2x 2-2x -2 ,所以,y 1x 1+2x +2 =y 2x 2-2x-2 ,可得x +2x -2=y 2x 1+2 y 1x 2-2 =y 2my 1+3 y 1my 2-1 =my 1y 2+3y 2my 1y 2-y 1=-9m 3m 2+4+3-6m 3m 2+4-y 1 -9m 3m 2+4-y 1=-27m 3m 2+4-3y 1-9m 3m 2+4-y 1=3,解得x =4,因此,点Q 在直线x =4上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.10(2023·全国·高三专题练习)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,其中AB ,CD 与x 轴平行,直线AC ,BD 的斜率之积为-12,椭圆的焦距为2.(1)求椭圆E 的标准方程;(2)椭圆上的点P ,Q 满足直线OP ,OQ 的斜率之积为-12,其中O 为坐标原点.若M 为线段PQ 的中点,则MO 2+MQ 2是否为定值?如果是,求出该定值;如果不是,说明理由.【答案】(1)x 22+y 2=1(2)是定值,定值为32【分析】(1)由题意求出直线AC ,BD 的斜率,即可求出-b 2a2=-12,又因为焦距为2,即可就出椭圆的标准方程.(2)方法一:联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出2t 2=1+2k 2,又因为:MO 2+MQ 2=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,代入即可求出答案.方法二:由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2,联立直线PQ 与椭圆的方程由k OP ⋅k OQ =-12可求出y 1=-x 1x 22y 2,代入化简得x 21=2y 22,即可求出答案.【详解】(1)由题意,c =1,则A -a ,-b ,B a ,-b ,C a ,b ,D -a ,b ,所以k AC =2b 2a =b a ,k BD =2b-2a=b -a ,所以k AC ⋅k BD =-b 2a2=-12,解得:a =2,=1,∴椭圆的标准方程为x 22+y 2=1.(2)(方法一)设P x 1,y 1 ,Q x 2,y 2 ,则M x 1+x 22,y 1+y 22.设直线PQ :y =kx +t ,由y =kx +t x 22+y 2=1,得:1+2k 2 x 2+4ktx +2t 2-2=0,x 1+x 2=-4kt1+2k2x 1x 2=2t 2-21+2k2,由k OP ⋅k OQ =-12,得x 1x 2+2y 1y 2=1+2k 2 x 1x 2+2kt x 1+x 2 +2t 2=0,代入化简得:2t 2=1+2k 2.∵MO 2+MQ 2=x 1+x 22 2+y 1+y 22 2+x 1-x 1+x 22 2+y 1-y 1+y 222=x 21+x 222+y 21+y 222,又点P ,Q 在椭圆上,∴x 212+y 21=1,x 222+y 22=1,即x 21+x 224+y 21+y 222=1,∵x 21+x 22=x 1+x 2 2-2x 1x 2=-4kt 2t 22-2⋅2t 2-22t 2=2,∴x 21+x 224=12.∴MO 2+MQ 2=x 21+x 224+y 21+y 222+x 21+x 224=32.即MO 2+MQ 2=32为定值.(方法二)由P ,Q 是椭圆C 上的点,可得x 21+2y 21=2x 22+2y 22=2 ,把y 1=-x 1x 22y 2代入上式,化简x 21=2y 22,得y 21+y 22=1,x 21+x 22=2,MO 2+MQ 2=12x 21+x 22+y 21+y 22 =32.11(2023春·湖北襄阳·高三襄阳五中校考阶段练习)已知离心率为22的椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,左、右顶点分别为A 1、A 2,上顶点为B ,且△A 1BF 的外接圆半径大小为3.(1)求椭圆C 方程;(2)设斜率存在的直线l 交椭圆C 于P ,Q 两点(P ,Q 位于x 轴的两侧),记直线A 1P 、A 2P 、A 2Q 、A 1Q 的斜率分别为k 1、k 2、k 3、k 4,若k 1+k 4=53k 2+k 3 ,求△A 2PQ 面积的取值范围.【答案】(1)x 24+y 22=1(2)0,5830 【分析】(1)根据椭圆离心率确定椭圆中a ,b ,c 的关系,再结合正弦定理的推论确定外接圆半径与边角关系即可得c 的值,从而求得椭圆方程;(2)由题可设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立直线与椭圆即可得交点坐标关系,根据斜率的计算式可得k 1k 2=-12,k 3k 4=-12,再由已知等式k 1+k 4=53k 2+k 3 确定k 2k 3=-310,由坐标关系进行转化可求得m 的值,求解△A 2PQ 面积的表达式,结合函数性质即可得△A 2PQ 面积的取值范围.【详解】(1)根据椭圆C 的离心率为22知a =2c ,所以b =a 2-c 2=c ,如图,则OF =OB =c则在△A 1BF 中,可得∠BFA 1=3π4,A 1B =OA 1 2+OB 2=3c ,由正弦定理得A 1Bsin ∠BFA 1=3c22=6c =2×3,解得c =2,所以a =2,b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由条件知直线l 的斜率不为0,设直线l :x =ty +m t ≠0 ,P x 1,y 1 ,Q x 2,y 2 ,联立x =ty +mx 24+y 22=1,得t 2+2 y 2+2mty +m 2-4=0,Δ>0得2t 2+4>m 2于是y 1+y 2=-2mt t 2+2,y 1y 2=m 2-4t 2+2,因为A 1-2,0 ,A 22,0 ,P x 1,y 1 代入椭圆方程得x 214+y 212=1,所以k 1k 2=y 1x 1+2⋅y 1x 1-2=y 21x 21-4=21-x 214 x 21-4=-12,同理k 3k 4=-12,于是k 1=-12k 2,k 4=-12k 3,因为k 1+k 4=53k 2+k 3 ,所以-12k 2-12k 3=53k 2+k 3 ,即-k 2+k 32k 2k 3=53k 2+k 3 .又直线l 的斜率存在,所以k 2+k 3≠0,于是k 2k 3=-310,所以y 1x 1-2⋅y 2x 2-2=-310,即10y 1y 2+3x 1-2 x 2-2 =0,又x 1=ty 1+m ,x 2=ty 2+m ,所以10y 1y 2+3ty 1+m -2 ty 2+m -2 =0,整理得3t 2+10 y 1y 2+3t m -2 y 1+y 2 +3m -2 2=0,所以3t 2+10 m 2-4t 2+2 +3t m -2 -2mt t 2+2+3m -2 2=0,化简整理得m -2 2m +1 =0,又P 、Q 位于x 轴的两侧,所以y 1y 2=m 2-4t 2+2<0,解得-2<m <2,所以m =-12,此时直线l 与椭圆C 有两个不同的交点,于是直线l 恒过定点D -12,0 .当m =-12时,y 1+y 2=t t 2+2,y 1y 2=-154t 2+2,△A 2PQ 的面积S △A 2PQ =12A 2D ⋅y 1-y 2 =12×52×y 1+y 2 2-4y 1y 2=54t t 2+22-4-154t 2+2 =54⋅16t 2+30t 2+2,令16t 2+30=λ,因为直线l 的斜率存在,则λ>30,t 2=λ2-3016,于是S △A 2PQ =54⋅16λλ2+2=20λ+2λ,又函数y =20λ+2λ在30,+∞ 上单调递减,所以△A 2PQ 面积的取值范围为0,5830 .【点睛】关键点点睛:本题考查了直线与椭圆相交的坐标关系,利用坐标运算解决直线斜率关系及面积关系.解决本题的关键是确定直线直线A 1P 、A 2P 、A 2Q 、A 1Q 之间的斜率关系,结合椭圆上的任意一点与左右顶点之间的斜率关系,可将四个斜率值简化为两个斜率关系,即可减少位置数,从而利用坐标运算及坐标关系确定所设直线过定点,于是简化所求面积表达式中的变量个数从而可结合函数关系确定取值范围,得以解决问题.12(2023·江西南昌·统考模拟预测)已知A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点.(1)求椭圆E 的标准方程;(2)过点P 2,1 的直线l 与椭圆E 交于C ,D ,与直线AB 交于点M ,求PM PC +PMPD的值.【答案】(1)x 24+y 2=1(2)PM PC +PM PD =2【分析】(1)根据椭圆顶点坐标直接可得椭圆方程;(2)设直线方程,可得点M ,联立直线与椭圆结合韦达定理,再根据两点间距离化简可得解.【详解】(1)由A 2,0 ,B 0,1 是椭圆E :x 2a 2+y 2b2=1a >b >0 的两个顶点,得a =2,b =1,即E :x 24+y 2=1;(2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,所以设C x 1,y 1 ,D x 2,y 2 ,M x 3,y 3 ,直线l 的斜率为k ,则PC =x P -x 1 1+k 2=2-x 1 1+k 2,同理PD =2-x 2 1+k 2,PM =2-x 3 1+k 2,则PM PC+PM PD=2-x 32-x 1+2-x 32-x 2.设l :y -1=k x -2 ,而AB :x 2+y =1,联立解得x 3=4k2k +1,所以2-x 3=2-4k 2k +1=22k +1;联立直线l 与椭圆E 方程,消去y 得:4k 2+1 x 2-8k 2k -1 x +16k 2-16k =0,所以x 1+x 2=8k 2k -1 4k 2+1,x 1x 2=16k 2-16k 4k 2+1,所以12-x 1+12-x 2=-x 1+x 2-4x 1-2 x 2-2=-x 1+x 2-4x 1x 2-2x 1+x 2 +4=-8k 2k -14k 2+1-416k 2-16k4k 2+1-2×8k 2k -1 4k 2+1+4=2k +1,所以2-x 32-x 1+2-x 32-x 2=22k +1×2k +1 =2,即PM PC +PMPD =2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.13(2023·江苏盐城·校考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点A 在C 上,当AF 1⊥x 轴时,AF 1 =12;当AF 1 =2时,∠F 1AF 2=2π3.(1)求C 的方程;(2)已知斜率为-1的直线l 与椭圆C 交于M ,N 两点,与直线x =1交于点Q ,且点M ,N 在直线x =1的两侧,点P (1,t )(t >0).若|MP |⋅|NQ |=|MQ |⋅|NP |,是否存在到直线l 的距离d =2的P 点?若存在,求t 的值;若不存在,请说明理由.【答案】.(1)x 24+y 2=1(2)存在,t =52【分析】(1)利用通径公式和椭圆定义,结合余弦定理即可建立方程,从而可求解椭圆方程;(2)由点M ,N 在直线x =1的两侧可得1-32<m <1+32,设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,联立椭圆方程,消元,利用韦达定理可得y 1+y 2=2m 5,y 1y 2=m 2-45.根据MP ⋅NQ =MQ ⋅NP ,得到k MP +k NP =0.代入斜率公式,得到4m -5 t =4-m ,再由d =1+t -m2=12-4m 2+8m -14m -5=2,求出m 的取值范围即可.【详解】(1)当AF 1⊥x 轴时,AF 1 =b 2a =12,即b 2=12a ①,当AF 1 =2时,AF 2 =2a -2,在△AF 1F 2中,F 1F 2 =2c ,由余弦定理可知,AF 12+AF 2 2-F 1F 2 2=2AF 1 AF 2 cos ∠F 1AF 2,即22+2a -2 2-2c 2=2×2×2a -2 ×-12,整理,可得a 2-c 2-a +1=0,即b 2=a -1②,由①②,解得a =2,b =1.所以C 的方程为x 24+y 2=1.(2)设直线l :x +y =m ,点M x 1,y 1 ,N x 2,y 2 ,令x =1,则14+y 2=1,y =±32,由点M ,N 在直线x =1的两侧,可得1-32<m <1+32,联立x +y =m x 24+y 2=1,消去x ,可得5y 2-2my +m 2-4=0,则Δ=4m 2-20m 2-4 =165-m 2 >0恒成立,所以y 1+y 2=2m 5,y 1y 2=m 2-45.因为MP ⋅NQ =MQ ⋅NP ,所以MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,而∠MQP +∠NQP =π,即sin ∠MQP =sin ∠NQP ,所以sin ∠MPQ =sin ∠NPQ ,而∠MPQ +∠NPQ =∠MPN <π,则∠MPQ =∠NPQ ,所以k MP +k NP =0,则y 1-t x 1-1+y 2-t x 2-1=0,即y 1-t -y 1+m -1+y 2-t-y 2+m -1=0,即-2y 1y 2+m +t -1 y 1+y 2 -2m -1 t =0,整理,得4-m -4mt +5t =0,所以4m -5 t =4-m ,因为1-32<m <1+32,所以4-m >0,又t =4-m 4m -5>0,所以54<m <1+32,所以d =1+t -m 2=121+4-m 4m -5-m =12-4m 2+8m -14m -5 .令d =12-4m 2+8m -14m -5=2,结合54<m <1+32,解得m =32,则t =4-324×32-5=52.所以t =52时,点P 到直线l 的距离d =2.【点睛】关键点睛:第二问中的关键是能把MP ⋅NQ =MQ ⋅NP 转化为MP MQ=NP NQ,由正弦定理,得sin ∠MQP sin ∠MPQ =sin ∠NQPsin ∠NPQ,从而得到∠MPQ =∠NPQ ,即k MP +k NP =0,从而利用斜率公式和韦达定理求解.14(2023·全国·高三专题练习)已知椭圆C :x 2b 2+y 2a2=1a >b >0 与椭圆x 28+y 24=1的离心率相同,P 22,1为椭圆C 上一点.(1)求椭圆C 的方程.(2)若过点Q 13,0 的直线l 与椭圆C 相交于A ,B 两点,试问以AB 为直径的圆是否经过定点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 22=1(2)存在T 的坐标为(-1,0),理由见解析【分析】(1)先求出椭圆x 28+y 24=1的离心率为22,由此得到a 2=2b 2,将点P 的坐标代入椭圆C ,得到12b 2+1a2=1,再代入a 2=2b 2,解得b 2=1,a 2=2,则可得结果;(2)先用两个特殊圆求出交点(-1,0),再猜想以AB 为直径的圆经过定点T (-1,0),再证明猜想,设直线l :x =my +13,并与x 2+y 22=1联立,利用韦达定理得到y 1+y 2,y 1y 2,进一步得到x 1+x 2,x 1x 2,利用y 1+y 2,y 1y 2,x 1+x 2,x 1x 2证明TA ⋅TB=0即可.【详解】(1)在椭圆x 28+y 24=1中,a 1=22,b 1=2,c 1=8-4=2,离心率e =c 1a 1=222=22,在椭圆C :x 2b 2+y 2a2=1a >b >0 中,e =c a =a 2-b 2a =1-b 2a 2,所以1-b 2a2=22,化简得a 2=2b 2,因为P 22,1 在椭圆C :x 2b 2+y 2a 2=1a >b >0 上,所以12b 2+1a 2=1,所以12b 2+12b2=1,所以b 2=1,a 2=2,所以椭圆C :x 2+y22=1.(2)当直线l 的斜率为0时,线段AB 是椭圆的短轴,以AB 为直径的圆的方程为x 2+y 2=1,当直线l 的斜率不存在时,直线l 的方程为x =13,代入x 2+y 22=1,得y =±43,以AB 为直径的圆的方程为x -13 2+y 2=169,联立x 2+y 2=1x -13 2+y 2=169,解得x =-1y =0 ,由此猜想存在T (-1,0),使得以AB 为直径的圆是经过定点T (-1,0),证明如下:当直线l 的斜率不为0且斜率存在时,设直线l :x =my +13,联立x =my +13x 2+y 22=1,消去x 并整理得m 2+12 y 2+23my -89=0,Δ=49m 2+4m 2+12 ⋅89>0,设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=-2m 3m 2+12 ,y 1y 2=-89m 2+12,则x 1+x 2=my 1+13+my 2+13=m (y 1+y 2)+23=-2m 23m 2+12 +23,x 1x 2=my 1+13 my 2+13 =m 2y 1y 2+13m (y 1+y 2)+19=-8m 29m 2+12 -2m 29m 2+12 +19=-10m 29m 2+12 +19,因为TA ⋅TB=(x 1+1,y 1)⋅(x 2+1,y 2)=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+y 1y 2=-10m 29m 2+12 +19-2m 23m 2+12 +23+1-89m 2+12 =-16m 2+89m 2+12+169=0,所以TA⊥TB,所以点T(-1,0)在以AB为直径的圆上,综上所述:以AB为直径的圆是经过定点T(-1,0).【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x1,y1,x2,y2;(2)联立直线与圆锥曲线的方程,得到关于x(或y)的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x1+x2、x1x2(或y1+y2、y1y2)的形式;(5)代入韦达定理求解.15(2023·广东广州·广州市从化区从化中学校考模拟预测)已知双曲线C:x2a2-y23a2=1(a>0)的左、右焦点分别为F1,F2,且F2到C的一条渐近线的距离为3.(1)求C的方程;(2)过C的左顶点且不与x轴重合的直线交C的右支于点B,交直线x=12于点P,过F1作PF2的平行线,交直线BF2于点Q,证明:Q在定圆上.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据焦点到渐近线的距离求出c=2即可得解;(2)由题意可设PA,PF2的斜率分别为k,-k,设直线AP的方程为y=k x+1,联立双曲线方程,求出B3+k23-k2,6k 3-k2,由三角函数可得∠F2F1Q=∠PF2A=∠BF2P=∠F1QF1,即化为QF2= F1F2=4得证.【详解】(1)根据题意可知C的一条渐近线方程为y=3aax=3x,设F2c,0(c>0),F2到渐近线y=3x的距离为d=3c3+1=3,所以c=2,c2=4=a2+3a2,a2=1,所以C的方程为x2-y23=1.(2)设C的左顶点为A,则A(-1,0),故直线x=12为线段AF2的垂直平分线.所以可设PA,PF2的斜率分别为k,-k,故直线AP的方程为y=k x+1.与C 的方程联立有3-k 2 x 2-2k 2x -k 2-3=0,设B (x 1,y 1),则-1+x 1=2k 23-k 2,即x 1=3+k 23-k 2,所以B 3+k 23-k 2,6k3-k 2当BF 2⊥x 轴时,BF 2= AF 2 =3,△AF 2B 是等腰直角三角形,且易知∠PF 2A =∠BF 2P =π4当BF 2不垂直于x 轴时,直线BF 2的斜率为2k k 2-1,故tan ∠BF 2A =2kk 2-1因为tan ∠PFA =-1,所以tan2∠PF 2A =2kk 2-1=tan ∠BF 2A ,所以∠BF 2A =2∠PF 2A ,∠PF 2A =∠BF 2P因为QF 1∥PF 2所以∠F 2F 1Q =∠PF 2A =∠BF 2P =∠F 1QF 1所以QF 2= F 1F 2 =4为定值,所以点Q 在以F 2为圆心且半径为4的定圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.16(2023春·湖南常德·高二临澧县第一中学校考开学考试)如图,椭圆M :y 2a 2+x 2b2=1a >b >0 的两顶点A -2,0 ,B 2,0 ,离心率e =32,过y 轴上的点F 0,t t <4,t ≠0 的直线l 与椭圆交于C ,D两点,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(1)当t =23且CD =4时,求直线l 的方程;(2)当点P 异于A ,B 两点时,设点P 与点Q 横坐标分别为x P ,x Q ,是否存在常数λ使x P ⋅x Q =λ成立,若存在,求出λ的值;若不存在,请说明理由.【答案】(1)2x -y +23=0或2x +y -23=0(2)存在,λ=4【分析】(1)先求得椭圆M 的方程,再以设而不求的方法即可求得直线l 的方程;(2)先以设而不求的方法得到x P 、x Q 的解析式,再去计算x P ⋅x Q 是否为定值即可解决.【详解】(1)椭圆的方程y 2a 2+x 2b2=1a >b >0 ,由题可得b =2;由e =c a =32,结合a 2=b 2+c 2,得a =4,椭圆的标准方程:y 216+x 24=1;当直线l 的斜率不存在时,CD =8,与题意不符,故设直线l 的方程为y =kx +23,代入椭圆方程y 2+4x 2=16整理得k 2+4 x 2+43kx -4=0,设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-43k k 2+4,x 1⋅x 2=-4k 2+4;∴CD =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-43k k 2+42-4-44+k 2=8k 2+1 k 2+4=4,解得k =± 2.则直线l 的方程为2x -y +23=0或2x +y -23=0.(2)当直线l 的斜率不存在时,直线l 与y 轴重合,由椭圆的对称性可知直线AC 与直线BD 平行,不符合题意;∴由题意可设直线的方程:x =my +n m ≠0,n ≠0 代入椭圆方程,得1+4m 2 y 2+8mny +4n 2-16=0;设C x 1,y 1 ,D x 2,y 2 ,∴y 1+y 2=-8mn 1+4m 2,y 1⋅y 2=4n 2-161+4m 2;∴my 1⋅y 2=4-n 22ny 1+y 2 ①直线AC 的方程为y =y 1x 1+2x +2 ②则直线BD 的方程为y =y 2x 2-2x -2 ③由②③得x -2x +2=y 1x 2-2 y 2x 1+2 =y 1my 2+n -2 y 2my 1+n +2 =my 1y 2+y 1n -2 my 1y 2+y 2n +2由①代入,得x -2x +2=2-n n +2 y 2+2-n y 1 2+n n +2 y 2+2-n y 1 =2-n 2+n ,解得x =4n ,即x Q =4n ;且知x P =n ;∴x P ⋅x Q =n ×4n=4(常数)即点P 与点Q 横坐标之积为定值4.故存在常数λ=417(2023春·四川遂宁·高三射洪中学校考阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点1,62 ,且离心率为22.(1)求椭圆C 的方程;(2)已知直线l :y =mx +2与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,使MP =MQ 且MP ⊥MQ ,若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1)x 24+y 22=1(2)详见解析【分析】(1)根据条件得到关于a ,b ,c 的方程组,即可求得椭圆方程;。
高三椭圆知识点课件
高三椭圆知识点课件1. 椭圆的定义与特点椭圆是平面上一点到两个定点的距离之和等于常数值的轨迹。
对于椭圆,其中心就是两个定点的中点,称为焦点,两个定点距离的一半是椭圆的半长轴,两焦点连线的垂直平分线称为椭圆的直径,直径的一半是椭圆的半短轴。
2. 椭圆的方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴的长度。
当a=b时,椭圆退化为圆。
3. 椭圆的焦点与准线椭圆的焦点是平面上到椭圆上任意一点距离之和等于半长轴长度的两个点,焦点与椭圆的半长轴的交点称为准线。
4. 椭圆的离心率椭圆的离心率表示椭圆形状的圆度程度,计算公式为e = c/a,其中c为焦点到中心的距离,a为半长轴的长度。
离心率是0到1之间的实数,当离心率接近于0时,椭圆趋向于圆形,当离心率接近于1时,椭圆则趋向于长条形。
5. 椭圆的参数方程椭圆的参数方程x = h + a*cosθ,y = k + b*sinθ,其中θ为角度,(h,k)为椭圆的中心坐标。
6. 椭圆的性质与应用椭圆有许多重要的性质和应用。
例如,焦点到椭圆上任意一点的距离和等于定点到该点的距离差的绝对值;椭圆的周长可以通过椭圆的参数方程以及积分的方法求得;椭圆还被广泛应用于天体力学、通讯技术等领域。
7. 椭圆与其他几何图形的关系椭圆与其他几何图形有一些重要的关系。
与椭圆相似的图形有椭球体和椭圆锥,它们都具有类似的性质;椭圆还可以通过割椭圆法生成抛物线;直角坐标系中的椭圆可以通过仿射变换转化为标准方程,使得其焦点在坐标轴上。
8. 高三椭圆知识点总结高三阶段学习椭圆的知识是为了准备应对高考数学考试中相关的考点。
在椭圆的学习中,需要掌握椭圆的定义与特点、方程的推导与应用、焦点与准线的概念、离心率的计算等基础知识。
此外,还需要能够灵活运用参数方程、掌握椭圆与其他几何图形的关系。
椭圆的简单几何性质课件培训讲解
03
CHAPTER
椭圆的面积与周长
椭圆的面积
1 2
椭圆面积
椭圆的面积可以通过其长半轴和短半轴的长度计 算得出,公式为$S = pi ab$,其中$a$是长半轴 长度,$b$是短半轴长度。
面积计算
在已知椭圆的长半轴和短半轴长度的情况下,可 以直接代入公式计算出椭圆的面积。
3
面积与长、短半轴关系
椭圆的面积与其长半轴和短半轴的长度密切相关, 当长半轴和短半轴长度发生变化时,椭圆的面积 也会相应地发生变化。
转换的意义
在实际应用中,经常需要在直角坐标系和极坐标系之间进行转换。例如,在物理学、工程学和天文学等领域中, 许多问题可以通过极坐标或直角坐标方便地描述和解决。因此,掌握这两种坐标之间的转换方法对于解决实际问 题非常重要。
06
CHAPTER
椭圆的几何性质在生活中的 应用
地球轨道的椭圆性质
总结词
地球的轨道是椭圆形的,这是天文学和地理学中一个重要的 知识点。
椭圆的简单几何性质课件培训 讲解
目录
CONTENTS
• 椭圆的定义与性质 • 椭圆的焦点与离心率 • 椭圆的面积与周长 • 椭圆的切线与切点性质 • 椭圆的对称性与极坐标表示 • 椭圆的几何性质在生活中的应用
01
CHAPTER
椭圆的定义与性质
椭圆的定义
椭圆是平面内与两个定点F1、 F2的距离之和等于常数(大于
工程设计中的椭圆应用
总结词
在工程设计中,椭圆也有着广泛的应用。
详细描述
例如桥梁、建筑和机械零件的设计中,经常需要使用到椭圆的几何性质。特别是 在结构稳定性和力学分析方面,椭圆的几何性质发挥了重要的作用。
THANKS
椭圆的第二定义(含解析)
课题:椭圆的第二定义【学习目标】1、掌握椭圆的第二定义;2、能应用椭圆的第二定义解决相关问题;一、椭圆中的基本元素(1).基本量: a 、b 、c 、e几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率;相互关系: ac e b a c =-=,222 (2).基本点:顶点、焦点、中心(3).基本线: 对称轴二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a>>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.设222a cb -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。
中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2ca 2三.第二定义的应用1、求下列椭圆的焦点坐标和准线(1)13610022=+y x (2)8222=+y x 2、椭圆 13610022=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( )A.14B.12C.10D.83、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______;4、离心率e=22,且两准线间的距离为4的椭圆的标准方程为________________________;5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________;6、求中心在原点,一条准线方程是x=3,离心率为35 的椭圆标准方程.7、椭圆方程为16410022=+y x ,其上有一点P ,它到右焦点的距离为14,求P 点到左准线的距离.8、已知椭圆22143x y +=内有一点(11)P F -,,是椭圆的右焦点,在椭圆上有一点M ,使2MP MF +的值最小,求M 的坐标.(如图)分析:若设()M x y ,,求出2MP MF +,再计算最小值是很繁的.由于MF 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关,故有如下解法.解:设M 在右准线l 上的射影为1M .由椭圆方程可知12312a b c e ====,,,. 根据椭圆的第二定义,有112MFMM =,即112ME MM =.12MP MF MP MM +=+∴. 显然,当1P M M ,,三点共线时,1MP MM +有最小值.过P 作准线的垂线1y =-.由方程组2234121x yy⎧+=⎨=-⎩,,解得1M⎫-⎪⎪⎝⎭.即M的坐标为1⎫-⎪⎪⎝⎭.。
高中数学解析几何专题之椭圆(汇总解析版)
圆锥曲线第1讲 椭圆【知识要点】 一、椭圆的定义 1. 椭圆的第一定义:平面内到两个定点1F 、2F 的距离之和等于定长a 2(212F F a >)的点的轨迹叫椭圆,这两个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。
注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离21F F (记作c 2),否则点的轨迹就不是一个椭圆。
具体情形如下:(ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。
注2:若用M 表示动点,则椭圆轨迹的几何描述法为aMF MF 221=+(c a 22>,cF F 221=),即2121F F MF MF >+.注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件:aMF MF 221=+千万不可忘记。
2. 椭圆的第二定义:平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<<e )的点的轨迹叫做椭圆。
二、椭圆的标准方程(1)焦点在x 轴、中心在坐标原点的椭圆的标准方程是12222=+b y a x (0>>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是12222=+b x a y (0>>b a ).注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。
长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。
(1)注2:求椭圆的方程通常采用待定系数法。
若题目已指明椭圆的焦点的位置,则可设其方程为12222=+b y a x (0>>b a )或12222=+b x a y (0>>b a );若题目未指明椭圆的焦点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为122=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质以标准方程12222=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。
高考数学一轮讲义:平面解析几何 椭圆
8.5 椭圆[知识梳理] 1.椭圆的定义(1)定义:在平面内到两定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)集合语言:P ={M ||MF 1|+|MF 2|=2a ,且2a >|F 1F 2|},|F 1F 2|=2c ,其中a >c >0,且a ,c 为常数.注:当2a >|F 1F 2|时,轨迹为椭圆;当2a =|F 1F 2|时,轨迹为线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.椭圆的标准方程和几何性质图3.直线与椭圆位置关系的判断直线与椭圆方程联立方程组,消掉y ,得到Ax 2+Bx +C =0的形式(这里的系数A 一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆相交; (2)Δ=0⇔直线与椭圆相切; (3)Δ<0⇔直线与椭圆相离. 4.弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a . 5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.[诊断自测]1.概念思辨(1)平面内与两个定点F1、F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.教材衍化(1)(选修A1-1P35例3)已知椭圆的方程是x2a2+y225=1(a>5),它的两个焦点分别为F1,F2,且F1F2=8,弦AB过点F1,则△ABF2的周长为()A.10 B.20C.241 D.441答案 D解析因为a>5,所以椭圆的焦点在x轴上,所以a2-25=42,解得a=41.由椭圆的定义知△ABF2的周长为4a=441.故选D.(2)(选修A1-1P42A组T6)已知点P是椭圆x25+y24=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为________.答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 3.小题热身(1)(2014·大纲卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a =c 3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1,故选A.(2)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由已知得直线y =3(x +c )过M ,F 1两点,所以直线MF 1的斜率为3,所以∠MF 1F 2=60°,则∠MF 2F 1=30°,∠F 1MF 2=90°,则MF 1=c ,MF 2=3c ,由点M 在椭圆Γ上知:c +3c =2a ,故e =ca =3-1.题型1 椭圆的定义及应用典例1 已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7应用椭圆的定义.答案 D解析 根据椭圆的定义|PF 1|+|PF 2|=2a =10,得|PF 2|=7,故选D.[条件探究] 若将典例中的条件改为“F 1,F 2分别为左、右焦点,M 是PF 1的中点,且|OM |=3”,求点P 到椭圆左焦点的距离?解 由M 为PF 1中点,O 为F 1F 2中点,易得|PF 2|=6,再利用椭圆定义易知|PF 1|=4.典例2(2018·漳浦县校级月考)椭圆x 24+y 2=1上的一点P 与两焦点F 1,F 2所构成的三角形称为焦点三角形.(1)求PF 1→·PF 2→的最大值与最小值; (2)设∠F 1PF 2=θ,求证:S △F 1PF 2=tan θ2.(1)利用向量数量积得到目标函数,利用二次函数求最值;(2)利用余弦定理、面积公式证明.解 (1)设P (x ,y ),∴F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=34x 2-2, ∵x 2∈[0,4],∴34x 2-2∈[-2,1]. ∴PF 1→·PF 2→的最大值为1,最小值为-2. (2)证明:由椭圆的定义可知||PF 1|+|PF 2||=2a , |F 1F 2|=2c ,设∠F 1PF 2=θ, 在△F 1PF 2中,由余弦定理可得: |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ =(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|(1+cos θ),可得4c 2=4a 2-2|PF 1|·|PF 2|(1+cos θ)⇒|PF 1|·|PF 2|=2b21+cos θ,即有△F 1PF 2的面积S =12|PF 1|·|PF 2|sin ∠F 1PF 2=b 2·sin θ1+cos θ=b 2tan θ2=tan θ2.方法技巧椭圆定义的应用技巧1.椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率等.2.通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.见典例2.冲关针对训练已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.题型2 椭圆的标准方程及应用典例1(2018·湖南岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为坐标原点,F 1、F 2为它的两个焦点,离心率为22,过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.在未明确焦点的具体位置时,应分情况讨论.答案 x 216+y 28=1或x 28+y 216=1解析 由椭圆的定义及△ABF 2的周长知4a =16,则a =4,又ca =22,所以c =22a =22,所以b 2=a 2-c 2=16-8=8.当焦点在x 轴上时,椭圆C 的方程为x 216+y 28=1;当焦点在y 轴上时,椭圆C 的方程为y 216+x 28=1.综上可知,椭圆C 的方程为x 216+y 28=1或x 28+y 216=1.典例2(2017·江西模拟)椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为椭圆的左、右焦点,且焦距为23,O 为坐标原点,点P 为椭圆上一点,|OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,求椭圆的方程.用待定系数法,根据已知列出方程组.解 设P (x ,y ),则|OP |2=x 2+y 2=a28,由椭圆定义,|PF 1|+|PF 2|=2a ,|PF 1|2+2|PF 1|·|PF 2|+|PF 2|2=4a 2, 又∵|PF 1|,|F 1F 2|,|PF 2|成等比数列, ∴|PF 1|·|PF 2|=|F 1F 2|2=4c 2, |PF 1|2+|PF 2|2+8c 2=4a 2,∴(x +c )2+y 2+(x -c )2+y 2+8c 2=4a 2,整理得x 2+y 2+5c 2=2a 2,即a 28+5c 2=2a 2,整理得c 2a 2=38,又∵2c =23,∴c =3, ∴a 2=8,b 2=5.85方法技巧求椭圆标准方程的步骤1.判断椭圆焦点位置. 2.设出椭圆方程.3.根据已知条件,建立方程(组)求待定系数,注意a 2=b 2+c 2的应用.4.根据焦点写出椭圆方程.见典例1,2.提醒:当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B ).可简记为“先定型,再定量”.冲关针对训练已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.P 为椭圆上的一点,PF 1与y 轴相交于M ⎝ ⎛⎭⎪⎫0,14,且M 为PF 1的中点,S △PF 1F 2=32.求椭圆的方程.解 设P (x 0,y 0)∵M 为PF 1的中点,O 为F 1F 2的中点. ∴x 0=c ,y 0=12.PF 2∥y 轴,△PF 1F 2是∠PF 2F 1=90°的直角三角形,由题意得,⎩⎪⎨⎪⎧c 2a 2+14b 2=1,12·2c ·12=32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.4题型3 椭圆的几何性质典例 F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是________.由∠F 1PF 2=90°,求出x 20=a 2(c 2-b 2)c 2后,利用x 20∈[0,a 2]求解.答案 ⎣⎢⎡⎭⎪⎫22,1解析 设P (x 0,y 0)为椭圆上一点,则x 20a 2+y 20b 2=1.PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0), 若∠F 1PF 2=90°,则PF 1→·PF 2→=x 20+y 20-c 2=0.∴x 20+b 2⎝ ⎛⎭⎪⎫1-x 20a 2=c 2,∴x 20=a 2(c 2-b 2)c 2. ∵0≤x 20≤a 2,∴0≤c 2-b 2c 2≤1.∴b 2≤c 2,∴a 2≤2c 2,∴22≤e <1.[条件探究] 将典例2中条件“∠F 1PF 2=90°”改为“∠F 1PF 2为钝角”,求离心率的取值范围.解椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆心,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1. 方法技巧求解椭圆离心率(或其范围)常用的方法1.若给定椭圆的方程,则根据椭圆方程确定a 2,b 2,进而求出a ,c 的值,从而利用公式e =ca 直接求解.2.若椭圆的方程未知,则根据条件及几何图形建立关于a ,b ,c 的齐次等式(或不等式),化为关于a ,c 的齐次方程(或不等式),进而化为关于e 的方程(或不等式)进行求解.见典例.冲关针对训练(2015·重庆高考)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .解 (1)由椭圆的定义,有2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2.设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 得2c =|F 1F 2| =|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)连接QF 1,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|.|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a .由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2, 因此e =c a =|PF 1|2+|PF 2|22a = (2-2)2+(2-1)2=9-62=6- 3.题型4 直线与椭圆的综合问题角度1 利用直线与椭圆的位置关系研究椭圆的标准方程及性质典例(2014·全国卷Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .本题(2)用代入法列出方程,用方程组法求解.解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a , 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎨⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28,故a =7,b =27.角度2 利用直线与椭圆的位置关系研究直线及弦的问题 典例 (2014·全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.直线与椭圆构成方程组,用设而不求的方法求弦长,再求△OPQ 的面积.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积 S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2.方法技巧直线与椭圆相交时有关弦问题的处理方法1.合理消元,消元时可以选择消去y ,也可以消去x .见角度1典例.2.利用弦长公式、点到直线的距离公式等将所求量表示出来. 3.构造基本不等式或利用函数知识求最值.见角度2典例. 4.涉及弦中点的问题常用“点差法”解决.冲关针对训练(2015·陕西高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c2=bca ,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32. (2)由(1)知,椭圆E 的方程为 x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2| =52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( ) A.133 B.53 C.23 D.59答案 B解析 ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4=5.∴e =c a =53.故选B.2.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15 答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.3.(2018·武汉调研)已知直线MN 过椭圆x 22+y 2=1的右焦点F ,与椭圆交于M ,N 两点.直线PQ 过原点O 且与直线MN 平行,直线PQ 与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 解法一:由题意知,直线MN 的斜率不为0,设直线MN :x =my +1,则直线PQ :x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4).⎩⎨⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎨⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2.∴|PQ |=1+m 2|y 3-y 4|=2 2m 2+1m 2+2.故|PQ |2|MN |=2 2. 解法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|PQ |=2b =2,则|PQ |2|MN |=2 2.4.(2015·安徽高考)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510,进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝ ⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎪⎨⎪⎪⎧5b 4+x 125b+-14b +74b =1,72+12b x 1-52b=5,解得b =3.所以a =35, 故椭圆E 的方程为x 245+y 29=1.[重点保分 两级优选练]A 级一、选择题1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y2m =1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)答案 B解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲线x 2+y 2m =1即为椭圆x 2+y 24=1,易知其焦点坐标为(0,±3),故选B.2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方程x 2sin θ-y 2cos θ=1表示( )A .焦点在x 轴上的双曲线B .焦点在y 轴上的双曲线C .焦点在x 轴上的椭圆D .焦点在y 轴上的椭圆 答案 D解析 因为(sin θ+cos θ)2=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513,故选B.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2ab a 2+b2=a ,解得a =3b , ∴b a =13,∴e =ca =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2= 1-⎝ ⎛⎭⎪⎫132=63.故选A. 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为( )A.32B.22C.12D.14答案 C解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2.因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.故选C.6.(2017·荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为( )A .2(m +r )(n +r )千米 B.(m +r )(n +r )千米 C .2mn 千米 D .mn 千米答案 A解析 ∵某宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆,设长半轴长为a ,短半轴长为b ,半焦距为c , 则近地点A 距地心为a -c ,远地点B 距地心为a +c . ∴a -c =m +r ,a +c =n +r , ∴a =m +n 2+r ,c =n -m 2.又∵b 2=a 2-c 2=⎝ ⎛⎭⎪⎫m +n 2+r2-⎝ ⎛⎭⎪⎫n -m 22=mn +(m +n )r +r 2=(m +r )(n +r ).∴b =(m +r )(n +r ),∴短轴长为2b =2(m +r )(n +r )千米,故选A.7.(2017·九江期末)如图,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是等边三角形,则该椭圆的离心率为( )A.32B.12C.3-1D.22答案 C解析 连接AF 1,∵F 1F 2是圆O 的直径,∴∠F 1AF 2=90°, 即F 1A ⊥AF 2,又∵△F 2AB 是等边三角形,F 1F 2⊥AB , ∴∠AF 2F 1=12∠AF 2B =30°, 因此,在Rt △F 1AF 2中,|F 1F 2|=2c , |F 1A |=12|F 1F 2|=c ,|F 2A |=32|F 1F 2|=3c .根据椭圆的定义,得2a =|F 1A |+|F 2A |=(1+3)c ,解得a =1+32c ,∴椭圆的离心率为e =ca =3-1.故选C.8.(2018·郑州质检)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455答案 C解析 设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.9.如图所示,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线AC 与BD 的斜率之积为-14,则椭圆的离心率为( )A.12B.22 C.32 D.34答案 C解析 设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(a >b >0,m >1),则切线AC 的方程为y =k 1(x -ma ),切线BD 的方程为y =k 2x +mb ,则由⎩⎪⎨⎪⎧y =k 1(x -ma ),(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 21)x 2-2ma 3k 21x +m 2a 4k 21-a 2b 2=0.因为Δ=(2ma 3k 21)2-4(b 2+a 2k 21)(m 2a 4k 21-a 2b 2)=0,整理,得k 21=b 2a 2·1m 2-1. 由⎩⎪⎨⎪⎧y =k 2x +mb ,(bx )2+(ay )2=a 2b 2,消去y ,得(b 2+a 2k 22)x 2+2a 2mbk 2x +a 2m 2b 2-a 2b 2=0,因为Δ2=(2a 2mbk 2)2-4×(b 2+a 2k 22)(a 2m 2b 2-a 2b 2)=0,整理,得k 22=b 2a 2·(m 2-1).所以k 21·k 22=b 4a 4.因为k 1k 2=-14,所以b 2a 2=14,e 2=c 2a 2=a 2-b 2a 2=34,所以e =32,故选C.10.(2018·永康市模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A ,B ,满足∠APB =60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤32 B.12≤e <1 C.32<e <1 D.32≤e <1答案 D解析 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)焦点在x 轴上, 连接OA ,OB ,OP ,依题意,O ,P ,A ,B 四点共圆, ∵∠APB =60°,∠APO =∠BPO =30°, 在直角三角形OAP 中,∠AOP =60°, ∴cos ∠AOP =b |OP |=12,∴|OP |=b12=2b ,∴b <|OP |≤a ,∴2b ≤a ,∴4b 2≤a 2, 由a 2=b 2+c 2,即4(a 2-c 2)≤a 2,∴3a 2≤4c 2,即c 2a 2≥34,∴e ≥32,又0<e <1, ∴32≤e <1,∴椭圆C 的离心率的取值范围是32≤e <1.故选D. 二、填空题11.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案 733解析 依据圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+(y -1)2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163,∵-1≤y ≤1,∴当y =-13时,d 取最大值433,所以P ,Q 两点间的最大距离为d max +3=733.12.(2018·广州二测)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.答案 5x 29+5y 24=1解析 设F (1,0)关于直线y =12x 的对称点为(x ,y ),则⎩⎨⎧0+y 2=12×1+x 2,y -0x -1×12=-1,解得⎩⎪⎨⎪⎧x =35,y =45,由于椭圆的两个焦点为(-1,0),(1,0),所以2a =⎝ ⎛⎭⎪⎫35-12+⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫35+12+⎝ ⎛⎭⎪⎫452=655,a =355,又c =1,所以b 2=a 2-c 2=95-1=45,所以椭圆C 的方程为x 295+y 245=1,即5x 29+5y 24=1.13.(2018·江西五市联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a 5,0,则椭圆的离心率e 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫55,1 解析 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝ ⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b2=1,即⎩⎪⎨⎪⎧2a 5(x 1-x 2)=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a 35(a 2-b 2)=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2,所以-2a <x 1+x 2<2a ,则2a 35(a 2-b 2)<2a ,即b 2a 2<45,所以e 2>15.又0<e <1,所以55<e <1. 14.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案 63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0),∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF→=0, 所以⎝⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2, 所以c 2a 2=23,则e =c a =63.B 级三、解答题15.(2018·安徽合肥三校联考)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心C .(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +2)2=6, 圆心C (2,-2),半径r = 6. 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎨⎧4a 2+2b 2=1,1-⎝ ⎛⎭⎪⎫b a 2=⎝ ⎛⎭⎪⎫222,所以⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求的椭圆方程是x 28+y 24=1.(2)由(1)得椭圆的左、右焦点分别是F 1(-2,0),F 2 (2,0), |F 2C |=(2-2)2+(0+2)2=2<r = 6.F 2在圆C 内,故过F 2没有圆C 的切线,所以直线l 过焦点F 1. 设l 的方程为y =k (x +2),即kx -y +2k =0, 点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k2= 6. 化简,得5k 2+42k -2=0,解得k =25或k =- 2.故l 的方程为2x -5y +22=0或2x +y +22=0.16.(2018·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△P AB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1), ∴4a 2+1b 2=1.∴a 2=8,b 2=2. 故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S△P AB=12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.而且仅当m 2=2,即m =±2时取得最大值. ∴△P AB 面积的最大值为2.17.(2018·兰州模拟)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. ∵点B (2,2)在椭圆C 上,∴4a 2+2b 2=1, 解得a 2=8,b 2=4, ∴椭圆C 的方程为x 28+y 24=1.(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎨⎧y =kx ,x 28+y 24=1,得x 0=221+2k 2,y 0=22k1+2k2, ∴直线AP 的方程为y =k1+1+2k 2(x +22), 直线AQ 的方程为y =k1-1+2k2(x +22), ∴M ⎝ ⎛⎭⎪⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎪⎫0,22k 1-1+2k 2, ∴|MN |=⎪⎪⎪⎪⎪⎪⎪⎪22k 1+1+2k2-22k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k , 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎪⎫y +2k 2=2(1+2k 2)k 2,即x 2+y 2+22k y =4, 令y =0得x =2或x =-2,即以MN 为直径的圆经过两定点P 1(-2,0),P 2(2,0).18.(2018·湖南十校联考)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3), 化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3).(2)证明:由题意知,M ,N 是椭圆C 上不同于A ,B 的两点,且AP ∥OM ,BP ∥ON ,则直线AP ,BP 的斜率必存在且不为0.因为AP ∥OM ,BP ∥ON ,所以k OM ·k ON =k AP ·k BP =-23.设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,①设M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1,y 2是方程①的两根,所以y 1+y 2=-4mt 3+2m 2,y 2y 2=2t 2-63+2m 2. 又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3. 又S △MON =12|t ||y 1-y 2|=12·|t |-24t 2+48m 2+723+2m 2, 所以S △MON =26t 24t 2=62,即△MON 的面积为定值62.。
31 椭圆(解析版)
2021-2022学年高二数学同步精品课堂讲、例、测(苏教版2019选择性必修第一册)1.椭圆的定义平面内的两个定点F 1,F 2的距离之和等于常数(大于F 1,F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的焦点,两个焦点间的距离叫做椭圆的焦距注意事项:定义中的常数记做2α则(1)当2α>F 1,F 2时,点的轨迹是椭圆(2)当2α=F 1,F 2时,点的轨迹是线段(3)当2α<F 1,F 2时,点的轨迹是不存在的2.椭圆的简单几何性质焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0)范围-a ≤x ≤a ,-b ≤y ≤b-b ≤x ≤b ,-a ≤y ≤a顶点A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0)轴长短轴长=2b ,长轴长=2a焦点(±a 2-b 2,0)(0,±a 2-b 2)焦距|F 1F 2|=2a 2-b2对称性对称轴:x 轴、y 轴对称中心:原点离心率e =ca∈(0,1)3.直线与椭圆的位置关系直线与椭圆的关系有三种(1)、相离--没有公共点(2)、想切--只有一个公共点(3)、相交--有两个4.利用椭圆的几何性质求标准方程的步骤(1)确定焦点位置.(2)设出相应椭圆的标准方程.(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数.(4)写出椭圆标准方程.求椭圆的标准方程的方法1.定义法:根据椭圆的定义,确定a 2.b 2的值,再结合焦点位置,直接写出椭圆的方程,2.待定系数法:根据椭圆焦点在x 轴还是在y 轴上,设出相应形式的标准方程,然后根据条件确定关于a,b 的方程组,解出a 2.b 2,从而写出椭圆的标准方程利用椭圆定义求标准方程例题1椭圆的两个焦点分别为()18,0F -、()28,0F ,且椭圆上一点到两个焦点的距离之和是20,则椭圆的方程为A .22136100x y +=B .22110036x y +=C .221400336x y +=D .2212012x y +=【答案】B【分析】由焦点坐标,可知椭圆的焦点在x 轴上,且c=8,再根据椭圆的定义得到a=10,进而求得b ,即可得椭圆的方程.【详解】已知两个焦点的坐标分别是F 1(-8,0),F 2(8,0),可知椭圆的焦点在x 轴上,且c=8,由椭圆的定义可得:2a=20,即a=10,由a ,b ,c 的关系解得∴椭圆方程是22110036x y +=,故选B【点睛】考查椭圆的标准方程,椭圆的定义和性质.例题2已知△ABC 的三边AB ,BC ,AC 的长依次成等差数列,且|AB|>|AC|,B(-1,0),C(1,0),则顶点A 的轨迹方程为()A .22143x y +=B .()221043x y x +=>C .221(0)43x y x +=<D .()2210,043x y x y +=>≠【答案】D【分析】通过等差数列推出,|AB|+|AC|=2|BC|=4按照椭圆的定义,点A 的轨迹就是以B 、C 为焦点,到B 、C 距离之和为4的椭圆,从而进一步可求椭圆的方程.【详解】已知AB 、BC 、CA 成等差数列,则:|AB|+|AC|=2|BC|∵点B (-1,0),C (1,0),∴|BC|=2所以,|AB|+|AC|=2|BC|=4按照椭圆的定义,点A 的轨迹就是以B 、C 为焦点,到B 、C 距离之和为4的椭圆由已知有:c=1,a=2所以,b 2=a 2-c 2=4-1=3又已知|AB|>|AC|所以点A 位于上述椭圆的右半部分,且点A 不能与B 、C 在同一直线(x 轴)上(否则就不能构成三角形)所以,点A 的轨迹方程是:2210,,043x y x y (>),+≠故选:D .训练1已知定圆()22151C x y ++=:,()2225225C x y -+=:,定点()4,1M ,动圆C 满足与1C 外切且与2C 内切,则1CM CC +的最大值为A .16B .16C .16D .16【答案】A【分析】将动圆C 的轨迹方程表示出来:2216439x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【详解】定圆()22151C x y ++=:,()2225225C x y -+=:,动圆C 满足与1C 外切且与2C 内切设动圆半径为r ,则12121,1516CC r CC r CC CC =+=-⇒+=表示椭圆,轨迹方程为:2216439x y +=122161616CM CC CM CC C M -==+≤+++故答案选A【点睛】考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.训练2如图,已知1F ,2F 为椭圆C :22221x y a b +=(0a b >>)的左、右焦点,过原点O 的直线l 与椭圆C 交于,A B两点(22AF BF >),若1212==4AF AF AF AF +-uuu r uuur uuu r uuur,124AF BF S =,则2tan BAF ∠=()A .14B .13C.2D.2【答案】D【分析】先根据题意证明12AF BF为矩形,再根据椭圆的性质解得12a AF AF ===,,在2BAF 中求解即可.【详解】解:由1212=AF AF AF AF +- 两边平方得12=0AF AF ⋅,所以12AF AF ⊥ ,由椭圆的对称性知四边形12AF BF 为矩形,又因为1212==4AF AF AF AF +- ,所以12==4AB F F ,又因为124AF BF S =,由矩形的面积公式与椭圆的定义得12122221212=24AF AF aAF AF AF AF F F ⎧+⎪⎪=⎨⎪+=⎪⎩,解得:a =所以12124AF AF AF AF ⎧+⎪⎨=⎪⎩,即12,AF AF是方程240x -+=的实数根,又因为22AF BF >,所以21AF AF >所以1AF =2AF =+所以2128tan 24B A AF AF F -∠===-故选:D.【点睛】考查椭圆的定义、方程、性质等点和椭圆的位置关系例题1若点()1,A m 在椭圆22:142x y C +=的内部,则实数m 的取值范围是()A .(B .⎛⎫ ⎪ ⎪⎝⎭C .,22⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭D .22⎛⎫- ⎪ ⎪⎝⎭【答案】B【分析】根据点与椭圆的位置关系即可求解.【详解】解:221142m +<,所以22m ⎛⎫∈ ⎪ ⎪⎝⎭故选:B.【点睛】考查已知点与圆的位置关系求参数的取值范围,基础题.例题2点(,1)A a 在椭圆22142x y +=的内部,则a 的取值范围是()A .(B .(,)-∞+∞ C .(2,2)-D .(1,1)-【答案】A【分析】根据点在椭圆内部得不等式,解不等式得结果.【详解】因为点(),1A a 在椭圆22142x y +=的内部,所以21142a +<,解得(a ∈,选A.【点睛】考查点与椭圆位置关系.训练1已知F 是椭圆22x C y 12+=:的左焦点,P 为椭圆C 上任意一点,点()Q 4,3,则PQ PF +的最大值为()A .B .CD .【答案】A【分析】由题意,设椭圆C 的右焦点为()F'1,0,由已知条件推导出PQ PF PQ PF'+=+,利用Q ,F',P 共线,可得PQ PF +取最大值.【详解】由题意,点F 为椭圆22x C y 12+=:的左焦点,()F 1,0∴-,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,设椭圆C 的右焦点为()F'1,0,PQ PF PQ PF'2∴+=+=PQ PF'-,PQ PF'QF'-≤=PQ PF ∴+≤Q ,F',P 共线,故选A .【点睛】考查椭圆的标准方程、定义及其简单的几何性质的应用.训练2已知点(1,)P m 在椭圆2214xy +=的外部,则直线2y mx =+221x y +=的位置关系为A .相离B .相交C .相切D .相交或相切【答案】B【分析】先根据点(1,)P m 在椭圆2214x y +=的外部,求出2m 的范围,求出圆心到直线的距离,再利用几何法判断直线与圆的位置关系即可.【详解】因为点(1,)P m 在椭圆2214xy +=的外部,所以2114m +>,即234m >,则圆221x y +=的圆心(0,0)到直线2y mx =+1d R =<=,所以直线2y mx =+221x y +=相交故选:B【点睛】考查了点与椭圆的位置关系及利用几何法判断直线与圆的位置关系.很据离心率求椭圆的标准方程例题1若椭圆22221(0)x y a b a b +=>>的离心率为3,则213a b +的最小值为()AB C .2D 【答案】C【分析】由椭圆的离心率为3和222a b c =+,求得3a b =,化简2219113333a b b b b b ++==+,结合基本不等式,即可求解.【详解】由题意,椭圆22221(0)x y a b a b +=>>的离心率为3,即3c a =,即c =,又由222a b c =+,可得2219b a =,即3a b=所以22191132333a b b b b b ++==+≥=,当且仅当133b b=,即13b =时,“=”成立.故选:C.【点睛】关键点睛:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.例题2阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,a b ,则椭圆的面积公式为S ab π=.若椭圆C8π,则椭圆的C 的标准方程为()A .221164x y +=或221164y x +=B .2211612x y +=或2211612y x +=C .221124x y +=或221124y x +=D .221169x y +=或221916x y +=【答案】A【分析】根据离心率,面积公式结合222a b c =+求出,a b 得椭圆方程.【详解】由题意22228c a ab a b c ππ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得42a b c ⎧=⎪=⎨⎪=⎩,∴椭圆方程为221164x y +=或221164y x +=故选:A .【点睛】考查求椭圆的标准方程中,求解题方法是根据已知条件列出方程组求出,a b ,只是要注意由于焦点的位置不确定,因此方程有两种.训练1已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=()A .43-B .-3C .1813-D .32-【答案】A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解.【详解】因为椭圆的右焦点为()1,0F ,且离心率为12,所以11,2c c a ==,解得22,3a b ==,所以椭圆方程为:22143x y +=,设()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=,两式相减得:()()1212121243+-=--+y y x x y y x x ,即143OD AB k k =-,同理1414,33OM OE ACBC k k k k =-=-,又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-,故选:A【点睛】考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题.训练2已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为()A .16或120B .121C .16或121D .13或120【答案】B【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k kx x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值【详解】由e ==,得9m =.设()00,p x y ,则20202200119999PA PBx y k kx x -⋅===---.设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B.【点睛】考查直线与椭圆的位置关系一、单选题1.已知O 为坐标原点,F 是椭圆C :22221x y a b+=(0a b >>)的左焦点,A 、B 分别为椭圆C 的左、右顶点,P 为椭圆C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则椭圆C 的离心率为()A .13B .12C .23D .34【答案】A【分析】由AF a c =-,OF c =,OB a =,利用//MF OE ,两次应用平行线性质求MF 得出,a c 的关系式,从而求得离心率.【详解】如图,由题意得(0)A a -,、0B a (,)、(0)F c -,,设(0)E m ,,由//PF OE 得MF AFOE AO =,则()m a c MF a-=①,又由//OE MF ,OE 中点为H ,得OH BOMF BF =,则()2m a c MF a+=②,由①②得1()2a c a c -=+,即3a c =,则13c e a ==,故选:A.2.如图所示,设椭圆()222210x y a b a b+=>>的左、右两个焦点分别为1F ,2F ,短轴的上端点为B ,短轴上的两个三等分点P ,Q ,且四边形12F PF Q 为正方形,若过点B 作此正方形的外接圆的一条切线l 在x 轴上的截距为4-,则此椭圆方程为()A .22198x y +=B .221109x y +=C .2212018x y +=D .2212516x y +=【答案】B【分析】根据题意,求得切线l 的方程,根据四边形12F PF Q 为正方形,可得b ,c 的关系,根据直线l 与圆相切,可得圆心到直线的距离等于半径,即可求得b ,c 的值,根据a ,b ,c 的关系,即可得2a ,即可得答案.【详解】因为切线l 在x轴截距为4-,在y 轴截距为b ,所以切线l14y b =,即330y b -+=,因为正方形12F PF Q 的对角线122F F PQ c ==,所以1223b c ⨯=,即3b c =,则正方形12F PF Q 外接圆方程为:222x y c +=,c =,解得3,1b c ==,又22210a b c =+=,所以椭圆方程为221109x y +=.故选:B3.“天问一号”推开了我国行星探测的大门,通过一次发射,将实现火星环绕、着陆、巡视,是世界首创,也是我国真正意义上的首次深空探测.2021年2月10日,天问一号探测器顺利进入火星的椭圆环火轨道(将火星近似看成一个球体,球心为椭圆的一个焦点).2月15日17时,天问一号探测器成功实施捕获轨道“远火点(椭圆轨迹上距离火星表面最远的一点)平面机动”,同时将近火点高度调整至约265公里.若此时远火点距离约为11945公里,火星半径约为3395公里,则调整后“天问一号”的运行轨迹(环火轨道曲线)的离心率约为()A .0.61B .0.67C .0.71D .0.77【答案】A【分析】根据题中的信息列出关于,a c 的方程,然后解方程并求离心率即可.【详解】设椭圆的方程为22221x y a b +=(0a b >>),由椭圆的性质可得椭圆上的点到焦点的距离的最小值为a c -,最大值为a c +,根据题意可得近火点满足33952653660a c -=+=,33951194515340a c +=+=,解得9500a =,5840c =,所以椭圆的离心率为58400.619500c e a ==≈,故选:A .4.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F的直线0x y -=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=【答案】D【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果.【详解】设(,0)F c -,因为直线0x y -=过(,0)F c -,所以00c --=,得c =所以2223a b c -==,设1122(,),(,)A x y B x y ,由22112222222211x y a b x y a b⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+,因为P 为线段AB 的中点,O 为坐标原点,所以1212()22x x y y P ++,12121212012202OP y y y y k x x x x +-+===-++-,所以221222122(2)AB y y b b k x x a a-==-⋅-=-,又,A B在直线0x y -=上,所以1AB k =,所以2221b a=,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程;③作差变形并利用斜率公式和中点坐标公式求解.5.如图所示,点F 是椭圆2222:1(0)x y M a b a b+=>>的右焦点,A ,C 是椭圆上关于原点O 对称的两点,直线AF 与椭圆的另一个交点为B ,若,2AF FC AF BF ⊥=,则椭圆M 的离心率为()AB .12C.2D1-【答案】A【分析】作1F 为椭圆M 的左焦点,连接111,,AF CF BF .设AF x =,则2x BF =,2CF a x =-,则122x BF a =-,根据题意可得222222(2)4,3(2)2,22a x x c x a x x a ⎧-+=⎪⎨⎛⎫⎛⎫-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎩从而可求出离心率【详解】如图,作1F 为椭圆M 的左焦点,连接111,,AF CF BF .设AF x =,则2x BF =,2CF a x =-,122x BF a =-,因为A ,C 是椭圆上关于原点O 对称的两点,直线AF 与椭圆的另一个交点为B ,AF FC ⊥,所以1AF AF ⊥所以222222(2)4,3(2)2,22a x x c x a x x a ⎧-+=⎪⎨⎛⎫⎛⎫-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎩可得c a =故选:A【点睛】考查椭圆的定义的应用和椭圆离心率的求法,解题的关键是根据题意作1F 为椭圆M 的左焦点,连接111,,AF CF BF ,从而可由已知可得1AF AF ⊥,然后在两个直角三角形AFC 和1AF B 中利用勾股定理列方程可求出离心率,考查转化思想和计算能力,属于中档题6.已知两定点()0,1M -,()0,1N ,直线l:y x =,在l上满足PM PN +=P 的个数为()A .0B .1C .2D .0或1或2【答案】B【分析】求出P 点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的P 点的个数.【详解】∵PM PN +=2MN =,∴P 在以,M N为焦点,由于2a =,a =1c =,因此1b ==,椭圆方程为2212x y +=,由2212y x x y ⎧=⎪⎨+=⎪⎩,解得3x y ⎧=⎪⎪⎨⎪=⎪⎩,∴P 点只有一个.故选:B .【点睛】考查求平面满足题意的的个数,方法是求出满足动点P 的一个条件的轨迹方程,由方程组的解的个数确定曲线交点个数,从而得出结论,这也是解析几何的基本思想.7.已知P 是椭圆221259x y +=上的一点,O 是坐标原点,F 是椭圆的左焦点且1()2OQ OP OF =+ ,||4OQ = ,则点P 到该椭圆左准线的距离为()A .6B .4C .3D .52【答案】D 【分析】根据已知条件先判断出Q 点位置,然后根据椭圆的定义求解出PF 的长度,最后根据PF 的长度比上P 到准线的距离等于离心率求解出结果.【详解】设椭圆的右焦点为F ',P 到椭圆左准线的距离为d ,连接OQ ,因为1()2OQ OP OF =+ ,所以PQ QF =uuu r uuu r ,所以Q 为PF 的中点,又因为O 为FF '的中点,所以28PF OQ '==,又因为2510PF PF '+=⨯=,所以2PF =,因为45PFe d ==,所以52d =,故选:D.【点睛】关键点点睛:解答本题的关键是掌握椭圆的第一、第二定义,通过第一定义可求解出PF 的长度,通过第二定义可直接求解出P 到左准线的距离.8.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定【答案】B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠= ,即可判断.【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠= ,故PFN 的形状是直角三角形.故选:B.【点睛】考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠= .二、填空题9.已知椭圆22:194x y C +=,,M N 是坐标平面内的两点,且M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为,A B ,线段MN 的中点在椭圆C 上,则AN BN +=__________.【答案】12【分析】根据已知条件,作出图形,MN 的中点连接椭圆的两个焦点,便会得到三角形的中位线,根据中位线的性质及椭圆上的点到两焦点的距离和为2a ,即可求出||||AN BN +.【详解】设MN 的中点为D ,椭圆C 的左右焦点分别为1F ,2F ,如图,连接1DF ,2DF ,1F 是MA 的中点,D 是MN 的中点,1F D ∴是MAN △的中位线;∴11||||2DF AN =,同理21||||2DF BN =;12||||2(||||)AN BN DF DF ∴+=+,D Q 在椭圆上,∴根据椭圆的标准方程及椭圆的定义知:1226DF DF a +==,||||12AN BN ∴+=.故答案为:12【点睛】考查椭圆的定义以及椭圆的标准方程,解决本题的关键点是连接MN 的中点和椭圆的两个焦点,便会得到三角形的中位线,利用椭圆的定义求得答案.10.当0,2πα⎛⎫∈ ⎪⎝⎭时,方程22sin cos 1x y αα+=表示焦点在x 轴上的椭圆,则α的取值范围为________.【答案】0,4π⎛⎫ ⎪⎝⎭【分析】变换得到22111sin cos x y αα+=,根据题意得到11sin cos αα>,解得答案.【详解】22sin cos 1x y αα+=,即22111sin cos x y αα+=,0,2πα⎛⎫∈ ⎪⎝⎭,故10sin α>,10cos α>,方程22sin cos 1x y αα+=表示焦点在x 轴上的椭圆,故11sin cos αα>,即cos sin αα>,故0,4πα⎛⎫∈ ⎪⎝⎭.故答案为:0,4π⎛⎫ ⎪⎝⎭.【点睛】考查了根据椭圆方程求参数范围.11.已知椭圆T 的中心在坐标原点,左、右焦点分别为1(,0)F c -,2(,0)F c,(4,M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列,椭圆T 的标准方程________.【答案】2212015x y +=【分析】根据题意结合椭圆定义可得2a c =,设2222143x y c c+=代(4,M 解得25c =代回方程即可.【详解】解:因为M 是椭圆上一点,且1MF ,12F F ,2MF 成等差数列所以2121224MF a MF F F c ===+,所以2a c =,b =故椭圆方程可设为2222143x y c c+=代(4,M 解得25c =所以椭圆方程为2212015x y +=故答案为:2212015x y +=【点睛】椭圆几何性质的应用技巧:(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形;(2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如:,,01a x a b y b e -≤≤-≤≤<<,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系.12.椭圆222118x y C b+=:的上下顶点分别为A C ,,如图,点B 在椭圆上,平面四边形满足90BAD BCD ∠=∠=o ,且2ABC AD C S S = ,则该椭圆的短轴长度为________.【答案】6【分析】根据题意,,,A B C D 在以BD 为直径的圆上,设11(,)B x y ,22(,)D x y ,结合圆的性质以及所给面积关系可得120y y +=,122x x =-,求得圆的方程,代入A 点坐标经计算即可得解.【详解】根据题意可得(0,),(0,)A b B b -,设11(,)B x y ,22(,)D x y ,由90BAD BCD ∠=∠=o 可得点,,,A B C D 在以BD 为直径的圆上,又原点O 为圆上的弦AC 的中点,所以圆心在AC 的垂直平分线上,可得圆心在x 轴上,所以120y y +=,又2ABC AD C S S = 可得122x x =-,故圆心坐标为1(,0)4x ,所以圆的圆的方程为22221119()416x x y x y -+=+,将(0,)b 代入结合22112118x y b+=可得29b =,所以3b =,短轴长为6.故答案为:613.已知以F1(-2,0),F 2(2,0)为焦点的椭圆与直线40x +=有且仅有一个交点,则椭圆的长轴长为________.【答案】【分析】联立直线方程和椭圆方程,利用0∆=列方程求出b 2=3,最后计算长轴长..【详解】根据题意设椭圆方程为22221(0)4x y b b b+=>+,则将4x =-代入椭圆方程,得222424(1)120b y y b b ++-+=,因为椭圆与直线40x ++=有且仅有一个交点,所以22242)44(1)(12)0b b b ∆=-⨯+-+=,即22(4)(3)0b b +-=,所以b 2=3,长轴长为.故答案为:【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.三、解答题14.已知椭圆中心在原点,焦点在x 轴上,椭圆的短轴长是2,离心率是2.(1)求椭圆方程.(2)倾斜角为45 的直线l 经过椭圆的左焦点,且与椭圆相交于,A B 两点,求弦长AB .【答案】(1)2212x y +=;(2)3AB =.【分析】(1)由离心率得c a =,22b =,结合222a b c =+可求得,a b 椭圆方程;(2)写出直线方程,直线方程与椭圆方程联立,求出交点坐标,由两点间距离公式得弦长.【详解】(1)设椭圆方程为22221(0)x y a b a b+=>>,则22b c a=⎧⎪⎨=⎪⎩1a b ⎧=⎪⎨=⎪⎩椭圆方程为2212x y +=;(2)由(1)左焦点为(1,0)F -,直线l 方程为1y x =+,由22121x y y x ⎧+=⎪⎨⎪=+⎩,解得1101x y =⎧⎨=⎩或114313x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即41(0,1),(,33A B --,所以3AB ==.15.在平面直角坐标系xOy 中,已知两点()1,0M -,()1,0N ,动点Q 到点M的距离为NQ 的垂直平分线交线段MQ 于点K ,设点K 的轨迹为曲线E .(1)求曲线E 的方程;(2)已知点()2,0P ,设直线l :10x my +-=与曲线E 交于A ,B 两点,求证:OPA OPB ∠=∠.【答案】(1)2212x y +=;(2)证明见解析.【分析】(1)利用中垂线的性质可得KN KQ =,从而得到2KM KN QM MN +===,利用椭圆的定义进行分析求解即可;(2)根据点P 的位置,确定OPA ∠,OPB ∠都是锐角,然后联立直线与椭圆的方程,得到韦达定理,再将问题转化为求证两个角的正切值相等,代入化简求解,即可证明.【详解】(1)∵线段NQ 的垂直平分线交MQ 于点K ,∴||||KN KQ =,∴||||||||||22||KM KN KM KQ MQ MN +=+===∴点K 的轨迹是以原点为中心,以,M N 为焦点的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则a =1c =,1b =,所以曲线E 的方程为2212x y +=(2)由221210x y x my ⎧+=⎪⎨⎪+-=⎩消去x 可得()222210m y my +--=.设()11,A x y ,()22,B x y ,则12222m y y m +=+,12212y y m =-+.易知PA ,PB 的斜率存在,则()()121212121212122221111PA PB y y y y y y my y k k x x my my my my +++=+=+=-------++,又因为121222222022m m y y my y m m ++=-=++所以0PA PB k k +=,所以OPA OPB ∠=∠.【点睛】方法点睛:解答直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.16.已知椭圆()2222:10x y C a b a b+=>>短轴上的两个三等分点与两焦点构成一个正方形.(1)求椭圆的离心率;(2)若直线l 为圆229019x y +=的一条切线,l 与椭圆C 交于,A B 两点,且OA OB ⊥(O 为坐标原点),求椭圆的方程.【答案】(1)10e =;(2)22:1109x y C +=.【分析】(1)由题设易得3b c =,结合椭圆参数的关系,构造齐次方程求椭圆离心率即可;(2)由题设,令()22:10109x y C m m m+=>,11(,)A x y ,22(,)B x y 有12120x x y y +=,讨论直线l 斜率不存在、存在的情况下,结合韦达定理求12x x 、12y y ,进而求出参数m ,即可确定椭圆方程.【详解】(1)由题意知:3b c =,即229c b =,又222b a c =-,∴2229c a c =-,则2110e =,故e =(2)令11(,)A x y ,22(,)B x y ,由OA OB ⊥知:12120x x y y +=①,由(1)设椭圆()22:10109x y C m m m+=>,又直线l 为圆229019x y +=的一条切线,1、当直线l 斜率不存在时,l 为x =y =9081(901919m --=,解得1m =,此时椭圆方程为22:1109x y C +=;2、当直线l 斜率存在时,设l 为y kx n =+2290(1)19n k =+②,由直线l 联立椭圆方程,整理得:222(910)2010900k x knx n m +++-=,∴12220910kn x x k +=-+,21221090910n m x x k -=+,则1212()()y y kx n kx n =++221212()k x x kn x x n =+++222990910n k m k-=+,∴由①式,2222210909900910910n m n k m k k --+=++,即221990(1)n m k =+,将②代入得:1m =,∴椭圆方程为22:1109x y C +=;综上,椭圆方程为22:1109x y C +=.17.已知椭圆2222: 1(0)x y C a b a b+=>>的长轴长为 2.(1)求椭圆C 的焦点坐标;(2)直线1my x =-与椭圆C 相交于A 、B 两点,点F 为椭圆C 的左焦点,若AFB ∠为锐角,求实数m 的取值范围.【答案】(1)()1,0±;(2)(【分析】(1)由长轴长为,短轴长为2得1a b ==,直接求出c ,写出焦点坐标;(2)设A 、B 坐标为()()1122,,,x y x y ,用“设而不求法”联立方程组,得到12122221,,22m y y y y m m +=-=-++由AFB ∠为锐角,利用0FA FB > ,求出实数m 的范围.【详解】(1)∵椭圆2222: 1(0)x y C a b a b+=>>的长轴长为2∴1a b ==即可得:1c =,∴焦点坐标为()1,0±.(2)设A 、B 坐标为()()1122,,,x y x y ,椭圆的左焦点F (-1,0),联立222211x y a b my x ⎧+=⎪⎨⎪=-⎩,消去x 的:()222210m y my ++-=∴12122221,,22m y y y y m m +=-=-++∴()()()212121212224222,11,22m x x m y y x x my my m m -+=+-==++=++()()11221,,1,FA x y FB x y =+=+ ∵AFB ∠为锐角,∴0FA FB > ,即()()1212110x x y y +++>∴222222224171=02222m m m m m m --+-+>++++解得:m <∴实数m的范围(【点睛】(1)待定系数法可以求二次曲线的标准方程,可以直接写出焦点坐标;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.。
专题06 椭圆模型(解析版)
专题06 椭圆模型(解析版)椭圆模型(解析版)椭圆是一种广泛应用于几何学、物理学和工程学领域的重要数学概念。
它具有独特的几何特性和广泛的应用价值。
本文将深入探讨椭圆的定义、性质以及在现实生活中的应用,帮助读者更好地理解和应用椭圆模型。
一、椭圆的定义和性质椭圆是平面上一组点,其到两个定点(焦点)的距离之和等于常数的几何图形。
椭圆由两个主要要素确定,即两个焦点和一个常数。
通过这两个焦点可以确定椭圆的长轴和短轴,而常数则决定了椭圆的形状。
椭圆具有以下重要性质:1. 焦点性质:椭圆上的任意一点到两个焦点的距离之和等于常数。
2. 离心率性质:椭圆的离心率定义为焦点之间的距离与椭圆长度的比值。
离心率在0到1之间,当离心率为0时,椭圆退化为一个点,当离心率为1时,椭圆退化为一条直线。
3. 长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴并通过椭圆中心的线段。
长轴和短轴的长度决定了椭圆的大小和形状。
二、椭圆和焦点直线的关系椭圆的焦点直线是指将焦点与椭圆上相应点相连的直线。
椭圆与焦点直线之间存在着密切的关系,通过焦点直线可以推导出椭圆的一些重要性质。
1. 焦点直线长度关系:椭圆上任意一点到两个焦点的距离之和等于焦点直线的长度。
2. 焦点直线和法线的关系:椭圆上任意一点处的法线与焦点直线垂直。
3. 焦点直线与椭圆轴的关系:椭圆轴被焦点直线所平分,且相互垂直。
三、椭圆在物理学中的应用椭圆在物理学领域中有着广泛的应用,特别是在行星运动、天体轨道以及光学等方面。
1. 行星运动和天体轨道:根据开普勒定律,行星围绕太阳运动的轨道是一个椭圆。
椭圆模型能够准确描述行星的运动轨迹,帮助天文学家研究行星运动规律。
2. 光学应用:椭圆折射定律是衍射和反射的基本定律之一。
根据椭圆模型,可以理解和预测光的折射和反射行为,为光学工程师设计和优化光学元件提供依据。
四、椭圆在工程学中的应用椭圆在工程学领域也有着重要的应用,特别是在建筑设计、航空航天和机械工程等方面。
第46讲 怎样解可转化为二项式的其他多项式问题(解析版)
第46讲 怎样解可转化为二项式的其他多项式问题一、知识与方法(1)可转化为二项式的其他多项式问题主要是指三项式的展开问题,解决此类问题的关键是如何把三项式转化为二项式,利用二项式定理使问题获解.(2)二项式定理作为“母体",可以生成许多的组合恒等式,在进行相关研究时,要注意其与二项式定理的关系.要能正向、逆向地灵活运用二项式定理,能运用其通项公式进行讨论求解.(3)对于求多个二项式的和或积及三项式的展开式中某项的系数问题,要注意排列组合知识的应用.二、典型例题【例1】求512x x ⎛++ ⎝的常数项.【分析】这里给出的三项式展开式,需要注意等价转化为“二项式”的策略或利用排列组合原理求解.可以有3种方法:(1)指数升级法,即把三项式配方,得到二项式;(2)䄴用分类取因子法;(3)先把三项式中的某两项视为一项,用二项式定理展开,找出相应的项,进一步用二项展开式求解.这是整体处理的解题方法.本题所求的是常数项,显然12x x ⎛⎫+⎪⎝⎭可视为一项,而对于12nx x ⎛⎫+ ⎪⎝⎭,当n 为偶数时,必定出现常数项. 【解析】 【解法一】(指数升级法)512x x ⎛+ ⎝在0x >时可化为10⎛⎫,因而102110C rrr r T --+=,则5r =时为常数项,即5510C = 【解法二】(回归定义法)∵所给的式子为三项式,∵可采用两个计数原理求解.分三类:(i)5个式子则有555C ;(ii)取1个,12x个1,3x则有113541C C 2⨯⨯; (iii)取2个,22x 个1,1x,则有2251C C 2⎛⎫ ⎪⎝⎭,∴常数项为2551132554511C C C C C 222⎛⎫+⨯+= ⎪⎝⎭.【解法三】(整体处理法)由二项式定理得512x x ⎛+ ⎝550511[22x x C x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭4151+2x C x ⎛⎫+ ⎪⎝⎭32251+2x C x ⎛⎫+⨯⎪⎝⎭23351+2x C x ⎛⎫+⨯ ⎪⎝⎭4451+2x C x ⎛⎫+⨯⎪⎝⎭555+C其中常数项有:4151C 2x x ⎛⎫+ ⎪⎝⎭3项22123354511C C 22x x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭中的第2项313521C C 2⨯⨯以及555C ,综上可知,常数项为2123154521C C C C 2⎛⎫⨯ ⎪⎝⎭3555122C ⨯+= (也可以由551122x x x x ⎡⎛⎛⎫+=++⎪⎢⎝⎝⎭⎣,然后抓住二次展开式的通项公式5215122kkk k x T C x -+⎛⎫=+ ⎪⎝⎭,其中k 满足05,k k ∈N ,再由512kx x -⎛⎫+ ⎪⎝⎭的通项5()52515522r r k r s k r r r k k r r k k T C x x C x --------+-+--=⨯=,其中05,r k r -∈N ,令520r k --=得25k r +=,解得1,2k r ==或3,1k r ==或5,0k r ==,再进一步求解,由于二次运用通项公式,解题过程相对烦琐.)【例2】求在()5232x x ++的展开式中x 的系数.【分析】由二项式拓展到三项式一般还是设法回归到二项式进行求解.本题解题方法颇多,具典型性.【解析】【解法一】(通项公式讨论法)由()()55223232x x x x ⎡⎤++=++⎣⎦,得()()5522155C 32C 23kkkk kk k T x xx x--+=+⨯=⨯⨯+再一次使用通项公式,得102155C 2C 3k k rrk rr k T x--+-=⨯⨯⨯.这里05,05k r k -,令1021k r --=,即29k r +=.∵1,4r k ==,由此得到x 的系数为445C 23240⨯⨯=.【解法二】(因式分解法)()()()55523212x x x x ++=++知()51x +的展开式中的x 系数为45C ,常数项为51,(2)x +的展开式中的x 系数为445C 2⋅,常数项为52,因此原式中x 的系数为454455C 2C 2240⨯+⨯=.【解法三】、(回归定义法)将()5232x x ++看作5个三项式相乘,展开式中x 的系数就是从其中一个三项式中取3x 的系数3,从另外4个三项式中取常数项相乘所得的积.即14454C 3C 2240⋅⋅⋅=.【例3】求43112222x x x -⎛⎫-+ ⎪⎝⎭展开式中含3x 的项的系数.【分析】三项展开式中的三个项都是分数指数形式,必须对式子进行通分化简,即通过指数升级法转化为分子分母中分子是二项式,分母为一个完全平方式,从而转化为求分子二项展开式中5x 的系数.【解析】∵44311282222(1)2x x x x x -⎛⎫⎛⎫--+== ⎪⎝⎭ 要求3x 项的系数,实际上就是求8(1)x -的5x 项的系数.由538C (1)56-=-.故原式3x 的项的系数是56-.三、易错警示【例】()271(2)x x +-的展开式中,3x 项的系数是【错解】将7(2)x -展开与()21x +相乘去寻找3x 项的系数,但由于运算量太大而放弃. 【评析及正解】上述错解在解题箂略上有错误,本例只需分类讨论3x 可能的来源情况即可,无展开相乘的必要.【正确的解法】如下:在展开式中,3x 的来源有:(1)第一个因式中取出2x ,则第二个因式必取x ,其系数为667C (2)-;(2)第一个因式中取出1,则第二个因式中必取3x ,其系数为447C (2)-.∵3x 的系数应为664477C (2)C (2)1008-+-=,故应填1008.四、难题攻略【例】设()22201221nn n x x a a x a x a x ++=++++,则242n a a a +++的值为【分析】本例给出的是三项式的展开式,需求的是242,,,n x x x 项的系数和,可以用赋值法消去常数项及1321,,,n x x x -的系数,实际上,研究展开式的系数和问题,不论是二项式的展开式还是三项式的展开式,精准的赋值可使问题轻松获解.【解析】当1x =时,01223n n a a a a ++++=.(1)当1x =-时,01221n a a a a -+-+=.(2)当0x =时,01a =.(3) 由(1)+(2)得0242312n n a a a a +++++=,(4)将(3)代人(4)式得242312n n a a a -+++=.五、强化训练1.求511x x ⎛⎫+- ⎪⎝⎭展开式中的常数项.【解析】先将三项的问题转化为两项, 551111x x x x ⎡⎤⎛⎫⎛⎫+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 展开式的通项为1r T += 551C (1)(05)rr r x r x -⎛⎫+- ⎪⎝⎭当5r =时, 61T =-;当05r <时, 51rx x -⎛⎫+ ⎪⎝⎭的展开式通项是511C(05)kk r kk s rT rk r x --+-⎛⎫=- ⎪⎝⎭, 令 5r k k --=,则r 只能取1和3 ,此时2,1k k ==.故常数项是12313551553C C (1)C C (1)13020151---+--=---=-.2.求()452(1)1x x x -++的展开式中7x的系数.【解析】()()44523(1)1(1)1x x x x x-++=--.∵()631x -不含7x ,而x 的6次方的系数为224(1)6C -=.故7x 的系数为6-.3.求()6211x x x x ⎛⎫++- ⎪⎝⎭的展开式中的常数项. 【解析】61x x ⎛⎫- ⎪⎝⎭中6621661(1)C rr r r r rr T C x x x --+⎛⎫=⋅-=- ⎪⎝⎭,令333466620,3,C (1)C r r T -=∴==-=-, 令621r -=-.72r =(舍) ; 令44256622,4,(1)r r T C x --=-==- ∴()6211x x x x ⎛⎫++- ⎪⎝⎭展开式中的常数项为()34661C 1C 20155⨯-+⨯=-+=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, ∴ 2a = 10, 2c = 8
∴ b = 3,
∴椭圆的标准方程是
x2 25
+
y2 9
= 1(y
≠ 0).
故选:A
一般 已测:1795次 正确率:92.5%
2.
已知椭圆过点P
(
3 5
,
−4)和点Q(−
4 5
,
−3),则此椭圆的标准方程是()
A. y2 25
+ x2
=1
B. 或 x2 25
+
x2 9
= 1(y ̸= 0)
考点:椭圆的定义及应用、求椭圆的标准方程的方法
知识点:椭圆的定义、椭圆的标准方程
答案:A
解析:∵ △ABC的两顶点A(−4, 0), B(4, 0),周⻓为18,
, ∴ AB = 8, BC + AC = 10
∵ 10 > 8,
∴点C到两个定点的距离之和等于定值,
∴点C的轨迹是以A, B为焦点的椭圆,
中等 已测:2108次 正确率:75.3%
3.
已知△ABC
的顶点B,
C
在椭圆
x2 3
+
y2
=
1上,顶点A是椭圆的一个焦点,且椭圆的另外一
个焦点在BC边上,则△ABC的周⻓是().
A. 2 3
B. 6
C. 4 3 D. 12
考点:椭圆的定义及应用、椭圆中焦点三⻆形问题 知识点:椭圆的定义、椭圆的焦点三⻆形 答案:C 解析:根据椭圆的基本定义,到两焦点的距离为定值2a,则△ABC的周⻓为4a = 4 3.
解析:由题意结合椭圆的通径公式有:
SΔP F2 A
=
1 2
⋅
2b2 a
⋅
2c
=
12,①
由离心率的定义可知:
e
=
c a
=
1 2
,②
结合椭圆中的几何关系可知:a2 = b2 + c2,③
联立①②③可得: a = 4, b = 2 3, c = 2,
分类讨论椭圆的焦点位于x轴和y 轴两种情况可得:
若 k1 k2
=
3 4
,则椭圆C 的离心率为()
A.
1 3
B.
1 2
C.
3 3
D.
2 2
考点:椭圆离心率相关的问题求解、直线与椭圆的位置关系
知识点:两直线垂直的判定、椭圆的离心率
答案:B
解析:设A(x1, ( y1) x1y1 ≠ 0),D(x2, ,则 y2) B(−x1, , −y1) 设∵k直A线B A=Dyx的11方,程A为Dy⊥=ABkx,+∴直m线(Ak、Dm的斜≠率0k)=,代−入yx11椭,圆 方程,
由 ,得 ,即 . ∣P F1∣2 + ∣P F2∣2 = 4c2
16 9
a2
+
4 9
a2
=
4c2
ac22
=
5 9
. ∴e =
5 3
故选:D.
中等 已测:787次 正确率:53.9%
5.
已知点P
在以坐标原点为中心,坐标轴为对称轴,离心率为
1 2
的椭圆上.若过点P
作⻓轴的垂线恰好
过椭圆的一个焦点F1 与椭圆的另一交点为A,若△P F2 A的面积为12(F2 为椭圆的另一焦点),则椭圆
消去 整理得: , y
(b2 + a2k2)x2 + 2ma2kx + a2m2 − a2b2 = 0
由⻙达定理可知: , , ∴y1
+
y2
=
x1 + x2 k(x1 + x2)
+=2−mb2=2+maab2222kk+m2ab22k2
由题可知: , , x1 ≠ −x2
即有 , ,得 . ∴
A.
3 6
B.
1 3
C.
1 2
D.
3 3
考点:椭圆的定义及应用、椭圆离心率相关的问题求解
知识点:椭圆的定义、椭圆的离心率
答案:D
解析:如图所示:∵P F2⊥F1F2, ∠P F1F2 = 30∘, ∴P F1 = 2P F2,又因P F1 + P F2 = 2a且
,所以 ,故选 . F1F2
=
2c,
椭圆的方程为 或 . x2 16
+
y2 12
=1
x2 12
+
y2 16
=1
故选D
一般 已测:3317次 正确率:81.7%
6.
设椭圆C :
x2 a2
+
y2 b2
= 1(a>b>0)的左,右焦点分别为F1, F2, P 是C上的点,
P F2⊥F1F2, ∠P F1F2 = 30∘,则C的离心率为()
的方程为()
A. x2 16
+
y2 12
=1
B. x2 12
+
y2 16
=1
C. 或 x2 4
+
y2 3
=1
x2 3
+
y2 4
=1
D. 或 x2 16
+
y2 12
=1
x2 12
+
y2 16
=
1
考点:由椭圆的几何性质确定椭圆的标准方程、椭圆离心率相关的问题求解
知识点:椭圆的标准方程、椭圆的离心率
答案:D
+ y2
=
1
x2 +
y2 25
=1
C. x2 25
+ y2
=
1
D. 以上均不正确
考点:求椭圆的标准方程的方法、由椭圆的几何性质确定椭圆的标准方程 知识点:椭圆的标准方程 答案:A 解析:设椭圆的方程为mx2 + ny2 = 1(m>0, n>0),
据∴椭题圆意的得标:准{方29215程56mm是++y225196+nn=x=211=,1解。得{nm==2115 故选:A.
中等 已测:2139次 正确率:56.5%
1. △ABC的两个顶点为A(−4, 0), B(4, 0), △ABC周⻓为18,则C点轨迹为()
A. x2 25
+
y2 9
= 1(y ̸= 0)
B. y2 25
+
x2 9
= 1(y ̸= 0)
C. x2 16
+
y2 9
= 1(y ̸= 0)
D. y2 16
知识点:椭圆的定义、椭圆的焦点三⻆形
答案:D
解析:由PF1 ⋅ PF2 = 0,可知△PF1F2为直⻆三⻆形,
又 ,可得 , tan ∠P F1F2
=
1 2
∣P F1∣ = 2 ∣P F2∣
联立 ,解得: , . ∣P F1∣ + ∣P F2∣ = 2a
∣P F1∣
=
4 3
a
∣P F2∣
=
2 3
a
一般 已测:490知点P
在以F1
,F2
为焦点的椭圆
x2 a2
+
y2 b2
=
1 (a
>
b
>
0)上,若P F1
⋅ P F2
=
0,
tan ∠P F1F2
=
1 2
,则该椭圆的离心率为()
A.
1 3
B.
1 2
C.
2 3
D.
5 3
考点:椭圆中焦点三⻆形问题、椭圆离心率相关的问题求解
∴
P F2 F1 F2
=
2 3
a
2c
= tan 30∘
e
=
c a
=
3 3
D
中等 已测:4015次 正确率:69.3%
7.
如图,已知椭圆C :
x2 a2
+
y2 b2
=
1(a>b>0),过原点的直线与椭圆C交于A,B两点(A,
B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB.设直线BD、AB的斜率分别为k1、k2,