概率统计与随机过程复习提纲

合集下载

(完整版)概率论与数理统计复习提纲

(完整版)概率论与数理统计复习提纲
二、矩估计法
1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。

随机过程复习提纲

随机过程复习提纲

X (t ) E (eitX ) e itxk pk k 1
连续型随机变量X: 概率密度函数f (x)
X (t ) E(eitX )
e itx f ( x)dx
对一切随机变量,其特征函数都存在!
X (0) E(ei0X ) 1
23 March 2020
随机过程
常见分布的特征函数
随机过程
严平稳过程与宽平稳过程关系
➢ 严平稳过程不一定是宽平稳过程;反之, 宽平稳过程也不一定是严平稳过程;
➢ 宽平稳正态过程是严平稳过程。
联合平稳过程(平稳相关)
E[X (t)Y(t )] RXY ( ), t, t T
23 March 2020
随机过程
时平均 时相关函数 遍历性的验证
X (t) l.i.m 1
以连续型为例
E(X)
( xfX Y ( x y)dx) fY ( y)dy
xf (x, y)dxdy
xfX ( x)dx
23 March 2020
随机过程
特征函数
定义
X (t) E(eitX ), t (, ).
离散型随机变量X: P( X xk ) pk , k 1, 2,L
T
X (t)dt
T 2T T
X (t)X (t ) l.i.m 1
T
X (t)X (t )dt
T 2T T
均值具有遍历性
P{ X (t) mX } 1
自相关函数具有遍历性
P{ X (t) X (t ) RX ( )} 1
遍历性定理 —— 了解即可!
23 March 2020
绝对分布 X(n)的分布 P(n) [ p1(n), p2(n),L , pi (n),L ]

概率统计和随机过程复习要点

概率统计和随机过程复习要点

概率统计和随机过程复习要点全书11章,都是考试内容,要全面复习。

题型填空题占40%左右,计算题60%左右。

主要内容1.事件与概率,掌握事件的表示方法以及古典概型的计算;熟练掌握全概率公式和贝叶斯公式的应用(会考大题);熟练掌握条件概率公式的计算方法以及两个独立事件乘积概率等于概率乘积。

2随机变量及其分布了解随机变量;会求离散型随机变量的分布律、连续性随机变量的密度函数,分布函数;掌握六种常用的随机变量及其分布,离散的:两点分布、二项分布、泊松分布分布律,连续的:均匀分布,指数分布、正态分布的密度函数(一定要会写出)。

已知X的密度函数f(x),Y=G(X),会求Y的密度函数3.多维随机变量及其分布重点是二维随机变量边缘分布以及概率的求法;独立性判定(一般会考大题)相互独立的随机变量密度函数满足f(x,y)=f X(x)f Y(y),会判定两个随机变量是否独立。

两个随机变量函数的分布:两个随机变量和、最大值的分布密度,注意到正态分布的和、差一定是正态分布。

主要是求出它的均值与方差就可以了。

4.随机变量的数字特征数学期望定义与求法,方差,协方差以及相关系数,会判断两个随机变量是否是相关的。

掌握6种重要的随机变量的均值与方差。

5 极限定理理解切比雪夫不等式的含义,会用切比雪夫不等式估计一个事件的概率6 抽样及抽样分布理解样本、抽样、样本值等概念会求离散型随机抽样的联合分布律、连续型随机抽样的联合分密度函数掌握统计量的定义,掌握样本均值、样本方差。

掌握几种常用的抽样分布,χ2分布的数学期望与方差,χ2分布的、T分布、F分布的分位点的含义及其关系。

F分布的性质F~F(n1,n2),则1/F~F(n2,n1),,T~T(n)则T2~F(1,n).掌握正态总体样本均值、样本方差的分布,掌握定理6.1—6.4(条件,结论)7 参数估计会求一个总体分布中未知参数的矩估计与最大似然估计(估计量与估计值)(会考大题)理解估计量的评选标准,会判断一个统计量是否为未知参数的无偏估计量,掌握正态总体的均值与方差的区间估计(填空题)8假设检验假设检验的一般步骤(6个步骤)(一般会考大题)(1)原假设H0,备择假设H1,(2)检验统计量及其服从的分布;(3)拒绝域(4)计算统计量的值;并与拒绝域的临界点值比较;(5)作出判断,接受或者拒绝原假设;(6)说明意义。

随机过程复习提纲汇总

随机过程复习提纲汇总

随机过程复习提纲汇总随机过程是概率论中研究随机现象的一种数学工具,它描述了随机事件或变量在时间或空间上的演化规律。

随机过程在概率论、统计学以及各个科学领域中都有广泛的应用。

在复习随机过程的过程中,可以按照以下提纲进行系统地总结和复习:一、随机过程的定义和基本概念1.随机过程的定义和基本性质2.随机变量和随机过程的关系3.有限维分布和无限维分布4.随机过程的连续性和可测性二、随机过程的分类1.马尔可夫链和马尔可夫过程2.马尔可夫链的平稳分布和细致平衡条件3.各类随机过程的特性和应用(如泊松过程、布朗运动等)三、随机过程的数学描述1.随机过程的表示方法(如状态空间表示、样本函数表示等)2.随机过程的独立增量性质3.随机过程的平稳性质和相关函数四、随机过程的统计特性1.随机过程的均值和方差2.随机过程的相关函数和自相关函数3.随机过程的功率谱密度和自相关函数之间的关系五、随机过程的极限理论1.强大数定律和中心极限定理在随机过程中的应用2.极限理论在随机过程中的应用(如大数定律、中心极限定理等)六、马尔可夫过程的统计推断1.马尔可夫链的参数估计2.马尔可夫过程的参数估计3.马尔可夫过程的隐马尔可夫模型和参数估计七、随机过程的应用1.随机过程在金融领域的应用2.随机过程在电信领域的应用3.随机过程在信号处理领域的应用以上是一个较为全面的随机过程复习提纲,按照这个提纲进行复习可以帮助系统地回顾和学习随机过程的各个重要概念、定理和应用。

在复习的过程中,可以结合课本、教材以及相关资料进行深入学习和巩固。

同时,通过解答题目、做习题和实际应用案例的分析,可以提高对随机过程的理解和应用能力。

复习随机过程时,要注意理论和实践相结合,注重理论概念的理解和应用技巧的掌握。

随机过程复习提纲2017

随机过程复习提纲2017

随机过程复习提纲2017第⼀章1. 简述样本空间、基本事件、事件、随机事件、事件域的概念。

2. 设概率空间(,,)F P Ω,,A B F ∈(随机试验中两个随机事件A 、B ),()0P A >,B 1,B 2,…,B n 为Ω的⼀个分割,请写出:(1)事件A 出现条件下事件B 出现的概率公式P(B |A );(2)事件A 、B 同时发⽣的乘法公式P (AB );(3)事件A 的全概率公式P (A );(4)P (B i |A )的贝叶斯公式。

3. 某化验室检测某种疾病的⾎液检查,当确实有病时的有效率是95%.可是,该检测也在1%的健康⼈中产⽣“假阳性”结果(即⼀个健康⼈去检查, 检测结果为阳性的概率是0.01).如果总体⼈群中有0.5%真有此病,问已知某⼈检测结果为阳性时,他有病的概率是多少?4. 假设离散随机变量X 的分布律为:p(1)=1/2,p(2)=1/3, p(3)=1/6,请写出关于X 的累积分布函数F(x)。

5. 设⼆维随机变量X 、Y 的联合分布函数为,(,)X Y F x y ,请分别写出关于X 和关于Y 的边缘分布函数和边缘PDF ,并写出(,)XY f x y 、|(|)Y X f y x 和()X f x 三者关系式。

6. 随机变量X ,Y 的联合概率密度函数为|| (,0)(,)0, y XY Ae y x x y f x y ,其它-?>-∞<<∞>=??求:常数A 、边缘概率密度函数()X f x ,()Y f y 和条件概率密度函数|(|)Y X f y x ,|(|)X Y f x y ,判断是否统计独⽴。

7. 随机变量Y =sin X , X 为(-π,π)均匀分布,1()2X f x π=,求)(y f Y 。

8. 已知随机变量X 1,X 2的联合PDF 为1212(,)X X f x x ,试借助⼆维随机变量函数的分布来求随机变量Y=X 1-X 2的PDF 。

硕士生“概率论与随机过程”考试大纲

硕士生“概率论与随机过程”考试大纲

硕士生“概率论与随机过程”考试大纲撰稿人:唐碧华第一部分:概率论(40%)第一章:概率空间(7%)1、深入理解集代数和σ代数的概念,掌握其差别和联系;2、理解条件概率的定义,会灵活运用乘法公式;3、了解两事件相互独立与互不相容的概念,能推广到n维的情形。

第二章:随机变量和可测函数、随机变量的分布(15%)1、了解可测函数的概念,知道其与随机变量的差别。

2、理解二维离散型随机变量的联合分布和边缘分布,联合分布函数和边缘分布函数,联合分布密度和边缘分布密度等基本概念,掌握其求法;3、就离散型、连续型情形理解条件分布函数的定义,就连续型情形掌握求其条件分布密度函数;4、就一维和二维情形,掌握随机变量函数的分布函数及分布密度函数的求法。

第三章:随机变量的数字特征(10%)1、深刻理解条件数学期望的定义,掌握其求法。

了解随机变量函数的条件数学期望的求法;2、了解数学期望的L-S积分表示;3、掌握并能够灵活地使用Chebyshev不等式和Cauchy-Schwarz不等式。

第四章:随机变量的特征函数(8%)1、深刻理解特征函数的定义,熟练掌握两点分布、二项分布、泊松分布、均匀分布及正态分布特征函数的计算,了解特征函数的性质。

第二部分:随机过程(60%)第六章:随机过程的概念及统计特征(15%)1、理解随机过程的基本概念,知道样本函数、状态空间的定义;2、了解随机过程一维分布函数、分布密度的定义,知道推广到n维的情形;3、掌握随机过程的数字特征:均值函数、方差函数、自相关函数、自协方差函数、互相关函数、互协方差函数。

熟练掌握均值函数和相关函数的求法;4、了解二阶矩过程、正交增量过程、马尔可夫过程、独立增量过程、平稳增量过程、正态随机过程、泊松过程、维纳过程、平稳过程的定义及性质;5、知道两随机过程互不相关和相互正交的概念。

第七章:随机分析(10%)1、深入理解均方收敛的概念,掌握利用均方收敛准则判别随机过程的均方收敛性;2、了解随机序列几乎处处收敛、依概率收敛、依r阶矩收敛及依分布收敛的定义,知道这四种收敛性之间的关系;3、了解均方连续、均方可导、均方可积的概念及判别准则。

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

随机过程复习提纲

随机过程复习提纲

第一章:1. 填空若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则EX=P ′(1)(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为p (s )=sp kk k∑∞=0,则p ′(s )=skpk k k11-∞=∑,令s ↑1,得EX==∑∞=1k kkpp ′(1)。

(2)同理可证DX=p 〞(1)+ p ′(1) —[p ′(1)] 2 3.设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2,DX. 解:X 的分布列为P(X=k)=1k k n nC p q -,q=1-p ,k=0,1,2,...n,()00k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--===+∑∑== 由性质得()()np itdtdi i EX t n q ep g=-=-==+0,()()()p nq e p dtdg i EX npq iti t n 2222"220+=-===+-()npq DX EX EX=-=224. 设X~N(0,1),求特征函数g(t). 解dx xt g eitx ⎰∞+∞--=2221)(π由于e exx xix itx 2222=-,且〈+∞⎰∞+∞--dx xeitx 2221π,故由积分号下求导公式有⎥⎥⎦⎤⎢⎢⎣⎡-==-∞+∞-∞+∞--⎰⎰de e ixeg x i dx xt ixt itx 22'22221)(ππdx xtxi eeitx itx ⎰⎰∞+∞--∞+∞-∞+∞---=222222ππ)(t tg -=于是得微分方程g ’(t)+tg(t)=0 解得方程的通解为e Ctt g +-=22)(由于g(0)=1,所以C=0, 于是得X 的特征函数为ett g 22)(-=5. 设随机变量Y~N(μ,σ2),求Y 的特征函数是g Y (t). 解:设X~N(0,1),则由例1.3知X 的特征函数ett g 22)(-=令Y=μσ+X ,则Y~N(μ,σ2),由前面的命题知Y 的特征函数是()()eg e g tt t t i Xxi Y222σσμμ-==,6. 设X 1,X 2…X n 是相互独立的随机变量,且X i ~b(n i ,p),i=1,2,…n,则⎥⎦⎤⎢⎣⎡=∑∑==n i i ni i p b Y n X 11,~证 因为X i ~b(n i ,p),所以其特征函数为()(),,...2,1,n i it nt X q e p g ii==+由特征函数的性质知,∑==ni i x Y 1的特征函数为()()()(),111∏++∏==∑====ni n i Y q e p q e p g g it n it n t X t ni iii再有唯一性定理知⎥⎦⎤⎢⎣⎡=∑∑==n i i ni i p b Y n X 11,~7. 设X 1,X 2…X n 是相互独立的随机变量,且(),,...2,1,~n i ii X =λπ则⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ证 因为(),~λπiiX所以其特征函数为()n i e t Xe g it ii,...2,1,1==⎪⎭⎫ ⎝⎛-λ有特征函数的性质知,∑==ni i X Y 1的特征函数为()()e eg g ni iti iti ie et X t ni n i Y ∑====⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=∏∏11111λλ再由唯一性定理知⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ。

随机过程复习提纲汇总

随机过程复习提纲汇总
20 January 2019
随机过程
随机过程的数字特征与特征函数
(1)均值函数 (2)均方值函数 (3)方差函数
mX (t ) E[ X (t )]
2 2 ( t ) E [ X (t )] X
DX (t ) E( X (t ) mX (t ))2
(4)自相关函数 RX (t1 , t2 ) E[ X (t1 ) X (t2 )] (5)自协方差函数
随机过程
常见分布的特征函数
1.两点分布((0-1)分布)
X ( t ) 1 p p e it
2.二项分布 B(n, p) 3.泊松分布 4.均匀分布
5.指数分布 6.标准正态分布
20 January 2019
X ( t ) (1 p pe it )n
X (t ) e
X (t )
e it
i (e itb e ita ) ( b a )t
2 i t X (t ) 2 2 it t
X (t ) e
t2 2
随机过程
特征函数的基本性质
(1) X (0) 1, X ( t ) X (0), X ( t ) X ( t ).




xf ( x, y )dxdy xf X ( x )dx


20 January 2019
随机过程
特征函数
定义
X ( t ) E (e itX ), t ( , ).

离散型随机变量X: P ( X xk ) pk , k 1, 2,
(6)随机变量的分布函数与其特征函数一一对应.(唯一性)

随机过程复习提纲

随机过程复习提纲

第一章:1. 填空若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则EX=P ′(1)(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为p (s )=sp kk k∑∞=0,则p ′(s )=skpk k k11-∞=∑,令s ↑1,得EX==∑∞=1k kkpp ′(1)。

(2)同理可证DX=p 〞(1)+ p ′(1) —[p ′(1)] 23.设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2,DX. 解:X 的分布列为P(X=k)=1k k n nC p q -,q=1-p ,k=0,1,2,...n,()00k n n n itk k k n k k it n k it g t e C p q C pe q pe q n nk k ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--===+∑∑== 由性质得()()np itdtdi i EX t n q ep g=-=-==+0,()()()p nq e p dtdg i EX npq iti t n 2222"220+=-===+-()npq DX EX EX=-=224. 设X~N(0,1),求特征函数g(t). 解dx xt g eitx ⎰∞+∞--=2221)(π由于e exx xix itx 2222=-,且〈+∞⎰∞+∞--dx xeitx 2221π,故由积分号下求导公式有⎥⎥⎦⎤⎢⎢⎣⎡-==-∞+∞-∞+∞--⎰⎰de e ixeg x i dx xt ixt itx 22'22221)(ππdx xt xi eeitx itx ⎰⎰∞+∞--∞+∞-∞+∞---=222222ππ)(t tg -=于是得微分方程g ’(t)+tg(t)=0 解得方程的通解为e Ctt g +-=22)(由于g(0)=1,所以C=0, 于是得X 的特征函数为ett g 22)(-=5. 设随机变量Y~N(μ,σ2),求Y 的特征函数是g Y (t). 解:设X~N(0,1),则由例1.3知X 的特征函数ett g 22)(-=令Y=μσ+X ,则Y~N(μ,σ2),由前面的命题知Y 的特征函数是()()eg e g tt t t i Xxi Y222σσμμ-==,6. 设X 1,X 2…X n 是相互独立的随机变量,且X i ~b(n i ,p),i=1,2,…n,则⎥⎦⎤⎢⎣⎡=∑∑==n i i ni i p b Y n X 11,~证 因为X i ~b(n i ,p),所以其特征函数为()(),,...2,1,n i it nt X q e p g ii==+由特征函数的性质知,∑==ni i x Y 1的特征函数为()()()(),111∏++∏==∑====ni ni Yq e p q e p g g it n it nt X t ni iii再有唯一性定理知⎥⎦⎤⎢⎣⎡=∑∑==ni i ni i p b Y n X 11,~7. 设X 1,X 2…X n 是相互独立的随机变量,且(),,...2,1,~n i iiX=λπ则⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ证 因为(),~λπii X 所以其特征函数为()n i e t Xe g itii,...2,1,1==⎪⎭⎫⎝⎛-λ有特征函数的性质知,∑==ni i X Y 1的特征函数为()()e eg g ni iti iti ie e t X t ni n i Y∑====⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=∏∏11111λλ 再由唯一性定理知⎪⎭⎫⎝⎛=∑∑==n i i ni i X Y 11~λπ。

概率统计复习提纲(百度文库)解析

概率统计复习提纲(百度文库)解析

《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为).2、事件的关系与运算(1)包含关系与相等:“事件发生必导致发生”,记为或;且.(2)互不相容性:;互为对立事件且.(3)独立性:(1)设为事件,若有,则称事件与相互独立. 等价于:若().(2)多个事件的独立:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独立.3、事件的运算(1)和事件(并):“事件与至少有一个发生”,记为.(2)积事件(交):“事件与同时发生”,记为或.(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件;称为的对立事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推广5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很大时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,则(试验对应古典概型)事件发生的概率为:.(5)几何概率:若试验基本结果数无限,随机点落在某区域g的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域中随机地取一点落在区域中”这一事件发生的概率为:.(6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发生的条件下事件发生的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的一个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的一个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为.也叫做“成功—失败”试验,“成功”的概率常用表示,其中=“成功”.(2)把重复独立地进行次,所得的试验称为重贝努里试验,记为.(3)把重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为.以上三种贝努里试验统称为贝努里概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件.它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有一个事件发生,且至多有一个事件发生,则、为互逆事件;如果两个事件与不能同时发生,则、为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形.作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个.3、两事件独立与两事件互斥两事件、独立,则与中任一个事件的发生与另一个事件的发生无关,这时;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1,表示样本空间中两事件的独立关系,而在右边的正方形中,,表示样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,而是在试验增加了新条件发生后的缩减的样本空间中计算事件的概率.虽然、都发生,但两者是不同的,一般说来,当、同时发生时,常用,而在有包含关系或明确的主从关系时,用.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件.贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每一个可能结果,都有唯一的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常用大写字母等表示.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的一切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)二项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是一常数,是任意正整数,设,则对于任一固定的非负整数,有.当很大且很小时,二项分布可以用泊松分布近似代替,即,其中(4)超几何分布:记为,概率函数,其中为正整数,且.当很大,且较小时,有(5)几何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在非负函数,使对于任一实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常用连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别用和表示的密度函数和分布函数,即具有性质:①.②一般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2…………则任为离散型随机变量,其分布列为(表2-3):表2-3…………有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种方法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每一个可能结果,都有唯一的实数与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数左连续,但大多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布.1、二维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数二维联合分布函数具有以下基本性质:(1)单调性是变量或的非减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)非负性对任意点,若,则.式表示随机点落在区域内的概率为:.2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称为二维离散型随机变量.设为二维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.表3.1……┇┇…………┇┇…┇………┇┇…┇…联合分布列具有下列性质:(1);(2).3、二维连续型随机变量及其概率密度函数如果存在一个非负函数,使得二维随机变量的分布函数对任意实数有,则称是二维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)非负性对一切实数,有;(2)规范性;(3)在任意平面域上,取值的概率;(4)如果在处连续,则.4、二维随机变量的边缘分布设为二维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独立性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独立.设为二维离散型随机变量,与相互独立的充要条件是.设为二维连续型随机变量,与相互独立的充要条件是对几乎一切实数,有.7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最大值与最小值的分布则9.数理统计中常用的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表示事件与的积事件,为什么不一定等于?如同仅当事件相互独立时,才有一样,这里依乘法原理.只有事件与相互独立时,才有,因为.2、二维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果相互独立,则,即.说明当独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量相互独立,是指组成二维随机变量的两个分量中一个分量的取值不受另一个分量取值的影响,满足.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有.两者可以说不是一个问题.但是,组成二维随机变量的两个分量是同一试验的样本空间上的两个一维随机变量,而也是一个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果广义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独立,则;对任意个相互独立的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的方差设是一个随机变量,则称为的方差.称为的标准差或均方差.计算方差也常用公式.方差具有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若相互独立,则;对任意个相互独立的随机变量,有;(4)的充要条件是:存在常数,使.4、几种常见分布的数学期望与方差(1);(2);(3);(4);(5);(6);(7);(8).5、矩设是随机变量,则称为的阶原点矩.如果存在,则称为的阶中心矩.设是二维随机变量,则称为的阶混合原点矩;称为的阶混合中心矩.6、协方差与相关系数随机变量的协方差为.它是1+1阶混合中心矩,有计算公式:.随机变量的相关系数为.相关系数具有如下性质:(1);(2)存在常数,使=1,即与以概率1线性相关;(3)若独立,则,即不相关.反之,不一定成立.(4)(Schwarz inequality) 设(X,Y)是二维随机变量,若X与Y的方差都存在,则疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性.但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义.例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数反映了随机变量和之间的什么关系?相关系数是用随机变量和的协方差和标准差来定义的,它反映了随机变量和之间的相关程度.当时,称与依概率1线性相关;当时,称与不相关;当时,又分为强相关与弱相关.4、两个随机变量与相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则,故,从而,所以、不相关.(2)若、不相关,则、不一定独立.如:因为,,知、不相关.但,,,知、不独立.(3)若、相关,则、一定不独立.可由反证法说明.(4)若、不相关,则、不一定不相关.因为、不独立,,但若时,可以有,从而可以有、不相关.但是,也有特殊情况,如服从二维正态分布时,、不相关与、独立是等价的.第五块大数定律和中心极限定理内容提要基本内容:切比雪夫(Chebyshev)不等式,切比雪夫大数定律,伯努里(Bernoulli)大数定律,辛钦(Khinchine)大数定律,棣莫弗-拉普拉斯(De Moivre-Laplace)定理,列维-林维德伯格(Levy-Lindberg)定理.1、切贝雪夫不等式设随机变量的数学期望,方差,则对任意正数,有不等式或成立.2、大数定律(1)切贝雪夫大数定律:设是相互独立的随机变量序列,数学期望和方差都存在,且,则对任意给定的,有.(2)贝努利大数定律:设是次重复独立试验中事件发生的次数,是事件在一次试验中发生的概率,则对于任意给定的,有.贝努利大数定理给出了当很大时,发生的频率依概率收敛于的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列,且(),则对任意给定的,有3、中心极限定律(1)林德贝格-勒维中心极限定理:设是独立同分布的随机变量序列,有有限的数学期望和方差,,.则对任意实数,随机变量的分布函数满足.(2)李雅普诺夫定理:设是不同分布且相互独立的随机变量,它们分别有数学期望和方差:,.记,若存在正数,,使得当时,有, 则随机变量的分布函数对于任意的,满足.当很大时,.(3)德莫佛—拉普拉斯定理:设随机变量服从参数为的二项分布,则对于任意的,恒有.疑难分析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列依概率收敛于,说明对于任给的,当很大时,事件“”的概率接近于1.但正因为是概率,所以不排除小概率事件“”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.古今名言敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。

概率统计和随机过程课件总复习

概率统计和随机过程课件总复习

5 理解并掌握条件概率的定义,掌握乘法公式,
全概率公式与贝叶斯公式
7 理解并会运用事件独立性的概念
5
重点:
概率的概念,古典概率,加法公式,乘
法公式,全概率公式,Bayes 公式
6
第二章 随机变量及其分布
• 随机变量
• 随机变量的分布函数
• 离散性随机变量及其概率分布
• 两点分布,二项分布,泊松分布
复 习 提 纲
1
期末不考内容
第四章 第三节 中 Z=max(X,Y),或min(X,Y) 其中(X,Y)连续型随机变量,求Z的分布, X,Y不独立时,不要求。独立时要求 掌握 . 第五章 第五节 第七章

2
分布,F分布,t 分布密度不要求
第八章 第五节,(二元正态均值差,方差比的 区间估计)
第九章 第三、四节,(二元正态均值差,
y (c, d ) 其它
二维随机变量函数z=g(x,y)的密度
计算 f Z (z) 的方法: 先构造一个新的二维随机变量(Z ,U ), 它们是 ( X , Y ) 的函数,而Z = g(X,Y) 比如 Z=aX +bY + c 等 求( Z , U ) 的联合密度函数 f ( z, u ) 求边缘密度 f Z (z)
34


• 随机过程的概念; • 随机过程的均值、方差、均方值、自相关 函数、自协方差函数。
35
第十二章
• • • • 严平稳过程; 广义平稳过程; 正态平稳过程; 遍历过程;
平稳过程
36
基本要求
• 了解严平稳过程的概念及其数字特征的特 点; • 掌握广义平稳过程的定义,并会判别; • 了解正态平稳过程; • 有所了解两个平稳过程平稳相关的概念; • 了解随机过程的时间均值、时间相关函数 的概念; • 了解遍历过程及其数字特征。

随机过程复习提纲.pptx

随机过程复习提纲.pptx

=
=

故随机过程{X(t),t>0}的一、二维概率密度分别为
即可.
ft(x)=
exp{-
},t>0,
fs,t(x1,x2)=
.exp{
[
]},s,t>0,
其中 4、设{X(t),t≧0}是实正交增量过程,X(0)=0,V 是标准正态随机变量,若对任意的 t≧0, X(t)与 V 相互独立,令 Y(t)=X(t)+V,求随机过程{Y(t),t≧0}的协方差函数. 解:依题意知EX(t)=0,EV=0,DV=1,所以 EY(t)=E[X(t)+V]=EX(t)+EV=0, BY(t1,t2)=E(X(t1)+V)(X(t2)+V) =E[X(t1)X(t2))]+EV2=σ 2X(min(t1,t2))+1.
C p q pX k
(2)令 X~b(n,p),则
k k nk
n
, q 1 p, k 1,2..n.
e C p q
gt
itk
k
k nk
n
k0
C e p q
k it
n
k nk
k0
有特征函数定义,可知 eit pq n
k
e p( X k) ,0, k 0,1...n
(3)令 X~p(λ),则
解:X 的分布列为P(X=k)=
C
k n
p k q n 1 ,q=1-p,k=0,1,2,...n,
g
n t
e
i
t
k
C
k n
k 0
pkqnk
n
C nk
k 0
peit

概率统计和随机过程复习要点

概率统计和随机过程复习要点

全书章,都是考试内容,要全面复习.题型填空题占左右,计算题左右.主要内容.事件与概率,掌握事件地表示方法以及古典概型地计算;熟练掌握全概率公式和贝叶斯公式地应用(会考大题);熟练掌握条件概率公式地计算方法以及两个独立事件乘积概率等于概率乘积.随机变量及其分布了解随机变量;会求离散型随机变量地分布律、连续性随机变量地密度函数,分布函数;掌握六种常用地随机变量及其分布,离散地:两点分布、二项分布、泊松分布分布律,连续地:均匀分布,指数分布、正态分布地密度函数(一定要会写出).已知地密度函数(),(),会求地密度函数.多维随机变量及其分布重点是二维随机变量边缘分布以及概率地求法;独立性判定(一般会考大题)相互独立地随机变量密度函数满足()()(),会判定两个随机变量是否独立.两个随机变量函数地分布:两个随机变量和、最大值地分布密度,注意到正态分布地和、差一定是正态分布.主要是求出它地均值与方差就可以了.文档收集自网络,仅用于个人学习.随机变量地数字特征数学期望定义与求法,方差,协方差以及相关系数,会判断两个随机变量是否是相关地.掌握种重要地随机变量地均值与方差.极限定理理解切比雪夫不等式地含义,会用切比雪夫不等式估计一个事件地概率抽样及抽样分布理解样本、抽样、样本值等概念会求离散型随机抽样地联合分布律、连续型随机抽样地联合分密度函数掌握统计量地定义,掌握样本均值、样本方差.掌握几种常用地抽样分布,分布地数学期望与方差,分布地、分布、分布地分位点地含义及其关系.分布地性质则则掌握正态总体样本均值、样本方差地分布,掌握定理—(条件,结论)参数估计会求一个总体分布中未知参数地矩估计与最大似然估计(估计量与估计值)(会考大题)理解估计量地评选标准,会判断一个统计量是否为未知参数地无偏估计量,掌握正态总体地均值与方差地区间估计(填空题)文档收集自网络,仅用于个人学习假设检验假设检验地一般步骤(个步骤)(一般会考大题)原假设,备择假设,()检验统计量及其服从地分布;()拒绝域()计算统计量地值;并与拒绝域地临界点值比较;()作出判断,接受或者拒绝原假设;()说明意义.关于正态总体地假设检验重点掌握:()关于均值地假设检验(已知时与未知时)地拒绝域()关于方差地假设检验地拒绝域.注意双边检验与单边检验地拒绝域.随机过程()掌握随机过程地数字特征:均值函数、自相关函数(会熟练求出)()掌握泊松过程与维纳过程地定义与其数字特征:均值函数、自相关函数、自协方差函数.会求泊松过程地概率.(一般会考填空题)文档收集自网络,仅用于个人学习()平稳过程地定义与判断(均值函数是常数,自相关函数是时间差地单变量函数.会判断一个平稳过程地均值(自相关函数)是各态历经地会求平稳过程地功率谱密度和平均功率(一般会考大题)马尔可夫过程理解马尔可夫链地含义会求马尔可夫链地一步转移概率矩阵,会求步转移概率矩阵会利用转移概率矩阵求相应地概率,利用转移概率矩阵和初始概率求转移概率及绝对分布.会判断马尔可夫链地遍历地,如果是遍历地会求极限分布.(会考大题)不做要求地内容.二维随机变量分布函数求法,两个随机变量商地分布密度;.协方差矩阵;.正态总体中,两个样本均值差,方差比地区间估计、假设检验不要求掌握.。

《概率论与数理统计》(公共)复习提纲

《概率论与数理统计》(公共)复习提纲

概率论与数理统计(公共课)复习提纲 注:方框标示的内容为重点。

第1章 随机事件及其概率1. 样本点与样本空间、事件的关系与运算;2. 事件的运算规律;(1) 交换律 A ∪B =B ∪A , A ∩B =B ∩A ;(2) 结合律 (A ∪B )∪C =A ∪(B ∪C ), (A ∩B )∩C =A ∩(B ∩C );(3) 分配律 (A ∪B )∩C =(A ∩C )∪(B ∩C ), (A ∩B )∪C =(A ∪C )∩(B ∪C)3. 事件概率的定义及其性质、古典概型的概率计算;条件概率 P (B |A ) = P (AB ) / P (A );乘法公式 P (AB ) = P (A )P (B |A ) 或 P (AB ) = P (B )P (A |B )全概率公式 P (B ) = P (A 1)P (B |A 1) + … + P (A n )P (B |A n ) + …n = 2的情形(样本空间被对立事件划分) )|()()|()()(A B P A P A B P A P B P += n = 3的情形 )|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=贝叶斯公式(已知事件B 发生后,求其由A i 所引起的概率),...2,1,)|()()|()()()()|(===∑i A B P A P A B P A P B P B A P B A P jj j i i i i事件的独立性 P (AB ) = P (A )P (B );9.有限事件的两两独立与相互独立;伯努利概型及其概率计算;随机变量及其分布与数字特征1. 常用离散型概率分布两点分布(0-1分布) P { X = x 1 } = p , P { X = x 2 } = 1 – p (0 < p < 1) E (X ) = p , D (X ) = p (1 – p )二项分布 X ~ b (n , p ) n k p p C k X P k n k k n ,...,1,0,)1(}{=-==-E (X ) = np , D (X ) = np (1 – p )泊松分布 X ~ P (λ) ,...2,1,0,!}{===-k e k k X P k λλE (X ) = D (X ) = λ2. 二项分布的泊松近似100,10,!)1(><=≈---n np e k p p C kk n k kn λλλ 3. 随机变量的分布函数(1) 定义:F (x ) = P { X ≤ x };(2) 性质:a. 单调非减;b. F (-∞) = 0、F (+∞) = 1;c. 右连续;4. 常用连续型概率分布均匀分布 X ~ U (a , b )密度函数:b x a a b x f <<-=,1)(,分布函数:⎪⎪⎩⎪⎪⎨⎧≥<≤--<=bx b x a ab a x a x x F ,1,,0)( 2)(a b X E -=, 12)()(2a b X D -= 指数分布 X ~ e(λ)密度函数:0,)(>=-x ex f x λλ,分布函数:⎩⎨⎧>-=-其它,00,1)(x e x F x λ λ1)(=X E , 21)(λ=X D正态分布 X ~ N (μ, σ2) μ=)(X E , 2)(σ=X D标准正态分布 X ~ N (0, 1),E (X ) = 0, D (X ) = 1;5. 随机变量函数 Y = f ( X ) 的分布离散型:列出分布律;连续型:(1)用概率的方法求出函数 Y 的分布函数后,再求其密度函数;(2)如果函数 Y = f (X ) 满足严格单调,则可使用公式直接求 Y 的密度函数: 的反函数为其中)()(,|,)(|))(()(x f y y h y y h y h f y f X Y =<<'=βα6. 随机变量函数 Y = f ( X ) 的数学期望离散型:∑==ii i p x g X g E X E )()]([)(连续型:⎰+∞∞-==x x f x g X g E X E d )()()]([)( 7. 方差的计算D (X ) =E [ X – E (X ) ]2 = E (X 2) – [E (X )]28. 数学期望与方差的性质(E (X ), E (Y ), D (X ), D (Y )均存在)E (aX ± bY ) = aE (X ) ± bE (Y ) D (aX ± bY ) = a 2D (X ) + b 2D (Y )9. 中心极限定理定理3 设随机变量 X 1, X 2, …, X n , … 相互独立,服从同一分布,且 E (X i ) = μ, D (X i ) = σ2, ( i = 1, 2, …),则)(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ或),(~2n n N X X n i i σμ ∑= 即n 个随机变量的和的极限分布是正态分布。

《随机过程概论》课程复习提纲

《随机过程概论》课程复习提纲
信息与通信学院 随机信号分析基础
哈尔滨工业大学 19
第3章 随机信号的平稳性与各态历经性
• 1、严平稳与宽平稳定义、二者关系、判断 宽平稳的条件、联合平稳定义及判定 • 2、平稳随机信号自相关函数的性质: 0点值,偶函数,均值,相关值,方差
信息与通信学院 随机信号分析基础
哈尔滨工业大学
20
10
第3章 随机信号的平稳性与各态历经性 • 3、各态历经性 • 定义、物理含义、判定条件(时间平均、统计 平均) • 平稳性与各态历经性的关系、 • 直流分量、直流功率、总平均功率、交流平均 功率
12
6
第2章 随机信号的基本概念
随机信号(Stochastic Signal)定义
定义1: 定义1: 设随机试验E的样本空间为 i ,对其每一个元素
i i 1, 2, 都以某种法则确定一个样本函数 X t , i xi t
,由全部元素
号 X t , ,简记为 X t 。
h t1
h t2
RYX t1 , t2
h t2
h
RYX
RXY
h
h
RY
RY
RXY t1 , t2
h t1
h
信息与通信学院 随机信号分析基础
哈尔滨工业大学
29
第5章 随机信号通过线性系统分析

H
2
H
H H 其它
H
0
P Y
H

PY

N 0 /2
1 2

H


PY d
H
0

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

随机过程总复习

随机过程总复习
Y X1 X2 Xr 的特征函数为
Y (t) 1(t ) 2 (t ) … r (t )
两个相互独立的随机变量之和的特征函数等于它 们的特征函数之积.
练习:设随机变量X的概率密度函数为
p(
x)
1 2
x
0 x2
0 其 它
试求X的矩母函数。
解: (t ) E[etX ] 2 etx 1 xdx
2, 3 1,
t x1 3
t 3
x1
et
x1 et
随机过程的数字特征
1.均值函数 X (t) E[X (t)]
2.方差函数
D[X(t)] E[(X(t) X (t))2]
3.协方差函数
E[X 2(t)] X 2(t)
(t1, t2 ) E[(X (t1 ) X (t1 ))(X (t2 ) X (t2 ))]
注意:分母不等于0
2、条件期望的定义
离散型 连续型
E(X |Y yj ) xi P( X xi |Y y j ) i 1
其中
P(X
xi
|Y
yj
)
P(X xi ,Y P(Y yj )
yj
)
E(X |Y y)
x f ( x | y)dx
其中 f ( x | y) 条件概率密度
3、全数学期望公式
5.互协方差函数 XY (t1, t2 ) E[X(t1 ) X (t1 )][Y (t2 ) Y (t2 )]
6.互相关函数 RXY (t1, t2 ) E[X (t1 )Y (t2 )]
XY (t1, t2 ) = RXY (t1 , t2 ) X (t1 )Y (t2 )
练习 设随机过程 X (t) U cos2t ,其中 U 是随机变量 且 E(U ) 3 , D(U ) 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计与随机过程
课程编号:H0600071S学分: 4
开课学院:理学院课内学时:64
课程类别:学科基础课课程性质:必修
一、课程的性质和目的
课程性质:本课程是我校有关专业的学科基础课
目的:通过本课程的学习,使学生系统地掌握概率论、数理统计和随机过程的基本理论和基本方法,为后续各专业基础课和专业课的学习提供必要的数学理论基础。

另外,通过本课程的系统教学,特别是讲授如何提出新问题、思考分析问题,培养学生的抽象思维能力、逻辑推理能力以及解决实际问题的能力,从而逐步培养学生的创新思维能力和创新精神。

二、课程教学内容及基本要求
(一)课程教学内容及知识模块顺序
第一章概率论的基本概念 8学时
(1)随机试验
(2)样本空间、随机事件
(3)频率与概率
(4)等可能概型(古典概型)
(5)条件概率
(6)独立性
教学基本要求:
了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,熟练掌握事件之间的关系与运算。

了解事件频率的概念,理解概率的统计定义。

了解概率的古典定义,会计算简单的古典概率。

了解概率的公理化定义,熟练掌握概率的基本性质,会运用这些性质进行概率计算。

理解条件概率的概念、概率的乘法定理与全概率公式,会应用贝叶斯(Bayes)公式解决比较简单的问题。

理解事件的独立性概念。

理解伯努利(Bernoulli)概型和二项概率的计算方法。

第二章随机变量及其分布 6 学时
(1)随机变量
(2)离散型随机变量及其分布律
(3)随机变量的分布函数
(4)连续型随机变量及其概率密度
(5)随机变量的函数的分布
教学基本要求:
理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。

理解离散型随机变量及其分布律的概念,熟练掌握0-1分布、二项分布和泊松(Poisson)分布。

理解连续型随机变量及其概率密度的概念,熟练掌握正态分布、均匀分布和指数分布。

会根据自变量的概率分布求简单随机变量函数的概率分布。

第三章多维随机变量及其分布 8学时
(1)二维随机变量
(2)边缘分布
(3)相互独立的随机变量
(4)两个随机变量的函数的分布
教学基本要求:
了解多维随机变量的概念,理解二维随机变量的分布函数。

理解二维离散型随机变量的分布律的概念,理解二维连续型随机变量的概率密度的概念。

理解二维随机变量的边缘分布,掌握二维随机变量的边缘分布的求法。

理解随机变量的独立性概念,会判别两个随机变量是否相互独立。

会求两个随机变量简单函数的分布(和、极大、极小)。

了解有限个相互独立的正态分布的线性组合仍是正态分布的结论。

了解二维正态分布及基本性质。

第四章随机变量的数字特征 6学时
(1)数学期望
(2)方差
(3)协方差及相关系数
(4)矩、协方差矩阵
教学基本要求:
理解随机变量数学期望与方差的概念,掌握它们的性质与计算方法。

熟练掌握(0-1)分布、二项分布、泊松分布、均匀分布、指数分布和正态分布的期望和方差。

会求随机变量的函数的期望和方差。

理解协方差、相关系数的概念,掌握它们的性质及计算。

了解矩、协方差矩阵,并会计算。

了解多维正态随机变量的定义。

第五章大数定律和中心极限定理 4学时
(1)大数定律
(2)中心极限定理
教学基本要求:
了解切比雪夫(Чебышев)不等式、切比雪夫大数定律和伯努利大数定律,了解伯努利大数定律与概率的统计定义之间的关系。

了解独立同分布的中心极限定理和棣莫弗(De Moivre)-拉普拉斯(Laplace)中心极限定理。

能利用独立同分布的中心极限定理和德莫佛—拉普拉斯定理进行有关概率的近似计算。

第六章样本及其抽样分布 4学时
(1)随机样本
(2)抽样分布
教学基本要求:
理解总体、个体、样本和统计量的概念。

了解直方图的作法。

理解样本均值、样本方差的概念,掌
握根据数据计算样本均值、样本方差的方法。

掌握
2
χ分布、t分布、和F分布的定义及相关性质。


解上α分位点的定义,并会查表计算分位数。

掌握样本均值、样本方差的有关性质,理解正态总体的常用抽样分布。

第七章参数估计 6学时
(1)点估计
(2)估计量的评选标准
(3)区间估计
(4)正态总体均值与方差的区间估计
(5)单侧置信区间
教学基本要求:
理解点估计的概念,熟练掌握矩估计法与极大似然估计法。

理解并掌握无偏性、有效性、一致性等估计量的评判标准。

理解区间估计的概念,会求单个正态总体均值与方差的置信区间,会求两个正态总体均值差与方差比的置信区间。

第八章假设检验6学时
(1)假设检验
(2)正态总体均值的假设检验
(3)正态总体方差的假设检验
教学基本要求:
理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

理解并掌握单个正态总体均值和方差的假设检验,了解两个正态总体均值差和方差比的假设检验。

第九章随机过程及其统计描述4学时
(1)随机过程的概念
(2)随机过程的统计描述
(3)泊松过程与维纳过程
基本要求:了解随机过程的定义,知道随机过程的分类方法。

了解随机过程的分布函数和联合分布函数族;了解独立增量过程。

掌握随机过程的数字特征及它们的性质与运算;掌握泊松过程、维纳过程的定义、性质和数字特征。

第十章马尔可夫链4学时
(1)马尔可夫过程及其概率分布
(2)多步转移概率的确定
(3)遍历性
基本要求:了解无后效性,了解马尔可夫过程的定义,理解马尔可夫链的定义。

会求简单的一步转移概率矩阵。

掌握有限维分布及极限分布的定义;熟练掌握求有限马氏链的极限分布的方法。

理解C-K 方程,会利用C-K方程求多步转移概率。

了解遍历性定义,会判别有限马氏链是否具有遍历性。

第十一章平稳随机过程8学时
(1)平稳随机过程的概念
(2)各态历经性
(3)相关函数的性质
(4)平稳随机过程的功率谱密度
基本要求:了解严平稳随机过程的定义,掌握宽平稳随机过程的定义,会判断随机过程的平稳性;了解随机过程的各态历经性概念。

了解平稳过程的相关函数的一些基本性质。

掌握维纳-辛钦公式,会利用此公式计算平稳过程的谱密度和相关函数。

了解各态历经性的定义,会利用定义判别平稳过程的各态历经性,了解平稳过程各态历经性的充要条件。

了解功率谱密度的概念及其性质;了解白噪声的定义,知道它的相关函数和谱密度。

(二)课程的重点、难点及解决办法
重点:概率论的基本概念;随机变量及其分布;多维随机变量及其分布;随机变量的数字特征;大数定律和中心极限定理;样本及其抽样分布;参数估计;假设检验;随机过程及其统计描述;马尔可夫链;平稳随机过程。

难点:多维随机变量及其分布;随机变量的数字特征;大数定律和中心极限定理;参数估计;马尔可夫链;平稳随机过程。

解决办法:加强教与学。

三、实验实践环节及基本要求
无实验实践环节
四、本课程与其它课程的联系与分工
本课程的先修课程为高等数学及线性代数;后续课程为相关专业的专业基础课和专业课。

五、对学生能力培养的要求
通过本课程的系统学习,使学生可以以本课程所学的基础知识作为一个“起跑点”去进一步学习,以解决问题;使学生在已有的基础上,加强了抽象思维的能力、逻辑推理的能力和解决实际问题的能力及创新思维的能力。

六、课程学时分配
总学时64,其中讲课54学时,上机0学时,实验0学时, 习题及讨论10学时。

课程主要内容和学时分配见课程学时分配表。

七、建议教材和教学参考书目
1.教材
[1] 《概率论与数理统计(第四版)》,盛骤,谢式千,潘承毅,高等教育出版社,2008年
2.主要参考书
[1] 《概率论与数理统计》,何书元,高等教育出版社,2006年
[2] 《概率论与数理统计》,陈希孺,中国科技大学出版社,1992年
[3] 《概率论与数理统计应用》,丁正生,西北工业大学出版社,2003年
[4] 《概率论与数理统计》,肖壮亮,高等教育出版社,1998年
[5] 《概率论与随机过程》,胡国雷,何铭,孔告化,东南大学出版社,1999年
八、课程考核
本课程建议采用的考核方式:闭卷
九、说明
根据教育部高等学校数学与统计教学指导委员会,2009年新制定的关于“工科类本科数学基础课程教学基本要求”,对上一年度的大纲做了一些修改。

执笔人:孔告化审核人:丁秀梅教学院长:
编写完成时间:2009年9月。

相关文档
最新文档