金属的晶体结构与结晶PPT课件
合集下载
第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。
金属材料与热处理(全) PPT
属于这种晶格的金属有:铬Cr、钒V、钨W、钼Mo、及α-铁α-Fe
3、面心立方晶格:面心立方晶格的晶胞也是由八个原子构成的立方体, 但在立方体的每个面上还各有一个原子。
属于这种晶格的金属有:Al、Cu、Ni、Pb(γ-Fe)等
大家六方晶格:由12个原子构成的简单六方晶体,且在上下两个六方 面心还各有一个原子,而且简单六方体中心还有3个原子。
§2-2金属的力学性能
学习目的:★ 理解金属材料性能(工艺性能、使用 性能)的概念、分类。
★掌握强度的概念及其种类、应力的概念及符号。 ★★掌握拉伸试验的测定方法;力——伸长曲线的几
个阶段;屈服点的概念。 教学重点与难点 1、理解力——伸长曲线是教学重点; 2、强度、塑性是教学难点。
教学过程:
复习
3、纯铁的同素异构转变:
1394℃
912℃
δ-Fe → γ- Fe → α – Fe
体心
面心
体心
4、金属的同素异构转变,也称为“重结晶”。
其与液态金属结晶有许多相似处:有一定转变温度,有过冷现象; 有潜热放出和吸收 ; 也由形核、核长大来完成。 不同处:∵属固 态相变 ,∴ 转变需较大的过冷度;新晶核优先在原晶界处形核;转 变中有体积的变化,会产生较大内应力。
金属材料与热处理(全)
第一章:金属的结构与结晶
§1-1金属的晶体结构
★学习目的:了解金属的晶体结构。 ★重点:有关金属结构的基本概念: 晶面、晶向、 晶体、晶格、单晶体、晶体,金属晶格的三种常见 的类型。 ★难点:金属的晶体缺陷及其对金属性能的影响。
§2-1金属的晶体结构
一、晶体与非晶体
1、晶体:所谓晶体是指其原子(离子或分子)在空间呈规则排列的物体。 (晶体内的原子之所以在空间是规则排列,主要是由于各原子之间的 相互吸引力与排斥力相平衡的结果。)原子在空间呈规则排列的固体 物质称为“晶体”。
3、面心立方晶格:面心立方晶格的晶胞也是由八个原子构成的立方体, 但在立方体的每个面上还各有一个原子。
属于这种晶格的金属有:Al、Cu、Ni、Pb(γ-Fe)等
大家六方晶格:由12个原子构成的简单六方晶体,且在上下两个六方 面心还各有一个原子,而且简单六方体中心还有3个原子。
§2-2金属的力学性能
学习目的:★ 理解金属材料性能(工艺性能、使用 性能)的概念、分类。
★掌握强度的概念及其种类、应力的概念及符号。 ★★掌握拉伸试验的测定方法;力——伸长曲线的几
个阶段;屈服点的概念。 教学重点与难点 1、理解力——伸长曲线是教学重点; 2、强度、塑性是教学难点。
教学过程:
复习
3、纯铁的同素异构转变:
1394℃
912℃
δ-Fe → γ- Fe → α – Fe
体心
面心
体心
4、金属的同素异构转变,也称为“重结晶”。
其与液态金属结晶有许多相似处:有一定转变温度,有过冷现象; 有潜热放出和吸收 ; 也由形核、核长大来完成。 不同处:∵属固 态相变 ,∴ 转变需较大的过冷度;新晶核优先在原晶界处形核;转 变中有体积的变化,会产生较大内应力。
金属材料与热处理(全)
第一章:金属的结构与结晶
§1-1金属的晶体结构
★学习目的:了解金属的晶体结构。 ★重点:有关金属结构的基本概念: 晶面、晶向、 晶体、晶格、单晶体、晶体,金属晶格的三种常见 的类型。 ★难点:金属的晶体缺陷及其对金属性能的影响。
§2-1金属的晶体结构
一、晶体与非晶体
1、晶体:所谓晶体是指其原子(离子或分子)在空间呈规则排列的物体。 (晶体内的原子之所以在空间是规则排列,主要是由于各原子之间的 相互吸引力与排斥力相平衡的结果。)原子在空间呈规则排列的固体 物质称为“晶体”。
第三章金属的晶体结构与结晶
第三章 金属的晶体结构与结晶
钢和铁是制造机器设备的主要材料,它们都是以铁和碳为 主而组成的合金,要了解钢和铸铁的本质,首先要了解纯铁的 晶体结构。固态物质按原子的聚集状态分为晶体和非晶体。
§3-1 金属的晶体结构 一、晶体的概念
金属在固态下一般都是晶体。 晶体:原子在空间呈规律性排列的固体物质; 注意:在固态时呈规律性排列,而在液态时金属原子的排列 并不规律。如图3-1(a) 金属的结晶就是由液态金属转变为固态金属的过程。
图3-5 实际金属晶体
在晶界上原子的排列不像晶粒内部那样有规则,这种原子 排列不规则的部位称为晶体缺陷。根据晶体缺陷的几何特点, 将晶体缺陷分为点缺陷、线缺陷和面缺陷三种。 1. 点缺陷:不规则区域在空间三个方向上的尺寸都很小, 例如空位、置换原子、间隙原子。如图3-6
空位
间隙原子
置换原子
间隙原子
图3-3 面心立方晶格Fra bibliotek 3.密排六方晶格:由两个简单六方晶胞穿插而成,晶胞为六 方柱体,柱体的12个顶角和上、下面中心上各排列一个原子, 在上、下面之间还有三个原子。如图3-4
图3-4 密排六方晶格
(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的 金属较差。
§3-2 实际金属的结构 一、多晶体结构
1.铸态晶:液态金属结晶后形成的晶体。将铸锭剖开可以 看到三个不同的晶区: 表面细小等轴晶粒层:组织致密,性能比较均匀一致,无 脆弱晶界面,有良好的热加工性能和力学性能,但易形成缩松。 柱状晶粒区:性能具有方向性;热加工性能较低;组织致 密,空隙和气孔较少,所以沿柱状晶粒的轴向强度高,韧性也 较好。 中心粗大等轴晶粒层:组织不均匀,还存在缩孔,缩松, 夹杂及偏析等缺陷。
图3-9 纯金属冷却曲线
钢和铁是制造机器设备的主要材料,它们都是以铁和碳为 主而组成的合金,要了解钢和铸铁的本质,首先要了解纯铁的 晶体结构。固态物质按原子的聚集状态分为晶体和非晶体。
§3-1 金属的晶体结构 一、晶体的概念
金属在固态下一般都是晶体。 晶体:原子在空间呈规律性排列的固体物质; 注意:在固态时呈规律性排列,而在液态时金属原子的排列 并不规律。如图3-1(a) 金属的结晶就是由液态金属转变为固态金属的过程。
图3-5 实际金属晶体
在晶界上原子的排列不像晶粒内部那样有规则,这种原子 排列不规则的部位称为晶体缺陷。根据晶体缺陷的几何特点, 将晶体缺陷分为点缺陷、线缺陷和面缺陷三种。 1. 点缺陷:不规则区域在空间三个方向上的尺寸都很小, 例如空位、置换原子、间隙原子。如图3-6
空位
间隙原子
置换原子
间隙原子
图3-3 面心立方晶格Fra bibliotek 3.密排六方晶格:由两个简单六方晶胞穿插而成,晶胞为六 方柱体,柱体的12个顶角和上、下面中心上各排列一个原子, 在上、下面之间还有三个原子。如图3-4
图3-4 密排六方晶格
(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的 金属较差。
§3-2 实际金属的结构 一、多晶体结构
1.铸态晶:液态金属结晶后形成的晶体。将铸锭剖开可以 看到三个不同的晶区: 表面细小等轴晶粒层:组织致密,性能比较均匀一致,无 脆弱晶界面,有良好的热加工性能和力学性能,但易形成缩松。 柱状晶粒区:性能具有方向性;热加工性能较低;组织致 密,空隙和气孔较少,所以沿柱状晶粒的轴向强度高,韧性也 较好。 中心粗大等轴晶粒层:组织不均匀,还存在缩孔,缩松, 夹杂及偏析等缺陷。
图3-9 纯金属冷却曲线
金属结晶的
第6讲 金属的晶体结构
讨论2:金属结晶的条件?
➢ 金属要结晶,必须有动力,即金属必须处于理论结晶温 度以下。此时,液、固两相之间有一自由能差△G,这个 能量差就是金属液体结晶的驱动力。
➢ 实际结晶温度与理论温度之间的差称为金属结晶时的过 冷度。即△T=T0-T1,可以说一定的过冷度是金属结晶的 必要条件。
第2章 金属的晶体结构
第8讲 金、金属结晶的基本概念 二、金属的结晶过程
第8讲 金属的晶体结构
讨论1: 什么是结晶? 金属与合金从液态冷却转变为固态的
过程,是原子由不规则排列的液体状态 逐步过渡到原子有规则排列的晶体状态 的过程,称之为结晶。
第6讲 金属的晶体结构
所示。
3、什么是过冷现象? 4、的 过冷度(克服界面能)
T
过冷度
T= T0 - Tn
冷却曲线
理论结晶温度
}T 开始结晶温度
t
冷却速度越大,则过冷度越大。
第6讲 金属的晶体结构
结论
可以说,一定的过冷度是金属结晶的必 要条件。 一般情况下,冷却速度越快,过冷度△T越 大,结晶驱动力越大,结晶速度越快。
细化晶粒的措施 1. 提高过冷度 2. 变质处理 3. 振动结晶
第6讲 金属的晶体结构
谢谢
平面生长
树枝状生长
第6讲 金属的晶体结构
讨论.金属结晶时,需要控制晶粒的大小吗? 如何控制晶粒大小?
在实际生产中,一般通过增大过冷度,也就是增大冷却速度、 进行和附加振动等工艺方法来获取细小的晶粒。
(a)液态金属 (b)形成晶核 (c)晶核长大 (d)部分结晶 (e)完全结晶
第6讲 金属的晶体结构
2. 纯金属的结晶过程
形核和晶核长大的过程
金属的晶体结构与结晶.
(1)晶粒度对金属力学性能的影响 通常,金属的晶粒越细,力学性能越好。晶
粒细,晶界就多,晶粒间犬牙交错,相互楔合,从 而加强了金属内部的结合力。 (2)细化晶粒的方法
生产中常采用加入形核剂、增大过冷度 、动 力学法等来细化晶粒,以改善金属材料性能。
1)加入形核剂
加入金属液中能作为晶核,或虽未能成为晶核但能与液态 金属中某些元 素相互作用产生晶核或有效形核质点的添加剂。
图1-11a 石墨的晶格
图1-11b 渗碳体的晶格
3.机械混合物
机械混合物:即由纯金属、固溶体或化合物按一定 的重量比组成的物质。
机械混物各组成物的原子仍然按自己原来的晶 格形式结合成晶体,在显微镜下可明显区别出各组 成物的晶粒。
机械混合物的力学性能通常介于各组成物之间, 并取决于各组成物的含量、性能、分布和形态。
晶格:为了便于理解和描述晶体中原子排列的规律, 可以近似地将晶体中每一个原子看成是一个点,并 将各点用假想的线连接起来,就得到一个空间骨架, 简称晶格,如图1-4b)所示。
晶胞:即晶格中最小的几何单元。
晶体结构
晶格
晶胞
图1-4 晶体结构示意图
常见的金属晶体结构有体心立方晶格、面心立方 晶格和密排六方晶格等三种类型。 1.体心立方晶格
如碳钢中的珠光体就是由化合物(渗碳体)和 固溶体(铁素体)组成的机械混合物,其力学性能 介于二者之间。
思考题
1.何谓金属结晶?纯金属结晶有哪些基本规律? 2.生产中常用那些方法细化晶粒?各类方法使晶粒
细化的机理是什么? 3.试分析纯铁的结晶过程,并指出金属的同素异构
转变与液态结晶的异同点。
返回目录
小时,只能处于溶剂原子的 间隙中,称为间隙固溶体。 如图1-10a所示。如C、H、 O等原子易形成间隙固溶体。
粒细,晶界就多,晶粒间犬牙交错,相互楔合,从 而加强了金属内部的结合力。 (2)细化晶粒的方法
生产中常采用加入形核剂、增大过冷度 、动 力学法等来细化晶粒,以改善金属材料性能。
1)加入形核剂
加入金属液中能作为晶核,或虽未能成为晶核但能与液态 金属中某些元 素相互作用产生晶核或有效形核质点的添加剂。
图1-11a 石墨的晶格
图1-11b 渗碳体的晶格
3.机械混合物
机械混合物:即由纯金属、固溶体或化合物按一定 的重量比组成的物质。
机械混物各组成物的原子仍然按自己原来的晶 格形式结合成晶体,在显微镜下可明显区别出各组 成物的晶粒。
机械混合物的力学性能通常介于各组成物之间, 并取决于各组成物的含量、性能、分布和形态。
晶格:为了便于理解和描述晶体中原子排列的规律, 可以近似地将晶体中每一个原子看成是一个点,并 将各点用假想的线连接起来,就得到一个空间骨架, 简称晶格,如图1-4b)所示。
晶胞:即晶格中最小的几何单元。
晶体结构
晶格
晶胞
图1-4 晶体结构示意图
常见的金属晶体结构有体心立方晶格、面心立方 晶格和密排六方晶格等三种类型。 1.体心立方晶格
如碳钢中的珠光体就是由化合物(渗碳体)和 固溶体(铁素体)组成的机械混合物,其力学性能 介于二者之间。
思考题
1.何谓金属结晶?纯金属结晶有哪些基本规律? 2.生产中常用那些方法细化晶粒?各类方法使晶粒
细化的机理是什么? 3.试分析纯铁的结晶过程,并指出金属的同素异构
转变与液态结晶的异同点。
返回目录
小时,只能处于溶剂原子的 间隙中,称为间隙固溶体。 如图1-10a所示。如C、H、 O等原子易形成间隙固溶体。
02第二章 金属的晶体结构与结晶
组织。
放大100∼2000倍的组织称高倍组织或显微组织。 在电子显微镜下放大几千∼几十万倍的组织称精细组织或电镜组
织。
显微组织实质上是指在显微镜下观察到的金属中各相或各晶粒的
形态、数量、大小和分布的组合。
二、合金的相结构
1、固溶体 合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之
理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
Fe-C二元相图
三元相图
1. 二元相图的建立
几乎所有的相图都是通过实验得到的,最常用
的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1、配制不同成分的合金,测出各合金的冷却曲线,找出曲线 上的相变点(停歇点或转折点)。 2、在温度-成分坐标中做成分垂线,将相变点标在成分垂线上 3、将这些相变点连接起来,即得到Cu-Ni相图。
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
单位时间内晶核生长的长度
叫长大速度(G)。
N/G比值越大,晶粒越细小。 因此,凡是促进形核、抑制长 大的因素,都能细化晶粒。
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、
组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属
主要以晶体形式存在。晶体具有各向异性。 非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
T= T0 –T1
放大100∼2000倍的组织称高倍组织或显微组织。 在电子显微镜下放大几千∼几十万倍的组织称精细组织或电镜组
织。
显微组织实质上是指在显微镜下观察到的金属中各相或各晶粒的
形态、数量、大小和分布的组合。
二、合金的相结构
1、固溶体 合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之
理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
Fe-C二元相图
三元相图
1. 二元相图的建立
几乎所有的相图都是通过实验得到的,最常用
的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1、配制不同成分的合金,测出各合金的冷却曲线,找出曲线 上的相变点(停歇点或转折点)。 2、在温度-成分坐标中做成分垂线,将相变点标在成分垂线上 3、将这些相变点连接起来,即得到Cu-Ni相图。
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
单位时间内晶核生长的长度
叫长大速度(G)。
N/G比值越大,晶粒越细小。 因此,凡是促进形核、抑制长 大的因素,都能细化晶粒。
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、
组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属
主要以晶体形式存在。晶体具有各向异性。 非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
T= T0 –T1
第二章纯金属的结晶ppt课件
分开,没有过渡层。 光学显微镜下,光滑界面由了若
干曲折的小平面构成,所以又称小平面界面。
b. 粗糙界面 (Rough interface):原子尺度下,界面两侧有几
个原子层厚度的过渡层,固液原子犬牙交错排列。光学
显微镜下,这类界面是平直的,所以又称非小平面界面。
42
2.5 晶核的长大
界面结构
光滑界面
液态金属中不仅存在结构起伏,而且存在能量起伏,也即
液态金属不同区域内的自由能也并不相同,因此形核功可
通过体系的能量起伏来提供。当体系中某一区域的高能原
子附着在临界晶核上,将释放一部分能量,一个稳定的晶
核即可形成。
34
2.4 晶核的形成
形核率 (Nucleation rate)
单位时间在单位体积液体内形成晶核的数目称为形核率。
22
2.3 金属结晶的结构条件
液态金属相起伏的特点
23
2.4 晶核的形成
前面谈到了结晶的热力学条件和结构条件。但事实上,
许多过冷液体并不立即发生凝固结晶。如液态高纯Sn过
冷5~20℃时,经很长时间还不会凝固。说明凝固过程还
存在某种障碍。
因此,还必须进一步研究凝固过程究竟如
何进行的(机理问题)?进行的速度如何
靠液态金属的能量变化,由晶胚直接形核的过程。
非均匀形核:又称异质形核或非自发形核。是指依附液体中现有固
体杂质或容器表面形成晶核的过程。实际液态金属中,总有或多或
少的杂质,晶胚总是依附于这些杂质质点上形成晶核,实际的结晶
过程主要是按非均匀形核方式进行。
25
2.4 晶核的形成
均匀形核 (Homogeneous nucleation)
作用。
干曲折的小平面构成,所以又称小平面界面。
b. 粗糙界面 (Rough interface):原子尺度下,界面两侧有几
个原子层厚度的过渡层,固液原子犬牙交错排列。光学
显微镜下,这类界面是平直的,所以又称非小平面界面。
42
2.5 晶核的长大
界面结构
光滑界面
液态金属中不仅存在结构起伏,而且存在能量起伏,也即
液态金属不同区域内的自由能也并不相同,因此形核功可
通过体系的能量起伏来提供。当体系中某一区域的高能原
子附着在临界晶核上,将释放一部分能量,一个稳定的晶
核即可形成。
34
2.4 晶核的形成
形核率 (Nucleation rate)
单位时间在单位体积液体内形成晶核的数目称为形核率。
22
2.3 金属结晶的结构条件
液态金属相起伏的特点
23
2.4 晶核的形成
前面谈到了结晶的热力学条件和结构条件。但事实上,
许多过冷液体并不立即发生凝固结晶。如液态高纯Sn过
冷5~20℃时,经很长时间还不会凝固。说明凝固过程还
存在某种障碍。
因此,还必须进一步研究凝固过程究竟如
何进行的(机理问题)?进行的速度如何
靠液态金属的能量变化,由晶胚直接形核的过程。
非均匀形核:又称异质形核或非自发形核。是指依附液体中现有固
体杂质或容器表面形成晶核的过程。实际液态金属中,总有或多或
少的杂质,晶胚总是依附于这些杂质质点上形成晶核,实际的结晶
过程主要是按非均匀形核方式进行。
25
2.4 晶核的形成
均匀形核 (Homogeneous nucleation)
作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、金属的实际晶体结构
1、单晶体与多晶体的概念 ➢ 单晶体:晶体内部的晶格位向是完全一致。 ➢ 多晶体:由多晶粒组成的晶体结构。晶粒与晶粒
之间的界面称为晶界。
晶
晶
粒
界
3.1 金属的结构
2、晶体中的缺陷 (1)点缺陷
最常见的点缺陷是空位和间隙原子,如下图所示。因为这 些点缺陷的存在,会使其周围的晶格发生畸变,引起性能 的变化。
3.2 纯金属的结晶
三、金属结晶后的晶粒大小
1、晶粒大小对金属力学性能的影响
金属结晶后是由许多晶粒组成的多晶体,晶粒大小可 以用单位体积内晶粒数目来表示。数目越多,晶粒越小。 为了方便测量,常以单位截面上晶粒数目或晶粒的平均直 径来表示。 实验表明,在常温下的细晶粒金属比粗晶粒金属具有较高的 强度、硬度、塑性和韧性。
形核率N 、长大速度G 与过冷度T 的关系
3.2 纯金属的结晶
(2)变质处理 变质处理是在浇注前向液态金属中加入一些细小 的难熔的物质(变质剂),在液相中起附加晶核 的作用,使形核率增加,晶粒显著细化。
(3)振动处理 金属结晶时,利用机械振动、超声波振动,电磁 振动等方法,既可使正在生长的枝晶熔断成碎晶 而细化,又可使破碎的枝晶尖端起晶核作用,以 增大形核率。
位错线的密度可用单位体积 内位错线的总长度表示。位 错密度愈大,塑性变形抗力 愈大。因此,目前通过塑性 变形,提高位错密度,是强 化金属的有效途径之一。
3.1 金属的结构
(3)面缺陷
面缺陷即晶界和亚晶界。 ➢ 晶界:晶粒之间原子无规
则排列的过渡层,又称大角 度晶界。 ➢ 亚晶界:晶粒内部亚组织 之间的边界,一系列刃型 位错所形成的小角度晶界。
第三章 金属的晶体结构与结晶
第一节 金属的结构 第二节 纯金属的结晶 第三节 金属的同素异构转变 第四节 合金的晶体结构 第五节 合金的结晶 第六节 金属铸锭的组织结构
3.1 金属的结构
一、晶体的基本概念 1、晶体与非晶体
晶体:原子在三维空间排列有规律,有熔点,各向异性。
固态物质
非晶体:原子是杂乱无章的堆积在一起无规则可循。
3.1 金属的结构
二、常见金属的晶体结构
1、体心立方晶格
体心立方晶胞如图所示。在晶胞的八个角上各有一个 金属原子,构成立方体。在立方体的中心还有一个原 子,所以叫作体心立方晶格。属于这类晶格的金属有 铬、钒、钨、钼和α-铁等。
体心立方晶格晶胞中的原子数n = 1 + 8 X 1/8 = 2
3.1 金属的结构
这是因为,晶粒越细,塑性变形越可分散在更多的晶粒 内进行,使塑性变形越均匀,内应力集中越小;而且晶粒越 细,晶界面越多,晶界就越曲折;晶粒与晶粒间犬牙交错的 机会就越多,越不利于裂纹的传播和发展,彼此就越紧固, 强度和韧性就越好。
3.2 纯金属的结晶
2、细化晶粒的方法
(1)增加过冷度 增加过冷度,就是要提高金属凝固的冷却转变速度。
晶界和亚晶界处表现出有较高的强度和硬度。 晶粒越细小晶界和亚晶界越多,它对塑性变形的阻碍作用就越大, 金属的强度、硬度越高。
3.2 纯金属的结晶
结晶:金属由液态转变为固态晶体的现象叫做结晶。
一、纯金属的冷却曲线和冷却现象
1、冷却曲线
以极缓慢速度冷却
实际冷却条件下的冷却
3.2 纯金属的结晶
2、过冷现象 ➢金属在实际结晶过程中,从液态必须冷却到理论结
3.4 合金的晶体结构
一、基本概念
1、合金 是由两种或两种以上的金属元素或金属与非金属组成的具有Fra bibliotek属特性的物质。
例:碳钢是铁和碳组成的合金。
2、组元 组成合金的最基本的、独立的物质称为组元,简
称为元。一般来说,组元就是组成合金的元素。
例:铜和锌就是黄铜的组元。
3.4 合金的晶体结构
3、合金系 合金系是指有相同的组元,而成分比例不同的一系列
密排六方晶格如图所示。 在晶胞的十二个角上各有 一个原子,构成六方柱体。上下底面中心各有一个 原子。晶胞内部还有三个原子,所以叫做密排六方 晶格。属于这类晶格金属有铍、镁、锌、α-钛和 β-铬等。
密排六方晶格晶胞中的原子数n = 3 + 2 X 1/2 + 12 X 1/6 = 6
3.1 金属的结构
晶体与非晶体的根本区别在于其内部原子的排列是否规则。
晶体有一定的熔点,且性能呈各向异性,而非晶体与此相反。
➢ 在自然界中,除普通玻璃、松香、石蜡等少数物质以外, 包括金属和合金在内的绝大多数固体都是晶体。
3.1 金属的结构
(2)晶格、晶胞、晶格常数
➢用于描述原子在晶体中排列规则的三维空间几何点阵称 为晶格。 ➢在晶格中就存在一个能够代表晶格特征的最小几何单元, 称之为晶胞。 ➢描述晶胞大小与形状的几何参数称为晶格常数。
晶格空位和间 隙原子的运动 是金属中原子 扩散的主要方 式之一,这对 热处理过程起 着重要的作用。
3.1 金属的结构
(2)线缺陷
晶体中的线缺陷通常是各种类型的位错。所谓位错就是在晶 体中某处有一列或若干列原子发生了某种有规律的错排现象。 这种错排有许多类型,其中比较简单的一种形式就是刃型位 错,如下图所示。
3.3 金属的同素异构转变
➢同素异构转变 金属在固态下由一种晶格转变为另一种晶格 的转变过程称为同素异构转变或同素异晶转 变。如铁(Fe)、钴(Co)、钛(Ti)、锡 (Sn)等。
以铁为例
3.3 金属的同素异构转变
δ- Fe
1394O C
γ - Fe 912OC
α- Fe
意义:没有这一转变,铁碳合金(钢和铸铁)就不 可能通过多种热处理来改变其组织和性能。
晶温度T0以下才开始结晶,这种现象称为过冷。
➢理论结晶温度与实际结晶温度之差称为过冷度。
即△T =T0 -T1
➢纯金属结晶的条件是应当有一定的过冷度。
3.2 纯金属的结晶
➢冷却速度越大,则过冷度越大。
3.2 纯金属的结晶
二、金属的结晶过程
纯金属结晶过程
➢晶核的形成和晶核的长大,这两个步骤是同时进的。
2、面心立方晶格
面心立方晶格如图所示。在晶胞的八个角上各有一个原子,构成 立方体。在立方体的六个面的中心各有一个原子,所以叫做面心 立方晶格。属于这类晶格的金属有铝、铜、镍、铅和γ-Fe等。
面心立方晶格晶胞中的原子数n = 6 X 1/2 + 8 X 1/8 = 4
3.1 金属的结构
3、密排六方晶格