小学四年级逻辑思维学习—图形的分割与拼接

合集下载

小学数学《图形的分割与拼接》ppt

小学数学《图形的分割与拼接》ppt

分.如右图:
D
2
C
课堂练习
2.试将任意一个长方形分成两块,然后 拼成一个三C
A
A
B
C
B
C
变式题2:把任意一个三角形分成面积相等的2个小 三角形,有许多种分法请你画出3种不同的分法
规律小结:
1.图形的分割:把一个几何图形按某种要求分成 几个图形,就叫做图形的分割 (1)如果把一个图形分割成若干个大小、形状 相等的部分,那么就要想办法找图形的对称点, 把图形先分少,再分多。 (2)图形中,如果有数量方面的要求,可以先 从数量入手,找出平分后每块上所含数量的多 少,再结合数量来分割图形。 图形的拼合:如果是要把几个图形拼合成一个 大图形,要特别注意每条边的长度,把相等的 边长拼合在一起,先拼少的,再拼多的。
o
线将长方形平均分割成两块

可见用线段平分长方形的分
法是无穷多的。
变式题1:画一条直线,将六边形分成大 小相等、形状相同的两部分,这样的直 线有几条?
o
【思路点拨】 这道题要求把长方形平均分割成两块,过长方形中 心的任意一条直线都可以把长方形平均分割成两块 ,根据这点给出如下分法(如右图): (1)做长方形的两条对角线,设交点为o (2)过点任作一条直线,直线将长方形平均分割成两 块。 可见用线段平分长方形的分法是无穷多的。
例二:把任意一个三角形分成面积相等的4 个小三角形,有许多种分法,请你画出4种 不同的分法.
【思路点拨】根据等底等高的三角形面积相等这一结论,只要把原三角 形分成4个等底等高的小三角形,它们的面积必定相等。而要得到这4个 等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与 这边相对的顶点连接起来就行了。根据上面的分析,可得如左下图所示 的三种分法。

小学四年级奥数配套课件 图形的分割与剪拼

小学四年级奥数配套课件 图形的分割与剪拼

例题(九)(★★★★★)
然后把乙剪成三块(如右下图所示)拼成的正方形,即可。
本讲重点知识
重要入手点:规则图形的中心 等底等高的两个三角形面积相等 注:特殊三角形——正三角形和等腰直角三角形的面积都相同,所以六边形面积等于13平方米。
例题(七)(★ ★ ★ )
用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、 一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图。
例题(八)(★ ★ ★ )
试将一个4×9的长方形分割成两个大小相等、形状相同的 图形,然后拼成一个正方形。
知识链接
桌子上放着m根火柴,甲、乙二人轮流每次取走1—n根。规定谁 取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取, 那么谁将获胜? (1)若m÷(1+n)=P
则乙有必胜策略。甲取几根,乙就取(n+1)减几根。 (2)若m÷(1+n)=P …r
则甲先取r根,然后乙取几根,甲就取(n+1)减几根。
例题(四)(★ ★ ★ ★)
怎样把一个等边三角形分别分成8块和9块形状、大 小都一样的三角形。
(2)分成9块的方法:先把每边三等分,然后再把分点连接起来
知识链接
等边三角形的等分方法 ——各边等分再连线
例题(五)(★ ★ ★ ★)
下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成 大小形状完全一样的两部分。如果分三部分呢?如果分成四部分呢?
知识链接
层层倒推,步步必胜。
例题一(★★)
用一条线段把一个长方形分成形状大小都相同的两块,一共有多少种不同的分 割法?
长方形的最重要之处是哪里呢? (1)做长方形的两条对甬线,设交点为O

四年级奥数-图形分割和拼接

四年级奥数-图形分割和拼接

部分
部分.
图都图,得每都有个
将下图分成形状大小都相同的图形,使得每块都有一个圆圈。

用若干个边长为1,2,3,4的正方形纸片互不重叠地拼成一个边长为
个,,,拼个
5的大正方形,那么最少需要纸片____张。

图。

请你选取其中的一些或者全部,分别拼出一个五边形和一个七边
2cm2cm
下图是一个9×4的长方形,请把它分割成完全相等的两块,并拼成右图的方形请在左图中出分割线在右图中出拼接线
图的正方形,请在左图中画出分割线,在右图中画出拼接线。

如图,在5×8的长方形中,挖去了一个1×4的小长方形(阴影部分),图,中,个(影部),请你将它划分成两部分,使它们能拼成一个正方形。

(小学奥数)图形的分割与拼接

(小学奥数)图形的分割与拼接

4-2-3.圖形的分割與拼接知識點撥本講主要學習三大圖形處理方法:1.理解掌握圖形的分割;2.理解掌握圖形的拼合;3.理解圖形的剪拼.本講中很多類型的題目還要求同學們去動手嘗試.通過本講知識的學習,讓同學們瞭解不同圖形的分割、拼合、剪拼的方法,鍛煉同學們的平面想像能力以及增強學生的動手操作能力.把一個幾何圖形按某種要求分成幾個圖形,就叫做圖形的分割.反過來,按一定的要求也可以把幾個圖形拼成一個完美的圖形,就叫做圖形的拼合.將一個或者多個圖形先分割開,再拼成一種指定的圖形,則叫做圖形的剪拼.我們在圖形的分割、拼合和剪拼的過程中,都要結合所提供的圖形特點來思考.如果把一個圖形分割成若干個大小、形狀相等的部分,那麼就要想辦法找圖形的對稱點,把圖形先分少,再分多.圖形中,如果有數量方面的要求,可以先從數量入手,找出平分後每塊上所含數量的多少,再結合數量來分割圖形.如果是要把幾個圖形拼合成一個大圖形,要特別注意每條邊的長度,把相等的邊長拼合在一起,先拼少的,再拼多的.如果是剪拼圖形,要抓住“剪、拼前後圖形的面積相等”這個關鍵,根據已知條件和圖形的特點,通過分析推理和必要的計算,確定剪拼的方法.模組一、圖形的分割【例 1】用一條線段把一個長方形平均分割成兩塊,一共有多少種不同的分割法?BA O【巩固】畫一條直線,將六邊形分成大小相等、形狀相同的兩部分,這樣的直線有條.【例 2】用直線把左圖分成面積相等的兩部分,在右圖中畫虛線給出了分法,其中正確的有________個。

ll ll例題精講【例 3】在一塊長方形的地裏有一正方形的水池(如下圖).試畫一條直線把除開水池外的這塊地平分成兩塊.OA【例 4】把任意一個三角形分成面積相等的4個小三角形,有許多種分法.請你畫出4種不同的分法.【巩固】把任意一個三角形分成面積相等的2個小三角形,有許多種分法.請你畫出3種不同的分法.【例 5】 怎樣把一個等邊三角形分別分成8塊和9塊形狀、大小都一樣的三角形.【例 6】 下圖是一個直角梯形,請你畫一條線段,把它分成兩個形狀相同並且面積相等的四邊形.231D CBA【例 7】 把下圖四等分,要求剪成的每個小圖形形狀、大小都一樣.除了剪正方形外,你還有別的方法嗎?20402060【例 8】下圖是一個34⨯的方格紙,請用四種不同的方法將它分割成完全相同的兩部分,但要保持每個小方格的完整.【巩固】右圖是一個44⨯的方格紙,請用六種不同的方法將它分割成完全相同的兩部分,但要保持每個小方格的完整.【例 9】下圖是一個被挖去了為總面積四分之一小正方形的大正方形,請你將它分成大小形狀完全一樣的四部分.【巩固】下圖是一個被挖去了為總面積四分之一小正方形的大正方形,請你將它分成大小形狀完全一樣的兩部分.如果分三部分呢?【巩固】圖中是由三個正三角形組成的梯形.你能把它分割成4個形狀相同、面積相等的梯形嗎?【例 10】將圖中的圖形分割成面積相等的三塊.【例 11】下圖是由五個正方形組成的圖形.把它分成形狀、大小都相同的四個圖形,應怎樣分?【例 12】如何把下圖中的三個圖形分割成兩個相同的部分(除了沿正方形的邊進行分割外,還可沿正方形的對角線進行分割).【例 13】已知左下圖是由同樣大小的5個正方形組成的.試將圖形分割成4塊形狀、大小都一樣的圖形.【巩固】把右圖剪成形狀、大小相等的8個小圖形,怎麼剪?作出分出的小圖形.【例 14】如圖,它是由15個邊長為1釐米的小正方形組成的.⑴請在原圖中沿正方形的邊線,把它劃分為5個大小形狀完全相同的圖形,分割線用筆描粗.⑵分割後每個小圖形的周長是釐米.⑶分割後5個小圖形的周長總和與原來大圖形的周長相差釐米.第3题【例 15】下圖是由18個小正方形組成的圖形,請你把它分成6個完全相同的圖形.【例 16】如圖,將一個等邊三角形分割成互相不重疊的23個較小的等邊三角形(這些較小的等邊三角形的大小不一定都相同),請在圖中畫出分割的結果.【例 17】如圖,將一個正方形分割成互相不重疊的21個小正方形,這些小正方形的大小不一定相同,請畫圖表示.【例 18】一個正三角形形狀的土地上有四棵大樹(如下圖所示),現要把這塊正三角形的土地分成和它形狀相同的四小塊,並且要求每塊地中都要有一棵大樹.應怎樣分?【例 19】將下圖分割成大小、形狀相同的三塊,使每一小塊中都含有一個○.【例 20】請把下麵這個長方形沿方格線剪成形狀、大小都相同的4塊,使每一塊內都含有“奧數讀本”這四個字中的一個,該怎麼剪?奥数读本【例 21】 請把下麵的圖形分成形狀、大小都相同的4塊,使每一塊裏面都有“春蕾杯賽”4個字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 22】 學習與思考對小學生的發展是很重要的,學習改變命運,思考成就未來,請你將下圖分成形狀和大小都相同的四個圖形,並且使其中每個圖形都含有“學習思考”這四個字.應怎樣分?学习思考学习思考学习思考考思习学 (5)(4)(3)(2)(1)【例 23】 如下圖所示,請將這個正方形分切成兩塊,使得兩塊的形狀、大小都相同,並且每一塊都含有學而思奧數五個字.学而思奥数数奥思而学【例 24】 如下圖所示的正方形是由36個小正方格組成的.如圖那樣放著4顆黑子,4顆白子,現在要把它切割成形狀、大小都相同的四塊,並使每一塊中都有一顆黑子和一顆白子.試問如何切割?【例 25】如圖,要求把正方形分成四塊,兩個正方形共分為八塊,使每塊的大小和形狀都相同,而且都帶一個○.【例 26】將下頁圖所示圖形拆成形狀相同、面積相等的三部分,使每個部分中含有一個,請將第一部分的六邊形都標上“1”,第二部分的六邊形都標上“2”。

四年级思维训练课程-图形的分割与拼接PPT

四年级思维训练课程-图形的分割与拼接PPT
点拨:
闯关五
如图所示,这是一张十字形纸片,它是由五个全等正方形组成, 试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成 两片,使得最后得到的三片拼成两个并列的正方形。
宝典六 如图(a),ABCD是一个长方形,其中阴影部分是由一副面积 为100平方厘米的七巧版图(b)拼成。那么,长方形ABCD的面 积是多少平方厘米?
先分成最小的 点拨: 形,再数出来
正方形的面积:10×10=100(平方厘米)
每个三角形的面积:100÷16=6.25(平方厘米)
长方形ABCD的面积是:6.25×30=187.5(平方厘米)
闯关六
如图,矩形ABCD被分成一些正方形,已知AB=32厘米,试求AD 的长度是多少?
点拨
闯关二 请把右面这个长方形沿方格线剪成形状、大小都相同的4块, 使每一块内都含有“奥数好玩”这四个字中的一个,该怎么剪?
奥数 好玩
宝典三 图中是由三个正三角形组成的梯形。你能把它分割成4个形状相 同、面积相等的梯形吗?
分成4的倍数
点拨
闯关三
下图是由18个小正方形组成的图形,请你把它分成6个完全相 同的图形.
宝典四
把如图的图形分成大小、形状完全相同的两块,使每块中都含 有2009。
点拨:
20 0
2
90Βιβλιοθήκη 90闯关四
请将如图所示的正方形分成两块,使得这两块的形状和大小 都相同。并且每一块中都含有A、B、C、D、E五个字母,在图 中用斜线或不同色笔区分。
E
BB
D
D
E
C
AA
C
宝典五 如图两个正方形的边长分别是a和b( a>b),将边长为a的正方 形切成四块大小、形状都相同的图形,与另一个正方形拼在一 起组成一个正方形。

专题4《图形的分割与拼接》

专题4《图形的分割与拼接》

专题4《图形的分割与拼接》破解策略把一个几何图形按某种要求分成几个图形,就叫做图形的分割;反过来,按一定的要求也可以把几个图形拼接成一个完美的图形,就叫做图形的拼接.通常,我们会将一个或多个图形先分割,再拼接成一种指定的图形. 常见的图形的分割与拼接有: 1.三角形分割成两个等腰三角形 (1)已知:Rt△ABC ,∠BAC =90°. 作法:取斜边BC 的中点D ,连结A D . 结论:△DAB 和△DAC 是等腰三角形.D AB C(2)已知:△ABC ,∠BAC ≥∠B ,∠C =2∠B .作法:在边BC 上作一点D ,使得点D 在AB 的垂直平分线上,连结A D . 结论:△DAB 和△DAC 是等腰三角形.DCB A(3)已知:△ABC ,∠ACB =3∠B.作法:在边AB 上作一点D ,使得点D 在BC 的垂直平分线上,连结C D . 结论:△DBC 和△CAD 是等腰三角形.ABDC2.三角形分割成多个等腰三角形(1)已知:任意等腰△ABC ,AB =A C . ①作法:一条垂线+两条斜边中线.结论:△EAD ,△FAD ,△EBD ,△FCD 均为等腰三角形.ABFCED②作法:一条角平分线+两条平行线.结论:△AFD ,△FBD ,△EBD ,△DEC 均为等腰三角形.DECF BA③作法:两条角平分线+一条平行线.结论:△AEF ,△EBD ,△FCD ,△DBC 均为等腰三角形.ABF CE D(2)已知:等腰△ABC ,∠B =∠C =36°.作法:在BC 上取两点D ,E ,使得其分别在AB ,AC 的垂直平分线上,连结AD ,AE .结论:△DAB ,△ADE ,△EAC 均为含36°内角的等腰三角形,所以可以无限分等腰三角形.36°36°ABCDE(3)已知:等腰△ABC ,AB =AC ,∠A =36°. 作法:作∠ABC 的平分线BD ,交AC 于点D .结论:△DAB ,△BCD 均为含36°内角的等腰三角形,所以可以无限分等腰三角形.AB 36°DC(4)已知:任意△AB C .作法:一条垂线+两条斜边中线.结论:△EAD ,△FAD ,△EBD ,△FCD 均为等腰三角形.AB CDEF3.三角形的剪拼(1)剪拼成直角三角形.作法:取AB ,AC 的中点D ,E ;过D 作BC 的垂线,垂足为点F ;过点A 作BC 的平行线,分别交直线DF ,EF 于点G ,H . 结论:△FGH 为直角三角形.D HG EFCB A(2)剪拼成等腰三角形. 作法:取AB 、AC 的中点D 、E ,连结DE 的垂直平分线FG 交BC 于点G ;过点A 作BC 的平分线,分别交直线GD 、GE 于点H 、I 结论:△GHI 为等腰三角形F GIHD EC BA(3)剪拼成平行四边形.作法:取BC 、AC 的中点D 、E ,分别过点A 作BC 的平行线,交直线DE 于点F . 结论:四边形ABDF 为平行四边形.EFDCBA(4) 剪拼成矩形.①作法:取AB 、AC 的中点D 、E ,分别过点D 、E 作BC 的垂线,垂足为F 、G .过点A 作BC 的平行线,分别交直线FD 、GE 于点H 、I . 结论:四边形HFGI 为矩形.I H ED GAB C②作法:取AB 、AC 的中点D 、E ,分别过点B 、C 作直线DE 的垂线,垂足为F 、G . 结论:四边形FBCG 为矩形.F G ED CBA③作法:取BC 、AC 的中点D 、E ,过点A 作BC 的平行线,交直线DE 于点F ;分别过点A 、F 作BC 的垂线,垂足为G 、H结论:四边形AGHF 为矩形(先将△ABC 剪拼成平行四边形ABDF ,再将平行四边形剪拼成矩形AGHF )EFH D G CB A(5)剪拼成正方形(三角形一边上的高是该边长的一半).①作法:取BC 、AC 的中点D 、E ,过点A 作BC 的平行线,交直线DE 于点F ,分别过A 、F 作BC 的垂线,垂足为G 、H . 结论:四边形AGHF 为正方形.ABC GDHFE②作法:取AB 、AC 的中点D 、E ,分别过点D 、E 作BC 的垂线,垂足为F 、G ;过点A 作BC 的平行线,分别交直线FD 、GE 于点H 、I 结论:四边形HFGI 为正方形CB AFGD EH I(6)剪拼成等腰梯形.作法:作AD =AB 交BC 于点D ,取AC 的中点E ,过点E 作AD 的平行线,交BC 于点F ,过点A 作BC 的平行线,交直线FE 于点G . 结论:四边形AGFB 为等腰梯形.GFDECBA4.矩形的剪拼(1)剪拼成直角三角形作法:取AD 中点E ,连结CE 并延长,交直线AB 于点F . 结论:△FBC 是直角三角形.FEDCB A(2)剪拼成等腰三角形①作法:延长CD 至点E ,使得DE =CD ,连结AC 、AE . 结论:△ACE 为等腰三角形,其中AC =AEA CDE②作法:取AB 、CD 、AD 的中点E 、F 、G ,连结GE 、GF 并延长,分别交直线BC 于点H 、I 结论:△GHI 为等腰三角形,其中GH =GIIHGA BCD E F③作法:取AD 的中点E ,向矩形外作AD 的垂线EF ,使得EF =AB ,连结FB 、FC 结论:△FBC 为等腰三角形,其中FB =FCAB CDEF④作法:取BC 、CD 、AD 的中点E 、F 、G ,连结FE 、FG 并延长,分别交直线AB 于H 、L 结论:△FHI 为等腰三角形,其中FH =FI(3)剪拼成菱形.作法:取BC 的中点E ,向矩形外作BC 的垂线EG ,使得EG =AB ,取AD 的中点F ,连结BG 、GC 、CF 、F B .结论:四边形BGCF 为菱形GABCDEF(4)剪拼成正方形作法:延长CB 至点E ,使得BE =AB ,以EC 为直径作圆,交BA 的延长线于点F;在BC 上取一点G ,使得BG =BF ,过点F 作BF 的垂线,过点G 作BG 的垂线,两线交于点H 结论:四边形BGHF 为正方形5.正方形的剪拼(1)两个正方形剪拼成一个正方形作法:连结AE ,过点A 作AI 丄AE 交CB 的延长线于点I ;分别以E ,I;为圆心AE 长为半径画弧,交于点H ,连结HI 、HE . 结论:四边形AEHI 为正方形NHLGFEDC BA(2)一个正方形剪拼成两个正方形作法:以B 为端点在正方形ABCD 内部作射线,分别过A 、C 、D 作射线的垂线,垂足分别为E 、F 、G ,再分别过点A 、C 作DG 的垂线,垂足分别为H 、I 结论:四边形AEGH 和四边形CFGI 为正方形.进阶训练1. 在△ABC 中,∠ABC =∠ACB =63°,如图1,取三边中点,可以把△ABC 分割成四个等腰三角形,请你在图2中,用另外四种不同的方法把△ABC 分割成四个等腰三角形,并标明分割后的四个等腰三角形的底角的度数(如果经过变换后两个图形重合,则视为同一种方法)图2图1C BACBAABCABC C BA答案:2. 小明在研究四边形的相关性质时发现,在不改变面积的条件下,一般梯形很难转化为菱形,但有些特殊的梯形通过分割可以转化为菱形,如图1,已知在等腰梯形ABCD 中,AD ∥BC ,CD =2AD ,∠C =60°.图2图1CBADDABC(1)果将该梯形分割成几块,然后可以重新拼成菱形,试在图1中画出变化后的图形;(2)在完成上述任务后,他又试着在直角梯形(如图2,AD∥BC,CD=2AD,∠C=60°)中,将梯形分成几块,拼成新的图形;①它能拼成一个菱形吗?如果能,请画出相应的图形;②它能拼成一个正方形吗?如果能,请画出相应的图形.答案:(1)能拼成菱形:C BA D(2)能拼成菱形:DAB C能拼成正五边形DAB C3.下列网格中的六边形ABCDEF是由一个边长为6的正方形剪去左上角一个边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①,②,③三个部分,请在图甲中画出将②,③与①拼成的正方形,然后标出②,③变动后的位置;(3)在图乙中画出一种与图甲不同位置的两条剪裁线,并画出将此六边形剪拼成的正方形.图甲图乙答:(1)42;(2)如图;(3)如图:。

图形的拼接与分割

图形的拼接与分割

图形的拼接与分割
11月1日天气:晴星期六
四(5)孙昊阳
今天,在学而思学习了四年级奥数第五
讲,老师给我们讲解了“平面图形的拼接与
分割”的理论与实际应用,下面是我的几点
体会。

①平面图形的分割就是将一个平面几何图形按照一定的要求分割成几部分,一般都是要求分割出大小、形状完全相同的图形,这类问题的关键就是找出原图的中心对称点,利用对称原理进行分割。

②平面几何图形的拼接问题有两类一类是按要求将几个图形成一个大的几何图形,解决这类问题的关键是观测图形的每条边的长度,将边长相等的拼接在一起;一类是先将一个平面图形分成完全相同的几部分,然后再拼接成另外一种平面图形,这类问题的关键是找到前后两种图形的对应关系,进行恰当的分割。

③计算型平面图形的分割与拼接的重点是抓住分割与拼接前后“图形的面积相等”这一关键点,根据已知条件和图形的特点通过分析、推理、计算以及辅助线的应用,确定不同的分割拼接方法。

平面图形的分割与拼接在实践中应用非常广泛,应用得当可以节约大量的原材料,从这一点可以看出学好数学的重要性!。

小学四年级逻辑思维学习—图形的分割与拼接

小学四年级逻辑思维学习—图形的分割与拼接

小学四年级逻辑思维学习一图形的分割与拼接知识定位本讲中的知识点比较抽象,在这一讲中我们主要学习几种图形处理方法:1、理解掌握图形的分割;2、理解掌握图形的拼合;3、理解图形的剪拼;4、利用剪拼图形计算、解决问题.【授课批注】本讲中很多类型的题目还要求学生去动手尝试.通过本讲知识点的学习,让学生了解不同图形的分割、拼合、剪拼的方法,锻炼学生的平面想象能力以及增强学生的动手操作能力知识梳理图形的分割与拼接的概念把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.【授课批注】该知识点可从七巧板引入,举几个由七巧板组成的图形的剪拼的例子。

【重点难点解析】1.根据题目需要找合适的方法进行剪拼2.如何根据相等的量来剪拼图形【竞赛考点挖掘】1.方格纸的分割与拼接2.简单平面基本图形(长方形、三角形等)的分割与拼接例题精讲【题目】右图是一个3乂4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【题目】右图是一个4乂4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【题目】请把右面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?【题目】学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将右图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?【题目】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【题目】如何把图a中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角形进行分割)■【题目】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.习题演练【题目】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【题目】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【题目】下面哪些图形自身用4次就能拼成一个正方形?【题目】将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种可以拼成面积是16的正方形?【题目】试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.图h 图t【题目】将右图分成4个形状、大小都相同的图形,然后拼成一个正方形.【题目】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形. 【题目】试将任意一个三角形分成三块,然后拼成一个长方形.【题目】试将任意一个矩形分成三块,然后拼成一个三角形【题目】将右图分成两块,然后拼成一个正方形.【题目】如图所示,四个等腰直角三角形和一个正方形,已知正方形的面积是4平方厘米,长方形48©口的面积是多少平方厘米?【题目】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.【题目】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【题目】一个正三角形形状的土地上有四棵大树(如右图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【题目】右图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【题目】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【题目】用下面左边的3个图形,拼成右边的大正方形.【题目】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?古希腊哲学家,也是全部西方哲学乃至整个西方文化最伟大的哲学家和思想家之一,他和老师苏格拉底,学生亚里士多德并称为古希腊三大哲学家。

小学数学培优之图形的分割与拼接

小学数学培优之图形的分割与拼接

本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.知识点拨4-2-3.图形的分割与拼接模块一、图形的分割【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BA O【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【例 2】用直线把左图分成面积相等的两部分,在右图中画虚线给出了分法,其中正确的有________个。

ll ll【例 3】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【例 4】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.例题精讲【巩固】 把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【例 5】 怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【例 6】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.231DCBA【例 7】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?20604020【例 8】下图是一个34 的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【巩固】右图是一个44 的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【例 9】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【例 10】将图中的图形分割成面积相等的三块.【例 11】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【例 12】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【例 13】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【例 14】如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【例 15】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例 16】如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【例 17】如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【例 18】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【例 19】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【例 20】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?奥数读本【例 21】 请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【例 22】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学(5)(4)(3)(2)(1)【例 23】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学【例 24】 如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【例 25】 如图,要求把正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.【例26】 将下页图所示图形拆成形状相同、面积相等的三部分,使每个部分中含有一个,请将第一部分的六边形都标上 “1”,第二部分的六边形都标上“2”。

数学思维之图形的拼切

数学思维之图形的拼切

数学思维(四)图形的折叠与剪拼
例1、你能用多少种方法将下图的方格纸沿着格线分割成完全相同的两部分。

例2、把下图分成四个相同的图形,每一部分都有一个★,例3、将下图分割成两块,然后拼成一个正方形。

学生练习
1、将下列各图分别分成4个大小相等、形状相同的图形。

2、将下列各图分割成3个大小相等,形状相同的图形。

3、将下列各图分割成大小相等,形状相同的3块,并且每块包含一个小圆圈。

4、将下图中的正方形分割成3块,其中只有一块是正方形,并用它们拼成右图的长方形。

5、如何将两张相同的正方形纸片剪成若干块,然后拼成一个大正方形?
6、将右图分割成五个大小及形状相等的图形。

7、下图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。

8、.下图是4×3的方格纸。

用四种方法将下图分割成完全相同的两部分,但要保持每个小方格的完整。

9、将下图分成四个大小相等、形状相同的图形。

10、将下图分成两块,然后拼成一个正方形。

四年级数学图形的分割和拼接

四年级数学图形的分割和拼接

第 2 次课教学内容图形的分割和拼接教学目标1.知识与技能:使学生掌握图形分割与拼接的几种类型。

2.过程与方法:通过动手操作得知方法。

3.情感态度和价值观:使学生增强在解决数学问题时动手的能力。

第 1 小节(例1、例2、例3 )教学内容教学组织教学调整教学内容一、导入:(2分钟)同学们玩过七巧板的游戏吗?通过拼的方法我们可以自由拼出许多自己喜欢的图形,那么今天我们就来上一堂手工课!二、新授:(40分钟)师:首先请几位同学用老师手中的三角形、正方形、长方形以及圆形拼出一个图形,并简单描述它是什么。

例题讲解:例题1:把一个正方形切割成四个完全相同的部分, 有多少种不同的切割方法?【解答】有无数种答案(画法略)学生练习:练习1. 把一个正三角形分成完全相同的 3 个、6 个、4 个、9 个小三角形,请给出分割方法。

【解答】例题讲解:例题2:右图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。

【解答】教学内容学生练习:练习2:下图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整。

【解答】例题讲解:例题3:如下图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形。

【解答】先将每个正方形平均分成4个小正方形;学生练习:练习6:把如下图这样由五个正方形组成的图形,分成四块大小、形状都相同的图形。

【解答】先将每个正方形平均分成4个小正方形;小结:图形分割。

游戏:第 2 小节(例4、例5、例6 )教学重点图形的拼接教学难点复杂图形分割和拼接教学内容教学组织教学调整教学内容一、铺垫(2分钟):回顾:上节课我们学习了分割图形,接下下我们将要学习拼图形。

二、新授(40分钟):例题讲解:例题4.用两块大小一样的等腰直角三角形,能拼成几种常见的图形?【解答】正方形,三角形,平行四边形学生练习:练习4.用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形? 若能,画出示意图。

第23讲_图形的分割与拼接(含答案)

第23讲_图形的分割与拼接(含答案)

“图形的分割与拼接”专项复习本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.【典型例题】板块一图形的分割【例 1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BA O【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为O⑵过O点任作一条直线AB,直线AB将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.【巩固】画一条直线,将六边形分成大小相等、形状相同的两部分,这样的直线有条.【解析】无数条.任何过六边形中心的直线均符合要求.【例 2】 把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法. 【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为4 1 4 22=⨯=⨯,所以,如果我们把每一个小三角形的面积看做1,那么14⨯就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而22⨯可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形. 根据上面的分析,又可以得到如右下图的另两种分法.AB C C B AABC【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.AB CC B ABA【解析】 根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→【解析】 ⑴分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形, 然后再把每一个三角形分成两部分,得到如左上图所示的图形.⑵分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例 4】 下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321DCB A 1FE 221D C BA【解析】 直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,现在,CD AE =,DE AB =,BF EF =,所以还要找到BC 的中点F ,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.【例 5】在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.AO【解析】用连对角线的办法找出这块长方形地的中心O 和正方形水池的中心A .过O 、A 画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).【例 6】 把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?2060402020【解析】 先把图形分成2040⨯相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.【例 7】 下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】 分成的两块每块有1226÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4416⨯=(个)小格,所以分成的两块每块有1628÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的44⨯格图,不同的变化在不同的图上同时呈现)如下图:【例 8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【解析】要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”形或者“∟”形.答案如下图.【巩固】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?【解析】从形状,面积两方面综合考虑,很容易就能得到答案.答案如右上图.【巩固】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【解析】这道题的要点在于通过计算解决问题,要求把原来三个正三角形分成四个大小、形状都相同的四个梯形,先不考虑形状,大小相同也就是面积相等,即把整个梯形的面积分成四份,分割后的每一个梯形占一份,可以考虑把每一个三角形的面积分成四份,再把三个正三角形中的每一个小三角形合成要求的梯形,这种类型的题目可以从中点入手,找到每个正三角形的中点并连接,如右上图.【例 9】下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?【解析】如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.也可以将中间的正方形分成四个小正方形,如右上图.【例 10】已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.【解析】已知图形是由同样大小的5个正方形组成的,要分成4块同样大小的图形,则每块图形是5 4个正方形.由此想到,若把每个正方形都分成4等份,则分割成的每一块中应包含5份.再稍经试验,即得右上图的解(图内部的实线为分割线).【巩固】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【解析】 总格数为12,用总格数除以8,得到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.【例 11】 下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】 通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.666555444333222111【例 12】 一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底 高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【解析】 图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:1836÷=(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O ,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.O【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?本读数奥 【解析】 图中“奥数”与“读本”中的两个字都是挨着的,所以肯定要在它们中间分割,因此,首先在他们中间划出分割线,因为要将这个长方形分成大小、形状完全相同的4块,因为长方形是64⨯的,所以分割后的每一块都有6小块组成,可以考虑先把长方形分成相同的两部分,再把每一部分分成相同的两部分,如下图所示.本读数奥答案不唯一.【例 15】 (2008年第八届“春蕾杯”小学数学邀请赛初赛)请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.春春蕾杯赛春春蕾蕾蕾杯杯杯赛赛赛第13题【解析】 如下图所示:图1答案不唯一.【例 16】 学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?学习思考学习思考学习思考考思习学 (5)(4)(3)(2)(1)【解析】 看到这道题目,我们想到俄罗斯方块,由题意可知,所分出的每一块图形,必须由4个小正方形组成,它的形状不外乎如右上图所示的五种俄罗斯方块,这就控制了搜索的范围.根据原题中各个字的具体位置,上图中有些图形是必须排除的,例如,如果把图⑵与原题右下角22⨯的正方形重叠,其中“考”字出现了两次,不符合题意,因此,图⑵可以先排除掉. 现在,再固定某一角上的一个小正方形,按其中的字来考虑.如固定右上角写有“考”的小正方形来分析,只有下列4种可能出现的情况:考思习学考思学习学考思习学考思习学习思考考思习学考思习学考思习学【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学→图1 图2【解析】 图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180︒必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【解析】首先在相同颜色的棋子之间划出切分线,以中心旋转90、180、270之后,得到一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是3649÷=,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90、180、270便得到其他三块,如右上图.【例 18】如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲乙【解析】一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90、180、270就可以得到另外三块.又因为这个正方形面积为36平方单位,所以分成的每一块的面积都是9平方单位.即每一块都由9个小正方格组成.另外,由于两个正方形要切分成一样大小的四块,因此可将两个正方形重叠在一起考虑.①将两个正方形重叠在一起,如下图所示,为便于区别,将其中一组的“○”改写成“×”.按要求将这重叠的正方形切分成大小、形状都相同的四块,并且每块都有一个“○”和“×”.②图中有相同符号的“○”挨在一起的从中间把它们切开,在它们中间划上截线.并将这些截线绕中心点旋转90、180、270得到另外三段截线.如下图.利用它们设想出划分线.③设想分块从中心位置开始,逐步向外扩散,在里层方格中,先指定某一方格已分入到某小块中,并作上记号(斜线阴影),然后将它绕中心旋转180后得到另一方格分入到另一小块中,也作上记号(横线阴影),如图.对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个“○”和一个“⨯”.每一块都有9个方格组成,不能断开.下图是分解了的分块过程示意图.④注意到斜线阴影部分已经有了一个“○”和一个“⨯”.那么左下角包含“○”的方格就不能再分到斜线阴影部分去了,而只能将右下角的方格分到斜线阴影部分.于是左上角的方格就应该分给横线阴影部分.空白部分是另外两块. 下就是最后分得的结果.【例 19】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【解析】采用分割法,过A 、B 、C 分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【巩固】正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【解析】四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:199⨯=(平方米).【巩固】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FE D CB AFE D CBA【解析】采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯=(平方米)【例 20】(第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.第3题【分析】⑴因为总共有15个小正方形,所以分成5个大小形状相同的图形后每个图形应该有1553÷=(个)小正方形,如图.⑵每个小图形的周长为8厘米.⑶5个小图形的周长和:8540⨯=(厘米),原图形的周长:44218⨯+=(厘米),所以相差401822-=(厘米).图1【例 21】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块,对于这个图形,我们很容易看出有一个正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有3个正方形、3个三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了,具体分法见下图.【例 22】(2003年《小学生数学报》数学邀请赛)如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.【解析】分割的方法不唯一,如图所示.【例 23】(2005年《小学生数学报》数学邀请赛)如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【解析】分割的方法不唯一,如右图所示.板块二图形的拼合【例 24】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【解析】建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图:【巩固】用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?【解析】这种类型的题需要学生亲自操作,建议教师准备材料与学生互动.一共可以拼成如下图的几种形状:【巩固】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示.【例 25】下面哪些图形自身用4次就能拼成一个正方形?【解析】用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.【例 26】用下面的3个图形,拼成右边的大正方形.【解析】首先数一数所有的空格数,一共只有16个,只能组成44的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.④③②①【解析】 首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:→→→【例 27】 有6个完全相同的,你能将它们拼成下面的形状吗?【解析】 利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照下面的顺序标号即可完成.→→【例 28】 (保良局亚洲区城市小学数学邀请赛)三种塑料板的型号如图:(A ) (B ) (C )已有A 型板30块,要购买B 、C 两种型号板若干,拼成55⨯正方形10个,B 型板每块价格5元,C 型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买B 、C 两种板要花多少元?【解析】 要使花的钱尽可能的少,已有30个A 型板最好能用上,而价格较贵的B 型板尽可能少用,因为A 型与B 型的面积都为3,所以在拼成的55⨯的正方形中,除了C 型外,余下的面积应能被3整除.有25449-⨯=或254121-⨯=能被3整除知,只能用4块C 型板或1块C 型板,考虑尽可能多地使用A 型板,有如下图1、图2 的拼法:BC CCC B AAAAAA BCA图1 图2图1的拼法要花445226⨯+⨯=(元),图2的拼法要花459+=(元),因为只有30块A 型板,所以在10快55⨯的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:94266192⨯+⨯=(元)【例 29】 试用图a 中的8个相等的直角三角形,拼成图b 中的空心正八边形和图c 中的空心正八角星.【解析】 把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.板块三 图形的剪拼【例 30】 试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【解析】 要用分成的四块组成三角形,那么剪成得图形一定是三角形,这样平均分成四等分,当然这种分法有好几种.组成图形的时候我们可以换位思考,看如何将三角形、平行四边形、梯形分成大小相等的三角形.如图所示:【例 31】 把两个小正方形剪开以后拼成一个大正方形.【解析】 因为大正方形的面积等于两个小正方形的面积和,所以大正方形的边长不能等于两个小正方形的。

小学数学 图形的分割与拼接.教师版

小学数学 图形的分割与拼接.教师版

4-2-3.图形的分割与拼接知识点拨本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.例题精讲模块一、图形的分割【例1】用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【考点】图形的分割与拼接【难度】2星【题型】解答【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为O⑵过O点任作一条直线AB,直线AB将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.用线段平分长方形的分法有无穷多种。

第23讲_图形的分割与拼接(含参考答案)

第23讲_图形的分割与拼接(含参考答案)

“图形的分割与拼接”专项复习本讲主要学习三大图形处理方法:1.理解掌握图形的分割;2.理解掌握图形的拼合;3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.把图再【解析】无数条.任何过六边形中心的直线均符合要求.【例 2】把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为4 14 22=⨯=⨯,所以,如果我们把每一个小三角形的面积看做1,那么14⨯就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而22⨯可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.【巩固】把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如图所示的三种分法.【例 3】怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.,,【例7】下图是一个34⨯的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】分成的两块每块有1226÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况,具体如下图所示.【巩固】右图是一个44⨯的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【解析】因为要分割成完全相同的两块,即大小、形状完全相同.方格纸一共有4416⨯=(个)小格,所以分成的两块每块有1628÷=(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,应用染色法,从中心点的一侧入手染色,逐步推进.(建议教师同时呈现六幅空的44⨯格图,不同的变化在不同的图上同时呈现)如下图:【例8】下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.【解析】要求把阴影部分分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份.考虑先把阴影部分分成12个小正方形再分成四份,这样每份正好有3个小正方形.再看形状,三个小正方形只能排成“-”形或者“∟”形.答案如下图.5份.再【解析】总格数为12,用总格数除以8,得到每个小图形应该是一个半小正方形,根据平均一个小图形的格数作图,如右图.【例11】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【解析】通过计算,18÷6=3,说明基本形状是由三个小正方形组成,三个正方形有两种形式:与,通过观察,上面的图形具有对称性,不可能分成6个,再由6结合染色法,如下图.【例12】一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【解析】 由于土地的形状为正三角形,由题意可知,把大三角形的面积分成四份,每一块占一份,且形状与原三角形相同,于是我们想到取大正三角形的各边中点,依次连接各边中点,即可将这块大正三角形的土地分成与它相等的四份,如右上图所示.【总结】本题若死守三角形面积等于底⨯高的一半,则无以下手,引导学生转换一下思考角度,取原三角形各边中点,将原三角形分成面积相等的四部分,问题即可解决.【例 13】 将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【解析】 图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:1836÷=(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是O ,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点,可以判断应分为右下图的三部分.【例 14】 请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥64⨯的,4块,4个小2的正方4种可【例 17】 如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.学而思奥数数奥思而学→图1图2【解析】 图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180︒必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.【巩固】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?【解析】首先在相同颜色的棋子之间划出切分线,以中心旋转90、180、270之后,得到一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是3649÷=,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90、180、270便得到其他三块,如右上图.【例 18】如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲乙【解析】一个正方形分成大小和形状都相同的四块,一定是从中心点分开的,只要能找出其中符合题目要求的一块,然后再将这块绕着正方形的中心点分别旋转90、180、270就可以得到另外三块.又因为这个正方形面积90、③设想分块从中心位置开始,(斜对于中间一层方格和最外一层方格,设想分块时一定要紧扣条件:每一块中都要有一个“○”和一个“⨯”.每一所以,大正方形的面积是:199⨯=(平方米).【巩固】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【解析】采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯=(平方米)【例20】(第九届“中环杯”小学生思维能力训练活动初赛)如图,它是由15个边长为1厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为5个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后5个小图形的周长总和与原来大图形的周长相差厘米.【分析】⑴因为总共有15个小正方形,所以分成5个大小形状相同的图形后每个图形应该有÷=(个)小正方形,如图.1553⑵每个小图形的周长为8厘米.⑶5个小图形的周长和:8540-=(厘⨯=(厘米),原图形的周长:44218⨯+=(厘米),所以相差401822米).【例21】如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容3个个较小的21一个梯形、一个平行四边形五种图形?若能,画出示意图.【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,具体拼法如图所示.【例 25】下面哪些图形自身用4次就能拼成一个正方形?【解析】用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见下图.【例 26】用下面的3个图形,拼成右边的大正方形.【解析】首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,使用目标倒推法,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼合了,如下图:【巩固】用“四连块”拼成一个正方形,按编号画入右边图中.【解析】首先数一数所有的空格数,一共只有16个,只能组成44⨯的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:型板每块A型与⨯=或491、图2快55⨯的【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.板块三图形的剪拼【例 30】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【解析】要用分成的四块组成三角形,那么剪成得图形一定是三角形,这样平均分成四等分,当然这种分法有好几种.组成图形的时候我们可以换位思考,看如何将三角形、平行四边形、梯形分成大小相等的三角形.如图所示:【例 31】把两个小正方形剪开以后拼成一个大正方形.【解析】因为大正方形的面积等于两个小正方形的面积和,所以大正方形的边长不能等于两个小正方形的边长和,而是等于小正方形的对角线的长,所以要沿着两个小正方形的对角线剪开再进行拼接,如右图.【例 32】将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.【解析】总共有36块小正方形,所以最后拼成的大正方形边长有6个单位,具体切拼方法如下:【例 33】试将一个49⨯的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.【解析】已知长方形格数9436⨯=(个),所以正方形的边长应为6个格,因此可以把长方形上半部分成3个格、6个格,下半部分成6个格、3个格,分成相等的两块,合起来正好拼成一个边长为6个格的正方形,如右下图.【巩固】长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.4如果3;显【解析】要使裁剪的块数少,就要充分利用等腰直角三角形的特点,还要尽可能多的让长方形的边与三角形的边重合,假设拼好的长方形以BC为长,现在要把△ADE补到△CGE的位置上,这就要求这两个三角形完全一样,显然,只要取D、E分别为AB、AC的中点即可.所以首先连接AB的中点D和AC的中点E,将△ADE沿DE剪开,再按顺时针方向旋转180°即可.如下图所示.【例 37】试将任意一个三角形分成三块,然后拼成一个长方形.【解析】方法一:三角形与长方形的不同在于:角、边的个数不同,把三角形变为四边形,需要加一个角,加一条边,而且长方形四个角都是直角,自然能想到在三角形中做两条垂线,并且过三角形两条边的中点,这样才能拼出一个长方形,如左下图.方法二:因为由平行四边形转化为长方形很简单,所以只需要把三角形先分割、拼凑成平行四边形,作三角形的中位线,旋转180°即可转化为平行四边形,然后拼成长方形,如右下图.方法一:方法二:【巩固】试将任意一个矩形分成两块,然后拼成一个三角形.4请就要使剪裁的块数尽可能地少,应怎样剪拼?【解析】地毯的面积为8324⨯=平方米,两者虽然长、宽不相等,⨯=平方米,新房间的面积为6424但面积相等.通过对比不难发现:地毯的长比房间的长多2米,房间的宽比地毯的宽多1米,因此,我们可以把地毯看做由12个21⨯(平方米)的小长方形组成的大长方形,如左下图所示,要达到题目的要求,只要使原地毯的长缩短一小格.即减少2米,使原地毯的宽增加一小格,即增加1米,我们可以沿对角线的方向,把它剪成阶梯形的两块,并使它们的形状和大小完全相同,如中间图,然后把它们错位互相拼接在一起,即阴影部分先向上平行移动1米,再向右平行移动2米,即得右下图.【例 40】 如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形. →图d 图e 【解析】 因为原长方形比新长方形的长多4厘米,新长方形比原长方形的宽多3厘米,因此我们把原长方形分成20个长4厘米,宽3厘米的小长方形.因为新长方形的长为16厘米,所以原长方形的长应减少一个小长方形,而新长方形的宽为15厘米,所以原长方形的宽应增加一个小长方形.可1618厘80厘米,再);⑴⑵⑶【解析】 拼成大正方形的面积应是a a b b ⨯+⨯,设边长c ,则有等式c c a a b b ⨯=⨯+⨯,又因为将边长为a 的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线MN 为大正方形边长,如图⑴,一定有MN MN a a b b ⨯=⨯+⨯,而MH a =,则:NH b =,所以2AN CM BH a b ===-÷(),由此可以确定MN ,然后将MN 绕中心O 旋转90到EF 位置,即可把正方形切成符合要求的4块.如图⑵与图⑶.这种分法同时确保图⑶的中间部分就是边长为b 的小正方形.这是因为:⑴中心四边形的角即边长为a 的正方形的四个角,∠A ,∠B ,∠C ,∠D ,又因为各边长度相等.因此中心四边形是正方形.⑵中心正方形的边长[2]2a a b a b a a b b =--÷--÷=--=()()().精心整理因此,中间部分是边长为b 的正方形.【例 45】 如下图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形.【解析】 实际拼成两个并列的正方形就是一个长方形,其长是宽的2倍,设十字形面积是5个平方单位,长方形的长为x 长度单位,宽为2x 长度单位,那么有25,102x x x ==,即22231x =+,由勾股定理可知:所求长方形的长可视为一直角三角形直角边分别是3和1的斜边.它恰是两个对角顶点的连线.剪拼方法如右图所示,甲拼在甲′位置,乙拼在乙′位置,就可得符合题意的图形.【总结】假若沿第二条线把另一片也剪成两片,那么共剪成的4片是4个全等多边形,这时两条直线都经过十字形的中心,并且互相垂直.剪开的这4个图形其中一个绕中心旋转90也和另一个重合.由此我们便得到一个重要结论:对于一个正方形来讲,如果从中心沿360490÷=角的两边切开,得到整个图形的14,这个14的图形若绕中心旋转3603120÷=角的两边切开,1n 边的角的两边剪开,得到整个图形的360和另一个1n。

几何图形的切割与拼接

几何图形的切割与拼接

几何图形的切割与拼接几何图形切割与拼接是一项基础且重要的几何学技能,它不仅能够培养我们对几何图形的观察力和创造力,还能够提高我们的空间想象能力。

本文将介绍几何图形的切割与拼接的基本概念、方法和技巧。

一、几何图形的切割几何图形的切割是指将一个图形分割成多个小图形的过程。

切割可以通过直线切割、曲线切割和虚线切割等方式进行。

下面以一个正方形为例来说明切割的具体过程。

首先,我们需要确定切割的方式和切割的位置。

以正方形为例,我们可以通过连接顶点来进行切割,也可以通过连接边的中点来进行切割。

不同的切割方式会得到不同的小图形。

其次,根据切割的方式和位置进行操作。

在切割时,我们需要利用直尺和铅笔来画出切割线的轨迹,然后利用剪刀或刀具来进行切割。

切割完成后,得到多个小图形。

最后,我们需要整理和分类切割得到的小图形。

可以根据小图形的形状、颜色或其他特征进行分类,以方便后续的拼接。

二、几何图形的拼接几何图形的拼接是指将多个小图形组合成一个整体的过程。

拼接可以通过直接拼接、重叠拼接和嵌入拼接等方式进行。

首先,我们需要确定拼接的方式和拼接的位置。

以正方形为例,我们可以通过将小正方形直接拼接在一起形成一个大正方形,也可以通过重叠和嵌入的方式形成多种不同的图形。

其次,根据拼接的方式和位置进行操作。

在拼接时,我们需要将各个小图形按照预定的方式和位置进行组合,可以利用直尺和铅笔来辅助找到合适的位置。

对于需要重叠或嵌入的拼接方式,我们可以使用剪刀或刀具来对小图形进行修整。

最后,我们需要检查和调整拼接完成后的整体图形。

可以检查各个拼接处的连接是否紧密,是否符合预定的形状和大小。

如果需要调整,可以进行适当的修剪或重组。

三、几何图形的切割与拼接技巧1. 观察几何图形的特点:在进行切割与拼接之前,我们需要仔细观察几何图形的形状、边界和对称性等特点,这有助于我们确定切割和拼接的方式和位置。

2. 利用工具辅助:在进行切割和拼接时,我们可以使用直尺、铅笔、剪刀和刀具等工具来辅助操作,这能够提高准确性和效率。

小学数学点知识归纳简单的形的切割与拼接

小学数学点知识归纳简单的形的切割与拼接

小学数学点知识归纳简单的形的切割与拼接在小学数学的学习中,形的切割与拼接是一个重要的知识点。

通过切割和拼接不同的形状,可以帮助学生理解形状的特点、属性以及它们之间的关系。

本文将对小学数学中涉及形的切割与拼接的知识进行归纳总结,以便让学生更好地掌握这一知识点。

1. 点的知识在数学中,点是最基本的几何概念之一。

点没有大小和形状,只有位置。

在形的切割与拼接中,我们需要了解点的位置关系,以便准确地进行切割和拼接操作。

2. 直线的切割与拼接直线是由无数个点组成的,在形的切割与拼接中,我们可以通过切割和拼接直线来形成不同的形状。

例如,将一条直线上的一段切割下来,再将其与另一条直线的一端相连接,就可以形成一个更长的直线。

3. 封闭图形的切割与拼接在小学数学中,我们经常需要对封闭图形进行切割和拼接操作。

封闭图形是由连续的线段组成的形状,其边界上的每个点都与其他点相连。

通过切割和拼接封闭图形,我们可以形成更复杂的形状。

例如,将一个矩形沿着其中一条边切割,再将其两个侧边连接在一起,就可以形成一个更大的矩形。

4. 平行四边形的切割与拼接平行四边形是一种特殊的四边形,其对边平行且长度相等。

在形的切割与拼接中,我们可以通过切割和拼接平行四边形来形成其他的形状。

例如,将一个平行四边形的一条边切割下来,再将其与另一个平行四边形的一条边相连接,就可以形成一个更大的平行四边形或者一个长方形。

5. 三角形的切割与拼接三角形是一种三边都连接在一起的封闭图形。

在形的切割与拼接中,我们可以通过切割和拼接三角形来形成其他的形状。

例如,将一个三角形的一条边切割下来,再将其与另一个三角形的一条边相连接,就可以形成一个更大的三角形。

通过形的切割与拼接,我们可以探索不同形状之间的关系,加深对形状的理解。

这种操作不仅培养了学生的几何思维能力,还能提高其观察、分析和综合问题的能力。

因此,在小学数学中,形的切割与拼接是一个值得重视的知识点。

小学数学的课堂教学中,教师可以通过实物模型、图形拼图等具体操作的方式,帮助学生直观地理解形的切割与拼接。

掌握小学形的拼合与分割方法

掌握小学形的拼合与分割方法

掌握小学形的拼合与分割方法在小学数学教育中,形的拼合与分割是一个重要的概念和技能。

通过学习形的拼合与分割方法,学生能够培养他们的观察力、触觉、空间想象能力以及手眼协调能力。

在本文中,将介绍一些掌握小学形的拼合与分割方法的有效策略。

一、形的拼合方法形的拼合是将几个小的形状组合在一起形成一个更大的形状。

通过形的拼合,学生可以了解形状之间的关系,以及如何用小的形状组合成更大的形状。

下面是一些掌握小学形的拼合方法的有效策略:1. 观察、比较和归纳首先,学生需要观察和比较不同的形状,并归纳它们的特征和规律。

他们可以通过观察形状的边长、角度以及其他特征来找到它们之间的共同点和差异。

比如,学生可以比较正方形和长方形,并发现它们都是矩形,但长方形的边长具有不同的比例。

2. 拼合图形学生可以使用拼图或者纸板等材料,将不同的形状拼合在一起来创建新的形状。

通过这种实际操作的方法,学生可以更好地理解如何拼合不同的形状。

比如,他们可以将多个正方形拼接在一起,形成一个更大的正方形。

3. 探索转换学生可以尝试通过旋转、翻转或平移等操作来拼合形状。

这将帮助他们发现形状之间的相似性和差异性。

比如,学生可以将一个矩形翻转成另一个矩形,或者将一个三角形旋转成另一个三角形。

二、形的分割方法形的分割是将一个形状划分为几个更小的形状。

通过形的分割,学生能够理解形状的组成部分,以及如何将一个形状分割为更小的单元。

以下是一些掌握小学形的分割方法的有效策略:1. 观察和想象学生需要通过观察和想象来理解形状的构成和分割方式。

他们可以从整体形状出发,推测如何分割形状成更小的单元。

比如,他们可以观察一个正方形,然后想象将它分割成两个三角形。

2. 利用模板学生可以使用模板来帮助他们将一个形状分割成更小的形状。

模板可以是纸板、卡片等材料,可以用来描绘形状并引导学生进行分割。

比如,学生可以使用一个三角形模板来将一个长方形分割成两个三角形。

3. 利用工具学生可以使用尺子、直尺、铅笔等工具来辅助进行形的分割。

(尖子生培优)专题10平面图形的切割与拼接-四年级数学思维拓展培优讲义(通用版)

(尖子生培优)专题10平面图形的切割与拼接-四年级数学思维拓展培优讲义(通用版)

专题10平面图形的切割与拼接有的放矢图形的拼切就是把一个图形分成若干块,然后再讲成一个规章的图形。

拼切前后的图形面积大小不变。

利用图形的对称性进行拼切是一种常用的方法,还要学会选择分割的方法和技巧。

力气巩固提升1.用一张长方形纸剪同样的三角形(如下图),最多能剪多少个这样的三角形?2.一个三角形的底是12分米,高是8分米,用两个这样的三角形拼成一个平行四边形,这个平行四边形的面积是多少平方分米?3.一块装饰玻璃外形如下图所示,这块玻璃的面积是多少平方分米?4.王村有一个宽20米的长方形鱼塘。

因修路,鱼塘的宽削减了6米,这样鱼塘的面积就削减了180平方米。

现在鱼塘的面积是多少平方米?(先画出削减的部分,再解答)5.长方形纸长24厘米、宽14厘米,先剪下一个最大的正方形,再从剩下的长方形中剪下一个最大的正方形。

最终剩下的小长方形的面积是多少?6.欣欣和乐乐想用一张长8分米、宽5.5分米的长方形纸剪边长是2分米的正方形。

乐乐说:“我最多能剪出11个正方形”,欣欣说:“不行能,你吹牛”。

你认为乐乐是在吹牛吗?请你用画示意图的方式说明你的想法。

7.在一张长30厘米、宽18厘米的长方形纸的一端剪掉一个最大的正方形,在剩下的长方形纸的一端再剪掉一个最大的正方形.最终剩下部分是什么图形?它的面积是多少平方厘米?8.一块正方形的玻璃边长8分米,在它一角切下一个长4分米、宽3分米的长方形,这块玻璃剩下部分的周长多少分米?(先画图,再计算)9.李阿姨在一块长为80分米,宽为50分米的长方形花布上剪下一块最大的正方形花布,这块正方形花布的周长是多少分米?剩下的花布的周长是多少分米?10.一张长方形桌布长120厘米、宽90厘米。

这张桌布有了一个洞,为了不铺张,小明想剪下一块最大的正方形桌布。

剪下的这块正方形桌布的面积是多少平方厘米?11.在下图的长方形中,截取一个最大的正方形,剩下的小长方形的周长是多少厘米?12.一块长方形花圃,假如把它的长削减4米,面积就削减64平方米;假如把它的宽增加4米,面积就增加80平方米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级逻辑思维学习—图形的分割与拼接
知识定位
本讲中的知识点比较抽象,在这一讲中我们主要学习几种图形处理方法:
1、理解掌握图形的分割;
2、理解掌握图形的拼合;
3、理解图形的剪拼;
4、利用剪拼图形计算、解决问题.
【授课批注】
本讲中很多类型的题目还要求学生去动手尝试.通过本讲知识点的学习,让学生了解不同图形的分割、拼合、剪拼的方法,锻炼学生的平面想象能力以及增强学生的动手操作能力
知识梳理
图形的分割与拼接的概念
把一个几何图形按某种要求分成几个图形,就叫做图形的分割.
反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.
我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.
如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.
图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.
如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.
如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.
【授课批注】
该知识点可从七巧板引入,举几个由七巧板组成的图形的剪拼的例子。

【重点难点解析】
1.根据题目需要找合适的方法进行剪拼
2.如何根据相等的量来剪拼图形
【竞赛考点挖掘】
1.方格纸的分割与拼接
2.简单平面基本图形(长方形、三角形等)的分割与拼接
例题精讲
【题目】右图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.
【题目】右图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.
【题目】
请把右面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?
【题目】学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将右图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?
【题目】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?
【题目】
如何把图a中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角形进行分割).
【题目】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.
习题演练
【题目】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.
【题目】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.
【题目】下面哪些图形自身用4次就能拼成一个正方形?
【题目】将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种可以拼成面积是16的正方形?
【题目】试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.
【题目】将右图分成4个形状、大小都相同的图形,然后拼成一个正方形.
【题目】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【题目】试将任意一个三角形分成三块,然后拼成一个长方形.
【题目】试将任意一个矩形分成三块,然后拼成一个三角形
【题目】将右图分成两块,然后拼成一个正方形.
【题目】如图所示,四个等腰直角三角形和一个正方形,已知正方形的面积是4平方厘米,长方形ABCD的面积是多少平方厘米?
【题目】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.
【题目】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.
【题目】一个正三角形形状的土地上有四棵大树(如右图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?
【题目】右图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.
【题目】用两块大小一样的等腰直角三角形能拼成几种常见的图形?
【题目】用下面左边的3个图形,拼成右边的大正方形.
【题目】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?
柏拉图
古希腊哲学家,也是全部西方哲学乃至整个西方文化最伟大的哲学家和思想家之
一,他和老师苏格拉底,学生亚里士多德并称为古希腊三大哲学家。

柏拉图出身于雅典贵族,青年时从师苏格拉底。

苏氏死后,他游历四方,曾到埃
及、小亚细亚和意大利南部从事政治活动,企图实现他的贵族政治理想。

公元前387
年活动失败后逃回[1]雅典,在一所称为阿加德米(Academy)的体育馆附近设立了一
所学园,此后执教40年,直至逝世。

他一生著述颇丰,其教学思想主要集中在《理
想国》(The Republic)和《法律篇》中。

柏拉图是西方客观唯心主义的创始人,其哲学体系博大精深,对其教学思想影响尤甚。

柏拉图认为世界由“理念世界”和“现象世界”所组成。

理念的世界是真实的存在,永恒不变,而人类感官所接触到的这个现实的世界,只不过是理念世界的微弱的影子,它由现象所组成,而每种现象是因时空等因素而表现出暂时变动等特征。

由此出发,柏拉图提出了一种理念论和回忆说的认识论,并将它作为其教学理论的哲学基础
【柏拉图名言】
➢在短暂的生命里寻找永恒
➢没有什么比健康更快乐的了,虽然他们在生病之前并不曾觉得那是最大的快乐。

➢良好的开端,等于成功的一半。

相关文档
最新文档