河南工业大学继续教育学院2017第一学期高等数学1补考试题及答案
2017级高数一期末A解答(理工类多学时)(1)
2017级本科高等数学A (一)期末试题解答与评分标准A(理工类多学时)一、单项选择题(本大题共6小题,每小题3分,共18分) 1.数列极限2lim (1)n n n n →∞+-的值为( B ).A .0;B .12; C .1; D .∞. 2.若函数1cos ,0(),0xx f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( A ). A . 12ab =; B . 12ab =-; C . 0ab =; D . 2ab =. 3.已知函数()sin f x x x =,则(0)f '的值为( B ). A .1-; B .0; C .1; D .不存在.4.已知函数32()26187f x x x x =---,则在[1,4]上的最大值为( D ). A . 3; B . 61-; C . 47-; D . 29-. 5.设2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( C ).A .222(1)x C -+; B .222(1)x C --+;C .221(1)2x C --+; D .221(1)2x C -+. 6.一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度为221x x ρ=-++,则该细棒的质量为( A ). A .53; B . 73; C . 1; D . 2. 二、填空题(本大题共6小题,每小题3分,共18分) 7.()6sin 0lim 13kxx x e →+=(其中k 为常数),则k =2.8. 曲线22ln y x x =+在拐点处的微分dy =4dx . 解:222222(1)(1)2ln 22x x y x x y x y x x x +-'''=+⇒=+⇒=-=, 22(1)(1)01,1x x y x x x+-''==⇒==-(舍),且1,0;1,0x y x y ''''>><<,所以,拐点为(1,1),此处的微分为112(2)4x x dy x dx dx x===+=9.322(sin)x x dx πππ-+-=⎰32π.10.20sin()x d x t dt dx-=⎰2sin x . 11.D 是曲线段sin (0)2y x x π=≤≤及直线0,2y x π==所围成的平面图形,则D 绕x 轴旋转所得的旋转体的体积为24π.12.已知()y f x =的图像过点(0,0),且与xy a =相切于点(1,2),则10()xf x dx ''=⎰2ln 22-.解:因为()y f x =的图像过点(0,0),所以,(0)0f =;而xy a =过点(1,2),所以12a =,即2a =,曲线为2xy =,它在点(1,2)的切线的斜率为(1)2ln 2k y '==,又()y f x = x y a =相切于点(1,2),所以(1)2f =,(1)2ln 2f '=,则1111100()()()()(1)()xf x dx xdf x xf x f x dx f f x ''''''==-=-⎰⎰⎰(1)(1)(0)2ln 22f f f '=-+=-三、解答题(本大题共8小题,每小题8分,共64分) 13. 求极限20cos limarcsin 5x x t dtx→⎰.解:原式20cos =lim5x x t dt x→⎰ (3分)20cos lim 5x x →= (3分) =15(2分) 14. 已知曲线()y y x =由方程1yy xe =+确定,求该曲线在点(1,0)-处的切线方程. 解:方程两边关于x 求导得:y y y e xe y ''=+ (2分)1yydy e dx xe =- (2分)12dy dx =(-1,0) (2分)则过点(1,0)-的切线方程为:1(1)2y x =+,即21y x =+ . (2分) 15. 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,求22t d ydx =.解:cos 1tdy dy dt tdx dx dt e ==+ (3分) 2223sin (1)cos 1sin (1)cos ==(1)1(1)t t t t t t t d y t e e t t e e tdx e e e -+--+-⋅+++ (3分) 221=8t d y dx =- (2分)16. 求不定积分e x x dx -⎰.解:原式x xde -=-⎰x x xe e dx --=-+⎰(4分)xx xee C --=--+(1)x x e C -=-++ (4分)17. 求定积分1cos 2x dx π+⎰.解:1cos 2x dx π+⎰202cos xdx π=⎰222(cos cos )xdx xdx πππ=-⎰⎰ (4分)2022(sin sin )xx πππ=-22= (4分)18. 求反常积分25143dx x x +∞-+⎰.解:2551143(1)(3)dx dx x x x x +∞+∞=-+--⎰⎰ 5111()231dx x x +∞=---⎰ 513ln21x x +∞-=- (4分)ln 22=(4分) 19. 已知曲线2:(0)L y x x =≥,点(0,0)O ,点(0,1)A .设P 是L 上的动点,S 是直线OA与直线AP 及曲线L 所围图形的面积.若P 运动到点(2,4)时沿x 轴正向的速度是4,求此 时S 关于时间t 的变化率.解:设在t 时刻,P 点的坐标为((),())x t y t ,则1(1)2y S ydy y y =+-⎰3211+62y y =31162x x =+, 或者22200(1)(1)22x x y x x x S x dx x dx ++=-=-⎰⎰31126x x =+, (4分) 所以2()1122dS t dx dxxdt dt dt=+, (2分) 又(2,4)=4dx dt,故2(2,4)()11424=1022dS t dt=⋅+⋅⋅. (2分) 解法二:设在t 时刻,P 点的坐标为((),())x t y t ,则22200(1)(1)22x x y x x x S x dx x dx ++=-=-⎰⎰, (4分)22()1(3)2dS t dx dx dxx x dt dt dt dt=+-, (2分) 故(2,4)()1(4344)44=102dS t dt=+⋅⋅-⋅. (2分) 20. 设(0,1)x ∈,证明:22(1)ln (1)x x x ++<.解:令22()(1)ln (1)g x x x x =++-,则 (2分)2()ln (1)2ln(1)2g x x x x '=+++-,2()[ln(1)]1g x x x x''=+-+, (2分) 又由拉格朗日中值定理有,ln(1)ln(1)ln11xx x x ξ+=+-=<+,(0,01)x x ξ<<<< (或者令()ln(1)h x x x =+-,用单调性证明()(0)0h x h <=.) 则()0,(0,1)g x x ''<∈,所以()g x '在(0,1)上单调减少, 又(0)0g '=,所以当(0,1)x ∈时,()(0)0g x g ''<=,从而()g x 在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,故有22(1)ln (1)x x x ++<. (4分)。
(完整word版)大一第一学期期末高等数学(上)试题及答案
第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分) 1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分).d )1(22x x x⎰+求3、(本小题5分)求极限lim arctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分).求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分).求⎰ππ2121cos 1dx x x8、(本小题5分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分).求dx x x ⎰+3110、(本小题5分)求函数 的单调区间y x x =+-422 11、(本小题5分).求⎰π+202sin 8sin dx x x12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分)设函数由方程所确定求.y y x y y x dy dx =+=()ln ,22614、(本小题5分)求函数的极值y e e x x =+-2 15、(本小题5分)求极限lim()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分).d cos sin 12cos x x x x⎰+求二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→limx xx 261218 =2 2、(本小题3分)⎰+xx xd )1(22⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分)因为arctan x <π2而lim arcsin x x →∞=1故lim arctan arcsin x x x →∞⋅=14、(本小题3分)⎰-x x xd 1xx x d 111⎰----=⎰⎰-+-=x xx 1d d=---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分)⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin112xππ=-1 8、(本小题4分)解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )22229、(本小题4分)令 1+=x u原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分)),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当(][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302lncos cos x x π=162ln 12、(本小题6分)dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分)2265yy y y x '+'='=+y yx y 315214、(本小题6分)定义域,且连续(),-∞+∞'=--y e e x x 2122()驻点:x =1212ln由于''=+>-y e e x x 2022)21ln 21(,,=y 故函数有极小值15、(本小题8分)原式=++++++++--→∞lim()()()()()()x x x x x x x 112131*********2222=⨯⨯⨯⨯=1011216101172 16、(本小题10分)dxxxdx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=xx d 2sin 211)12sin 21( =++ln sin 1122x c二、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,=(完整word 版)大一第一学期期末高等数学(上)试题及答案2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dxx =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题 ( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03 又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。
大一(第一学期)高数期末考试题及答案【范本模板】
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。
(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D)()f x 不可导。
2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。
3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。
(A)函数()F x 必在0x =处取得极大值; (B)函数()F x 必在0x =处取得极小值;(C)函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A)22x (B )222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。
7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8. =-+⎰21212211arcsin -dx xx x 。
三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
专升本高等数学一(常微分方程)模拟试卷1(题后含答案及解析)
专升本高等数学一(常微分方程)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.微分方程(y’)2=x的阶数为( )A.1B.2C.3D.4正确答案:A解析:微分方程中出现的未知函数的最高阶导数的阶数,称为该微分方程的阶,故此微分方程的阶数为1.知识模块:常微分方程2.微分方程y2dx一(1一x)dy=0是( )A.一阶线性齐次方程B.一阶线性非齐次方程C.可分离变量方程D.二阶线性齐次方程正确答案:C解析:将该微分方程整理可得dx,所以该微分方程是可分离变量方程.知识模块:常微分方程3.已知函数y=+x+C是微分方程y’’=x一1的解,则下列正确的是( )A.y是该微分方程的通解B.y是微分方程满足条件y|x=0=1的特解C.y是微分方程的特解D.以上都不是正确答案:D解析:方程为二阶微分方程,则通解中应含有两个任意常数,因此y=x3一x2+x+C显然不是方程的通解,又y’=一x+1,y’’=x-1,故可知y=x2+x+C为y’’=x-1的解,因含有未知数,故不是特解,因此选D.知识模块:常微分方程4.方程xy’=2y的特解为( )A.y=2xB.y=x2C.y=2x3D.y=2x4正确答案:B解析:分离变量可得,两边积分得ln|y|=lnx2+C1,即y=Cx2,所以方程的特解中x的最高次数也应该为2,故选B.知识模块:常微分方程5.微分方程y’+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:所求方程为一阶线性微分方程,由通解公式可得其中C为任意常数,故选B.知识模块:常微分方程6.方程y’’一y’=ex+1的一个特解具有形式( )A.Aex+BB.Axex+BC.Aex+BxD.Axex+Bx正确答案:D解析:方程对应二阶齐次线性微分方程的特征方程为r2一r=r(r一1)=0,所以r1=0,r2=1,又有f(x)=ex+1,λ1=0,λ2=1是该二阶非齐次微分方程的一重特征根,所以特解形式为y*=Axex+Bx.故选D.知识模块:常微分方程7.某二阶常微分方程的下列解中为特解的是( )A.y=CsinxB.y=C1sin3x+C2cos3xC.y=sin3x+cos3xD.y=(C1+C2)cosx正确答案:C解析:由特解定义可知,特解中不含有任意常数,故排除A、B、D项,选C.知识模块:常微分方程8.下列方程中,可用代换p=y’,p’=y’’降为关于p的一阶微分方程的是( )A.+xy’一x=0B.+yy’一y2=0C.+x2y’一y2x=0D.+x=0正确答案:A解析:可降阶方程中的y’’=f(x,y’)型可用代换p=y’,p’=y’’,观察四个选项,只有A项是y’’=f(x,y’)型,故选A.知识模块:常微分方程填空题9.方程(xy2+x)dx+(y-x2y)dy=0满足y|x=0=1的特解为_______.正确答案:=2解析:分离变量得,两边积分得ln|x2一1|=.所以x2一1=C(y2+1),又y|x=0=1,故=2.知识模块:常微分方程10.已知微分方程y’+ay=ex的一个特解为y=xex,则a=_______.正确答案:一1解析:把y=xex,y’=ex+xex代入微分方程y’+ay=ex=(1+a)xex+ex,利用对应系数相等解得a=一1.知识模块:常微分方程11.微分方程y’’一4y’+3y=excosx+xe3x对应齐次微分方程的通解为=_______,它的特解形式为y*=________.正确答案:C1ex+C2e3x,ex(Acosx+Bsinx)+x(ax+b)e3x解析:事实上,原方程对应的齐次微分方程的特征方程为r2一4r+3=0,r1=1,r2=3,故齐次微分方程的通解为=C1ex+C2e3x.非齐次方程特解形式的假设,可分为两个方程进行:y’’一4y’+3y=excosx,①y’’一4y’+3y=xe3x.②λ=1±i不是特征方程的特征根,故①的特解形式是y1*=ex(Acosx+Bsinx);λ=3是特征方程的一重特征根,故②的特解形式应是y2*=x(ax+b)e3x,则y1*+y2*=y*即是原方程的特解形式.知识模块:常微分方程12.非齐次微分方程y’’+9y=cosx,它的一个特解应设为________.正确答案:y=Acosx+Bsinx解析:方程对应二阶齐次线性微分方程的特征方程为r2+9=0,所以r1,2=±3i,f(x)=cosx,则±i不是该二阶齐次微分方程的特征根,所以特解形式为y=Acosx+Bsinx.知识模块:常微分方程13.设二阶常系数线性齐次微分方程y’’+ay’+by=0的通解为y=C1ex+C2e2x,那么非齐次微分方程y’’+ay’+by=1满足的条件y(0)=2,y’(0)=一1的解为________.正确答案:y=4ex一解析:二阶线性常系数齐次方程对应的特征方程为r2+ar+b=0,又由通解可得特征根r1=1,r2=2,即(r一1)(r一2)=0,r2一3r+2=0,故a=一3,b=2.所以非齐次微分方程为y’’一3y’+2y=1,由于λ=0不是特征方程的根,因此,设特解y*=A,则(y*)’=0,(y*)’’=0,代入可得,所以y’’一3y’+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y’(0)=一1,可得C1=4,C2=,故满足初始条件的特解为y=4ex一.知识模块:常微分方程解答题14.求微分方程dy=sin(x+y+100)dx的通解.正确答案:方程可写成y’=sin(x+y+100),令μ=x+y+100,则,于是原方程化为=1+sinμ,就得到了可分离变量方程.分离变量,得=dx,恒等变形,有=dx,即(sec2μ—tanμsecμ)dμ=dx.两边积分,得tanμ—secμ=x+C,将μ=x+y+100回代,得方程通解为tan(x+y+100)一sec(x+y+100)=x+C,其中C为任意常数.涉及知识点:常微分方程15.求微分方程xy’一=0的通解.正确答案:方程分离变量得,两边积分有+C1,则方程的通解为2ln|y|+y2一ln2x=C,其中C为任意常数.涉及知识点:常微分方程16.求方程xsecydx+(1+x2)dy=0,满足初始条件y|x=0=的特解.正确答案:方程分离变量得dy,即dx=一cosydy,两边积分有dx=-∫cosydy,即n(1+x2)=一siny+C,由初始条件y|x=0=得C=1,则方程的特解为siny+=1.涉及知识点:常微分方程17.求微分方程secx.y’+tanx.y=ecosx的通解.正确答案:将原方程改写成y’+ysinx=cosxecosx,则y=e-∫sinxdx(∫cosxecosxe∫sinxdxdx+C)=ecosx(∫cosxdx+C)=ecosx(sinx+C).其中C为任意常数.涉及知识点:常微分方程18.(1)求微分方程xy’+ay=1+x2满足y|x=1=1的解y(x,a),其中a为常数.(2)证明(x,a)是方程xy’=1+x2的解.正确答案:(1)原方程可改写成y’+,微分方程的通解为(2)设y0=+lnx,则xy0’=x(x+)=1+x2,故结论成立.涉及知识点:常微分方程19.求微分方程y’+3x2y=xe-x3的通解.正确答案:由通解公式得y=e-∫3x2dx(∫xe-x3e3x2dxdx+C)=e-x3(∫xdx+C)=x2e-x3+Ce-x3.C为任意常数.涉及知识点:常微分方程20.求微分方程xy’+2y=xlnx满足y(1)=的解.正确答案:方程xy’+2y=xlnx两边同时除以x,得y’+y=lnx,是一阶线性微分方程,其中P(x)=,Q(x)=lnx,利用通解公式得涉及知识点:常微分方程21.求解方程∫0x(x—s)y(s)ds=sinx+∫0xy(s)ds.正确答案:∫0x(x—s)y(s)ds=x∫0xy(s)ds-∫0xsy(s)ds=sinx+∫0xy(s)ds,两边对x求导,得∫0xy(s)ds=cosx+y(x),且y(0)=一1,再次对x求导,得y’一y=sinx 为一阶线性非齐次微分方程.其中P(x)=一1,Q(x)=sinx,故解为y=e-∫P(x)dx[∫Q(x)eP(x)dxdx+C]=ex[∫sinxe-xdx+C]=Cex一(sinx+cosx),又由y(0)=一1,得C=,故原方程解为y(x)=(ex+sinx+cosx).涉及知识点:常微分方程22.已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.正确答案:根据题意可知,f(1)=1.由导数几何意义可知,曲线y=f(x)上任意一点(x0,y0)处的切线方程为:y—y0=f’(x0)(x—x0).令x=0,y=一f’(x0)x0+y0,其中,y0=f(x0),∴x0=一x0f’(x0)+f(x0),即x0f’(x0)一f(x0)=一x0,求曲线方程相当于求=一1满足y(1)=1的特解.由通解公式得又∵y(1)=1,∴C=1,故所求曲线方程为y=一xln|x|+x.涉及知识点:常微分方程23.求y’’一2y’+y=x3的特解.正确答案:对应的齐次方程的特征方程为r2一2r+1=0,解得r=1,为二重根,故λ=0不是特征方程的根.由f(x)=x3,设特解为y=Ax3+Bx2+Cx+D,则y’=3Ax2+2Bx+C,y’’=6Ax+2B,代入原方程得6Ax+2B一2(3Ax2+2Bx+C)+Ax3+Bx2+Cx+D=Ax3+(B一6A)x2+(6A+C一4B)x+2B+D-2C=x3,则A=1,B=6,C=18,D=24,故特解为y=x3+6x2+18x+24.涉及知识点:常微分方程24.求y’’一5y’一14y=9e7x的特解.正确答案:原方程对应的齐次方程的特征方程为r2一5r一14=0,解得r=一2,7,λ=7是特征方程的一重根,故设原方程的特解为y=Axe7x,则y’=A(7x+1)e7x,y’’=A(49x+14)e7x,代入原方程得A(49x+14)e7x一5A(7x+1)e7x 一14Axe7x=9e7x,则A=1,故特解为y=xe7x.涉及知识点:常微分方程25.求y’’一4y’+4y=xe2x的通解.正确答案:原方程对应的齐次方程的特征方程为r2一4r+4=0,解得r=2(二重根),所以对应的齐次方程的解为=(C1x+C2)e2x,λ=2是特征方程的二重根,故设原方程的特解为y*=x2e2x(Ax+B),则(y*)’=2xe2x(Ax+B)+x2e2x(2Ax+2B+A),(y*)’’=e2x(2Ax+2B)+xe2x(8Ax+8B+4A)+x2e2x(4Ax+4B+4A),代入原方程得e2x(2Ax+2B)+xe2x(8Ax+8B+4A)+x2e2x(4Ax+4B+4A)一8xe2x(Ax+B)一4x2e2x(2Ax+2B+A)+4x2e2x(Ax+B)=xe2x,解得A=,B=0,故原方程的通解为y=(C1x+C2)e2x+x3e2x.其中C1,C2为任意常数.涉及知识点:常微分方程26.已知函数y=(x+1)ex是一阶线性微分方程y’+2y=f(x)的解,求二阶常系数线性微分方程y’’+3y’+2y=f(x)的通解.正确答案:据题意的,y’=ex+(x+1)ex=(x+2)ex,f(x)=y’+2y=(x+2)ex+2(x+1)ex=(3x+4)ex,则下面求微分方程y’’+3y’+2y=(3x+4)ex 的通解,特征方程为r2+3r+2=0,求得r1=一1,r2=一2,所以y’’+3y’+2y=0的通解为y=C1e-x+C2e-2x,因λ=1不是特征方程的根,所以设y*=(Ax+B)ex 为原方程y’’+3y’+2y=(3x+4)ex的一个特解,则把(y*)’=(Ax+A+B)ex,(y*)’’=(Ax+2A+B)ex代入原方程,并比较系数得A=,B=,所以微分方程y’’+3y’+2y=(3x+4)ex的通解为y=C1e-x+C2e-2x+ex.其中C1,C2为任意常数.涉及知识点:常微分方程27.求y’’=y’+x的通解.正确答案:令y’=p,y’’=p’,原方程化为p’=p+x,解此一阶线性非齐次方程得p=e∫dx[∫xe-∫dxdx+C1]=ex(∫xe-xdx+C1)=C1ex-x-1即y’=C1ex一x一1,两边积分得通解为y=C1ex一一x+C2,其中C1,C2为任意常数.涉及知识点:常微分方程设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为V(t)=[t2f(t)一f(1)],求:28.y=f(x)所满足的微分方程;正确答案:据题意,V(t)=π∫1t[f(x)]2dx=[t2f(t)一f(1)],即3∫1t[f(x)]2dx=t2f(t)一f(1),上式两边同时对t求导得,3f2(t)=2tf(t)+t2f’(t),即y=f(x)所满足的微分方程为x2y’+2xy一3y2=0;涉及知识点:常微分方程29.该微分方程满足条件y|x=2=的解.正确答案:将微分方程x2y’+2xy一3y2=0,化为,即为齐次方程.令μ=+μ,代入方程并化简得=3μ2一3μ.变量分离得,两端积分并代入μ=得通解为y—x=Cx3y,再把y|x=2=代入可得C=-1,故该微分方程满足条件y|x=2=的解为y—x=一x3y.涉及知识点:常微分方程。
2017年河南省专升本高等数学真题及答案高清版
!
# $ +!!极限6)8 +& 1
# % # %*% #
槡#%+! 槡!%+!
槡+%+!
$
!
++!已知函数' $#;<2:;*#!则'1 $
!
+'!设' $()*+#!#%#$!'( $
!
$ +&!不定积分 7!#23(+#5# $
!
$ +%!定积分
+ !
##!5#
$
!
+$!设
直 线# &# #
$
# .#&#.
.-"(#$
# #&#
!/-"(#$
# #&#
0-不 存 在
1
1
% % !&!已知级数 -+ 和级数 ,+ 都发散则下列结论正确的是
+$#
+$#
1
% !,- -+ %,+必发散 +$#
1
% .- -+,+必收敛 +$#
1
% !/- .-+.%.,+.必发散 +$#
'
% '%!求
幂
级
数
1 +$#
6*#++%#$#+&#
的收敛域!
'$!设
函
数
'
$
'##$由
方
程6*##!
%'$$
2016-2017学年河南省高一上学期期末联考数学试题word版含答案
2016-2017学年河南省高一上学期期末联考数学试题一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|23,|50A x x B x Z x x =-<<=∈-<,则A B = ( )A .{}1,2B .{}23,C .{}12,3,D .{}2,3,4 2. ,,m n l 为不重合的直线,,,αβγ为不重合的平面,则下列说法正确的是( ) A .,m l n l ⊥⊥,则//m n B .,αγβγ⊥⊥,则αβ⊥ C .//,//m n αα,则//m n D .//,//αγβγ,则//αβ3. 已知ABC ∆在斜二测画法下的平面直观图A B C '''∆,A B C '''∆是边长为a 的正三角形,那么在原ABC ∆的面积为( ) A .232a B .234a C .262a D . 26a 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25π B .50π C. 125π D .都不对5.在空间直角坐标系中,点()1,3,5P -关于xOy 面对称的点的坐标是 ( ) A .()1,3,5-- B .()1,3,5- C. ()1,3,5 D .()1,3,5--6.过点()1,2A 且与原点距离最大的直线方程为 ( )A .240x y +-=B .370x y +-= C. 250x y +-= D .350x y +-= 7. 若20.320.3,log 0.3,2a b c ===,则,,a b c 的大小关系是( )A .a c b <<B .a b c << C. b a c << D .b c a << 8.若函数()()0,1xxf x ka aa a -=->≠在(),-∞+∞上既是奇函数又是增函数,则函数()()log a g x x k =+的图象是( )A .B . C. D .9.在平面直角坐标系xOy 中,以()1,1C 为圆心的圆与x 轴和y 轴分别相切于,A B 两点,点,N M 分别在线段,OA OB 上,若MN 与圆C 相切,则MN 的最小值为( ) A .1 B . 22- C. 222+ D .222-10.定义在R 上的奇函数()f x ,当0x ≥时,()()[)[)12log 1,0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()()01F x f x a a =-<<的所有零点之和为 ( )A .21a- B .21a-- C. 12a -- D .12a -11.如图,在正四棱柱1111ABCD A B C D -中,11,2AB AA ==,点P 是平面1111A B C D 内的一个动点,则三棱锥P ABC -的正视图与俯视图的面积之比的最大值为 ( )A . 1B . 2 C.12 D .1412. 若函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦,则()2log 3f =( )A .1B .45 C. 12D .0 二、填空题(本大题共4小题,每小题4分,共16分,将答案填在答题纸上)13.已知函数()2log ,03,0xx x f x x >⎧=⎨≤⎩,则14f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦. 14.圆2240x y x +-=在点()1,3P 处的切线方程为: .15.已知偶函数()f x 在区间[)0,+∞上单调递增,则满足()()213f x f -<的x 取值集合是 . 16.在直角坐标系内,已知()3,2A 是圆C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若圆C 上存在点P ,使090MPN ∠=,其中,M N 的坐标分别为()(),0,,0m m -,则实数m 的取值集合为 .三、解答题 (本大题共6小题,共56分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分8分) 已知集合{}1|121,|3819x A x m x m B x ⎧⎫=-≤≤+=≤≤⎨⎬⎩⎭. (1)当2m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围.18. (本小题满分8分)已知圆()22:19C x y -+=内有一点()2,2P ,过点P 作直线l 交圆C 于A B 、两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当直线l 的倾斜角为45°时,求弦AB 的长.已知函数()()b f x ax c a b c x =++、、是常数是奇函数,且满足()()5171,224f f ==. (1)求,,a b c 的值;(2)试判断函数()f x 在区间10,2⎛⎫⎪⎝⎭上的单调性并用定义证明.20. (本小题满分10分)如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱2PA PD ==,底面ABCD 为直角梯形,其中//,,222,BC AD AB AD AD AB BC O ⊥===为AD 中点.(1)求证:PO ⊥平面ABCD ;(2)求异面直线PB 与CD 所成角的余弦值;(3)线段AD 上是否存在Q ,使得它到平面PCD 的距离为32?若存在,求出AQ QD的值;若不存在,请说明理由.已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当2AOB π∠=时,求k 的值;(2)若1,2k P =是直线l 上的动点,过P 作圆O 的两条切线PC PD 、,切点为C D 、,探究:直线CD 是否过定点?若过定点则求出该定点,若不存在则说明理由;(3)若EF GH 、为圆22:2O x y +=的两条相互垂直的弦,垂足为21,2M ⎛⎫⎪ ⎪⎝⎭,求四边形EGFH 的面积的最大值.22. (本小题满分12分)设函数()y f x =的定义域为D ,值域为A ,如果存在函数()x g t =,使得函数()y f g t =⎡⎤⎣⎦的值域仍是A ,那么称()x g t =是函数()y f x =的一个等值域变换.(1)判断下列函数()x g t =是不是函数()y f x =的一个等值域变换?说明你的理由; ①()()21log ,0,,0f x x x x g t t t t=>==+>; ②()()21,,2,tf x x x x R xg t t R =-+∈==∈.(2)设()2log f x x =的定义域为[]2,8x ∈,已知()2231mt t nx g t t -+==+是()y f x =的一个等值域变换,且函数()y f g t =⎡⎤⎣⎦的定义域为R ,求实数m n 、的值.2016-2017学年河南省高一上学期期末联考数学试题答案一、选择题1-5: ADCBC 6-10: CCCDD 11、12:BC二、填空题13.1914. 340x y +-= 15. {}|12x x -<< 16. []3,7 三、解答题17.(1){}|25A B x x =-≤≤ (4分);(2)3m ≥ (4分) 解:当2m =时,{}|15A x x =-≤≤,由B 中不等式变形得24333x -≤≤,解得24x -≤≤,即{}|24B x x =-≤≤.∴m 的取值范围为{}|3m m ≥.18.(1)220x y --=;(4分)(2)34.(4分)试题解析:(1)已知圆()22:19C x y -+=的圆心为()1,0C ,因直线过点,P C ,所以直线l 的斜率为2,直线l 的方程为()21y x =-,即220x y --=.(2)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为22y x -=-,即0x y -=, 圆心C 到直线l 的距离为12,圆的半径为3,弦AB 的长为34. 19.(1)12,,02a b c ===(4分)(2)证明见解析(4分) 解:(1)∵()f x 为奇函数,∴()()f x f x -=-,∴b bax c ax c x x--+=---,∴0c =,又()()5171,224f f ==,∴5217224a b b a ⎧+=⎪⎪⎨⎪+=⎪⎩,∴12,,02a b c ===.(2)由(1)可知()122f x x x =+.函数()f x 在区间10,2⎛⎫⎪⎝⎭上为减函数. 证明如下:任取12102x x <<<,则()()()()1212121212121212411112222222x x f x f x x x x x x x x x x x x x ⎛⎫--=+--=--=- ⎪⎝⎭. ∵12102x x <<<,∴1212120,20,410x x x x x x -<>-<. ∴()()()()12120f x f x f x f x ->⇒>,∴()f x 在102⎛⎫ ⎪⎝⎭,上为减函数.20.(1)证明见解析;(3分)(2)63(3分);(3)存在,13AQ QD =.(4分) 试题解析:(1)证明:在PAD ∆中,PA PD O =为AD 中点,所以PO AD ⊥.又侧面PAD ⊥底面ABCD ,平面PAD 平面,ABCD AD PO =⊂平面PAD , 所以PO ⊥平面ABCD .(2)解:连接BO ,在直角梯形ABCD 中,//,22BC AD AD AB BC ==,有//OD BC 且OD BC =,所以四边形OBCD 是平行四边形,所以//DC OB . 由(1)知,PO OB POB ⊥∠为锐角, 所以POB ∠是异面直线PB 与CD 所成的角,因为222AD AB BC ===,在Rt AOB ∆中,1,1AB AO ==,所以2OB =,在Rt POA ∆中,因为2,1AP AO ==,所以1OP =,在Rt PBO ∆中,3PB =,所以6cos 3PBO ∠=, 所以异面直线PB 与CD 所成的角的余弦值为63.(3)解:假设存在点Q ,使得它到平面的距离为32. 设QD x =,则12DQC S x ∆=,由(2)得2CD OB ==, 在POC Rt ∆中,2PC =,所以()233,242PCDPC CD DP S ∆===⨯=, 由P DQC Q PCD V V --=得32x =,所以存在点Q 满足题意,此时13AQ QD =. 21.(1)3k =±(3分);(2)见解析(3分);(3)52(4分) 解析:(1)∵2AOB π∠=,∴点O 到l 的距离22d r =,∴2222321k k =⇒±+ .(2)由题意可知:,,,O P C D 四点共圆且在以OP 为直径的圆上,设1,22P t t ⎛⎫- ⎪⎝⎭.其方程为:()1202x x t y y t ⎛⎫-+-+= ⎪⎝⎭, 即221202x tx y t y ⎛⎫-+--=⎪⎝⎭, 又C D 、在圆22:2O x y +=上, ∴1:2202CD l tx t y ⎛⎫+--=⎪⎝⎭,即2202y x t y ⎛⎫+--= ⎪⎝⎭,由02220y x y ⎧+=⎪⎨⎪+=⎩,得121x y ⎧=⎪⎨⎪=-⎩∴直线CD 过定点112⎛⎫- ⎪⎝⎭,.(3)设圆心O 到直线EF GH 、的距离分别为12,d d .则2221232d d OM+==, ∴22222211222212222EF r d d GH r d d =-=-=-=-()()222422122221325522246442442S EF GH d d d d d ⎛⎫==--=-++=--+≤ ⎪⎝⎭, 当且仅当2234d =,即1232d d ==时,取“=”∴四边形EGFH 的面积的最大值为52. 22.(1)①不是等值域变换,②是等值域变换;(5分) (2)33335,522m n =-=+(7分) 解:(1)①不是等值域变换,②()221331244f x x x x ⎛⎫=-+=-+≥ ⎪⎝⎭,即()f x 的值域为3,4⎡⎫+∞⎪⎢⎣⎭,当t R ∈时,()21332244t f g t ⎛⎫=-+≥⎡⎤ ⎪⎣⎦⎝⎭,即()y f g t =⎡⎤⎣⎦的值域仍为3,4⎡⎫+∞⎪⎢⎣⎭,所以()x g t =是()f x 的一个等值域变换,故①不是等值域变换,②是等值域变换;(2)()2log f x x =定义域为[]2,8,因为()x g t =是()f x 的一个等值域变换,且函数()y f g t =⎡⎤⎣⎦的定义域为R ,∴()223,1mt t n x g t t R t -+==∈+的值域为[]2,8, ()()22222328213811mt t n t mt t n t t -+≤≤⇔+≤-+≤++, ∴恒有()()()()12289422094880m m n m n <<⎧⎪∆=---=⎨⎪∆=---=⎩,解得33523352m n ⎧=-⎪⎪⎨⎪=+⎪⎩.。
《高等数学(上)》A卷及答案
扬州大学2008级高等数学Ⅰ(1)统考试卷A 班级学号姓名得分一、选择题(每小题3分,共30分)1.设函数1(1)0()xx xf xa x⎧⎪->=⎨⎪≤⎩在点0x=处连续,则a=【】(A)1 (B)1- (C)e (D)1e-2.若当0x→时,tan x x-与nax是等价无穷小,则a=【】(A)3-(B)13-(C)3(D)133.若()2f x'=,则00()()limhf x h f x hh→+--=【】(A)0 (B)1(C)4 (D)4-4.函数43()4f x x x=-在闭区间[1,2]-上的最小值为【】(A)5(B)0(C)16-(D)27-5.设32()1f x x x x=--+,则在区间11[,]33-上【】(A)函数()f x单调减少且其图形是凹的(B)函数()f x单调减少且其图形是凸的(C)函数()f x单调增加且其图形是凹的(D)函数()f x单调增加且其图形是凸的6.若函数()f x()f x'=【】(A (B)(C(D7.设()f x 是以T 为周期的连续函数,k 为正整数,则(1)()d a k T a kTf x x +++⎰【 】(A )仅与k 及T 有关 (B )仅与k 及a 有关(C )仅与a 及T 有关(D )仅与T 有关8.设210()00x e x f x x x ⎧-⎪≠=⎨⎪=⎩, 则(0)f '=【 】(A )∞ (B)2 (C )1 (D )0 9.若抛物线2y ax =与曲线ln y x =相切,则常数a =【 】 (A)12e (B)2e (C)1e(D)e 10.微分方程76sin y y y x '''-+=的特解y *应具有形式【 】 (A)sin cos A x B x + (B)sin A x(C)cos A x (D)()sin ()cos Ax B x Cx D x +++二、填空题(每小题3分,共18分)11.设 0x y xy e e -+=,则d d x y x== .12.131(1x x -+=⎰.13.曲线2y x =与y x = 围成的平面图形的面积为 .14.曲线xx y 12+=的所有渐近线的方程为 . 15.若10[()()]d 1x f x f x e x '+=⎰,且(0)4f =,则(1)f = .16.若xy xe =是某二阶常系数齐次线性微分方程的一个特解,则该微分方程为.三、计算题(每小题6分,共42分)17.求222tan d limsinxxt tx x→⎰.18.求e x ⎰.19.求1ln dx x x ⎰.20.求内接于半径为R的球的正圆锥体的最大体积.21.求由曲线y=y x=所围平面图形分别绕x轴、y轴旋转一周所形成的旋转体的体积.22.求微分方程 cos xy y x '+= 满足初始条件1x y π==的特解.23.求微分方程265x y y y e ''' +-=的通解.四、证明题(每小题5分,共10分)24.设()f x 在[0,1]上可微,对于[0,1]上的每一个,0()1x f x <<, 且()1f x '<,试证在(0,1)内有且仅有一个ξ,使()f ξξ=.25.证明:42(4)(4)0d 2d x x x x ex e x --=⎰⎰.2008级高等数学试题A 参考答案一、1.D 2.D 3.C 4.C 5.B 6.B 7.D 8.C 9.A 10.A 二、11.1 12.2π 13.13 14.0,1x y ==± 15.5e 16.20y y y '''-+=三、17.解2022tan d limsin x x t tx x→⎰204tan d limx x t t x→=⎰ ………………………………………………2分2232002tan tan lim lim 42x x x x x x x →→== ………………………………4分 2201lim 22x x x →==. ……………………………………………6分 18.解ex⎰t22d t e t t ⎰ ……………………………………………………2分222d d t t t t e te e t ==-⎰⎰ ………………………………………4分2212t t te e C =-+ ………………………………………………5分12e C =-+. ………………………………………6分19.解 1ln d x x x ⎰=1201ln d()2x x ⎰ …………………………………………………1分 1120011ln d 22x x x x ⎡⎤=-⎣⎦⎰………………………………3分 1220011lim ln 24x x x x +→⎡⎤=--⎣⎦ ……………………………5分 14=-. ……………………………………………………6分20.解 设圆锥底半径为r ,高为h ,则2222()2r R h R Rh h =--=-. .......1分 于是,圆锥体积 2223111(2)(2)333V r h Rh h h Rh h πππ==-=-. ...........3分 求导得,2()(43)3V h Rh h π'=-. .........................................4分 令()0V h '=,得43h R =. .........................................5分 故 34max 33281h R V V R π===. .........................................6分21.解 (1)222d ]d ()d x V x x x x x ππ=-=-, .....................1分120()d x V x x x π=-⎰ ........................................2分 6π=. ...................................................3分(2)322d 2)d 2()d y V x x x x x x ππ==-, .....................1分31222()d y V x x x π=-⎰ .....................................2分215π=. ..........................................3分22.解 原方程可改写为 1cos x y y x x '+=. 这是一阶线性方程,1()P x x =,cos ()x Q x x=. .........................1分原方程的通解为()d ()d ()d P x x P x xy e Q x e x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰......................3分11d d cos d xx xxx ee x C x -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰1(sin )x C x =+. ...........5分 由1x y π==得,C π=. 故所求特解为 1(sin )y x xπ==+. ...................................6分23.解 特征方程为 260r r +-=,解之得12r =,23r =-, ...............1分 故相应的齐次方程的通解为 2312x x Y C e C e -=+. ...............2分自由项2()5x f x e =属于()xm P x e λ型(0m =,2λ=). 由于2λ=是特征方程的单根,故可设原方程的一个特解为2x y Axe *=, ........4分 求导得:2(2)x y A Ax e *'=+,2(44)x y A Ax e *''=+.将,,y y y ***'''代入原方程得,1A =.于是,2xy xe *=. ....................................5分 因此,原方程的通解为 23212xx x y C eC e xe -=++. ...................6分四、24.证 令()()F x f x x =-,[0,1]x ∈ .........................1分 则由(0)(1)0F F <和零点定理知()F x 在(0,1)内至少有一个零点 .............3分 又由()0F x '<知()F x 在[0,1]上单调,()F x 在(0,1)内最多只有一个零点. 综上所述,()F x 在(0,1)内有且仅有一个零点,即(0,1)内有且仅有一个ξ,使()f ξξ=................5分25.证242(4)(2)(2)02d d x tx x t t ex e t =+-+--=⎰⎰.........................2分2(2)(2)02d t t e t +-=⎰ .........................3分 20(4)22(1)d t uu u e u =--=-⎰2(4)02du u u e -=⎰ ..................4分 2(4)02d x x e x -=⎰. .........................5分。
2017河南专升本高等数学模拟试卷
BIL-2017年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试模拟试卷高等数学模拟题(一)A. x = l 为无穷间断点B. x = l,x = 2都是无穷间断点C. x = 2是可去间断点D. x = l 为可去间断点/ = 2为无穷间断点(凶,杷)说明:考试时间120分钟,试卷共150一、单项选择题(每小题2分,共60分。
在每个小题的备选答案中选出一个正 确答案,并将其代码写在题干后的括号内。
) 1.函数/(x ) = arcsin^-^--ln (4-x )定义域为()2A.[l,4)B.[l,5]C.[-2,2]D.[0,4]2.下列函数中为奇函数的是()A. f (x) - —sin 2 xB.y (x) = xtanx- cosxC. f (x) = ln(x + +1)D 项⑴=己1-x3.已知/'(/_:!)二§项,则<)A L 丄B.-X4.当XT O 时,下列是无穷小量的是(C.x-1 )D.-XA. sin —卩 sinx B.C.x xD.(3x 3-3x)sin-6.设 limXS '1一¥丫 =舟则^=()1 *丿A.3B. -3C.丄D.--337.下列方程在[0,1]有实根的有()A. sin x +J =。
B.x 2 +3x + l = 0C. arcsin x + 3 = 0D. x - sin x + — = 0 28.设7(x )是可导函数,且lim '3""g )=i,则尸(財=() 力一>ohA. 1B. 0C. 2D. S9.曲线x 2y + lny = l 在点(侦)处的切线斜率是() A. -2B. -1c ID. 010.下列函数在x = 0处可导的是( )A. ^ = |3sinx|B. y = 31nxC. y= 5xD. y = |6cosx| u *=”由参数方程c ,确定,则专=(X=1)33A. -B.-42C. f3 D. -e812. /W 在点气可导是/W 在点孔可微的()条件.A.充分B.必要c.充分必要D.以上都不对13,已知y = cosx ,则俨)=()5,设八中普%则下列说法正确的是()耶鲁专升本2017年高等数学模拟试卷A. sinxC. -sinxD. -cos%14.下列说法正确的是() A.函数的极值点一定是函数的驻点 B.函数的驻点一定是函数的极值点 C.二阶导数非零的驻点一定是极值点 D.以上说法都不对15.当*>此时,r (x )>o ;当工>气时,r (x )<o,则下列结论正确的是(A.JB. C. 1D-l22. 设乃疗2是y"+p (x )y+g (x )y = °的两个解,则y = =c x y v + c 2y 2 (冬。
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A)(0)2f '= (B)(0)1f '=(C )(0)0f '= (D )()f x 不可导。
2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。
3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。
(A )函数()F x 必在0x =处取得极大值; (B)函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A)22x (B )222x+(C )1x - (D)2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim 。
6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。
7.lim (cos cos cos )→∞-+++=22221n n n n n n ππππ 。
8. =-+⎰21212211arcsin -dx xx x 。
三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
高等数学(上1)期末试卷模拟试卷2及答案
北京语言大学网络教育学院《高等数学(上1)》模拟试卷注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零计算。
3.本试卷满分100分,答题时间为100分钟。
4.本试卷第I 卷答案必须答在指定答题处,第II 卷答案必须答在每道题下面的空白处。
第I 卷(客观卷)答题处第II 卷(主观卷)分值第I 卷(客观卷)一、 单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在第I 卷(客观卷)答题处。
1.函数y=x 3cos 2xsin+的周期为( B )2.极限=+∞→x arctgxlimx ( D )3.当x →0时,函数e x -cosx 是x 2的( A ) [A] 低阶无穷小量 [B] 等价无穷小量 [C] 高阶无穷小量 [D] 同阶但非等价的无穷小量[A] π [B] 4π[C]π32[D]6π[A] 0 [B] 1[C] -2π[D]2π《计算机组成原理》第 2 页 共 8 页4.设函数y=f(x 1),其中f(u)为可导函数,则=dxdy ( B )5.当0x →时,2()(1cos )ln(12)f x x x =-+与 B 是同阶无穷小量。
6. 已知一个函数的导数为y '=2x,且x=1时y=2,则这个函数是( B )7. 设函数f(x 2)=x 4+x 2+1,则=')1(f ( D )8.已知函数f(x)=⎪⎩⎪⎨⎧≥+<-0x ,a x 0x ,)x 1(x 1 在(-∞,+∞)内处处连续,则常数a=( C )9. 设函数y=x cosx (x>0),则=dxdy( C )10设函数f(x)=⎩⎨⎧>+≤+0x ),e x ln(0x ,a x 在x=0处连续,则常数a=(B ).[A] )x 1(f ' [B] )x 1(f x12'- [C] x )x 1(f '[D])x 1(f x12[A] 3x[B] 4x[C] 5x[D] 2x[A] y=x 2[B] y=x 2+1[C] 23x 21y 2+=[D] y=x+1[A] -1[B] 1 [C] -2 [D] 3[A] 0[B] 1[C] e -1[D] e[A]x cosx-1cosx [B] x cosx lnx [C] x cosx (x ln x sin xxcos -)[D]x ln x sin xxcos - [A] 0[B] 1[C] e -1[D] e《课程名称全称》第 3 页 共 8 页第II 卷(主观卷)二、 填空题(本大题共5小题,每小题2分,共10分)请将正确答案填入填在题中空格处,错填,不填均不得分 11.已知11()(0)f x x x=+>,则f(x)=_______________. 12. 极限=++∞→nn )2n 11(lim _______________. 13. 设函数f(x)在x=0处可导,且f(0)=0,则极限=→x)x (f lim0x _______________.14. 2sin[sin()]y x =,则dy dx =____________________________。
学历类《自考》自考公共课《高等数学(工本)》考试试题及答案解析
学历类《自考》自考公共课《高等数学(工本)》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、将函数展开为2的幂级数.正确答案:答案解析:暂无解析2、证明对坐标的曲线积分曲在整个xoy面内与路径无关.正确答案:答案解析:暂无解析3、求函数f(x,y)(x0,y0)的极值正确答案:答案解析:暂无解析4、已知f(x)是周期为2π的周期函数,它在[-π,π)上的表达式为f(x)=x+1,求f(x)傅里叶级数中系数b正确答案:答案解析:暂无解析5、判断无穷级数的敛散性正确答案:答案解析:暂无解析6、求微分方程的通解正确答案:答案解析:暂无解析7、求微分方程的通解正确答案:答案解析:暂无解析8、计算对坐标的曲线积分,其中N抛物线y=x2上从点A(一1,1)到点B(1,1)的一段弧。
正确答案:答案解析:暂无解析9、计算对弧长的曲线积分,其中C是从点A(3,0)到点B(3,1)的直线段·正确答案:答案解析:暂无解析10、计算三重积分,其中积分区域正确答案:答案解析:暂无解析11、计算二重积分,其中D是由y2=x和y=x2所围成的区域.正确答案:答案解析:暂无解析12、已知方程x2+y2-z2+2z=5确定函数z=z(x,y),求正确答案:答案解析:暂无解析13、求曲线x=4cost,y=4sint,z=3t在对应于的点处的法平面方程正确答案:答案解析:暂无解析14、求过点A(2,10,4),并且与直线x=-1+2t,y=1-3t,z=4-t平行的直线方程正确答案:答案解析:暂无解析15、已知向量a={-1,3,2),b={-3,0,1),则a×b=A、{3,5,9}B、{-3,5,9)C、(3,-5,9)D、{-3,-5,-9)正确答案:C答案解析:暂无解析16、已知函数,则全微分dz=A、B、C、D、正确答案:D答案解析:暂无解析17、设积分区域D:x²+y²≤4,则二重积分A、B、C、D、正确答案:A答案解析:暂无解析18、微分方程是A、可分离变量的微分方程B、齐次微分方程C、一阶线性齐次微分方程D、一阶线性非齐次微分方程正确答案:A答案解析:暂无解析19、无穷级数的敛散性为A、条件收敛B、绝对收敛C、发散D、敛散性无法确定正确答案:B答案解析:暂无解析20、已知无穷级数,则u1=正确答案:答案解析:暂无解析21、已知点p(-4,2+√3,2-√3)和点Q(-1,√3,2),则向量的模=正确答案:6.4答案解析:暂无解析22、已知函数f(x,y)=,则=正确答案:答案解析:暂无解析23、设积分区域D:|x|≤1,0≤y≤a,且二重积分,则常数a=正确答案:8.4答案解析:暂无解析24、微分方程的特解y*=正确答案:答案解析:暂无解析25、求过点A(2,10,4),并且与直线x=-1+2t,y=1-3t,z=4-t平行的直线方程正确答案:答案解析:暂无解析26、求曲线x=4cost,y=4sint,z=3t在对应于的点处的法平面方程正确答案:答案解析:暂无解析27、已知方程x2+y2-z2+2z=5确定函数z=z(x,y),求正确答案:答案解析:暂无解析28、计算二重积分,其中D是由y2=x和y=x2所围成的区域.正确答案:答案解析:暂无解析29、计算三重积分,其中积分区域正确答案:答案解析:暂无解析30、计算对弧长的曲线积分,其中C是从点A(3,0)到点B(3,1)的直线段·正确答案:答案解析:暂无解析。
2017年高数专升本真题及其参考答案.doc
2012年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上. 本试卷的试题答案必须答在答题卡上,答在试卷上无效. 一、选择题 (每小题2 分,共60 分)在每小题的四个备选答案中选出一个正确答案, 用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数 xx y 1arctan 4++=的定义域是 ( )A .[4-,+∞)B .(4-,+∞)C .[4-, 0)⋃(0,+∞)D .(4-, 0)⋃(0,+∞) 【答案】C.【解析】 x +4要求04≥+x ,即4-≥x ;x1arctan 要求0≠x .取二者之交集,得∈x [4-, 0)⋃(0,+∞) 应选C.2.下列函数为偶函数的是( )A .()x x y -+=1log 32B .x x y sin =C . ()x x ++1ln D. x e y =【答案】B.【解析】 显然A ,D 中的函数都是非奇非偶,应被排除;至于C , 记 ()()x x x f ++=1ln 2则 ()()()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+-=-x x x f 1ln 2()x x-+=1ln2=++=xx 11ln2()().1ln 2x f x x -=++-所以()x f 为奇函数,C 也被排除.应选B.3.当0→x 时,下列无穷小量中与)21ln(x +等价的是( )A . xB .x 21C .2xD .x 2 【答案】D.【解析】因为12)21ln(lim0=+→xx x ,所以应选D.4.设函数()xx f 1sin 2=, 则0=x 是()x f 的( )A .连续点B .可去间断点C .跳跃间断点D .第二类间断点 【答案】D .【解析】 因为()x f 在0=x 处无定义,且无左、右极限,故0=x 是()x f 的第二类间断点.选D . 5.函数3x y =在0=x 处A .极限不存在B .间断C .连续但不可导D .连续且可导 【答案】C.【解析】因为3x y =是初等函数,且在0=x 处有定义,故()x f 在0=x 处连续;又321.31xy =',故()x f 在0=x 处不可导.综上,应选 C.6.设函数()()x x x f ϕ= ,其中()x ϕ在0=x 处连续且的()00≠ϕ,则()0f '( )A .不存在B .等于()0ϕ'C .存在且等于0D .存在且等于()0ϕ 【答案】A.【解析】()()()00lim 00--='-→-x f x f f x ()xx x x 0lim 0--=-→ϕ()()0lim 0ϕϕ-=-=-→x x ; ()()()00lim 00--='+→+x f x f f x ()x x x x 0lim 0-=+→ϕ()()0lim 0ϕϕ==+→x x ; 因为()≠'-0f ()0+'f ,所以()0f '不存在,选A. 7.若函数()u f y =可导,x e u =,则=dy ( )A .()dx e f x 'B .()()x x e d e f 'C .()dx e x f x .'D .()[]()x x e d e f '【答案】D B.【解析】根据一阶微分形式的不变性知 ()()()x x e d e f du u f dy '='=,故选B. 8.过曲线()x f y 1=有水平渐进线的充分条件是( ) A .()0lim =∞→x f x B .()∞=∞→x f x limC .()0lim 0=→x f x D .()∞=→x f x 0lim【答案】B.【解析】根据水平渐进线的定义: 如果()C x f x =∞→lim 存在,则称C y =为曲线()x f y =的一条水平渐进线,易判断出应选B.9.设函数x x y sin 21-=,则=dydx( )A . y cos 211-B .x cos 211-C .ycos 22- D .x cos 22-【答案】D .【解析】因为x x x dx dy cos 211sin 21-='⎪⎭⎫⎝⎛-=,所以,=-==x dx dy dy dx cos 21111x c o s 22-,选D . 10.曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()1,0处的切线斜率是( )A .0B .1C .2D .3【答案】B.【解析】 因为()()()00lim 00--='-→-x f x f f x ()x x x 1sin 1lim 0-+=-→1sin lim 0==-→xx x ; ()()()00lim 00--='+→+x f x f f x ()111l i m 0=-+=+→xx x ,故()10='f 存在.所以,曲线()⎩⎨⎧<+≥+=,0,sin 1,0,1x x x x x f 在点()1,0处的切线斜率是()10='f ,选B.11. 方程033=++c x x (其中c 为任意实数)在区间()1,0内实根最多有( ) A .4个 B .3 个 C .2个 D .1个 【答案】D .【解析】 令c x x y ++=33.则0332>+='x y ,因此曲线c x x y ++=33在()1,0内是上升的,它至多与x 轴有一个交点,即方程033=++c x x 在区间()1,0内至多有一个实根.选D .12.若()x f '连续,则下列等式正确的是( )A .()[]()x f dx x f ='⎰ B .()()x f dx x f ='⎰ C .()()x f x df =⎰ D .()[]()x f dx x f d =⎰【答案】A .13.如果()x f 的一个原函数为x x arcsin -,则()=⎰dx x f 在( ) A .C x +++2111 B .C x+--2111 C .C x x +-arcsin D .C x+-+2111【答案】C.【解析】根据原函数及不定积分的定义,立知()=⎰dx x f C x x +-arcsin ,选C. 14.设()1='x f ,且()10=f ,则()=⎰dx x f ( )A .C x +B .C x x ++221C .C x x ++2D .C x +221【答案】B.【解析】因为()1='x f ,故 ()C x dx x f +==⎰1 .又()10=f ,故.1=C 即 ()1+=x x f .所以,()=⎰dx x f ().2112C x x dx x ++=+⎰选B. 15. =-⎰dt t dx d x2012sin 2)cos (( ) A .2cos x - B .()x x cos .sin cos 2C . 2c o s x xD . ()2i n c o s x【答案】B.【解析】 =-⎰dt t dx d x 2012sin 2)cos (()()⎥⎦⎤⎢⎣⎡'--x x sin .sin cos 2()x x cos .sin cos 2=,选B.16.=-⎰dx e x x 2132( )A .1B .0C .121--eD .11--e 【答案】C. 【解析】=-⎰dx e x x 2132)(212x e d x -⎰-(分部)()⎥⎦⎤⎢⎣⎡-+-=⎰--21010222|x d e e x x x11121|2----=--=e ee x .选 C.17.下列广义积分收敛的是( )A . ⎰10ln 1xdx x B.⎰10031dx xx C .⎰+∞1ln 1xdx xD .dx e x ⎰+∞--35 【答案】D. 【解析】因为 ⎰+→+100ln 1lim εεxdx x ()⎰+→=10ln ln lim εεx xd ∞==+→|120ln 21lim εεx ,所以,⎰10031dx xx 发散; 因为 ⎰+→+10031lim εεdx xx ⎰-→+=1034lim εεdx x ∞=-=+→|1031lim 3εεx ,所以,⎰10ln 1xdx x发散; 因为⎰+∞1ln 1xdx x ()⎰+∞=1ln ln x xd ∞==+∞|12ln 21x ,所以,⎰+∞1ln 1xdx x发散;dx e x ⎰+∞--35()()151535355105151551|e e e x d e x x =--=-=--=+∞--+∞--⎰收敛。
2017高等数学II(1)A参考答案
考试形式开卷( )、闭卷(√),在选项上打(√)
开课教研室 大学数学部 命题教师
命题时间 2017-12-5 使用学期 17-18-1 总张数 3 教研室主任审核签字
d
1
江南大学考试卷专用纸
(12) 求不定积分 ∫ arctan x dx .
解:令 x = t , 则 x = t2, dx = 2tdt .于是 ......................1'
本题 得分
三、计算题(11~ 14小题,每小题 7 分, 共 28分)
(11) 求由方程 xy + ln y = 1所确定的曲线 y = y(x) 在点 M (1,1) 处的切线的方程。 解:方程 xy + ln y = 1两边对 x 求导数,得
y + xy′ + y′ = 0, y
解得
y′ = − y2 . xy + 1
2
2e
所以特解为 y
==
−1 2e
1
x3e x2
+
1 x3 2
=
1 2e
1
x3 e − e x2
. ..............1'
本题 得分
四、证明题(15 ~ 16 小题,每小题 7 分,共 14 分)
(15) 证明:当 x > 0 时, ln(1 + x) > arctan x . 1+ x
江南大学考试卷专用纸
2017 级《高等数学 II(1)》考试卷(A)
班级
学号
姓名
(A) 0
(B) 1
(C) − π 2
(D) π 2
∫ (8) 设 f (x) = sin x sin(t2 )dt , g(x) = x3 + x4 , 则当 x → 0 时, f (x) 是 g(x) 的【B 】 0 (A) 等价无穷小 (B) 同阶但非等价无穷小 (C) 高阶无穷小 (D) 低阶无穷小
2017年成人高考数学完整版.doc
2017年成人高等学校招生全国统一考试高起点数学第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.1017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。