大学物理 第03章 习题
第03章---刚体力学习题汇总

(A)匀角速转动; (B)匀角加速转动;
(D)
(C)角加速度越来越大的变加速运动;
(D)角加速度越来越小的变加速运动。
分析:当棒转到θ角位置时,棒所受 到的外力矩为:
θ
M 1 mgLcos 根据转动定律 M I ,有:
2
mg
1 mgL cos
可见角5
5. (a)(b)两图中的细棒和小球均相同,系统可绕o 轴在竖直面内自由转动系统从水平位置静止释放,转
(D)只有动量守恒
(C)
分析:
(A)错。非弹性碰撞,机械能不守恒。 (B)错。轴上有外力,动量不守恒。
(C)对。外力矩为零,角动量守恒。
2
2.一绕固定水平轴0匀速转动的转盘,沿图示的同一 水平直线从相反方向射入两颗质量相同、速率相等的 子弹并留在盘中,则子弹射入转盘后的角速度
(A)增大 (B)不变 分析:
边缘并粘在上面,则系统的角速度是
3v
。
分析:取如图的细长条面积:
4b
b
I r 2ds r 2adr
1 ab3 1 mb2
0
3
3
合外力矩为零,系统角动量守恒。
mvb (1 mb2 mb2 )
3
3v
4b
9
二、填空题
1.如图,半径为R,质量为M的飞轮,
可绕水平轴o在竖直面内自由转动(飞
R2
2 3
mgR
11
3.一飞轮的转动惯量为I,在t=0时角速度为 0 , 此后
飞轮经历制动过程。阻力矩M的大小与角速度的平方
成正比,比例系数K>0。当 0 / 3 时,飞轮的角加
速度 = k02 9I ,从开始制动到 0 / 3所经过
《大学物理AII》作业 No.03波的干涉 参考解答

《大学物理AII 》作业No.03波的干涉班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波的叠加原理、波的相干条件;掌握干涉相长、干涉相消条件。
2、理解波程差与相位差的关系、全波反射(自由端反射)和半波反射(固定端反射)的区别。
理解半波损失的意义,在有半波损失时会计算波程差。
3、理解驻波、波节、波腹等概念;掌握驻波形成条件、驻波的特征,各质元振动相位关系。
理解驻波与行波的区别。
-------------------------------------------------------------------------------------------------------一、填空题1、几列波相遇,在相遇区域内每一点的振动等于(各列波独立传播时在该点引起振动的矢量和)。
因此波的叠加实质就是(振动的叠加)。
2、波的独立传播原理是指,波在传播过程中每列波的(振幅)、(周期或频率)、(振动方向)和(传播方向)等特性不因其他波的存在而改变。
3、波的相干条件包括:(振动方向相同)、(频率相同)和(相位差恒定)。
满足相干条件的两列波在空间相遇,合成波的强度(≠)两分波强度之和(选填:=、>、<或≠)。
波的强度在空间上是(非均匀)分布,在时间上是(稳定)分布。
这种现象就称为波的干涉。
4、两相干波叠加时,合成波的强度由两波在相遇点的(波程差)或者(相位差)决定,当两波在相遇点的相位差φ∆满足......)2,1,0(2±±=k k π时产生干涉相长现象;当两波在相遇点的波程差满足......)2,1,0(212±±=+=k k λδ)(时产生干涉相消现象。
大学物理学第3章 力学的守恒定律

00:03
t2 I F (t )dt
t1
注意
•力的冲量是矢量,计算 冲量要考虑 方向 性。
•冲量是过程量。 •冲量决定于力和时间两个因素。
•F-t图上曲线下的面积与冲量大小 的关系。
00:03
(三)用冲量概念表述动量定理
质点动量定理的微分形式 dp
F
m v Fdp Fdt d
00:03
(3)矢量性质: 系统各质点的动量的矢量和不变;
若某一方向合外力为零, 则此方向动量守恒 .
ex x
F
0, 0,
px mi vix C x p y mi viy C y pz mi viz Cz
Fyex 0 , F
ex z
(4)瞬时特征: 任意两个瞬时,动量的大小和方向都相同。
m1 v' 则 v2 v m1 m2
v2 2. 10 m s 17
3 1
(m1 m2 )v m1v1 m2 v2
v1 3. 103 m s 1 17
• 力 F=12ti(SI)作用在质量m=2kg的物体上, 使物体由原点从静止开始运动,则它在3秒末的动量 为: (A)-54 i kg.m/s (B)54i kg.m/s (C)-108 i kg.m/s (D)108 i kg.m/s (B)
y
s
v
z'
y'
s'
v'
x x'
o
00:03
z
o'
已知
v 2.5 10 m s 3 1 v' 1.0 10 m s
《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动
量
L
r
mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。
m
解:(1) J
J1
J2
ml 2
1 ml 2 3
4 ml 2 3
(2)根据转动定理: M
J
d dt
J
d d
d dt
J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
03第三章 动量与角动量作业答案

第三次作业(第三章动量与角动量)一、选择题[A]1.(基础训练2)一质量为m0的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图3-11(A) 保持静止.(B) 向右加速运动.(C) 向右匀速运动.(D) 向左加速运动.【提示】设m0相对于地面以V运动。
依题意,m静止于斜面上,跟着m0一起运动。
根据水平方向动量守恒,得:m V mV+=所以0V=,斜面保持静止。
[C]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v.(B) 22)/()2(vv Rmgmπ+(C) v/Rmgπ(D) 0.【提示】22TGTI mgdt mg==⨯⎰,而vRTπ2=[C ]3.(自测提高1)质量为m的质点,以不变速率v沿图3-16正三角形ABC的水平光滑轨道运动。
质点越过A点的冲量的大小为(A) m v.(B) .(C) .(D) 2m v.【提示】根据动量定理2121ttI fdt mv mv==-⎰,如图。
得:21I mv mv∴=-=[ B] 4.(自测提高2)质量为20 g的子弹,以400 m/s的速率沿图3-17所示的方向射入一原来静止的质量为980 g的摆球中,摆线长度不可伸缩。
子弹射入后开始与摆球一起运动的速率为(A) 2 m/s.(B) 4 m/s.(C) 7 m/s .(D) 8 m/s.【提示】相对于摆线顶部所在点,系统的角动量守恒:2sin30()mv l M m lV︒=+其中m为子弹质量,M为摆球质量,l为摆线长度。
解得:V=4 m/s(解法二:系统水平方向动量守恒:2sin30()mv M m V︒=+)图3-11图3-17二、填空题1、(基础训练7)设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=18N s ⋅.【提示】2222(63)(33)18I Fdt t dt t t N s ==+=+=⋅⎰⎰2.(基础训练8)静水中停泊着两只质量皆为0m 的小船。
大学物理D-03气体动理论

故漏出的氧气质量为
m m m 3.2 2.93Kg 0.27Kg
大学物理
3.2 理想气体的压强和温度
4.1.3 理想气体的微观模型
从微观的角度来看,理想气体满足以下三个前提条件: (1)气体分子的大小比分子之间的距离小得多,所以分子本 身的体积可忽略不计,可看作质点。它们的运动遵从牛顿运 动定律。 (2)除碰撞的瞬间外,气体分子间以及分子与容器器壁之间 的相互作用力忽略不计。分子所受的重力也可忽略不计。 (3)气体分子间的碰撞以及分子与器壁间的碰撞是完全弹性 碰撞。 在标准状态下,气体的密度大约是凝结成液体时密度的 千分之一,而液体的分子可以看作是紧密排列着,也就是说 液体分子的线度与两个相邻分子中心之间的距离相等。由此 可知气体分子之间的平均距离大约是分子本身线度的十倍。 所以与大气压相比气体的压强不太大,与室温相比气体的温 度不太低的情况下,实际气体可近似看成理想气体。
大学物理
研究物质热现象、热运动的学科 微 观 以气体分 子热运动 规律为基 础,用统 计方法。 理论体系 研究方法 宏 观
统 计 物 理 学
以事实 为基础, 应用热 力学基 本定律
热 力 学
分析宏观本质
相互关系
验证微观理论
大学物理
结构框图 结构框图
物质 微观 模型 分子 热运 动统 计规 律性 平均平动 动能与温 度的关系 能量 均分 定理 理想气 体内能
3、刚体
x
弹性物体+ 振动自由度 高温时分子类似于弹性体 要考虑振动自由度
(3 平动+2 转动) 位置 x y z 方向 ——多原子 自转角度 (常温)
i =6 (3 平动+3 转动)
大学物理 举例
大学物理03章试题库刚体的定轴转动

《大学物理》试题库管理系统内容第三章 刚体的定轴转动1 题号:03001 第03章 题型:选择题 难易程度:较难试题: 某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元的法向加速度n a 和切向加速度τa 来说正确的是( ).A.n a 的大小变化,τa 的大小保持恒定B.n a 的大小保持恒定,τa 的大小变化C.n a 、τa 的大小均随时间变化D.n a 、τa 的大小均保持不变 答案: A2 题号:03002 第03章 题型:选择题 难易程度:适中试题: 有A 、B 两个半径相同、质量也相同的细环,其中A 环的质量分布均匀,而B 环的质量分布不均匀.若两环对过环心且与环面垂直轴的转动惯量分别为B A J J 和,则( ).A. B A J J =B. B A J J >C. B A J J <D. 无法确定B A J J 和的相对大小 答案: A3 题号:03003 第03章 题型:选择题 难易程度:适中试题: 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β,若将物体取下,而用大小等于mg 、方向向下的力拉绳子,则滑轮的角加速度将( ).A.变大B.不变C.变小D.无法确定 答案: A试题: 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的( ).A.系统的角动量保持不变B.角动量加大C.转速和转动动能变化不清楚D.转速加大,转动动能不变 答案: A5 题号:03005 第03章 题型:选择题 难易程度:较难试题: 某力学系统由两个质点组成,它们之间仅有引力作用.若两质点所受外力的矢量和为零,则此力学系统( ).A.动量守恒,但机械能和角动量是否守恒不能确定B.动量和角动量守恒,但机械能是否守恒不能确定C.动量、机械能守恒,但角动量是否守恒不能确定D.动量、机械能以及对某一转轴的角动量一定守恒 答案: A6 题号:03006 第03章 题型:选择题 难易程度:较难试题: 如图所示,两个质量均为m 、半径均为R 的匀质圆盘形滑轮的两端,用轻绳分别系着质量为m 和2m 的小物块.若系统从静止释放,则释放后两滑轮之间绳内的张力为( ).A.mg 811 B.mg 23C.mg 21 D.mg答案: A试题: 某质点受的力为kx e F F -=0,若质点从静止开始运动(即,0=x 时0=v ),则该质点所能达到的最大动能为( ).A.k F 0 B. k eF0 C. k e kF 0 D. 0kF 答案: A8 题号:03008 第03章 题型:选择题 难易程度:适中试题: 如图所示,在水平光滑的圆盘上,有一质量为m 的质点,拴在一根穿过圆盘中心光滑小孔的轻绳上.开始时质点离中心的距离为r ,并以角速度转动.今以均匀速率向下拉绳,将质点拉至离中心2r 处时,拉力做的功为( ).A.2223ωmr B. 2225ωmr C.2227ωmr D. 2221ωmr 答案: A9 题号:03009 第03章 题型:选择题 难易程度:适中试题: 已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为( ).A.GMR mB.R G MmC.R GMmD.RGMm 2 答案: A10 题号:03010 第03章 题型:选择题 难易程度:适中F ϖrm试题: 卫星绕地球做椭圆运动,地心为椭圆的一个焦点,在运动过程中,下列叙述中正确的是().A.角动量守恒B.动量守恒C.机械能不守恒D.动量和角动量都不守恒答案: A11 题号:03011 第03章题型:选择题难易程度:适中试题: 三个完全相同的轮子可绕一公共轴转动,角速度的大小都相同,但其中一轮的转动方向与另外两轮的转动方向相反.若使三个轮子靠近啮合在一起,则系统的动能与原来三个轮子的总动能相比为().A.减小到1/9B.减小到1/3C.增大9倍D.增大3倍答案: A12 题号:03012 第03章题型:选择题难易程度:较难试题: 下列说法中,错误的是().A.对于给定的刚体而言,他的质量和形状是一定的,则其转动惯量也是唯一确定的M=,其中M、J和β均是对同一转轴而言的B.刚体定轴转动的转动定律为βJC.刚体的转动动能等于刚体上各质元的动能之和D.刚体作定轴转动时,其上各点的角速度相同而线速度不同答案: A13 题号:03013 第03章题型:选择题难易程度:适中试题: 下列说法中,正确的是().A.作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大B.作用在定轴转动刚体上的合力矩越大,刚体转动的角速度就越大C.作用在定轴转动刚体上的合力矩为零,刚体转动的角速度就为零D.作用在定轴转动刚体上的合力越大,刚体转动的角加速度就越大 答案: A14 题号:03014 第03章 题型:选择题 难易程度:难试题: 轮圈半径为R 、其质量M 均匀分布在轮缘上,长为R 、质量为m 的匀质辐条固定在轮心和轮缘间,辐条共有2N 根.今若将辐条数减少N 根,但保持轮对通过轮心、垂直于轮平面轴的转动惯量不变,则轮圈的质量应为( ).A.M m N +3 B.M m N +6 C.M m N +12 D. M m N +32 答案: A15 题号:03015 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,其转动惯量为( ).A.θ22sin 31mlB.231mlC.θ22sin 41ml D.2121ml 答案: A16 题号:03016 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆所受的合外力矩为( ).A.θsin 21mgl B.θcos 21mgl C.θsin mgl D.θcos mgl 答案: A17 题号:03017 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆的角动量为( ).A.θω22sin 31mlB.ω231mlC.ω2121ml D.θω22sin 41ml 答案: A18 题号:03018 第03章 题型:选择题 难易程度:难 O O '成θ角转试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴动,则匀质杆的角加速度为( ).A.θsin 23l g B.lg θsin 23C.l g θsin 32D.θsin 32l g 答案: A19 题号:03019 第03章 题型:选择题 难易程度:难试题: 如图所示,两根长度和质量分别相等的细杆分别绕着光滑的水平轴1O 和2O 转动,设他们自水平位置从静止释放时,角加速度分别为1β和2β,则二者角加速度之间的关系为( ).1Ol O32lA. 21ββ=B.21ββ>C. 21ββ<D.不能确定 答案: A20 题号:03020 第03章 题型:选择题 难易程度:难试题: 如图所示,光滑的水平桌面上有一长为2l 、质量为m 的匀质细杆,可绕通过中点O 、且与杆垂直的竖直轴自由转动,开始时细杆静止.现有一质量为m 的小球,沿桌面正对着杆的一端,以速度v ρ运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ).A.lv43 B. l v 2C.l v 32 D. lv54 答案: A21 题号:03021 第03章 题型:填空题 难易程度:容易 试题: 刚体是一理想模型,他虽然有一定的形状和大小,但形状和大小永远保持 . 答案: 不变22 题号:03022 第03章 题型:填空题 难易程度:容易 试题: 刚体定轴转动的运动方程的表示式是 . 答案: )(t θθ=23 题号:03023 第03章 题型:填空题 难易程度:较难 试题: 把不涉及转动的原因,只研究如何描述刚体的定轴转动的问题称为 .Ol 2 mv ρmA答案: 刚体定轴转动运动学24 题号:03024 第03章 题型:填空题 难易程度:较难 试题: 把研究刚体定轴转动原因的问题称为 . 答案: 刚体定轴转动的动力学25 题号:03025 第03章 题型:填空题 难易程度:适中试题: 刚体的转动惯量取决于刚体的总质量、质量分布和 等三个因素. 答案: 转轴的位置26 题号:03026 第03章 题型:填空题 难易程度:较难试题: 一飞轮以1min rad 300-⋅的转速转动,转动惯量为2m kg 5⋅,现施加一恒定的制动力矩,使飞轮在2s 内停止转动,则该恒定制动力矩的大小为 . 答案: m N ⋅=5.78M27 题号:03027 第03章 题型:填空题 难易程度:适中 试题: 如图所示,质量为1m 和2m 的均匀细棒长度均为2l ,在两棒对接处嵌有一质量为m 的小球,对过A 的轴而言,若2222141127121ml l m l m J A ++=,则B J 为 . 答案:2222141127121ml l m l m ++ 28 题号:03028 第03章 题型:填空题 难易程度:较难试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆的动量大小为 .答案:ωml 21A B29 题号:03029 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的动能为 .答案:2261ωml 30 题号:03030 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的角动量大小为 .答案: ω231ml31 题号:03031 第03章 题型:填空题 难易程度:适中试题: 若飞轮从静止开始作匀加速转动,在最初2min 转了3600转,则飞轮的角加速度为 . 答案: 2s rad -⋅=14.3β32 题号:03032 第03章 题型:填空题 难易程度:较难试题: 若飞轮从静止开始作匀加速转动,在最初1min 转了3600转,则飞轮在第50秒末的角速度为 . 答案: 1s rad -⋅=314ω33 题号:03033 第03章 题型:填空题 难易程度:适中 试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮在第2秒末的角加速度为 . 答案: 2s rad -⋅=12β34 题号:03034 第03章 题型:填空题 难易程度:较难试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮从s 2=t 到s 4=t 这段时间内的平均角加速度为 . 答案: 2s rad -⋅=12β35 题号:03035 第03章 题型:填空题 难易程度:较难试题: 若质量为m 、半径为R 的匀质薄圆盘绕过中心且与盘面垂直轴的转动惯量为221mR ,则质量为m 、半径为R 、高度为h 的匀质圆柱体绕过中心且与端面垂直轴的转动惯量为 .答案:221mR 36 题号:03036 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21t t →中所受的冲量矩⎰21t t dt M ρ等于 . 答案: 12ωωJ J -37 题号:03037 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21θθ→中力矩所做的功⎰21θθθMd 等于 .答案:21222121ωωJ J - 38 题号:03038 第03章 题型:填空题 难易程度:容易试题: 刚体角动量守恒的条件为 . 答案: 0=外M ρ39 题号:03039 第03章 题型:填空题 难易程度:较难试题: 一质量为m 的粒子,相对于坐标原点处于j y i x r ρρρ+=点,速度为j v i v v y x ρρρ+=,则该质点相对于坐标原点的角动量为 . 答案: k yv xv m L x y ρρ)(-=40 题号:03040 第03章 题型:填空题 难易程度:适中试题: 一飞轮的转动惯量为J ,0=t 时角速度为0ω,此后飞轮经历一制动过程,受到的阻力矩的大小与角速度成正比,即ωk M -=,式中k 为正的常量.当3ωω=时,飞轮的角加速度为 .答案: Jk 30ωβ-= 41 题号:03041 第03章 题型:计算题 难易程度:适中 试题: 一条缆索绕过一个定滑轮拉动升降机,如图所示.滑轮的半径为m 5.0=r ,如果升降机从静止开始以加速度2s m 4.0-⋅=a 匀加速上升,求:(1)滑轮的角加速度;(2)开始上升后t = 5s 末滑轮的角速度; (3)在这5秒内滑轮转过的圈数;(4)开始上升后s 1='t 末滑轮边缘上一点的加速度(假定缆索和滑轮之间不打滑).答案: 为了图示清晰,将滑轮放大为如图所示.a ρv ρ(1)由于升降机的加速度和滑轮边缘上的一点的切向加速度相等,所以滑轮的角加速度为2s rad 8.0-⋅===rar a τβ (2)由于00=ω,所以5秒末滑轮的角速度为1s rad 0.4-⋅==t βω(3)在这5秒内滑轮转过的角度为rad 10212==t βθ 所以在这5秒内滑轮转过的圈数为圈6.1210==πN(4)结合题意,由图可以看出2s m 4.0-⋅==a a τ2222s m 32.0-⋅===t r r a n βω由此可得滑轮边缘上一点在升降机开始上升后s 1='t 时的加速度为222s m 51.0-⋅=+='τa a a n这个加速度的方向与滑轮边缘的切线方向的夹角为117.384.032.0tan tan =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=--ταa a n 42 题号:03042 第03章 题型:计算题 难易程度:难 试题: 一绳跨过定滑轮,两端分别系有质量分别为m 和M 的物体,且m M >.滑轮可看作是质量均匀分布的圆盘,其质量为m ',半径为R有摩擦,滑轮转动时受到了摩擦阻力矩阻M 且与滑轮间无相对滑动.求物体的加速度及绳中的张力. 答案: 由于滑轮有质量,所以不得不考虑滑轮的转动惯性;在转动过程中滑轮还受到阻力矩的作用,在滑轮绕轴作加速转动时,它必须受到两侧绳子的拉力所产生的力矩,以便克服转动惯性与阻力矩的作用,因此滑轮两a ρ1a侧绳子中的拉力一定不相等.设两侧绳子中的拉力分别为1T 和2T ,则滑轮及两侧物体的受力如图所示,其中11T T '=,22T T '=(作用力与反作用力大小相等).因为m M >,所以左侧物体上升,右侧物体下降.设其加速度分别为1a 和2a ,据题意可知,绳子不可伸长,则21a a =,令它们为a .滑轮以顺时针转动,设其角加速度为β,则摩擦阻力矩阻M 的指向为逆时针方向,如图所示.对于上下作平动的两物体,可以视为质点,由牛顿第二运动定律得⎩⎨⎧=-=-Ma T Mg M mamg T m 21:对:对 (1) 滑轮作定轴转动,受到的外力矩分别为R T 2'和R T 1'及阻M (轴对滑轮的支持力N 通过了转轴,其力矩为零).若以顺时针方向转的力矩为正,逆时针转的方向为负,则由刚体定轴转动的转动定律得ββ⎪⎭⎫⎝⎛'==--21221R m J M R T R T 阻 (2)据题意可知,绳与滑轮间无相对滑动,所以滑轮边缘上一点的切向加速度和物体的加速度相等,即βτR a a == (3)联立(1)、(2)、(3)三个方程,得2)(m m M R M g m M a '++--=阻2)22()(1m m M R mM mg m M a g m T '++-'+=+=阻2)22()(2m m M R MM Mg m m a g M T '+++'+=-=阻43 题号:03043 第03章 题型:计算题 难易程度:适中试题: 求长为L ,质量为m 的均匀细棒AB 的转动惯量.(1)对于通过棒的一端与棒垂直的轴;(2)对于通过棒的中点与棒垂直的轴. 答案: (1)如图所示,以过A 端垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,则这一长度元的质量为dx Lmdm =,所以202231mL dx L m x dm x J L m =⎪⎭⎫ ⎝⎛==⎰⎰端点(2)同理,如图所示,以过中点垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,因此22222121mL dx L m x dm x J L L m=⎪⎭⎫ ⎝⎛==⎰⎰-中点 由此可见,对于同一均匀细棒,转轴的位置不同,棒的转动惯量不同. 44 题号:03044 第03章 题型:计算题 难易程度:容易试题: 试求质量为m 、半径为R 的匀质圆盘对垂直于平面且过中心轴的转动惯量. 答案: 已知条件如图所示.由于质量连续分布,所以220222mR dl R m R dm R J Rm=⎪⎭⎫ ⎝⎛==⎰⎰ππ 45 题号:03045 第03章 题型:计算题 难易程度:适中试题: 试求质量为m 、半径为R 的匀质圆环对垂直于平面且过中心轴的转动惯量.o AA dm答案: 已知条件如图所示.由于质量连续分布,设圆盘的厚度为l ,则圆盘的质量密度为lR m2πρ=.因圆盘可以看成是许多有厚度的圆环组成,所以()ρππρl R ldr r r dm r J R m 4022212=⋅⋅==⎰⎰代入圆盘的质量密度,得221mR J =46 题号:03046 第03章 题型:计算题 难易程度:较难试题: 如图所示,一质量为M 、半径为R 的匀质圆盘形滑轮,可绕一无摩擦的水平轴转动.圆盘上绕有质量可不计的绳子,绳子一端固定在滑轮上,另一端悬挂一质量为m 的物体,问物体由静止落下h 高度时,物体的速率为多少答案: 法一 用牛顿第二运动定律及转动定律求解.受力分析如图所示,对物体m 用牛顿第二运动定律得ma T mg =- (1)对匀质圆盘形滑轮用转动定律有βJ R T =' (2)物体下降的加速度的大小就是转动时滑轮边缘上切向加速度,所以βR a = (3)又由牛顿第三运动定律得T T '=(4)物体m 落下h 高度时的速率为lah v 2= (5)因为221MR J =,所以联立以上(1)、(2)、(3)、(4)和(5)式,可得物体m 落下h 高度时的速率为mM mghv 22+=(小于物体自由下落的速率gh 2).解法二 利用动能定理求解.如图所示,对于物体m 利用质点的动能定理有222121mv mv Th mgh -=- (6) 其中0v 和v 是物体的初速度和末速度.对于滑轮利用刚体定轴转动的转动定理有222121ωωθJ J TR -=∆ (7) 其中θ∆是在拉力矩TR 的作用下滑轮转过的角度,0ω和ω是滑轮的初角速度和末角速度.由于滑轮和绳子间无相对滑动,所以物体落下的距离应等于滑轮边缘上任意一点所经过的弧长,即θ∆=R h .又因为00=v ,00=ω,R v ω=,221MR J =,所以联立(6)和(7)式,可得物体m 落下h 高度时的速率为mM mghv 22+=.解法三 利用机械能守恒定律求解.若把滑轮、物体和地球看成一个系统,则在物体落下、滑轮转动的过程中,绳子的拉力T 对物体做负功(Th -),T '对滑轮做正功(Th )即内力做功的代数和为零,所以系统的机械能守恒.若把系统开始运动而还没有运动时的状态作为初始状态,系统在物体落下高度h 时的状态作为末状态,则0212121222=-+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛mgh mv R v MR 所以物体m 落下h 高度时的速率为mM mghv 22+=.47 题号:03047 第03章 题型:计算题 难易程度:容易试题: 哈雷慧星绕太阳运行的轨道是一个椭圆,如图所示,它离太阳最近的距离是m 1075.810⨯=近日r ,此时速率为-14s m 1046.5⋅⨯=近日v ;它离太阳最远时的速率为-12s m 1008.9⋅⨯=远日v ,这时它离太阳的距离?远日=r答案: 彗星受太阳引力的作用,而引力通过了太阳,所以对太阳的力矩为零,故彗星在运行的过程中角动量守恒.于是有远日远日近日近日v r v r ρρρρ⨯=⨯因为远日远日近日近日,v r v r ρρρρ⊥⊥,所以有远日近日近日远日v v r r =代入数据,得m 1026.512⨯=远日r48 题号:03048 第03章 题型:计算题 难易程度:较难试题: 如图所示,一个长为l 、质量为M 的匀质杆可绕支点o 自由转动.一质量为m 、速率为v 的子弹以与水平方向成060角的方向射入杆内距支点为a 处,使杆的偏转角为030.问子弹的初速率为多少答案: 把子弹和匀质杆作为一个系统,由于该系统所受的外力有重力及轴对杆的约束力,在子弹射入杆的极短过程中,重力和约束力都通过了转轴o ,因此它们对转轴的力矩均为零,故该系统的角动量守恒.设ρ子弹射入杆后与杆一同前进的角速度为ω,则碰撞前的角动量等于碰撞后的角动量,即()ω⎪⎭⎫⎝⎛+=2203160cos ma Ml a v m子弹在射入杆后与杆一起摆动的过程中只有重力做功,所以由子弹、杆和地球组成的系统机械能守恒,因此有()()022230cos 1230cos 13121-⋅+-=⎪⎭⎫ ⎝⎛+l Mg mga ma Ml ω 联立上述这两个方程得子弹的初速率为()()22326322ma Ml ma Ml g mav ++-=49 题号:03049 第03章 题型:计算题 难易程度:较难试题: 如图所示,一根质量为M 、长为2 l 的均匀细棒,可以在竖直平面内绕通过其中心的光滑水平轴转动,开始时细棒静止于水平位置.今有一质量为m 的小球,以速度u ρ垂直向下落到了棒的端点,设小球与棒的碰撞为完全弹性碰撞.试求碰撞后小球的回跳速度v ρ及棒绕轴转动的角速度ω.答案: 以棒和小球组成的系统为研究对象,则该系统所受的外力有小球的重力、棒的重力和轴给予棒的支持力, 后两者的作用线都通过了转轴,对轴的力矩为零.由于碰撞时间极短,碰撞的冲力矩远大于小球所受的重力矩,所以小球对轴的力矩可忽略不计.分析可知所取系统的角动量守恒.由于碰撞前棒处于静止状态,所以碰撞前系统的角动量就是小球的角动量lmu . 由于碰撞后小球以速度v 回跳,其角动量为lmv ;棒获得的角速度为ω,棒的角动量为()ωω22312121Ml l M =⎥⎦⎤⎢⎣⎡.所以碰撞后系统的角动量为ω231Ml lmv +.由角动量守恒定律得omuω231Ml lmv lmu += (1) 注意:上式中u ,v 这两个速度是以其代数量来表示.以碰撞前小球运动的方向为正,即0>u ;碰撞后小球回跳,u 与v 的方向必然相反,应该有0<v .由题意知,碰撞是完全弹性碰撞,所以碰撞前后系统的动能守恒,即222231212121ω⎪⎭⎫⎝⎛+=Ml mv mu (2) 联立(1)和(2)式,可得小球的速度为u Mm Mm v +-=33棒的角速度为luM m m ⋅+=36ω讨论:由于碰撞后小球回跳,所以v 与u 的方向不同,而0>u ,则0<v .从结果可以看出,要保证0<v ,则必须保证m M 3>.否则,若M m 31≥,无论如何,碰撞后小球也不能回跳,杂耍运动员特别注意这一点.50 题号:03050 第03章 题型:计算题 难易程度:较难试题: 如图所示,一长为l 、质量为m 的匀质细棒竖直放置,其下端与一固定铰链o 相连结,并可绕其转动.由于此竖直放置的细棒处于非稳定平衡状态,当其受到微小扰动时,细棒将在重力的作用下由静止开始绕铰链o 转动.试计算细棒转到与竖直位置成θ角时的角加速度和角速度.答案: 法一 利用定轴转动的转动定律求解.分析受力如图所示,其中G ρ为细棒所受的重力、N ρ为铰链给细棒的约束力.由于约束力N ρ始终通过转轴,所以其作用力矩为零;铰链与细棒之间的摩擦力矩题中没有给定可认为不存在.又由于细棒为匀质细棒,所以重力G ρ的作用点在细棒中心.故由定轴转动的转动定律可得βθ⎪⎭⎫ ⎝⎛=231sin 21ml mgl 因此细棒转过θ角时的角加速度为θβsin 23lg=由角加速度的定义可得θθθωsin 23lgdt d d d =⋅ 整理可得θθωωd l g d ⎪⎭⎫⎝⎛=sin 23 由于0=t 时,0=θ,0=ω;而t t =时,θθ=,ωω=.所以上式两边取积分有θθωωθω⎰⎰⎪⎭⎫⎝⎛=0sin 23d l g d 因此细棒转过θ角时的角速度为()θωcos 13-=lg解法二 利用机械能守恒定律求解.以细棒和地球组成的系统为研究对象,由于细棒所受的重力为保守内力,铰链给细棒的约束力不做功,铰链与细棒之间的摩擦力题中没有给定可认为不存在,因此系统的机械能守恒.于是有()223121cos 12ωθ⎪⎭⎫ ⎝⎛=-⋅ml l mg 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==解法三 利用定轴转动的动能定理求解.铰链的约束力对细棒不做功,摩擦力矩没有给定可以认为不存在,只有重力矩做功,所以对于细棒而言,合外力所做的功就是重力矩所做的功,即()θθθθθθcos 121sin 200-=⎪⎭⎫⎝⎛==⎰⎰mgl d l mg Md W由定轴转动的动能定理得()223121cos 121ωθ⎪⎭⎫ ⎝⎛=-ml mgl 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==51 题号:03051 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一长为l 、质量为m 的匀质细棒以与棒长方向相互垂直的速度v ρ向前平动,平动中与一固定在桌面上的钉子o 相碰撞,碰撞后,细棒将绕点o 转动,试求其转动的角速度.答案: 由于细棒在光滑的水平面上运动,所以细棒与钉子o 碰撞的过程中遵守角动量守恒定律,则碰撞后碰撞前L L =对于转轴o 而言:⎪⎭⎫⎝⎛=4l mv L 碰撞前方向垂直于纸面向外;ωω⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+==242l l m J J L o 中心轴碰撞后ωω2224874121ml l m ml =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=方向垂直于纸面向外.所以有ω24874ml l mv =⎪⎭⎫⎝⎛ 故细棒碰撞后绕轴o 转动的角速度为lv712=ω 52 题号:03052 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一劲度系数为k 的轻质弹簧,它的一端固定,另一端系一质量为M 的滑块.最初滑块静止时,弹簧处于自然长度0l .现有一质量为m 的子弹以速度0v 沿水平方向并垂直于弹簧轴线射向滑块且留在其中,滑块在水平面内滑动.当滑块被拉伸到长度为l 时,求滑块速度的大小和方向.答案: 此题的物理过程有两个,第一个过程为子弹与滑块的碰撞过程.在该过程中子弹与滑块组成的系统所受的合外力为零,所以系统的动量守恒.于是有()V m M mv +=0第二个过程为滑块与子弹一起,以共同的速度V 在弹簧的约束下运动的过程.在该过程中弹簧的弹力不断增大,但始终通过转轴o ,它的力矩为零,所以角动量守恒;与此同时若以子弹、滑块、弹簧和地球组成的系统为研究对象,则该过程也满足机械能守恒定律.因此有()()θsin 0v m M l V m M +=+()()()2022212121l l k v m M V m M -++=+ 其中θ为滑块运动方向与弹簧轴线方向之间的夹角.联立以上三个方程可得滑块速度的大小和方向分别为()m M l l k m M mv v +--⎪⎪⎭⎫⎝⎛+=2020 ()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+--⎪⎪⎭⎫ ⎝⎛++=--212020001sin m M l l k m M mv m M l l mv θ 53 题号:03053 第03章 题型:计算题 难易程度:适中试题: 一飞轮半径r = 1m ,以转速1min r 1500-⋅=n 转动,受制动均匀减速,经s 50=t 后静止.试求:(1)角加速度β和从制动开始到静止这段时间飞轮转过的转数N ;(2)制动开始后s 25=t 时飞轮的角速度ω;(3)在s 25=t 时飞轮边缘上一点的速度和加速度.答案: (1)角加速度20s rad 14.35060150014.325020-⋅-=⨯⨯-=-=-=ntπωωβ从制动开始到静止这段时间飞轮转过的转数62514.325014.3215060150014.322212220=⨯⨯⨯-⨯⨯⨯=+=∆=πβωπθtt N 圈(2)制动开始后s 25=t 时飞轮的角速度10s rad 5.782514.360150014.322-⋅=⨯-⨯⨯=+=+=t n t βπβωω (3)在s 25=t 时飞轮边缘上一点的速度和加速度分别为11s m 5.78s m )15.78()(--⋅=⋅⨯==τττωρρρρr v ()()τβωττρρρρρr n r a n a a n +=+=2()[]()232s m )14.31016.6(14.315.78-⋅-⨯=⨯-+⨯=ττρρρρn r n54 题号:03054 第03章 题型:计算题 难易程度:适中试题: 如图所示.细棒的长为l ,设转轴通过棒上离中心距离为d 的一点并与棒垂直.求棒对此轴的转动惯量o J '.试说明这一转动惯ol量o J '与棒对过棒中心并与此轴平行的转轴的转动惯量o J 之间的关系(此为平行轴定理).答案: 如图所示,以过o '点垂直于棒的直线为轴,沿棒长方向为x '轴,原点在o '点处,在棒上取一长度元x d ',则()⎰'='mo dm x J 2()⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛''=d l d l x d lm x 22222121md ml +=所以o J '与o J 之间的关系为2md J J o o +='55 题号:03055 第03章 题型:计算题 难易程度:适中试题: 如图所示.两物体的质量分别为1m 和2m ,滑轮的转动惯量为J ,半径为r .若2m 与桌面的摩擦系数为μ,设绳子与滑轮间无相对滑动,试求系统的加速度a 的大小及绳子中张力1T 和2T 的大小.答案: 分析受力如题图所示.21m m 和设其加速度分别为1a 和2a ,则由牛顿运动定律得22221111⎩⎨⎧=-=-a m g m T a m T g m μ 滑轮作定轴转动,则由转动定律有βJ r T r T =-21由于绳子与滑轮间无相对滑动,所以r a a a β===21d ox 'x 1。
大学物理03-刚体力学基础

J
r
m
2
dm
• 刚体的形状(质量分布)
16
J
注 意
r
m
2
dm
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
例3-2 一均匀细棒,质量为 m ,长为 l 。求该棒对下列转轴 的转动惯量:(1)通过棒中心且与棒垂直的轴;(2)通过 棒的一端且与棒垂直的轴。 解:取如图坐标,在棒上任取质元,到转轴的垂直距离为x, 长度为 d x,该质元的质量为 dm = (m/l )dx (质量为线分布)。 A L/2 C
S
O
Mz r d
P
F
M r F
O r
F
P
F
F //
大小: M rF sin Fd 方向: 由右手螺旋法则确定
转动平面
F 应该理解为外力在转动平面内的 分力F//
转动平面
在定轴转动中,M 的方向只有两种可能指向。若先选 定了转轴的正方向,则 M 与转轴方向一致时取正 值,反之为负值
11
(3) 如果有几个外力矩作用在刚体上,则合力矩等 于各个力矩的代数和
M
i i i
ri Fi
12
2
二 刚体绕定轴的转动定律
刚体可视为由许多质点组成的,而每一个质点都遵从质点力学 的规律。刚体转动定律可由牛顿第二定律直接导出。
Fi f i mi ai mi ri
一、力对转轴的力矩
力是引起质点运动状态变化的原因,而力 矩是引起转动物体运动状态变化的原因
(2) 外力F 不在转动平面内(任意力) 可将 F 分解为转动平面内的分力 F// 和垂直于转动平面的分力F F不能引起刚体转动状态的变化 力矩:
第 03章 2 次课 -- 动能定理 保守力和非保守力 功能原理

l ACB
F dr
BDA
F dr
ACB
F dr
ACB
F dr 0
(7)
物体沿任意闭合路径运动 一周时, 保守力对它所做的功等于零.
上海师范大学
10 /17
§3.5
保守力与非保守力 势 能
非保守力: 非保守力所作的功与路径有关.(例如摩擦力)
得 W m
v1 v2
dv 1 2 1 2 ds mvdv mv2 mv1 v 1 dt 2 2
v2
dt
B *
2
(3) (4)
dr
1* A
ds
1. 动能
1 p2 2 Ek mv 2 2m
F
因为速度是状态物理量, 因此动能也是状态物理量(即状态函数) 2. 动能定理 动能定理: 合外力对质点所作的功, 等于质点动能的增量.
即
P Fv cos
国际单位制中, 功率的单位为瓦特(W)
(2)
4. 功率的单位
1W 1J s 1;
1kW 103 W;
上海师范大学
1MW 106 W
2 /17
§3. 4
动能定理
例 1 一质量为 m 的小球竖直落入水中, 刚接触水面时其速率为v0 . 设此
球在水中所受的浮力与重力相等, 水的阻力为F=-bv, b 为一常量 .
5. .直角坐标系中的功
F Fx i Fy j Fz k; dr dxi dyj dzk
W Fx dx Fy dy Fz dz
6. 功的单位
Wx Wy Wz
大学物理课后习题答案详解

⼤学物理课后习题答案详解第⼀章质点运动学1、(习题 1.1):⼀质点在xOy 平⾯内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道⽅程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置: 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2):质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动⽅程)(t x x =.解:kv dtdv -= ??-=t v v kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt e v dx t k t x -??=000 )1(0t k e k v x --=3、⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ?=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020= x 2= t 3 /3+10 (SI)4、⼀质量为m 的⼩球在⾼度h 处以初速度0v ⽔平抛出,求:(1)⼩球的运动⽅程;(2)⼩球在落地之前的轨迹⽅程;(3)落地前瞬时⼩球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联⽴式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = ⽽落地所⽤时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、已知质点位⽮随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任⼀时刻的速度和加速度;(2)任⼀时刻的切向加速度和法向加速度。
第03章 动量和角动量01

第三章 动量与角动量
§3 - 1 冲量与动量定理
宁波大学理学院
韦世豪
3–1 冲量与动量定理 1
第三章 动量与角动量
一,冲量: 反映力在时间过程中的累积效应的物理量 冲量:反映力在时间过程中的累积效应 力在时间过程中的累积效应的物理量 1,恒力的冲量(复 习) 恒力的冲量( 定义: 定义 力和作用时间的乘积 公式: 公式: I = F(t t0 ) = Ft
本题目的: 本题目的 掌握动量守恒定律的应用. 掌握动量守恒定律的应用. 动量守恒定律的应用
解: 选(M+m)为系统 ) 水平方向合外力= , 水平方向合外力 0,水平方向动量守恒
宁波大学理学院
韦世豪
3–3 动量守恒定律 3
第三章 动量与角动量
由于系统的初动量为零, 由于系统的初动量为零,即: 水平分量上 在水平分量上,有:
宁波大学理学院 韦世豪
3–1 冲量与动量定理 1
第三章 动量与角动量
四,质点动量定理 牛顿运动定律: 牛顿运动定律:
F = ma
d(mv) dp F= = dt dt
在dt 时间内外力作用 的总效果的关系式
动量定理的微分式: 动量定理的微分式: dp = F dt 的微分式 如果力的作用时间从 t0
I =
∫
3
0
Fdt =
2
∫
3
3
0
(18 t 6 t 2 )dt = 27 ( N s )
x1
= 9t 2t
(
)
3 0
∫
x1 x0
m x x 1m + 1 x0 +1 m x dx = +C = +C +C m +1 m +1 m +1 x0 m +1
力学的基本概念(四)角动量守恒定律习题及答案

第三章 角动量守恒定律序号 学号 姓名 专业、班级一 选择题[ C ]1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C) 取决于刚体的质量、质量的空间分布和轴的位置(D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。
[ B ]2.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。
[ B ]3.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定[ A ]4.有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
在上述说法中:(A) 只有(1)是正确的。
(B) (1)、(2)正确,(3)、(4)错误。
(C) (1)、(2)、(3)都正确,(4)错误。
(D) (1)、(2)、(3)、(4)都正确。
[ A ]5.关于力矩有以下几种说法:(1) 对某个定轴而言,刚体的角动量的改变与内力矩有关。
(2) 作用力和反作用力对同一轴的力矩之和必为零。
大学物理(上)课件-第03章刚体的定轴转动3-2

N
o
c
⋅
θ
dθ
⋅
1 1 dω (2) mg cos θ = ml 2 2 3 dt 1 dω dθ 1 2 dω = ml 2 = ml ω 3 dθ dt 3 dθ
ω
o
r1
r2 v1
∆m1
E
27
K
1 2 = J ω ——刚体定轴转动的动能 2
3. 刚体定轴转动的动能定理
设在外力矩 M 的作用下,刚体绕定轴发生角位移 dθ 元功:
dA = Mdθ
dω 由转动定律 M = J β = J dt dω 有 dA = J dθ = Jω dω dt
A=
∫ω
ω2
1
1 1 2 2 = J ω - J ω Jω d ω 2 1 2 2
28
刚体绕定轴转动的动能定理 :合外力矩对刚体所做的 功等于刚体转动动能的增量。
ω = (2 β h r )1 2 = 9.08 rad ⋅ s −1
§3.3 定轴转动刚体的功与能
1.力矩的功 � 刚体在力 F 作用绕轴转过一微小角位移 dθ � � � � 力 F 作功为dA = F ⋅ dr = F cos(π − ϕ ) dr
2 = F sin ϕ dr = F sin ϕds = Fr sin ϕdθ � 力F使刚体由θ 0转到θ 时, 力矩的功为
2
4 2 19 2 65 2 J = J1 + J 2 = mr + mr = mr 3 2 6
22
例1 一个质量为M、半径为R的定滑 轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂 一质量为m的物体而下垂。忽略轴处 摩擦,求物体m由静止下落高度h时 的速度和此时滑轮的角速度。 解:
《大学物理AII》作业 No.03波的干涉 参考解答

《大学物理AII 》作业No.03波的干涉班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解波的叠加原理、波的相干条件;掌握干涉相长、干涉相消条件。
2、理解波程差与相位差的关系、全波反射(自由端反射)和半波反射(固定端反射)的区别。
理解半波损失的意义,在有半波损失时会计算波程差。
3、理解驻波、波节、波腹等概念;掌握驻波形成条件、驻波的特征,各质元振动相位关系。
理解驻波与行波的区别。
-------------------------------------------------------------------------------------------------------一、填空题1、几列波相遇,在相遇区域内每一点的振动等于(各列波独立传播时在该点引起振动的矢量和)。
因此波的叠加实质就是(振动的叠加)。
2、波的独立传播原理是指,波在传播过程中每列波的(振幅)、(周期或频率)、(振动方向)和(传播方向)等特性不因其他波的存在而改变。
3、波的相干条件包括:(振动方向相同)、(频率相同)和(相位差恒定)。
满足相干条件的两列波在空间相遇,合成波的强度(≠)两分波强度之和(选填:=、>、<或≠)。
波的强度在空间上是(非均匀)分布,在时间上是(稳定)分布。
这种现象就称为波的干涉。
4、两相干波叠加时,合成波的强度由两波在相遇点的(波程差)或者(相位差)决定,当两波在相遇点的相位差φ∆满足......)2,1,0(2±±=k k π时产生干涉相长现象;当两波在相遇点的波程差满足......)2,1,0(212±±=+=k k λδ)(时产生干涉相消现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
5 一人从10.0m深的井中提水,起始 桶中装有10.0kg的水,由于水桶漏水,每升 高1.00m要漏去0.20kg的水.求水桶被匀速 地从井中提到井口,人所作的功.
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
6 一质量为 0.20kg 的球,系在长为 2.00m的细绳上,细绳的另一端系在天花板 上.把小球移至使细绳与竖直方向成 300角 的位置,然后由静止放开.求:(1)在绳索 从300角到00角的过程中,重力和张力所作的 功;(2)物体在最低位置时的动能和速率; (3)在最低位置时的张力.
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
8 一质量为m的地球卫星,沿半径为
3RE的圆轨道运动,RE为地球的半径.已知 地球的质量为mE.求:(1)卫星的动能;(2) 卫星的引力势能;(3)卫星的机械能.
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
9 如图,质量为m、速度为v 的钢球, 射向质量为m’的靶,靶中心有一小孔,内有 劲度系数为 k 的弹簧,此靶最初处于静止状 态,但可在水平面上作无摩擦滑动,求子弹 射入靶内弹簧后,弹簧的最大压缩距离.
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
10 如图所示,一个质量为 m 的小球, 从内壁为半球形的容器边缘点 A 滑下.设容 器质量为m’,半径为R,内壁光滑,并放置在 摩擦可以忽略的水平桌面上.开始时小球和 容器都处于静止状态.当小球沿内壁滑到容 器底部的点B时,受到向上的支持力为多大?
3 质量为 m 的小球,在力 F kx作
用下运动,已知 x Acost ,其中k、、A
均为正常量.求在t =0到 t = 时间内小球
动量的增量.
2
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
4 一物体在介质中按规律 x = ct3 作直 线运动,c 为一常量.设介质对物体的阻力 正比于速度的平方.试求物体由 x0=0 运动 到 x =l 时,阻力所作的功.(已知阻力系数 为 k)
物理学
第五版
第三章 习题
1 质量为 m 的物体,由水平面上点O
以初速为v0 抛出,v0 与水平面成仰角 ,若
不计空气阻力,求:(1)物体从发射点O到 最高点的过程中,重力的冲量;(2)物体从 发射点到落回至同一水平面的过程中,重力 的冲量.
第三章 动量守恒和能量守恒
物ห้องสมุดไป่ตู้学
第五版
第三章 习题
2 Fx 30 4t(式中 Fx 的单位为N,t
第三章 动量守恒和能量守恒
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题
7 一质量为 m 的质点,系在细绳的一 端,绳的另一端固定在平面上.此质点在粗 糙水平面上作半径为 r 的圆周运动.设质点 的为最v20初.速求率: (是1)v摩0 .擦当力它作运的动功一;周(2时)滑,动其摩速擦率 因数;(3)在静止以前质点运动了多少圈?
的单位为s)的合外力作用在质量m=10kg的
物体上,试求:(1)在开始 2s 内此力的冲量
I;(2)若冲量I=300 N·s, 此力作用的时间;
(3)若物体的初速度 v1 10m s1 ,方向与
Fx 相同,在t=6.86s时,此物体的速度v2 .
第三章 动量守恒和能量守恒
物理学
第五版
第三章 习题