(完整)数学选修2-1期末考试卷及答案,推荐文档

合集下载

最新人教A版高中数学选修2-1测试题全套含答案解析

最新人教A版高中数学选修2-1测试题全套含答案解析
(3)﹁s:∀x∈R,x3+3≠0,假命题.这是由于当x=-时,x3+3=0.
18.(本小题满分12分)指出下列命题中,p是q的什么条件?
(1)p:{x|x>-2或x<3};q:{x|x2-x-6<0};
(2)p:a与b都是奇数;q:a+b是偶数;
(3)p:0<m<;q:方程mx2-2x+3=0有两个同号且不相等的实根.
【解】(1)因为{x|x2-x-6<0}={x|-2<x<3},
所以{x|x>-2或x<3}{x|-2<x<3},
而{x|-2<x<3}⇒{x|x>-2或x<3}.
所以p是q的必要不充分条件.
(2)因为a,b都是奇数⇒a+b为偶数,而a+b为偶数a,b都是奇数,所以p是q的充分不必要条件.
(3)mx2-2x+3=0有两个同号不等实根⇔⇔⇔⇔.
【解析】当x=2且y=-1时,满足方程x+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足x=2且y=-1,∴“x=2且y=-1”是“点P(x,y)在直线l上”的充分不必要条件.
【答案】A
5.“关于x的不等式f(x)>0有解”等价于()
A.∃x0∈R,使得f(x0)>0成立
【答案】B
3.已知抛物线C1:y=2x2的图象与抛物线C2的图象关于直线y=-x对称,则抛物线C2的准线方程是()
A.x=-B.x=
C.x=D.x=-
【解析】抛物线C1:y=2x2关于直线y=-x对称的C2的表达式为-x=2(-y)2,即y2=-x,其准线方程为x=.
【答案】C
4.已知点F,A分别为双曲线C:-=1(a>0,b>0)的左焦点、右顶点,点B(0,b)满足·=0,则双曲线的离心率为()

高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若某2<1,则-1<某<1”的逆否命题是()A.若某2≥1,则某≥1,或某≤-1B.若-1<某<1,则某2<1C.若某>1,或某<-1,则某2>1D.若某≥1或某≤-1,则某2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】D3.命题p:某+y≠3,命题q:某≠1或y≠2,则命题p是q的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若某=1且y=2,则某+y=3”,是真命题,故原命题为真,反之不成立.【答案】A4.设点P(某,y),则“某=2且y=-1”是“点P在直线l:某+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第-1-页共8页【解析】当某=2且y=-1时,满足方程某+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足某=2且y=-1,∴“某=2且y=-1”是“点P(某,y)在直线l上”的充分而不必要条件.【答案】A5.“关于某的不等式f(某)>0有解”等价于()A.某0∈R,使得f(某0)>0成立B.某0∈R,使得f(某0)≤0成立C.某∈R,使得f(某)>0成立D.某∈R,f(某)≤0成立【解析】“关于某的不等式f(某)>0有解”等价于“存在实数某0,使得f(某0)>0成立”.故选A.【答案】A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】A7.命题p:函数y=lg(某2+2某-c)的定义域为R;命题q:函数y=lg(某2+2某-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.C.{c|c≥-1}B.{c|c【解析】命题p为真命题,即某2+2某-c>0恒成立,则有Δ=4+4c<0,解得c第-2-页共8页【答案】A8.对某∈R,k某2-k某-1<0是真命题,则k的取值范围是()A.-4≤k≤0C.-4<k≤0B.-4≤k<0D.-4<k<0【解析】由题意知k某2-k某-1<0对任意某∈R恒成立,当k=0时,-1<0恒k<0,成立;当k≠0时,有即-4<k<0,所以-4<k≤0.2Δ=k+4k<0,【答案】C9.已知命题p:若(某-1)(某-2)≠0,则某≠1且某≠2;命题q:存在实数某0,使2某0<0.下列选项中为真命题的是()A.綈pC.綈q∧pB.綈p∨qD.q【解析】很明显命题p为真命题,所以綈p为假命题;由于函数y=2某,某∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.【答案】C10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件a1>0,a1<0,【解析】等比数列{an}为递增数列的充要条件为或故“q>1”是q>10“”“{an}为递增数列”的既不充分也不必要条件.【答案】D11.已知命题p:某>0,总有(某+1)e某>1,则綈p为()A.某0≤0,使得(某0+1)e某0≤1B.某0>0,使得(某0+1)e某0≤1C.某>0,总有(某+1)e某≤1第-3-页共8页D.某≤0,使得(某+1)e某≤1【解析】因为全称命题某∈M,p(某)的否定为某0∈M,綈p(某),故綈p:某0>0,使得(某0+1)e某0≤1.【答案】B12.已知p:点P在直线y=2某-3上;q:点P在直线y=-3某+2上,则使p∧q为真命题的点P的坐标是()A.(0,-3)C.(1,-1)B.(1,2)D.(-1,1)【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2某y=2某-3,某=1,-3与直线y=-3某+2的交点.解方程组得即点P的坐标为(1,y=-3某+2,y=-1,-1).【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=某-3的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.【解析】p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.【答案】p∨q与綈p14.“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除15.已知f(某)=某2+2某-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.f(1)=3-m≤0,【解析】依题意,∴3≤m<8.f(2)=8-m>0,第-4-页共8页【答案】[3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;3②命题“某∈N,某3>某2”的否定是“某0∈N,使某0>某2;0”③“b=0”是“函数f(某)=a某2+b某+c为偶函数”的充要条件;④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________.【解析】①②④是假命题,③是真命题.【答案】③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q:所有的矩形都是正方形;(2)r:某0∈R,某20+2某0+2≤0;(3):至少有一个实数某0,使某30+3=0.【解】(1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r:某∈R,某2+2某+2>0,真命题.这是由于某∈R,某2+2某+2=(某+1)2+1≥1>0恒成立.(3)綈:某∈R,某+3≠0,假命题.这是由于当某=-3时,某3+3=0.18.(本小题满分12分)指出下列命题中,p是q的什么条件?(1)p:{某|某>-2或某<3};q:{某|某2-某-6<0};(2)p:a与b都是奇数;q:a+b是偶数;(3)p:03【解】(1)因为{某|某2-某-6<0}={某|-2-2或某<3}/{某|-2-2或某<3}.所以p是q的必要不充分条件.第-5-页共8页33(2)因为a,b都是奇数a+b为偶数,而a+b为偶数/a,b都是奇数,所以p是q的充分不必要条件.(3)m某2-2某+3=01Δ>0,4-12m>0,mm>0m>0m>03所以p是q的充要条件.19.(本小题满分12分)已知命题p:不等式2某-某2q:m2-2m-3≥0,如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围.【解】2某-某2=-(某-1)2+1≤1,所以p为真时,m>1.由m2-2m-3≥0得m≤-1或m≥3,所以q为真时,m≤-1或m≥3.因为“綈p”与“p∧q”同时为假命题,所以p为真命题,q为假命题,所以得m>1,-1即120.(本小题满分12分)已知两个命题p:in某+co某>m,q:某2+m某+1>0,如果对任意某∈R,有p∨q为真,p∧q为假,求实数m的取值范围.【解】当命题p是真命题时,π由于某∈R,则in某+co某=2in某+≥-2,4所以有m<-2.当命题q是真命题时,由于某∈R,某2+m某+1>0,则Δ=m2-4<0,解得-2<m<2.由于p∨q为真,p∧q为假,所以p与q一真一假.考虑到函数f(某)=某2+m某+1的图象为开口向上的抛物线,对任意的某∈R,某2+m某第-6-页共8页+1≤0不可能恒成立.所以只能是p为假,q为真,m≥-2,此时有-2<m<2,解得-2≤m<2,所以实数m的取值范围是[-2,2).21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.(1)若命题p为真,求实数t的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.5【解】(1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得125所以实数t的取值范围是1,2.(2)因为p是q解集的真子集.5的充分不必要条件,所以t1的法一因为方程t2-(a+3)t+a+2=0的两根为1和a+2,51所以只需a+2>,解得a>.22即实数a的取值范围为2,+∞.法二令f(t)=t2-(a+3)t+a+2,因为f(1)=0,15所以只需f2<0,解得a>.2即实数a的取值范围为2,+∞.22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程某2+2a某+b2=0与某2+2c某-b2=0有公共根的充要条件是∠A=90°.【证明】充分性:∵∠A=90°,∴a2=b2+c2.于是方程某2+2a某+b2=0可化为某2+2a某+a2-c2=0,∴某2+2a某+(a+c)(a-c)=0.第-7-页共8页∴[某+(a+c)][某+(a-c)]=0.∴该方程有两根某1=-(a+c),某2=-(a-c),同样另一方程某2+2c某-b2=0也可化为某2+2c某-(a2-c2)=0,即[某+(c+a)][某+(c-a)]=0,∴该方程有两根某3=-(a+c),某4=-(c-a).可以发现,某1=某3,∴方程有公共根.必要性:设某是方程的公共根,某2+2a某+b2=0,①则22某+2c某-b=0,②由①+②,得某=-(a+c),某=0(舍去).代入①并整理,可得a2=b2+c2.∴∠A=90°.∴结论成立.第-8-页共8页。

高中数学选修2-1试题及答案

高中数学选修2-1试题及答案

数学选修模块测试样题选修2-1 (人教A 版)考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.1x >是2x >的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.命题0p x x ∀∈≥R :,的否定是( )A .0p x x ⌝∀∈<R :,B .0p x x ⌝∃∈≤R :,C .0p x x ⌝∃∈<R :,D .0p x x ⌝∀∈≤R :,5. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A .22143x y -= B . 22153x y -= C .221259x y -= D .221169x y -= 7. 下列各组向量平行的是( )A .(1,1,2),(3,3,6)=-=--a bB .(0,1,0),(1,0,1)==a bC .(0,1,1),(0,2,1)=-=-a bD .(1,0,0),(0,0,1)==a b8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1 BC .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.设1k >,则关于x ,y 的方程222(1)1k x y k -+=-所表示的曲线是( )A .长轴在x 轴上的椭圆B .长轴在y 轴上的椭圆C .实轴在x 轴上的双曲线D .实轴在y 轴上的双曲线13. 一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85m C . 2.15m D . 2.25m14.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( ) A .椭圆B .双曲线C .抛物线D .圆二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.命题“若0a >,则1a >”的逆命题是_____________________.16.双曲线22194x y -=的渐近线方程是_____________________. 17.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .AEDCB18. 已知椭圆12222=+b y a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF ,6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)设直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点. (1)求实数b 的取值范围; (2)当1b =时,求AB .20.(本小题满分10分)如图,正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点. (1)求1AD 与DB 所成角的大小; (2)求AE 与平面ABCD 所成角的正弦值.21.(本小题满分10分)已知直线y x m =-与抛物线x y 22=相交于),(11y x A ,),(22y x B 两点,O 为坐标原点. (1)当2=m 时,证明:OB OA ⊥;(2)若m y y 221-=,是否存在实数m ,使得1-=⋅?若存在,求出m 的值;若不存在,请说明理由.A BCA 1B 1C 1D 1 DE数学模块测试样题参考答案数学选修2-1(人教A 版)一、选择题(每小题4分,共56分)1. B 2. B 3.D 4.C 5.C 6.D 7. A 8. C 9. B10.D11.B12.D13.A14.A二、填空题(每小题4分,共16分)15.若1a >,则0a > 16.23y x =±17. 26y x =+ 181三、解答题(解答题共28分) 19.(本小题满分8分)解:(1)将y x b =+代入2212x y +=,消去y ,整理得2234220x bx b ++-=.① 因为直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点,所以2221612(22)2480b b b ∆=--=->, 解得b <<.所以b 的取值范围为(. (2)设11()A x y ,,22()B x y ,, 当1b =时,方程①为2340x x +=.解得1240,3x x ==-. 相应地1211,3y y ==-.所以(AB x ==.20.(本小题满分10分)解:(1) 如图建立空间直角坐标系D xyz -,则(000)D ,,,(200)A ,,,(220)B ,,,1(002)D ,,则(2,2,0)DB =,1(2,0,2)D A =-. 故1111cos ,22DB D A DB D A DB D A⋅〈〉===⋅.所以1AD 与DB 所成角的大小为60. (2) 易得(021)E ,,,所以(2,2,1)AE =-. 又1(0,0,2)DD =是平面ABCD 的一个法向量,且11121cos ,323AE DD AE DD AE DD ⋅〈〉===⨯⋅. 所以AE 与平面ABCD 所成角的正弦值为13. 21.(本小题满分10分)解:(1)当2=m 时,由⎩⎨⎧=-=,,x y x y 222得0462=+-x x ,解得 53,5321-=+=x x , 因此 51,5121-=+=y y .于是 )51)(51()53)(53(2121-++-+=+y y x x 0=, 即0OA OB ⋅=. 所以 OB OA ⊥.(2)假设存在实数m 满足题意,由于B A ,两点在抛物线上,故⎪⎩⎪⎨⎧==,,22212122x y x y 因此222121)(41m y y x x ==. 所以m m y y x x 222121-=+=⋅.由1-=⋅,即122-=-m m ,得1=m .又当1=m 时,经验证直线与抛物线有两个交点, 所以存在实数1=m ,使得1-=⋅OB OA。

最新人教A版高中数学选修2-1测试题全套及答案

最新人教A版高中数学选修2-1测试题全套及答案

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p ∨q 与命题p ⌝都是真命题,则( )A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .⌝p :∀x ∈A ,2x ∉B B .⌝p :∀x ∉A ,2x ∉BC .⌝p :∃x 0∉A ,2x 0∈BD .⌝p :∃x 0∈A ,2x 0∉B4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值X 围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .⌝p 为假命题D .⌝q 为假命题9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 311.已知A :13x -<,B :(2)()0x x a ++<,若A 是B 的充分不必要条件,则实数a 的取值X 围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x -1)(x -2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值X 围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.14.若命题“∪x ∪R ,ax 2-ax -2≤0”是真命题,则实数a 的取值X 围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值X 围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值X 围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若,0≥ac 则二次方程02=++c bx ax 没有实根.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =φ”是假命题,XX 数m 的取值X 围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∪P 是x ∪S 的充要条件,若存在,求出m 的X 围;若不存在,请说明理由;(2)是否存在实数m ,使x ∪P 是x ∪S 的必要条件,若存在,求出m 的X 围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若命题p ∧q 为假,命题p ∨q 为真,XX 数c 的取值X 围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值X 围.24.(10分)已知数列{a n }的前n 项和为S n ,数列{S n +1}是公比为2的等比数列. 证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案一、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“p ⌝”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则⌝p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 7.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⎩⎪⎨⎪⎧a ≤0,a +2≥1,⇒a ∈[-1,0]. 8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题. 10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知1324x x -<⇔-<<,当2a <时,(2)()02x x a x a ++<⇔-<<-,若A 是B 的充分不必要条件,则有A B ⊆且B A ≠,故有4a ->,即4a <-;当2a =时,B=φ,显然不成立;当2a >时,(2)()02x x a a x ++<⇔-<<-,不可能有A B ⊆,故(),4a ∈-∞-.12.不等式(x -1)(x -2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15.⎣⎡⎦⎤-2,9416.①② 17.(-∞,-2]∪{1} 18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0得-8≤a <0, 所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-2≤a ≤2;当有两个非负实根时,⎩⎪⎨⎪⎧Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0⇔⎩⎪⎨⎪⎧4a ≤9,a >12,a ≤-2或a ≥ 2.即2≤a ≤94.综上,得-2≤a ≤94. 16.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若,0<ac 则二次方程02=++c bx ax 有实根.(2)命题p 的否命题是真命题. 证明如下: ,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程02=++c bx ax 有实根.故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥32}. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值X 围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3. 又1+m ≥1-m,所以m ≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以⌝p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1, 所以⌝q :c >12且c ≠1. 又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∪. 综上所述,实数c 的取值X 围是⎩⎨⎧⎭⎬⎫c |12<c <1. 23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =a 2或x =-a , 所以当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,所以|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值X 围为{a |a >2或a <-2}.24.证明: 因为数列{S n +1}是公比为2的等比数列,所以S n +1=S 1+1·2n -1,即S n +1=(a 1+1)·4n -1.因为a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2, 所以a n =⎩⎪⎨⎪⎧a 1,n =1,3(a 1+1)·4n -2,n ≥2,显然,当n ≥2时,a n +1a n =4. ①充分性:当a 1=3时,a 2a 1=4,所以对n ∈N *,都有a n +1a n=4,即数列{a n }是等比数列. ②必要性:因为{a n }是等比数列,所以a 2a 1=4, 即3(a 1+1)a 1=4,解得a 1=3. 综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或73.已知椭圆x 225+y 29=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N 是MF 1的中点,则|ON |的长为( )A .1B .2C .3D .44.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则双曲线的离心率e 等于( )A .2B .3C .32D .26.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(3,-26)D .(2,4)7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则椭圆x 2a 2+y 2b 2=1的离心率为( )A .12B .33C .32D .228.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .489.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是( )A .22B .2C .322D .2210.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32B .26C .27D .712.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±22xC .y=±(1+3)xD .y=±(3-1)x 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是_____.17.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为3的直线与该抛物线交于A ,B 两点,A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为103,则p=_____. 三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.20.(10分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.22.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B . (1)求双曲线C 的离心率e 的取值X 围;(2)设直线l 与y 轴的交点为P ,且PA →=512PB →,求a 的值.24.(10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且经过点(32,12). (1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C 9.B 10.A 11.C 12.C 提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 4.若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件. 5.依题意,得c =2,a =1,所以e =ca =2.6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,在椭圆中,e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1-14=34,所以椭圆的离心率e =32.8.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.9.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d =|1-0+1|2=2.10.由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20,因为P 为椭圆上一点,所以x 204+y 203=1,所以OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2,因为-2≤x 0≤2,所以OP →·FP →的最大值在x 0=2时取得,且最大值等于6.11.根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,因为椭圆与直线x +3y +4=0有且仅有一个交点,所以Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以b 2=3,长轴长为2b 2+4=27.12.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=c a ,那么cos ∠BF 1F 2=cb,根据余弦定理有cos ∠BF 1F 2=c b =ca a c a 222)4()2()2(222⨯⨯-+,整理有b 2-2ab -2a 2=0,即(a b)2-2a b -2=0,解得a b =1+3(a b =1-3<0舍去),故双曲线的渐近线方程为y=±abx=±(1+3)x .二、填空题13.1814.x 281+y 272=115.10 16.9217.82318.3 提示:13.由x 2=14y 知,p =18,所以焦点到准线的距离为p =18.14.依题意知:2a =18,所以a =9,2c =13×2a ,所以c =3,所以b 2=a 2-c 2=81-9=72,所以椭圆方程为x 281+y 272=1.15.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12,又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.17.设点A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 22+y 2=1,y =x -1,消去y 整理得3x 2-4x =0,解得x 1=0,x 2=43,易得点A (0,-1)、B (43,13).又点F 1(-1,0),因此|F 1A |+|F 1B |=12+(-1)2+(73)2+(13)2=823.18.由抛物线y 2=2px (p>0)得其焦点F (2p ,0),直线AB 的方程为y=3(x -2p ),设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立⎪⎩⎪⎨⎧=-=px y p x y 2)2(32,整理有3y 2-2py -3p 2=0,可得y 1+y 2=32p,y 1y 2=-p 2,则有x 1+x 2=35p ,而梯形ABCD的面积为S=21(x 1+x 2)(y 2-y 1)=65p212214)(y y y y -+=103,整理有p 2=9,而p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576, 所以双曲线的方程为x 236-y 264=1和y 264-x 236=1. 20.解:(1)因为P 点在椭圆上,所以9a 2+16b 2=1,① 又PF 1⊥PF 2,所以43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③ 由①②③得a 2=45,b 2=20,则椭圆方程为x 245+y 220=1; (2)S 21F PF ∆=12|F 1F 2|×4=5×4=20.21.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x ,解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ; 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513, 所以⎝⎛⎭⎫p24+p 2+(64p 2+16p 2)=325, 所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p2, 设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8, 所以x 1+p 2+x 2+p2=8,即x 1+x 2=8-p ,因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y 21=(x 2-6)2+y 22,又y 21=2px 1,y 22=2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0, 因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4, 所以所求抛物线方程是y 2=8x .23.解:(1)联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a 2.因为与双曲线交于两点A 、B ,所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,可得0<a 2<2且a 2≠1,所以e 的取值X 围为(62,2)∪(2,+∞); (2)由(1)得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a2.因为P A →=512PB →,所以x 1=512x 2,则1712x 2=-2a 21-a 2,①512x 22=-2a 21-a 2,② 由①2②得,a 2=289169,结合a >0,则a =1713. 24.解:(1)由e 2=a 2-b 2a 2=1-b 2a 2=23,得b a =13,①由椭圆C 经过点(32,12),得94a 2+14b 2=1,②联立①②,解得b =1,a =3, 所以椭圆C 的方程是x 23+y 2=1;(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0, 令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,所以S △AOB =|S △POB -S △POA |=12×2×|x 1-x 2|=|x 1-x 2|,因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-12k 1+3k 2)2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0), 则(x 1-x 2)2=36t(3t +4)2=369t +16t+24≤3629t ×16t+24=34, 当且仅当9t =16t ,即t =43时等号成立,此时k 2=73,△AOB 面积取得最大值32.第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是(). A .5B .5C .9 D .32.化简AB +CD -CB -AD ,结果为().A .0B .ABC .ACD .3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是(). A .(a +b )+c =a +(b +c )B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )·c =a ·(b ·c )4.已知+=(2,-1,0),a -b =(0,3,-2),则cos<,>的值为(). A .31B .-32C .33D .375.若P 是平面α 外一点,A 为平面α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面α 所成的角为().A .40ºB .50ºC .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且 = + 3+ 2+ x ,则x 的值是().A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .85D .528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥c ,则x 等于().A .4B .-4C .21D .-6 9.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(A A 1+11D A +11B A )2=3(11B A )2;②A 1·(11B A -A A 1)=0;③向量1AD 与向量A 1的夹角为60º;④正方体ABCD —A 1B 1C 1D 1的体积为|··|. 错误命题的个数是().A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·>0,则该四边形为().A .平行四边形B .梯形C .任意的平面四边形D .空间四边形 二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b =.1AA12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |=. 13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小.14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为.15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量n A A 1=2a ,a 与b 夹角为30º,且|a |=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为.三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形, O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是11B A 、的中点.A A 1ABA 1B 1D CD 1C 1O(第17题)(1)求BN ·M C 1;(2)求cos<1BA ,1CB >.19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.ACBA 1C 1B 1N M(第18题)(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4.20.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,E ,F 分别为PC 、CD 中点.ABA 1D B 1C D 1C 1E(第19题)(1)试证:CD ⊥平面BEF ;(2)设PA =k ·AB ,且二面角E —BD —C 的平面角大于30º,求k 的取值X 围.参考答案一、选择题 1.D2.A3.D 4.B解析:两已知条件相加,得 a =(1,1,-1),再得 b =(1,-2,1),则cos<a ,b >=||||b a •=-32. 5.B6.D7.C8.B9.B 10.D解析:由AB ·BC >0得∠ABC >90º,同理,∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12.14. 13.90°.BACPE FD(第20题)14.60º或120º. 15.4x +4y -6z +3=0. 16.3. 三、解答题17.提示:∵C B 1=D A 1=11C A +D C 1=21OC +D C 1. ∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1. 18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0. (2)1030. 提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得1·E D 1=0.(2)31. 提示:平面ACD 1的一个法向量为n 1=(2,1,2),d =11n n | |1·E D =31. (3)2-3.提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =x ),利用 cos 4x =2-3.20.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >15152.提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><23,其中n 1,n 2分别为面EBD ,面BDC 的一个法向量.。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。

高二理科数学选修2-1期末试卷及答案

高二理科数学选修2-1期末试卷及答案

高二年级理科数学选修2-1期末试卷(测试时间:120分钟 满分150分)注意事项:答题前;考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时;答案写在答题纸上对应题目的空格内;答案写在试卷上无效..........本卷考试结束后;上交答题纸. 一、选择题(每小题5 分;共12小题;满分60分)1. 已知命题tan 1p x R x ∃∈=:,使;其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a ; 0) (B )(-a ; 0) (C )(0; a ) (D )(0; -a ) 3. 设a R ∈;则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3;3;2);B (4;-3;7);C (0;5;1);则BC 边上的 中线长为 ( ) (A )2 (B )3 (C )4 (D )55.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底;那么b a ,的关系是不共线;②,,,O A B C 为空间四点;且向量OC OB OA ,,不构成空间的一个基底;则点,,,O A B C 一定共面; ③已知向量c b a ,,是空间的一个基底;则向量c b a b a ,,-+也是空间的一个基底。

其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中;M 为11C A 与11D B 的交点。

若a AB =;b AD =;c AA =1则下列向量中与BM 相等的向量是( )(A ) c b a ++-2121 (B )c b a ++2121 (C )c b a +--2121 (D )c b a +-21217. 已知△ABC 的周长为20;且顶点B (0;-4);C (0;4);则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0)(C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0)8. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1; y 1)B (x 2; y 2)两点;如果21x x +=6;C1那么AB = ( ) (A )6 (B )8 (C )9 (D )109. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点;那么k 的取值范围是 ( )(A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--) x y 42-=上求一点P ;使其到焦点F 的距离与到()1,2-A 的距离之和最小;则该点坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫⎝⎛1,41 (C )()22,2-- (D )()22,2- 11. 在长方体ABCD-A 1B 1C 1D 1中;如果AB=BC=1;AA 1=2;那么A 到直线A 1C 的距离为 ( )(A (B ) (C (D )F 1、F 2分别是椭圆22221x y a b+=的左、右焦点;过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点;若△ABF 2为正三角形;则该椭圆的离心率e 为 ( )(A )12 (B )(C )13(D二、填空题(每小题4分;共4小题;满分16分)A (1;-2;11)、B (4;2;3)、C (x ;y ;15)三点共线;则x y =___________。

最新人教A版高中数学选修2-1测试题全套含答案解析

最新人教A版高中数学选修2-1测试题全套含答案解析
B.若-若x≥1或x≤-1,则x2≥1
【解析】命题“若p,则q”的逆否命题为“若﹁q,则﹁p”.
【答案】D
2.已知命题p:“∀x∈[0,1],a≥ex”,命题q:“∃x0∈R,x+4x0+a=0”.若命题“p∧q”是真命题,则实数a的取值范围是()
A.﹁pB.﹁p∨q
C.﹁q∧pD.q
【解析】很明显命题p为真命题,所以﹁p为假命题;由于函数y=2x,x∈R的值域是(0,+∞),所以q是假命题,所以﹁q是真命题.所以﹁p∨q为假命题,﹁q∧p为真命题,故选C.
【答案】C
10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()
A.∅B.{c|c<-1}
C.{c|c≥-1}D.R
【解析】命题p为真命题,即x2+2x-c>0恒成立,则有Δ=4+4c<0,解得c<-1,即A={c|c<-1};令f(x)=x2+2x-c,命题q为真命题,则f(x)的值域包含(0,+∞).即Δ=4+4c≥0,求得c≥-1,即B={c|c≥-1}.于是A∩B=∅,故选A.
【答案】末位数字是1或3的整数能被8整除 末位数字不是1且不是3的整数能被8整除
15.已知f(x)=x2+2x-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.
【解析】依题意,∴3≤m<8.
【答案】[3,8)
A.(0,-3)B.(1,2)
C.(1,-1)D.(-1,1)
【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2x-3与直线y=-3x+2的交点.解方程组得即点P的坐标为(1,-1).
【答案】C
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)

高中数学选修2-1试题(后附详细答案)

高中数学选修2-1试题(后附详细答案)

高中数学选修2-1试卷 班级________姓名:_________考试时间:120分钟 试卷满分:150分一、选择题:本大题共12小题,每小题5分,共60分.将答案写在后面的框内,否则一律不给9分.1.“1x ≠”是“2320x x -+≠”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.(重庆高考)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .存在x 0∈R ,使得x 20<0B .对任意x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20≥0D .不存在x ∈R ,使得x 2<05. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A . 22143x y -= B . 22153x y -= C .221259x y -= D .221169x y -= 7. 下列各组向量平行的是( )A .(1,1,2),(3,3,6)=-=--a bB .(0,1,0),(1,0,1)==a bC .(0,1,1),(0,2,1)=-=-a bD .(1,0,0),(0,0,1)==a b8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1 BC .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( )二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.命题“若0a >,则1a >”的否命题是_____________________.14.双曲线22194x y -=的渐近线方程是_____________________. 15.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .16. 已知椭圆12222=+by a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且AEDCB3021=∠F PF , 6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。

高中数学选修2 1期末考试试题及答案

高中数学选修2 1期末考试试题及答案

高中数学选修2-1期末考试试题及答案.新世纪教育培训中心高二期末考试数学试题一.选择题(每小题5分,满分60分)1.设均为直线,其中在平面的?”?nm且?l”是“l?a内,则“l nm,n,,lm()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.对于两个命题:①,②,221x?cos x?,sin?x?R1sin x?R?x?,?1?)。

下列判断正确的是(都 C. ①②假①真②①A. 假②真 B.都真①②假 D.共焦点且过点的双曲线方程是3.与椭圆2x()222xxy D.21y??(2,1)Q4A.B.C.4.已知是椭圆2221??y??1y?x?122422yx1??33的两个焦点,过且与椭圆长轴垂直的F,FF121弦交椭圆与,两点,则是正三角形,则椭圆的离心ABF?BA2率是()w.w.w.k.s.5.u.c.o.m321 CB A3222新世纪教育培训中心1D 3与抛5.过抛物线的焦点作倾斜角为直线,直线20x8?y45ll物线相交与,两点,则弦)的长是(AB BA A 8 B 16 C 32w.w.w.k.s.5.u.c.o.m D 64的曲线方程6.在同一坐标系中,22222)b?0?ax?by0(a?bax?x?1与)大致是(. C..A B D.22在椭点7.已知椭圆的两个焦点(>0) F,F,yx ba?P1??2122ba最大值一定是(圆上,则的面积)FPF?21 A B C 222a baa?ab D 22b?ba的值则实数k互相垂直,已知向量8.ba?k0,2),且a?b与2?),,a?(11,0b?(1, )是(137...1 B. C D A 555所中,是棱.9在正方体的中点,则与EABD DCAABCD?B BA E11111111)成角的余弦值为(3新世纪教育培训中心105510... AC. BD510510过原点与A,B两点,交于10.若椭圆22x与直线y?1?n?1(m?0,?0)nymx?n2( ) ,则线段AB的值是中点的连线的斜率为m2223C.D2B..2A.292作直线交抛物线于F的焦点11.过抛物线2y?4x两点,若,则的值为()????6y?Px,y y,P?x,y PP2121122112A.5 B.6 C.8 D.10=1的焦点为顶点,12..以顶点为焦点的椭22yx圆方程为?124()222222yxyxxyD.B.A. C.1???1???141216161612二.填空题(每小题4分)1OCOB?OM?xOA?y面13.已知A、C三点不共线,对平B、3是实数,若外一点O,给出下列表达式:其中x,yABCx+y=___ 、B、C四点共面,则点M与A且与抛的焦点,y2=4x14.斜率为1的直线经过抛物线___ 两点,则A,B等于物线相交于AB,则实数“P:x>0,”是真命题15.若命题2?0x?2ax??2.a的取值范围是___,则直,为空间中一点,且.已知16C??90AOB???AOC??BOC?60所成角的正弦值为与平面.线___AOBOC4新世纪教育培训中心三.解答题(解答应写出必要的文字说明、证明过程和演算步骤。

高中数学选修21期末考试题与答案

高中数学选修21期末考试题与答案

()
A8
B 16
C 32
D 64
w.w.w.k.s.5.u.c.o.m
6. 在同一坐标系中,方程 a 2 x2 b2 x 2 1与 ax by 2 0(a b 0) 的曲线大致是(

A.
7. 已知椭圆
x2 a2
()
B

C

D

y2 b2
1( a
b >0) 的两个焦点 F1, F2,点 P 在椭圆上,则
1 4.8 1 5. ( ,4)
16. 详解: 由对称性点 C 在平面 AOB 内的射影 D 必在 AOB的平分线上作 DE OA 于 E ,连结 CE 则由
PF1F2 的面积 最大值一定是
A a2
B
ab
C
a a2 b2
D
b a2 b2
8. 已知向量 a (1,1,0), b ( 1,0,2), 且ka b与2a b 互相垂直 , 则实数 k 的值是 (
)
.专业 .整理 .
下载可编辑
1
A .1
B
.5
3 C. 5
7
D .5
9. 在正方体 ABCD A1B1C1D1 中, E 是棱 A1B1 的中点,则 A1B 与 D1E 所成角的余弦值为(
)5A .Fra bibliotek1010
B. 10
5
C. 5
10
D. 5
10. 若椭圆 mx2 ny2 1(m 0, n 0)与直线 y 1 x 交于 A,B两点 , 过原点与线段 AB中点的连线的斜率为
2
2,
n 则 m 的值是 ( )
A. 2
2 B.
2

高中数学选修2--1期末考试题与答案

高中数学选修2--1期末考试题与答案

高二期末考试数学试题一.选择题〔每题5分,总分值60分〕1.设n m l ,,均为直线,其中n m ,在平面”“”“,n l m l l a ⊥⊥⊥且是则内α的〔 〕A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.对于两个命题:①,1sin 1x R x ∀∈-≤≤, ②22,sin cos 1x R x x ∃∈+>,以下判断正确的选项是〔 〕。

A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真3.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是〔 〕 A. 1222=-y x B. 1422=-y x C. 1222=-y x D. 13322=-y x 4.12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆与A ,B 两点, 那么2ABF ∆是正三角形,那么椭圆的离心率是〔 〕A22 B 12 C 33 D 135.过抛物线28y x =的焦点作倾斜角为045直线l ,直线l 与抛物线相交与A ,B 两点,那么弦AB 的长是〔 〕A 8B 16C 32D 646.在同一坐标系中,方程)0(0122222>>=+=+b a by ax x b x a 与的曲线大致是〔 〕A .B .C .D .7.椭圆12222=+b y a x (b a >>0) 的两个焦点F 1,F 2,点P 在椭圆上,那么12PF F ∆的面积 最大值一定是〔 〕A 2a B ab C 22a a b - D 22b a b -8.向量b a b a k b a -+-==2),2,0,1(),0,1,1(与且互相垂直,那么实数k 的值是( )A .1B .51C . 53D .579.在正方体1111ABCD A B C D -中,E 是棱11A B 的中点,那么1A B与1D E所成角的余弦值为〔 〕A .510B .1010C .55D .10510.假设椭圆x y n m ny mx -=>>=+1)0,0(122与直线交于A ,B 两点,过原点与线段AB 中点的连线的斜率为22,那么m n的值是( )2.23.22.292. D C B A11.过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,假设621=+y y ,那么21P P 的值为 〔 〕A .5B .6C .8D .1012.以12422y x -=1的焦点为顶点,顶点为焦点的椭圆方程为 〔 〕 A.1121622=+y x B. 1161222=+y x C. 141622=+y x D. 二.填空题〔每题4分〕13.A 、B 、C 三点不共线,对平面ABC 外一点O ,给出以下表达式:OCOB y OA x OM 31++=其中x ,y 是实数,假设点M 与A 、B 、C 四点共面,那么x+y=___14.斜率为1的直线经过抛物线y2=4x 的焦点,且与抛物线相交于A,B 两点,那么AB等于___15.假设命题P :“∀x >0,0222<--x ax 〞是真命题 ,那么实数a 的取值范围是___.16.90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,那么直线OC 与平面AOB 所成角的正弦值为___.三.解答题〔解容许写出必要的文字说明、证明过程和演算步骤。

(完整版)数学选修2-1测试题(含答案)

(完整版)数学选修2-1测试题(含答案)

数学选修2-1 综合测评时间:90分钟 满分:120分一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.与向量a =(1,-3,2)平行的一个向量的坐标是( ) A.⎝ ⎛⎭⎪⎫13,1,1 B .(-1,-3,2) C.⎝ ⎛⎭⎪⎫-12,32,-1 D .(2,-3,-22)解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式.即b ≠0,a ∥b ⇔a =λb ,a =(1,-3,2)=-1⎝ ⎛⎭⎪⎫-12,32,-1,故选C. 答案:C2.若命题p :∀x ∈⎝ ⎛⎭⎪⎫-π2,π2,tan x >sin x ,则命题綈p :( ) A .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≥sin x 0 B .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0>sin x 0 C .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0 D .∃x 0∈⎝ ⎛⎭⎪⎫-∞,-π2∪⎝ ⎛⎭⎪⎫π2,+∞,tan x 0>sin x 0 解析:∀x 的否定为∃x 0,>的否定为≤,所以命题綈p 为∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0.答案:C3.设α,β是两个不重合的平面,l ,m 是两条不重合的直线,则α∥β的充分条件是( )A .l ⊂α,m ⊂β且l ∥β,m ∥αB .l ⊂α,m ⊂β且l ∥mC .l ⊥α,m ⊥β且l ∥mD .l ∥α,m ∥β且l ∥m解析:由l ⊥α,l ∥m 得m ⊥α,因为m ⊥β,所以α∥β,故C 选项正确. 答案:C4.以双曲线x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1C.x 216+y 24=1D.x 24+y 216=1解析:由x 24-y 212=1,得y 212-x 24=1.∴双曲线的焦点为(0,4),(0,-4),顶点坐标为(0,23),(0,-23).∴椭圆方程为x 24+y 216=1.答案:D5.已知菱形ABCD 边长为1,∠DAB =60°,将这个菱形沿AC 折成60°的二面角,则B ,D 两点间的距离为( )A.32B.12C.32D.34解析:菱形ABCD 的对角线AC 与BD 交于点O ,则AC ′⊥BD ,沿AC 折叠后,有BO ⊥AC ′,DO ⊥AC ,所以∠BOD 为二面角B -AC -D 的平面角,即∠BOD =60°.因为OB =OD =12,所以BD =12.答案:B6.若双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .6解析:双曲线x 26-y 23=1的渐近线方程为y =±22x ,因为双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,故圆心(3,0)到直线y =±22x 的距离等于圆的半径r ,则r =|2×3±2×0|2+4= 3. 答案:A7.在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( ) A.83 B.38 C.43 D.34解析:取DA →,DC →,DD 1→分别为x 轴,y 轴,z 轴建立空间直角坐标系,可求得平面AB 1D 1的法向量为n =(2,-2,1).故A 1到平面AB 1D 1的距离为d =|AA 1→·n ||n |=43. 答案:C8.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .8解析:抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.答案:C9.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1,CC 1的中点,P 为AD 上一动点,记α为异面直线PM 与D 1N 所成的角,则α的集合是( )A.⎩⎨⎧⎭⎬⎫π2 B.⎩⎨⎧⎭⎬⎫α⎪⎪⎪π6≤α≤π2 C.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ π4≤α≤π2D.⎩⎨⎧⎭⎬⎫α⎪⎪⎪ π3≤α≤π2 解析:取C 1D 1的中点E ,PM 必在平面ADEM 内,易证D 1N ⊥平面ADEM .本题也可建立空间直角坐标系用向量求解.答案:A10.已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,若PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( )A.12B.23C.13D.53解析:由PF 1→·PF 2→=0,得△PF 1F 2为直角三角形,由tan ∠PF 1F 2=12,设|PF 2|=s ,则|PF 1|=2s ,又|PF 2|2+|PF 1|2=4c 2(c =a 2-b 2),即4c 2=5s 2,c =52s ,而|PF 2|+|PF 1|=2a =3s ,∴a =3s 2,∴e =c a =53,故选D.答案:D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.解析:原命题的否定形式为∀x ∈R,2x 2-3ax +9≥0,为真命题.即2x 2-3ax +9≥0恒成立,∴只需Δ=(-3a )2-4×2×9≤0,解得-22≤a ≤2 2.答案:[-22,22]12.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则动点P 的轨迹方程是__________.解析:由OP →·OA →=4得x ·1+y ·2=4,因此所求动点P 的轨迹方程为x +2y -4=0.答案:x +2y -4=013.在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 为边长是1的正方形,P A =2,则AB 与PC 的夹角的余弦值为__________.解析:因为AB →·PC →=AB →·(P A →+AC →)=AB →·P A →+AB →·AC →=1×2×cos45°=1,又|AB →|=1,|PC →|=6,∴cos 〈AB →,PC →〉=AB →·PC →|AB →||PC →|=11×6=66. 答案:6614.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为__________.解析:由题意,如图,在Rt △AOF 中,∠AFO =30°,AO =a ,OF =c ,∴sin 30°=OA OF =a c =12.∴e =c a =2.答案:2三、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)15.(12分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.解:由于不等式|x -1|>m -1的解集为R ,所以m -1<0,m <1;因为f (x )=-(5-2m )x 是减函数,所以5-2m >1,m <2.即命题p :m <1,命题q :m <2.因为p 或q 为真,p 且q 为假,所以p 和q 中一真一假.当p 真q 假时应有⎩⎨⎧ m <1,m ≥2,m 无解. 当p 假q 真时应有⎩⎨⎧ m ≥1,m <2,1≤m <2.故实数m 的取值范围是1≤m <2.16.(12分)已知椭圆x 2b 2+y 2a 2=1(a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)直线l :x -y +m =0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.解:(1)由题意得⎩⎪⎨⎪⎧ c a =22,a 2=2b ,解得⎩⎨⎧ a =2,c =1,所以b 2=a 2-c 2=1,故椭圆的方程为x 2+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线与椭圆的方程得⎩⎪⎨⎪⎧ x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,Δ=(2m )2-4×3×(m 2-2)>0,m 2<3,所以x 0=x 1+x 22=-m 3,y 0=x 0+m =2m 3,即M ⎝ ⎛⎭⎪⎫-m 3,2m 3.又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3与m 2<3矛盾.∴实数m 不存在.17.(13分)已知点P (1,3),圆C :(x -m )2+y 2=92过点A ⎝ ⎛⎭⎪⎫1,-322,点F 为抛物线y 2=2px (p >0)的焦点,直线PF 与圆相切.(1)求m 的值与抛物线的方程;(2)设点B (2,5),点Q 为抛物线上的一个动点,求BP →·BQ →的取值范围.解:(1)把点A 代入圆C 的方程,得(1-m )2+⎝ ⎛⎭⎪⎫-3222=92,∴m =1. 圆C :(x -1)2+y 2=92. 当直线PF 的斜率不存在时,不合题意.当直线PF 的斜率存在时,设为k ,则PF :y =k (x -1)+3,即kx -y -k +3=0.∵直线PF 与圆C 相切, ∴|k -0-k +3|k 2+1=322. 解得k =1或k =-1.当k =1时,直线PF 与x 轴的交点横坐标为-2,不合题意,舍去. 当k =-1时,直线PF 与x 轴的交点横坐标为4,∴p 2=4.∴抛物线方程为y 2=16x .(2)BP →=(-1,-2),设Q (x ,y ),BQ →=(x -2,y -5),则BP →·BQ →=-(x -2)+(-2)(y -5)=-x -2y +12=-y 216-2y +12=-116(y +16)2+28≤28.∴BP →·BQ →的取值范围为(-∞,28].18.(13分)如图,在四棱锥A -BCDE 中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,BC =2,CD =2,AB =AC .(1)证明:AD ⊥CE ;(2)设CE 与平面ABE 所成的角为45°,求二面角C -AD -E 的余弦值.解:①(1)证明:作AO ⊥BC ,垂足为O ,则AO ⊥底面BCDE ,且O 为BC 的中点.以O 为坐标原点,射线OC 为x 轴正方向,建立如图①所示的直角坐标系O -xyz .设A (0,0,t ).由已知条件知C (1,0,0),D (1,2,0),E (-1,2,0),CE →=(-2,2,0),AD →=(1,2,-t ),所以CE →·AD →=0,得AD ⊥CE .(2)作CF ⊥AB ,垂足为F ,连接FE ,如图②所示.②设F (x,0,z ),则CF →=(x -1,0,z ),BE →=(0,2,0),CF →·BE →=0,故CF ⊥BE .又AB ∩BE =B ,所以CF ⊥平面ABE ,故∠CEF 是CE 与平面ABE 所成的角,∠CEF =45°. 由CE =6,得CF = 3.又CB =2,所以∠FBC =60°,所以△ABC 为等边三角形,因此A (0,0,3).作CG ⊥AD ,垂足为G ,连接GE .在Rt △ACD 中,求得|AG |=23|AD |.故G ⎝ ⎛⎭⎪⎫23,223,33,GC →=⎝ ⎛⎭⎪⎫13,-223,-33, GE →=⎝ ⎛⎭⎪⎫-53,23,-33. 又AD →=(1,2,-3),GC →·AD →=0,GE →·AD →=0,所以GC →与GE →的夹角等于二面角C -AD -E 的平面角.故二面角C -AD -E 的余弦值cos 〈GC →,GE →〉=GC →·GE →|GC →||GE →|=-1010.。

高中数学选修2-1全册综合测试题含答案

高中数学选修2-1全册综合测试题含答案

选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。

数学选修2-1期末考试卷及答案

数学选修2-1期末考试卷及答案

高二数学选修2-1期末考试卷一、选择题(每小题5 分,共10小题,满分50分)1、对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件3、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A=11,A =1,则下列向量中与B 1相等的向量是A 、++-2121B 、 ++2121C 、 +-2121 D 、 +--2121 4、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、15、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为A 、平面B 、直线C 、圆D 、线段6、已知=(1,2,3), =(3,0,-1),=⎪⎭⎫ ⎝⎛--53,1,51给出下列等式: ①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是A 、1个B 、2个C 、3个D 、4个7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为 A 、椭圆 B 、双曲线 C 、抛物线 D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的A 、充分必要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是 A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④a b =a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、5二、填空题(每小题6分,共6小题,满分36分)11、已知k j i b a +-=+82,k j i b a 3168-+-=-(k j i ,,两两互相垂直),那么b a ⋅= 。

(完整版)北师大版高中数学选修2-1期末考试试题及答案(理科),推荐文档

(完整版)北师大版高中数学选修2-1期末考试试题及答案(理科),推荐文档
则 D0,0,0 A2,0,0 B2,2,0 C0,2,0 P0,0,2 E0,1,1 F0,0,1
G1,2,0
AP 2,0,2 EF 0,1,0 FG 1,2,1 ………………3 分
………14
设平面 GEF 的法向量 n (x, y, z) ,由法向量的定义得:
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙 n n
9.在正方体 ABCD A1B1C1D1 中, E 是棱 A1B1 的中点,则 A1B 与 D1E 所成角的余弦值为(

5
10
5
10
A. 10 B. 10 C. 5 D. 5
10.若椭圆 mx2 ny 2 1(m 0, n 0)与直线y 1 x 交于 A,B 两点,过原点与线段 AB 中点
n
2
的连线的斜率为 2 ,则 m 的值是(
)
A. 2 2 B. 2 C. 3 D . 2
9
2
2
11.过抛物线 x 2 4 y 的焦点 F 作直线交抛物线于 P1 x1, y1 , P2 x2 , y2 两点,若
y1 y2 6 ,则 P1P2 的值为 ( )
A.5
B.6
DQ 1 (DP DB)

2

………………………………13 分
故在线段 PB 上存在一点 Q,使 PC⊥平面 ADQ,且点 Q 为线段 PB 的中点。……15分
解法二:(1)∵EF∥CD∥AB,EG∥PB,根据面面平行的判定定理
∴平面 EFG∥平面 PAB,又 PA 面 PAB,∴AP∥平面 EFG ……………………4 分
(2)∵平面 PDC⊥平面 ABCD,AD⊥DC
∴AD⊥平面 PCD,而 BC∥AD,∴BC⊥面 EFD

2021年高二下学期期末考试数学试卷(选修2-1)

2021年高二下学期期末考试数学试卷(选修2-1)

2021年高二下学期期末考试数学试卷(选修2-1)时间:100分钟总分:120分一、选择题(本题共10道小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题是真命题的是()A、“若,则”的逆命题;B、“若,则”的否命题;C、若,则;D、“若,则”的逆否命题2、对抛物线,下列描述正确的是()A、开口向上,焦点为B、开口向上,焦点为C、开口向右,焦点为D、开口向右,焦点为3.下列各组向量中不平行...的是()A. B.C. D.4.“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()A.充要条件 B.充分非必要条件C.必要非充分条件 D.既非充分又非必要条件5. 若平面的法向量为,平面的法向量为,则平面与夹角的余弦值是()A. B. C. D. -6. 已知两定点,,曲线上的点P到、的距离之差的绝对值是6,则该曲线的方程为()A. B. C. D.7.以下有四种说法,其中正确说法的个数为()(1)“m是实数”是“m是有理数”的充分不必要条件;(2) “”是“”的充要条件;(3) “”是“”的必要不充分条件;(4)“”是“”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个8.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等于()A.B.C.D.9. 已知椭圆,若其长轴在轴上.焦距为,则等于()A. B. C. D.10. 已知向量与向量平行,则x, y的值分别是()A. 6和-10B. –6和10C. –6和-10D. 6和10二、填空题(本题共5小题,每小题5分,共25分)11.命题“若,则”的逆否命题是 .12.已知向量,,且,则= ____________.13. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________.14.直线l 过抛物线 (a>0)的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a= .15.双曲线的渐近线方程是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 22高二数学选修 2-1 期末考试卷一、选择题(每小题 5 分,共 10 小题,满分 50 分)1、对抛物线 y = 4x 2 ,下列描述正确的是A 、开口向上,焦点为(0,1)C 、开口向右,焦点为(1,0)1B 、开口向上,焦点为(0, ) 16 1D 、开口向右,焦点为(0, ) 162、已知 A 和 B 是两个命题,如果 A 是 B 的充分条件,那么⌝A 是⌝B 的A 、充分条件B 、必要条件C 、充要条件D 、既不充分也不必要条件3、在平行六面体 ABCD-A 1B 1C 1D 1 中,M 为 AC 与 BD 的交点,若 A 1B 1 = a , A 1 D 1 = b ,A 1 A = c ,则下列向量中与B 1 M 相等的向量是A 、 - 1 a + 1 b + cB 、 1 a + 1 b + cC 、 1 a - 1 b + cD 、 2 2 2 2 2 2 - 1 a - 1b +c 2 24、椭圆5x 2 + ky 2 = 5 的一个焦点是(0, 2) ,那么实数 k 的值为A 、 -25B 、 25C 、 -1D 、15、空间直角坐标系中,O 为坐标原点,已知两点 A (3,1,0),B (-1,3,0),若点 C 满足OC =α OA +β OB ,其中 α,β∈R ,α+β=1,则点 C 的轨迹为A 、平面B 、直线 =(3,0,-1), c = ⎛- 1,1,- 3C ⎫、圆 D 、线段 给出下列等式:6、已知 a =(1,2,3), b ⎪⎝ 55 ⎭①∣ a + b + c ∣=∣ a - b - c ∣ ② (a + b ) ⋅ c = a ⋅ (b + c )③ (a + b + c )2 = a + b + c 其中正确的个数是④ (a ⋅ b ) ⋅ c = a ⋅ (b ⋅ c )A 、1 个B 、2 个C 、3 个D 、4 个7、设∈[0,],则方程 x 2 sin+ y 2 cos = 1 不能表示的曲线为A 、椭圆B 、双曲线C 、抛物线D 、圆8、已知条件 p : x -1 <2,条件 q : x 2 -5x -6<0,则 p 是 q 的 A 、充分必要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件kx + 79、已知函数 f(x)=,若∀x ∈ R ,则 k 的取值范围是kx 2 + 4kx + 33 3 3 3 A 、0≤k<B 、0<k<C 、k<0 或 k>D 、0<k ≤444410、下列说法中错误的个数为b a ⎩ ⎩①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它⎧x > 1 ⎧x + y > 3本身一定为真;③ ⎨ y > 2 是⎨xy > 2 的充要条件;④ = 与a =b 是等价的; ⑤“ x ≠ 3”是“ x ≠ 3 ”成立的充分条件. A 、2B 、3C 、4D 、5二、填空题(每小题 6 分,共 6 小题,满分 36 分)11、已知 a + b = 2i - 8 j + k , a - b = -8i + 16 j - 3k ( i , j , k 两两互相垂直),那么 a ⋅ b =。

12、以(1,-1) 为中点的抛物线 y 2 = 8x 的弦所在直线方程为:.13、在△ ABC 中, BC 边长为24 , AC 、 AB 边上的中线长之和等于39 .若以 BC 边中点为原点, BC 边所在直线为 x 轴建立直角坐标系,则△ ABC 的重心G 的轨迹方程为:.14、已知 M 1(2,5,-3),M 2(3,-2,-5),设在线段 M 1M 2 的一点 M 满足 M 1 M 2 =4MM 2 ,则向量OM 的坐标为。

15、下列命题①命题“事件 A 与 B 互斥”是“事件 A 与 B 对立”的必要不充分条件. ② “am 2<bm 2”是“a <b ”的充分必要条件.③ “矩形的两条对角线相等”的否命题为假.④在∆ABC 中,“∠B = 60︒ ”是∠A , ∠B , ∠C 三个角成等差数列的充要条件. ⑤ ∆ABC 中,若sin A = cos B ,则∆ABC 为直角三角形. 判断错误的有16、在直三棱柱 ABC - A 1B 1C 1 中, BC 1 ⊥ A 1C .有下列条件: ① AB = AC = BC ;② AB ⊥ AC ;③ AB = AC .其中能成为 BC 1 ⊥ AB 1 的充要条件的是(填上该条件的序号).三、解答题(共五小题,满分 74 分)17、(本题满分14 分)求ax2+2x+1=0(a≠0)至少有一负根的充要条件.18、(本题满分15 分)已知命题p:不等式|x-1|>m-1 的解集为R,命题q:f(x)=-(5-2m)x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.19、(本题满分15 分)如图,在平行六面体 ABCD-A1BC1D1中,O是B1D1的中点,求证:B1C∥面 ODC1。

20、(本题满分15 分)直线l :y =kx +1与双曲线C :3x2 -y2 = 1 相交于不同的A 、B 两点.(1)求AB 的长度;(2)是否存在实数k ,使得以线段AB 为直径的圆经过坐标第原点?若存在,求出k 的值;若不存在,写出理由.21、(本题满分15 分)如图,直三棱柱ABC-A 1B1C1底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2M,N 分别是A1B1,A1A 的中点。

(1)求BN 的长度;(2)求cos(BA1,CB1)的值;(3)求证:A1B⊥C1M。

参考答案一、选择题(每小题5 分,共10 小题,满分50 分)11、B2、C3、A4、D5、B6、D7、C8、B9、A 10、C二、填空题(每小题 6 分,共 6 小题,满分 36 分) 11、- 65 12、 4x + y - 3 = 0 13 、 x 2+ y 2 ⎛ 11 1 9 ⎫ = 1 ( y ≠ 0 ) 14、,- ,- ⎪ 169 25⎝ 4 4 2 ⎭15、②⑤ 16、①、③三、解答题(共六小题,满分 74 分)17、(本题满分 14 分)解:若方程有一正根和一负根,等价于 x 1 x 2 = a < 0 ⇒ ⎧ ⎪ Δ = 4 - 4a ≥ 0 ⎪⎪2a <0若方程有两负根,等价于 ⎨ ⎪ - < 0 ⇒ 0<a≤1a ⎪ 1 > 0⎩ a综上可知,原方程至少有一负根的必要条件是 a <0 或 0<a≤1由以上推理的可逆性,知当 a <0 时方程有异号两根;当 0<a≤1 时,方程有两负根.故 a <0 或 0<a≤1 是方程 ax 2+2x+1=0 至少有一负根的充分条件. 所以 ax 2+2x+1=0(a≠0)至少有一负根的充要条件是 a <0 或 0<a≤118、(本题满分 15 分)解:不等式|x -1|<m -1 的解集为 R ,须 m -1<0即 p 是真 命题,m<1f(x)=-(5-2m)x 是减函数,须 5-2m>1 即 q 是真命题,m<2由于 p 或 q 为真命题,p 且 q 为假命题故 p 、q 中一个真,另一个为假命题 因此,1≤m<219、(本题满分 1 5 分) =,C C =,则B C = - ,C O = 1 +)证明:设C B = a ,C D cc aa 1 1OD = 11 1 b11( b 1121 ( b - a ),OD = (b - a )+ c 。

若存在实数x ,y ,使得B 1C = xOD 1 + yOC (1 x ,y ∈ R )成立 ∵ a , 2b ,⎡c 1 不 同 面 ∴⎤2 ⎡ 1 ⎤ 1 1 ⎧12(x + y )=1 则c - a = x b - a )+ c + y - a + b ) = - x + y )a + x - y ) b + xc⎪ ⎢ ( ⎥ ⎢ ( ⎥ (( ⎪1 ⎧x = 1 ⎣2 ⎦ ⎣ 2 ⎦ 2 2 ⎨ (x - y )= 0即⎨⎪ 2⎪⎩x = 1⎩ y = 12 - a 4 + 5a 2 + 6a 2 - 33 6,CB 1 BA 1 CB 1 CB 1 1 + a 2 1+ a 2 (x 1+ x )22 - 4x x 1 2 ⋅∴ B 1C = OD + OC 1∵ B 1C ,OD ,OC 1为共面向量,且B 1C 不在OD ,OC 1所确定的平面ODC 1内。

∴ B 1C // 平面ODC 1,即B 1C // 平面ODC 1。

20、(本题满分 15 分)联立方程组⎧ y = ax + 1⎨消去 y 得(3 - a 2 )x 2 - 2ax - 2 = 0 ,因为有两个交点,所以{3 - a 2 ≠ 0⎩3x 2 - y 2 = 12a- 2,解得 a 2 < 6,且a 2 ≠ 3, x + x =, x x =。

∆ = 4a 2 + 8(3- a 2 )> 0123 - a 21 23 - a 2(1)AB = x 1 -22x 2 ==(a < 6且a ≠ 3)。

(2)由题意得 k oa k ob = -1,即x 1 x 2 + y 1 y 2 = 0,即x 1 x 2 + (ax 1 + 1)(ax 2 + 1) = 0整 理得 a 2 = 1, 符合条件,所以a = ±1 21、(本题满分 15 分)如图,解:以C 为原点, CA ,CB ,CC 1 分别为 x 轴, y 轴, z 轴建立空间直角坐标系。

(1) 依题意得出 B (0,1,0),N (1,0,1),∴ BN = ;(2) 依题意得出A (1 1,0,2)B (0,1,0),C (0,0,0),B (1 0,1,2)∴ BA 1 =(1,- 1,2),CB 1 =(0,1,2),BA 1 ⋅ C B 1 = 3,BA 1 = =∴ cos ﹤ BA ,CB ﹥=BA 1 ⋅ = 1 30 1 1 10(3) 证明:依题意将C (0,0,2),M ⎛ 1 1 2⎫,A B =(- 11,- 2)C M = ⎛ 1 1 0⎫1 , ,⎪ 1 1 1, ,⎪ ⎝ 2 2 ⎭⎝ 2 2 ⎭5∴A B ⋅C M =-1+1+ 0 = 0,∴A B ⊥C M1 12 2 1 1 ∴A1B ⊥C1M“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档