再结晶和晶粒长大精品PPT课件
合集下载
第七章回复再结晶
注:再结晶退火温度一般比上述温度高100~200℃。
3.影响再结晶温度的因素
(1)金属冷加工变形度 变形度δ越大,驱动力越大,发生再结晶的温度越低,当变形度达 到一程度后, 趋于一个最低温度,称为最低再结晶温度,T再min。 经验表明:T再min≈0.4T熔点, (2)金属的纯度 金属中的杂质或合金元素,尤其是高熔点成分的存在,会阻碍原子 的扩散(位错的扩散),因此再结晶温度会提高。纯度越高,再结晶温 度越低。 如:纯铁T再min =450℃;碳钢T再min =500-650℃;合金钢T再min >650700℃ (3)加热速度和保温时间 a、提高加热速度,再结晶温度升高;加热速度太低,再结晶温度也会 升高。 b、延长保温时间,再结晶温度降低 综合上述因素,再结晶退火温度一般为: T再min +100-200℃
5.分散相粒子
当合金中溶质浓度超过其固溶度后,就会形成第二相,多数情 况下,这些第二相为硬脆的化合物,在冷变形过程中,一般不 考虑其变形,所以合金的再结晶也主要发生在基体上。 当第二相颗粒较粗时,变形时位错会绕过颗粒,并在颗粒周围 留下位错环,或塞积在颗粒附近,从而造成颗粒周围畸变严重, 促进再结晶,降低再结晶温度; 当第二相颗粒细小,分布均匀时,不会使位错发生明显聚集, 因此对再结晶形核作用不大,相反,其对再结晶晶核的长大过 程中的位错运动和晶界迁移起一种阻碍作用,因此使得再结晶 过程更加困难,提高再结晶温度。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进 再结晶;直径和间距很小时,提高畸变能,但阻碍晶界迁移, 阻碍再结晶。
图 变形程度与再结晶温度的关系
3.微量溶质原子
阻碍位错和晶界的运动, 不利于再结晶。
图 合金元素对铁再结晶温度影响
晶粒生长
第四节 晶粒生长与二次再结晶
再结晶与晶粒长大是与烧结并行的高温动 力学过程,特别是晶粒长大与二次再结晶过程 往往与烧结中、后期的传质过程是同时进行的。 它对烧结过程和烧结体的显微结构和性能有不 可忽视的影响。 晶粒生长:无应变的材料在热处理时,平衡晶 粒尺寸在不改变其分布的情况下,连续长大的 过程.
坯体继续致密化
❖晶界越过气孔或杂质,产生二次再结晶,把气 孔包入晶体内部
⑵有少量液相出现在晶界上—少量液相抑制晶粒 长大
5.极限晶粒直径:
DL—晶粒正常生长时的极限尺寸
DL d f
d—夹杂物或气孔的平均直径 f—夹杂物或气孔的体积分数
讨论:
①当f愈大时则DL愈小 ②当f一定时,d愈大则晶界移动时与夹杂
物相遇的机会就越少,于是DL愈大
三. 二次再结晶
(或称异常长大和晶粒不连续长大)
1.定义:二次再结晶是少数巨大晶粒在细晶消耗时 成核长大的过程(当正常的晶粒长大过程停止后, 个别具有多边界的大晶粒以自身为核心不断吞并 周围小晶粒而异常长大的过程为二次再结晶)
2.推动力:大晶粒界面与邻近高表面能和小曲率半 径的晶面相比有较低的表面能
1
❖logD—t作图为一直线,其斜率为 2
4.影响晶粒生长的因素:
图示1 图示2
⑴第二相夹杂物(杂质、气孔)影响—阻碍作用
当气孔汇集在晶界上时,晶界移动可能出现的 三种情况:
❖晶界移动被气孔或杂质所阻挡,使正常的晶粒 长大终止
❖晶界带动气孔或杂质以正常速度移动,使气孔 保持在晶界上,并可利用晶界的快速通道排除,
⑴ 原始粒度不均匀,存在个别大晶粒 ⑵ 烧结温度偏高或烧结速率太快 ⑶ 成型压力不均,局部有不均匀液相
5.避免二次再结晶采取的措施:
再结晶与晶粒长大是与烧结并行的高温动 力学过程,特别是晶粒长大与二次再结晶过程 往往与烧结中、后期的传质过程是同时进行的。 它对烧结过程和烧结体的显微结构和性能有不 可忽视的影响。 晶粒生长:无应变的材料在热处理时,平衡晶 粒尺寸在不改变其分布的情况下,连续长大的 过程.
坯体继续致密化
❖晶界越过气孔或杂质,产生二次再结晶,把气 孔包入晶体内部
⑵有少量液相出现在晶界上—少量液相抑制晶粒 长大
5.极限晶粒直径:
DL—晶粒正常生长时的极限尺寸
DL d f
d—夹杂物或气孔的平均直径 f—夹杂物或气孔的体积分数
讨论:
①当f愈大时则DL愈小 ②当f一定时,d愈大则晶界移动时与夹杂
物相遇的机会就越少,于是DL愈大
三. 二次再结晶
(或称异常长大和晶粒不连续长大)
1.定义:二次再结晶是少数巨大晶粒在细晶消耗时 成核长大的过程(当正常的晶粒长大过程停止后, 个别具有多边界的大晶粒以自身为核心不断吞并 周围小晶粒而异常长大的过程为二次再结晶)
2.推动力:大晶粒界面与邻近高表面能和小曲率半 径的晶面相比有较低的表面能
1
❖logD—t作图为一直线,其斜率为 2
4.影响晶粒生长的因素:
图示1 图示2
⑴第二相夹杂物(杂质、气孔)影响—阻碍作用
当气孔汇集在晶界上时,晶界移动可能出现的 三种情况:
❖晶界移动被气孔或杂质所阻挡,使正常的晶粒 长大终止
❖晶界带动气孔或杂质以正常速度移动,使气孔 保持在晶界上,并可利用晶界的快速通道排除,
⑴ 原始粒度不均匀,存在个别大晶粒 ⑵ 烧结温度偏高或烧结速率太快 ⑶ 成型压力不均,局部有不均匀液相
5.避免二次再结晶采取的措施:
第四节再结晶后的晶粒长大
4r
3
随φ增大、r减小,Dmin减小。
Fe-3%Si合金中的MnS 粒子限制了晶粒长大
Fe-3%Si合金在800 ℃时的晶粒长大
利用分散相粒子阻碍高温下晶粒长大的实例
钢中加入少量的Al、Ti、V、Nb等元素,可形 成适当体积分数(数量)和尺寸的AlN、TiN、 VC、NbC等分散相微粒,能有效阻碍高温下钢 的晶粒长大,使钢在焊接或热处理后仍具有较 细小的晶粒,保证良好的力学性能。
纯金属及单相合金中, 大角度晶界的晶界能为常数, 即:
T1=T2=T3,则θ1=θ2=θ3 =120 °
二维晶粒为六边 形,晶界角均为 120°时,晶界为直 线,处于稳定形状。 在继续加热时,每个 晶粒都不易长大或缩 小。
在平衡条件(退 火状态)下,单相合金 金相试样中观察到三 叉晶界,确实接近 120°角。
三个(或三个以上)晶界交会处的界面角的变 化是:趋向于使作用在各晶界的表面张力在交 会点达到互相平衡的状态。
3、晶粒的稳定形状:
二维晶粒的稳定形状:
三晶界交会处各晶界角均等于120°,晶界为直线状。 三个晶粒1、2、3共同相遇于一点,达到平衡状态时, 其界面张力(晶界能) T1、T2、T3与界面角θ1、θ2、θ3 之间 应满足:
分散相粒子对晶界移动的约束力与晶界能所 提供驱动力相等时,正常晶粒长大停止。
此时的晶粒平均直径 为极限平均晶粒直径。
若分散相粒子为球状,半径为r,体积分数
为φ,比晶界能为γb,则晶界与粒子交截时,单 位面积晶界上各粒子对晶界移动所施加的总约束
力为:
F mix
3 2
b
r
极限平均晶粒尺寸:
Dm i n
二维晶粒的稳定形状
如果二维晶粒不是六 边形,为了使晶粒各顶 角形成120°的夹角:
晶粒长大晶粒长大
2)动力学 单纯晶粒长大过程 —— 先快后慢
3.晶粒的稳定形状
驱动力作用
即
总界面能下降
通过
晶界变直
二维: 三角晶界120°
三维: 趋向十四面体
4.影响晶粒长大的因素
1)温度 (同再结晶因素) 热激活过程——温度↑——长大速度↑
2)分散相颗粒 (异于再结晶——无二重性) 分散相颗粒——阻碍晶界迁移——长大速度↓
第四节 再结晶后的晶粒长大
长大类型: 连续、均匀长大 —— 正常长大 少数晶粒突发、非均匀长大 —— 异常长大
一、正常长大
1.长大方式
大角晶界的迁移——大晶粒吞并小晶粒——晶粒长大
2.晶粒长大的热力学与动力学
1)热力学 驱动力: 体系自由能下降 —— 总界面能下降 冷变形度不再有影响 因为再结晶后已完全消除了晶格畸变
称为
再结晶织构
进一步
二次再结晶织构
表现出
各向异性
机理:
定向(择优)形核理论
定向(择优)成长理论
凸出晶核、亚晶均 保持原织构取向
有利位向晶粒长大速度快 其它位向晶粒长大受抑制
与原形变织构相同的 再结晶织构
特殊位向织构 (可能与原形变织构相同或不同)
择优形核、择优成长理论
少数再结晶后较大的晶粒
晶界迁移能力↑ ↑
少数晶粒快速长大
异常粗大的晶粒组织 性能恶化
2.异常长大热力学及动力学
1)热力学 驱动力 —— 体系自由能下降 —— 总晶界能下降 + 总表面能下降
2)动力学 纯长大过程——先快后慢
三、再结晶退火及组织控制
1.再结晶退火
工艺: 加热至T再以上保温 —— 再结晶 目的:1)软化冷变形后金属——方便后续加工
3.晶粒的稳定形状
驱动力作用
即
总界面能下降
通过
晶界变直
二维: 三角晶界120°
三维: 趋向十四面体
4.影响晶粒长大的因素
1)温度 (同再结晶因素) 热激活过程——温度↑——长大速度↑
2)分散相颗粒 (异于再结晶——无二重性) 分散相颗粒——阻碍晶界迁移——长大速度↓
第四节 再结晶后的晶粒长大
长大类型: 连续、均匀长大 —— 正常长大 少数晶粒突发、非均匀长大 —— 异常长大
一、正常长大
1.长大方式
大角晶界的迁移——大晶粒吞并小晶粒——晶粒长大
2.晶粒长大的热力学与动力学
1)热力学 驱动力: 体系自由能下降 —— 总界面能下降 冷变形度不再有影响 因为再结晶后已完全消除了晶格畸变
称为
再结晶织构
进一步
二次再结晶织构
表现出
各向异性
机理:
定向(择优)形核理论
定向(择优)成长理论
凸出晶核、亚晶均 保持原织构取向
有利位向晶粒长大速度快 其它位向晶粒长大受抑制
与原形变织构相同的 再结晶织构
特殊位向织构 (可能与原形变织构相同或不同)
择优形核、择优成长理论
少数再结晶后较大的晶粒
晶界迁移能力↑ ↑
少数晶粒快速长大
异常粗大的晶粒组织 性能恶化
2.异常长大热力学及动力学
1)热力学 驱动力 —— 体系自由能下降 —— 总晶界能下降 + 总表面能下降
2)动力学 纯长大过程——先快后慢
三、再结晶退火及组织控制
1.再结晶退火
工艺: 加热至T再以上保温 —— 再结晶 目的:1)软化冷变形后金属——方便后续加工
冷变形金属的回复、再结晶与晶粒长大
30
ductility
20
300 Recovery
RecrystallizatioGnrain Growth
(二)、回复机制
以相对温度表征回复进行程度:
TH=T/Tm T为实际温度, Tm为熔点。
1. 低温回复(0.1<TH<0.3)
期间空位浓度明显降低,两种方式:点缺陷迁移至晶界、 表面、位错处消失;空位与间隙原子相遇而对消。
3. 力学性能:
强度、硬度略减小, 塑性略有提高。
4. 物理性能:
因点缺陷密度降低,电阻率减小、密度增大。
材料的变形与再结晶
回复和再结晶过程中显微硬度下降趋势
Vickers hardness
50
as deformed state (80% rolling reduction)
annealing at 300oC
材料的变形与再结晶
(一)、回复过程的特征 回复定义:
冷变形金属在加热时,在新的无畸变晶粒出现以 前,所产生的亚结构与性能变化的过程。
回复过程的特征:
1. 组织形貌:
光学显微镜下仍是变形组织形态,但高倍显微 镜下观察到胞状位错缠结形成的亚晶。
材料的变形与再结晶
2. 内应力:
宏观残余内应力完全消除,有部分微观残余内应力。
• Effects of cold work are reversed!
tensile strength (MPa) ductility (%EL)
Annealing Temperature (癈)
100 3 00 500
600 tensile strength
700 60
50 5 00
40
回复再结晶晶粒长大课件
跨学科合作
未来研究可以加强与其他学科的合作,如物理学 、化学等,以提供更全面的理论支撑和实验手段 。
技术发展前景
高效化
随着技术的不断发展,回复再结 晶晶粒长大的效率将得到提高, 从而缩短工艺时间,提高生产效
率。
智能化
未来技术将更加智能化,通过引 入人工智能、大数据等技术,实 现对晶粒长大过程的实时监控和
回复再结晶晶粒长大课件
目录
• 回复再结晶晶粒长大概述 • 回复再结晶晶粒长大的原理 • 回复再结晶晶粒长大的实验研究 • 回复再结晶晶粒长大的应用 • 回复再结晶晶粒长大的挑战与展望
01
回复再结晶晶粒长大概述
定义与特点
定义
回复再结晶晶粒长大是指在金属材料加工过程中,通过控制温度、应力和时间 等条件,使金属内部微观组织结构发生改变,晶粒逐渐变大的过程。
自动控制。
精细化
随着实验条件和设备的不断改进 ,对晶粒长大的控制将更加精细 化,从而实现更精确的晶粒尺寸
和分布。
THANK YOU
回复再结晶技术的应用有助于推动新能源技术的研发和商业化进程,促
进清洁能源的推广和应用。
05
回复再结晶晶粒长大的挑战与 展望
当前面临的挑战
技术难题
当前在回复再结晶晶粒长大的研 究中,仍存在许多技术难题。例 如,如何精确控制晶粒长大的过 程,如何提高回复再结晶的效率 等。
理论模型的不完善
目前对回复再结晶晶粒长大的理 论模型仍有许多不完善的部分, 这使得在预测和控制晶粒长大过 程时存在困难。
02
回复再结晶晶粒长大的原理
回复再结晶晶粒长大的机制
回复再结晶晶粒长大的微观机制
原子或分子的扩散迁移,晶界移动,晶格畸变等。
未来研究可以加强与其他学科的合作,如物理学 、化学等,以提供更全面的理论支撑和实验手段 。
技术发展前景
高效化
随着技术的不断发展,回复再结 晶晶粒长大的效率将得到提高, 从而缩短工艺时间,提高生产效
率。
智能化
未来技术将更加智能化,通过引 入人工智能、大数据等技术,实 现对晶粒长大过程的实时监控和
回复再结晶晶粒长大课件
目录
• 回复再结晶晶粒长大概述 • 回复再结晶晶粒长大的原理 • 回复再结晶晶粒长大的实验研究 • 回复再结晶晶粒长大的应用 • 回复再结晶晶粒长大的挑战与展望
01
回复再结晶晶粒长大概述
定义与特点
定义
回复再结晶晶粒长大是指在金属材料加工过程中,通过控制温度、应力和时间 等条件,使金属内部微观组织结构发生改变,晶粒逐渐变大的过程。
自动控制。
精细化
随着实验条件和设备的不断改进 ,对晶粒长大的控制将更加精细 化,从而实现更精确的晶粒尺寸
和分布。
THANK YOU
回复再结晶技术的应用有助于推动新能源技术的研发和商业化进程,促
进清洁能源的推广和应用。
05
回复再结晶晶粒长大的挑战与 展望
当前面临的挑战
技术难题
当前在回复再结晶晶粒长大的研 究中,仍存在许多技术难题。例 如,如何精确控制晶粒长大的过 程,如何提高回复再结晶的效率 等。
理论模型的不完善
目前对回复再结晶晶粒长大的理 论模型仍有许多不完善的部分, 这使得在预测和控制晶粒长大过 程时存在困难。
02
回复再结晶晶粒长大的原理
回复再结晶晶粒长大的机制
回复再结晶晶粒长大的微观机制
原子或分子的扩散迁移,晶界移动,晶格畸变等。
回复再结晶-晶粒长大
(1)具有有利尺寸 由于第二相粒子的不均匀分布和不均匀溶解,基体中具有 较少微粒的晶粒容易长成较大晶粒,因而在细晶粒基体中出现少数尺寸较大 的晶粒,细晶粒包围的这些较大晶粒是大于六面的多面体,具有外凹的界面, 获得继续长大的能力,这些较大的晶粒就是具有有利尺寸的核心晶粒。 (2)具有有利位向 基体存在再结晶织构,在织构基体中含有一定数目不同位 向晶粒的“夹杂”,其中,具有特殊位向差的晶粒有高的界面迁移率,容易 长大,可成为具有有利位心的核心晶粒。在大变形情况下这种有利晶粒起作 用。 (3)具有有利表面 对薄板或线材,表面能低的晶粒较为稳定,有利于长大, 可成为核心晶粒。 (4)具有有利能量 一次再结晶结束时,由于许多原因,晶粒可有不同的缺陷 浓度和体积能。如亚晶聚合作核心形成的再结晶晶粒比亚晶界迁移形成的晶 粒缺陷多,包含第二相微粒多的晶粒可能有较高的位错密度,某些晶粒比其 2015/11/14 14 他晶粒有较低的体积弹性畸变能也可作为二次再结晶的核心。
③
2015/11/14
19
3.4晶粒长大及其他结构变化
六. 退火孪晶
④ 孪晶形成原因是退火中晶界迁移时,在长大着的晶粒内原子沿{111}面偶然 错排,出现层错和共格孪晶界面,在一定能量条件下,在晶界处形成退火 孪晶。 随着大角晶界的移动,孪晶长大,在长大过程中,如果原子在{111}面上再 次发生错排而恢复原来的堆垛次序,则又形成第二个共格孪晶界。退火孪 晶分布在两条平行孪晶界间,在晶粒继续长大中,贯穿晶粒的孪晶可以自 晶界断开,形成中断在晶内的孪晶以降低能量。
16
3.4晶粒长大及其他结构变化
五. 再结晶图
前述晶粒长大与预先冷变形程度和退火温度密切相关。综合表示再结晶
退火后晶粒大与冷变形程度及退货温度间的关系的空间图形叫再结晶图, 利用再结晶图可确定冷变形后退火产生的经历大小,控制再结晶退火工
③
2015/11/14
19
3.4晶粒长大及其他结构变化
六. 退火孪晶
④ 孪晶形成原因是退火中晶界迁移时,在长大着的晶粒内原子沿{111}面偶然 错排,出现层错和共格孪晶界面,在一定能量条件下,在晶界处形成退火 孪晶。 随着大角晶界的移动,孪晶长大,在长大过程中,如果原子在{111}面上再 次发生错排而恢复原来的堆垛次序,则又形成第二个共格孪晶界。退火孪 晶分布在两条平行孪晶界间,在晶粒继续长大中,贯穿晶粒的孪晶可以自 晶界断开,形成中断在晶内的孪晶以降低能量。
16
3.4晶粒长大及其他结构变化
五. 再结晶图
前述晶粒长大与预先冷变形程度和退火温度密切相关。综合表示再结晶
退火后晶粒大与冷变形程度及退货温度间的关系的空间图形叫再结晶图, 利用再结晶图可确定冷变形后退火产生的经历大小,控制再结晶退火工
回复、再结晶课件
图7-2 冷变形金属退火时某些性 能的变化
(5) 密度 : 密度在再结晶阶段发 密度: 生明显增高,除与前期点缺陷数 生明显增高, 目减小有关外, 目减小有关外,主要是在再结晶 阶段中位错密度显著降低所致。 阶段中位错密度显著降低所致。 (6) 储能的释放:当冷变形金属 储能的释放: 加热到足以引起应力松弛的温度 储能就被释放出来。 时,储能就被释放出来。回复阶 段时各材料释放的储存能量均较 小,储能释放曲线的高峰开始出 现对应于再结晶的开始。 现对应于再结晶的开始。
北京航空大学
材料科学基础课件
第七章 回复与再结晶
本章需要掌握的内容: 本章需要掌握的内容: 回复、再结晶、晶粒长大的过程与机制; 回复、再结晶、晶粒长大的过程与机制;金属 的热变形。 的热变形。
金属材料经塑性变形后,畸变能升高, 金属材料经塑性变形后,畸变能升高,使其处于热 力学不稳定的高自由能状态。因此, 力学不稳定的高自由能状态。因此,经塑性变形的材料 具有自发恢复到变形前低自由能状态的趋势。 具有自发恢复到变形前低自由能状态的趋势。当冷变形 金属加热时会发生回复 再结晶和晶粒长大等过程 回复、 等过程。 金属加热时会发生回复、再结晶和晶粒长大等过程。
第三节 再结晶
冷变形金属加热到一定温度后, 冷变形金属加热到一定温度后,在原变形组织中产生了 无畸变的新晶粒, 无畸变的新晶粒,而性能也发生了明显的变化并恢复到 变形前的状况,这个过程称之为再结晶。 变形前的状况,这个过程称之为再结晶。与前述回复的 变化不同,再结晶是一个显微组织重新改组的过程。 变化不同,再结晶是一个显微组织重新改组的过程。 再结晶的驱动力是变形金属经回复后未被释放的储 存能(相当于变形总储能的 相当于变形总储能的90% 。 存能 相当于变形总储能的 % )。 通过再结晶退火可以 消除冷加工的影响。在实际生产中起着重要作用。 消除冷加工的影响。在实际生产中起着重要作用。
再结晶和晶粒长大解读
三、二次再结晶
概念
二次再结晶是坯体中少数大晶粒尺 寸的异常增加,其结果是个别晶粒 的尺寸增加,这是区别于正常的晶 粒长大的。
简言之,当坯体中有少数大晶粒存在时,这些 大晶粒往往成为二次再结晶的晶核,晶粒尺寸 以这些大晶粒为核心异常生长。
推动力
推动力仍然是晶界过剩 界面能。
二次再结晶发生后,气孔进人晶粒内部,成 为孤立闭气孔,不易排除,使烧结速率降低甚 至停止。因为小气孔中气体的压力大,它可能 迁移扩散到低气压的大气孔中去,使晶界上的 气孔随晶粒长大而变大。
晶粒直径(mm)
时间(分)
图19 在400℃受400g/mm2应力作用的NaCl晶体,
置于470℃再结晶的情况
推动力
初次再结晶过程的推动力是基 质塑性变形所增加的能量。
一般储存在变形基质中的能量约为0.5~1Cal/g的数量 级,虽然数值较熔融热小得多 (熔融热是此值的1000倍 甚至更多倍),但却足够提供晶界移动和晶粒长大所需 的能量。
图20 烧结温度对AlN晶粒尺寸的影响
二、晶粒长大
概念
在烧结中、后期,细小晶粒逐渐 长大,而一些晶粒的长大过程也 是另一部分晶粒的缩小或消失过 程,其结果是平均晶粒尺寸增加
这一过程并不依赖于初次再结晶过程;晶粒 长大不是小晶粒的相互粘接,而是晶界移动 的结果。其含义的核心是晶粒平均尺寸增加。
推动力
晶粒长大的推动力是晶界过剩的 自由能,即晶界两侧物质的自由 焓之差是使界面向曲率中心移动 的驱动力。
小晶粒生长为大晶粒.使界面面积减小, 界面自由能降低,晶粒尺寸由 1μm 变化 到lcm,相应的能量变化为0.1-5Cal/g。
两个晶粒
自由焓
△G
*
△G 位置 (a) (b)
再结晶和晶粒长大(精选)PPT25页
再结晶和晶粒长大(精选)
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
Hale Waihona Puke
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
Hale Waihona Puke
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RT
G RT
1 exp( G ) G RT RT
u ns V exp( G )( 1 1 )
Nh
RT r1 r2
晶粒长大速率随温度升高呈指数规律增加且晶界 移动速率与晶界曲率有关。温度愈高,曲率半径 愈小,晶界向曲率中心移动的速率亦愈快。
图22 Ba0.8Sr0.2TiO3陶瓷的SEM 照片
P ( 1 1 )
r1 r2
温度不变时
G VP ST
G VP V ( 1 1 )
r1 r2
f AB
ns RT Nh
exp[
G RT
]
fBA
ns RT Nh
exp[
G G ]
RT
晶界移动速度u
u
f
( f AB
fBA )
ns RT Nh
G
G
exp( )[1 exp( )
RT
三、二次再结晶
概念
二次再结晶是坯体中少数大晶粒尺 寸的异常增加,其结果是个别晶粒 的尺寸增加,这是区别于正常的晶 粒长大的。
简言之,当坯体中有少数大晶粒存在时,这些 大晶粒往往成为二次再结晶的晶核,晶粒尺寸 以这些大晶粒为核心异常生长。
推动力
推动力仍然是晶界过剩 界面能。
二次再结晶发生后,气孔进人晶粒内部,成 为孤立闭气孔,不易排除,使烧结速率降低甚 至停止。因为小气孔中气体的压力大,它可能 迁移扩散到低气压的大气孔中去,使晶界上的 气孔随晶粒长大而变大。
第三节 再结晶和晶粒长大
在烧结中,坯体多数是晶态粉状材料压制而成,随 烧结进行,坯体颗粒间发生再结晶和晶粒长大,使坯体 强度提高。所以在烧结进程中,高温下还同时进行着两 个过程,再结晶和晶粒长大。尤其是在烧结后期,这两 个和烧结并行的高温动力学过程是绝不对不能忽视的, 它直接影响着烧结体的显微结构(如晶粒大小,气孔分 布)和强度等性质。
图20 烧结温度对AlN晶粒尺寸的影响
二、晶粒长大
概念
在烧结中、后期,细小晶粒逐渐 长大,而一些晶粒的长大过程也 是另一部分晶粒的缩小或消失过 程,其结果是平均晶粒尺寸增加
这一过程并不依赖于初次再结晶过程;晶粒 长大不是小晶粒的相互粘接,而是晶界移动 的结果。其含义的核心是晶粒平均尺寸增加。
推动力
图24 由于晶粒长大使气孔 BeO在2000℃下经2.5小时二次再结晶后的相对晶粒长大
造成二 次再结 晶的原 因主要 是原始 物料粒 度不均 匀及烧 结温度
偏高
其次是
产
成型压
生
力不均
原
匀及局
因
部有不
均匀的
液相等
二次再结晶出现后.对材料性能的影响: 由于个别晶粒异常长大.使气孔不能排除,坯体不 再致密,加之大晶粒的晶界上有应力存在,使其内 部易出现隐裂纹,继续烧结时坯体易膨胀而开裂, 使烧结体的机械、电学性能下降。 工艺上的措施: 工艺上常采用引入适当的添加剂,以减缓晶界的移 动速度,使气孔及时沿晶界排除,从而防止或延缓 二次再结晶的发生。
一、初次再结晶
概念
初次再结晶是指从塑性变形的、具 有应变的基质中,生长出新的无应
变晶粒的成核和长大过程。
初次再结晶常发生在金属中,无机非金属材料特别 是—些软性材料NaCl、CaF2等,由于较易发生塑性 变形,所以也会发生初次再结晶过程。另外,由于无 机非金属材料烧结前都要破碎研磨成粉料,这时颗粒 内常有残余应变,烧结时也会出现初次再结晶现象。
Dc
4f 3V
d V
晶粒正常长大时,如果晶界受到第二相杂质的 阻碍,其移动可能出现三种情况:
1.晶界能量较小,晶界移动被杂质或气孔 所阻挡,晶粒正常长大停止。
2.晶界具有一定的能量,晶界带动杂质或气孔继 续移动,这时气孔利用晶界的快速通道 排除,坯体不断致密。
3.晶界能量大,晶界越过杂质或气孔,把气孔 包裹在晶粒内部。由于气孔脱离晶昂界,再不能 利用晶界这样的快速通道而排除,使烧结停止, 致密度不再增加。这时将出现二次再结晶现象。
晶粒长大的推动力是晶界过剩的 自由能,即晶界两侧物质的自由 焓之差是使界面向曲率中心移动
的驱动力。
小晶粒生长为大晶粒.使界面面积减小, 界面自由能降低,晶粒尺寸由1μm变化 到lcm,相应的能量变化为0.1-5Cal/g。
两个晶粒
自由焓
△G *
△G
位置
(a)
(b)
图21 晶界结构及原子位能图
晶粒长大动力学
晶粒直径(mm)
时间(分)
图19 在400℃受400g/mm2应力作用的NaCl晶体,
置于470℃再结晶的情况
推动力
初次再结晶过程的推动力是基 质塑性变形所增加的能量。
一般储存在变形基质中的能量约为0.5~1Cal/g的数量 级,虽然数值较熔融热小得多(熔融热是此值的1000倍 甚至更多倍),但却足够提供晶界移动和晶粒长大所需 的能量。
初次再结晶也包括两个步骤:成核和长大。晶粒长大 通常需要一个诱导期,它相当于不稳定的核胚长大成稳 定晶核所需要的时间。
dN dt
N0
exp( GN RT
)
u
u0
exp(
Eu RT
)
d u(t t0 )
最终晶粒大小取决于成核和晶粒长大的相对速率。
由于这两者都与温度相关,故总的结晶速率随温度 而迅速变化。提高再结晶温度,最终的晶粒尺寸增 加,这是由于晶粒长大速率比成核速率增加的更快。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
23
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
3 45
10
6
图23 烧结后期晶粒长大示意图
对任意一个晶粒,每条边的曲率半径与晶粒直径D 成比例,所以由晶界过剩自由焓引起的晶界移动速 度和相应的晶粒长大速度与晶粒尺寸成反比
u dD k dr D
实验结果斜率较 理论预测结果小
D2 D02 kt
烧结后期D>>D0
D2 kt
最终晶粒平均尺寸 与第二相物质阻碍 作用间的平衡关系