直线射线线段(含答案)
《线段、射线、直线》典型例题及答案
《线段、射线、直线》典型例题及答案例1 如图,图中有几条射线?能用字母表示出来的有几条?将它们分别表示出来.例2 如图所示,你知道图中共有几条直线、几条射线?(不添加字母,直接可以读出)几条线段?它们分别是什么?例3如图,以点A、B、C、D、E、F为端点的线段共有几条?分别把它们写出来.例4如图,比较线段AB与AC、AD与AE,AE与AC的大小.例5如图,已知点C、D在线段AB上,线段AC=10 cm,BC=4 cm,取线段AC、BC的中点D、E.(1)请你计算线段DE的长是多少?(2)观察DE的大小与线段AB的关系,你能用一句简洁的话将这种关系表述出来吗?(3)若点C为直线AB上的一点,其他条件不变,线段DE的长会改变吗?如果改变,请你求出新的结果.例6 已知AB=16cm,C是AB上一点,且AC=10cm,D为AC的中点,E是BC的中点,求线段DE的长.例7 (1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过平面上三点A、B、C中的任意两点可以画多少条直线?(4)试猜想过平面上四点A、B、C、D中的任意两点可以画多少条直线?例8 如图,A、B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A、B的离和最小,请在公路l上标出点P的位置,并说明理由.AlB参考答案例1 分析:直线上的一点将直线分成两条射线,因此以A为端点的射线有两条,同样道理以B、C为端点的射线也分别有两条.因此共有6条射线,能用图中字母表示出来的有4条.解:图中共有6条射线,能用图中字母表示出来的有4条,分别为:射线AB、射线BC、射线BA、射线、CA.说明:要抓住直线上一点将直线分成两条射线,数射线时不能重复或遗漏,抓住端点和方向,表示射线时,要将端点的字母写在前面.例2 解:图中有2条直线,分别是直线BC、直线DC.图中有6条可以直接读出的射线,分别是射线CD、DC、CB、BC、AB、DB.图中有6条线段,分别是线段AD、BD、AB、CA、CD、CB.说明:(1)直线是最基本、简单、抽象的几何图形.直线到底是什么形状呢?可以借助“孙悟空的金箍棒”想象一下,直线没有端点,可以向两方无限延伸;“手电筒发出的光”给我们以射线的形象,射线有一个端点,它可以向一方无限延伸;“一枝铅笔”可以抽象成一条线段,线段有两个端点,它不可延伸,直线和射线都没有长度,线段有长度;(2)直线有两种表示方法(如图1),可以先在直线上任取两个点A、B,这条直线可记作直线AB(或直线BA),也可以用一个小写字母表示,如直线l;射线的两种表示方法分别为射线AB、射线l(如图2),要注意射线AB与射线BA表示不同的射线;线段的两种表示方法分别为线段AB(或线段BA)、线段a(如图3);(3)数直线时应注意直线BC与直线CB是同一条直线;数射线时要注意射线的两个特征:端点与方向,所以射线AD与射线AB是相同的射线,射线AB与射线DB是不同的射线,因为它们的端点不同,射线DA与射线DB也是不同的射线,因为它们的方向不同;数线段时注意寻求规律,做到不重不漏.如线段CA、CD、CB属不同直线上的三条线段,而线段AD、BD、AB属同一条直线上的三条线段,同一条直线上的线段的数法有两种:①以始点计:AD、AB、DB;②以组成计:单个线段:AB、BC;两条线段组成的:AC.图1 图2 图3另外在同一条直线上的线段总条数s 与直线上点的个数n 之间有如下关系:2)1()1()2(321-=-+-++++=n n n n S . 例3 分析:在一个三角形中,由于交点众多,为做到不遗漏,不重复,可以按字母的先后顺序找出图中的线段.解:图中共有14条线段,分别为线段AB 、AC 、AD 、AE 、BC 、BD 、BE 、BF 、CD 、CE 、CF 、DE 、DF 、EF .说明:当点众多时,可以以字母的顺序寻找线段,可以避免出错.例4 分析:比较线段的长度可用度量法和重合法.解法1:用度量法,用直尺测量各线段的长度.比较得:AB >AC ,AD <AE ,AE =AC .解法2:用叠合法,可用圆规截取比较得:AB >AC 、AD <AE ,AE =AC .说明:比较线段的大小,就是用度量法和叠合法,但是可以根据题目的的特点选择合适的方法.例5 解:(1)∵AC =10,BC =4,∴AB =AC +BC =14又∵点D 是AC 中点,点E 是BC 中点, ∴BC EC AC DC 21,21==, ∴721)(212121==+=+=+=AB BC AC BC AC CE DC DE (cm ). (2)由(1)知AB DE 21=,即:线段上任一点把线段分成两部分,这两部分中点间的距离等于原线段长度的一半.(3)DE 的长会改变.可分两种情形考虑:当点C 在线段AB 上时721==AB DE (cm ). 当点C 在线段AB 外时(如图),3)410(21)(212121=-=-=-=-=BC AC BC AC CE DC DE (cm ). ∴DE 的长为7 cm 或3 cm .说明:(1)本题先通过特殊的数值求出线段DE 的长,在求解过程中通过观察、猜测,发现了一般性的结论,我们称之为规律.在学知识或是解题时,不要局限于问题表面,而是要多思考、多总结,从而在更深层次上认识所学内容.(2)此题通过C 点的位置由特殊到一般,由在线段上运动到在直线上运动的变化过程,只要抓住不变量,即CE DC DE ±=,就可以以不变应万变.另外随着条件的逐步开放,结论也发生了变化,有时由于C 点的位置考虑不全面,导致丢解.如果遇到没给出图形的问题,解答时一定要先画图,并全面考虑到所有可能情形.(3)利用中点的性质进行线段长度的计算是解题的关键,若C 是AB 的中点,则它的表达式为AC AB 2=或AB AC BC AB 21,2==或BC AC AB BC ==,21,不同情况下选择不同的表达式,可使书写简洁.例6 分析:根据线段中点的特点,BD CE AC DC 21,21==,而CE DC DE +=,故可根据题设解出DE 的长.解:因为D 是AC 的中点,而E 是BC 的中点,因此有:.21,21BC CE AC DC ==而AB BC AC CE DC DE =++=,. 即).cm (8162121)(212121=⨯==+=+=+=AB BC AC BC AC CE DC DE 说明:充分利用线段中点的特点,将所求线段转移到线段长度上去.例7 解:(1)过一点可以画无数条直线;(2)过两点可以画一条直线;(3)当 A 、B 、C 三点不共线时可以画三条直线,当 A 、B 、C 三点共线时只能画一条直线;(4)当 A 、B 、C 、D 四个点在同一条直线上时,只能画一条直线(如图1);当 A 、B 、C 、D 四个点中有三个点在同一条直线上时,可以画四条直线(如图2);当 A 、B 、C 、D 四个点中任意三点都不在同一条直线上时,可以画六条直线(如图3).图1 图2 图3 说明:题(1)(3)和(4)中没有明确平面上三点、四点是否在一条直线上,解答时要分各种情况,即分类讨论;(2)由此题可知,过平面上三个点中的任意两点最多可以画三条直线,过平面上四个点中的任意两点最多可以画六条直线,如果过平面上n 个点中的任意两点,最多可以画多少条直线呢?分析:根据连接两点的线中,线段最短,只需在A 、B 间作一条线段、与l 的交点,便是它到A 、B 两点距离和最小的点.例8 解:连接A 、B 作线段,与l 的交点P 为所求建加油站的点.因为两点之间,线段最短.说明:利用线段公理,两点之间,线段最短.AB lC。
直线、射线、线段(知识点总结、例题解析)
第四章 几何图形初步4.2 直线、射线、线段一、知识考点知识点1【直线】1、直线:把线段向两端无限延伸形成的图形叫做直线。
2、特点:是直的;无粗细之分;无端点;不可以度量;不可以比较长短,无限长。
3、基本性质:经过两点有且只有一条直线(两点确定一条直线);4、直线有两种表示方法:(1)用直线上任意两点的大写字母,如:表示为直线AB 或直线BA 。
(2)也可以用一个小写字母表示,如:直线l5、直线和点的位置关系:(1)在直线上:点O 在直线l 上,或者说说直线l 经过点O(2)点在直线外:点P 在直线l 外,或者说说直线l 不经过点P6、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点。
O Pl知识点2【射线】1、射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。
2、特点:是直的,有一个端点,不可以度量,不可以比较长短,无限长。
3、射线有两种表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意的一点,端点写在前面。
(如图:可以记作射线OM,但不能记作射线MO) (2)可以用一个小写英文字母表示,比如:射线OM也可以记为射线l。
4、射线的画法:画射线一要画出射线端点,二要画出射线经过一点,并向一旁延伸的情况。
知识点3【线段】1、线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
2、特点:线段是直的,它有两个端点,他的长度是有限的,可以度量的,可以比较长短。
3、基本性质:(1) 线段公理:两点之间的所有连线中,线段最短(两点之间,线段最短)(2) 两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
注意:两点间的距离是指线段的长度,是一个数值,而不是指线段本身。
(3) 线段的中点到两端点的距离相等。
(4) 线段的大小关系和它们的长度的大小关系是一致的4、线段有两种表示方法:(1)可以用它的两个端点的大写英文字母来表示,如线段AB(或线段BA)(2)可以用一个小写字母来表示,如线段a5、线段的画法:用直尺和尺规作图(尺规作图)已知:线段a(如图所示),用直尺和圆规画一条线段,使它等于已知线段a第一步:任意画一条射线AC第二步:用圆规量取已知线段a的长度。
2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》 含答案
2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。
人教版七年级上数学第4章:4.2直线、射线、线段(含答案)
4.2直线、射线、线段知识要点:1.定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.2.直线性质(1)经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了3.定义:直线上的一点和它一旁的部分叫做射线.4.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长5.定义:直线上两个点和它们之间的部分叫做线段.6.特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.一、单选题1.如图所示,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BD B.AC=BD C.AC<BD D.不能确定2.下列说法:①过一点可以作无数条直线;②两点确定一条直线;③两直线相交,只有一个交点;④过平面内三点只能画一条直线.其中正确的个数是( )A.4个B.3个C.2个D.1个3.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点D.画出A、B两点的距离4.已知点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交.符合以上条件的图形是()A. B. C. D.5.若点B在直线AC上,AB=10,BC=5,则A、C两点间的距离是()A.5 B.15 C.5或15 D.不能确定6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm7.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.同一个平面上,经过一点有且只有一条直线与已知直线垂直8.下列说法正确的是( )A.射线PA和射线AP是同一条射线B.射线OA的长度是12cmC.直线ab、cd相交于点MD.两点确定一条直线9.下列表示线段的方法中,正确的是( )A.线段A B.线段AB C.线段ab D.线段Ab10.在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线二、填空题11.如图,使用直尺作图,看图填空:延长线段______ 到______,使BC=2AB.12.已知线段AB与直线CD互相垂直,垂足为点O,且AO=5 cm,BO=3 cm,则线段AB 的长为______________.13.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)14.如图,线段AB的长为8厘米,C为线段AB上任意一点,若M为线段AC的中点,N 为线段CB的中点,则线段MN的长是________三、解答题15.已知:线段a、b.求作:线段AB,使AB=2b-a.16.已知∠1和线段a,b,如图(1)按下列步骤作图(不写作法,保留作图痕迹)①先作∠AOB,使∠AOB=∠1.②在OA边上截取OC,使OC=a.③在OB边上截取OD,使OD=b.(2)利用刻度尺比较OC+OD与CD的大小.17.如图.B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.18.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.答案1.A2.B3.B4.D5.C6.A7.B8.D9.B10.B11.AB, C.12.8 cm或2 cm.13.②、④.14.4cm15.解:在直线l上顺次截取AD=b,DC=b,在线段AC上截取CB=a,则线段AB为所求作的线段.16.解:(1)根据以上步骤可作图形,如图,(2)通过利用刻度尺测量可知OC+OD>CD.17.设AB=3x,则BC=2x,CD=5x,∵E、F分别是AB、CD的中点,∴BE=32x,CF=52x,∵BE+BC+CF=EF,且EF=24,∴32x+2x+52x=24,解得x=4,∴AB=12,BC=8,CD=20.18.∵D是AC的中点,∴AC=2CD,∵CD=2cm,∴AC=4cm,∵AC= 12 AB,∴AB=2AC,∴AB=2×4 cm =8cm。
人教版数学七年级上册4.2直线 射线 线段测试带答案解析
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
七年级数学上册数学 6.1线段、射线、直线(七大题型)(解析版)
6.1线段、射线、直线分层练习考察题型一线段、射线、直线的概念辨析1.如图中射线OA与OB表示同一条射线的是()A.B.C.D.【详解】解:A、方向相反,不是同一条射线;B、端点相同,方向相同,是同一条射线;C、端点相同,方向不同,不是同一条射线;D、方向相反,不是同一条射线.故本题选:B.2.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短【详解】解:直线AB和直线BA表示同一条直线,A选项正确;过一点能作无数条直线,B选项正确;射线AB和射线BA表示不同射线,C选项正确;射线、直线都是无限长的,不能比较长短,D选项错误.故本题选:D.3.线段、射线、直线的位置如图所示,图中能相交的是()A.B.C.D.【详解】解:A、图中两线段不能相交;B、图中射线与直线能相交;C、图中线段与直线不能相交;D、图中线段与射线不能相交.故本题选:B.4.如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【详解】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5(51)20⨯-=.故本题选:D.考察题型二符号语言和几何图形的匹配1.如图,已知三点A、B、C,画射线AB,画直线BC,连接AC.画图正确的是()A.B.C.D.【详解】解:如图,画射线AB,画直线BC,连接AC,.故本题选:B.2.下列几何图形与相应语言描述相符的是()A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【详解】解:A、如图1,点C在线段BA的延长线上,与语言描述不相符;B、如图2,射线BC不经过点A,与语言描述不相符;C、如图3,直线a和直线b相交于点A,与语言描述相符;D、如图4,射线CD和线段AB有交点,与语言描述不相符.故本题选:C.考察题型三两点确定一条直线1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条【详解】解:A.点O在射线BA的反向延长线上,故此项错误;B.直线没有端点,故此项错误;C.直线无法比较长短,故此项错误;D.两点确定一条直线,故此项正确.故本题选:D.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是() A.钟表的秒针旋转一周,形成一个圆面B.把笔尖看成一个点,当这个点运动时便得到一条线C.把弯曲的公路改直,就能缩短路程D.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线【详解】解:A、钟表的秒针旋转一周,形成一个圆面,说明线动成面;B、把笔尖看成一个点,当这个点运动时便得到一条线,说明点动成线;C、把弯曲的公路改直,就能缩短路程,说明两点之间,线段最短;D、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,说明两点确定一条直线.故本题选:D.3.平面上有3个点,并且这3个点不在同一直线上,经过每两点画一条直线,则共可以画()条直线.A.3B.4C.5D.6【详解】解:可以画的直线条数为3(31)32⨯-=.故本题选:A.考察题型四两点之间,线段最短1.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点,其中正确的有()A.1个B.2个C.3个D.4个【详解】解:①经过一点有无数条直线,说法正确;②两点之间线段最短,说法正确;③经过两点,有且只有一条直线,说法正确;④若线段AM等于线段BM,则当A、B、M三点共线时,点M是线段AB的中点,原说法错误;综上,说法正确的一共有3个.故本题选:C.2.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【详解】解: 两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故本题选:C .3.如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是()A .从点A 经过 BF 到点PB .从点A 经过线段BF 到点PC .从点A 经过折线BCF 到点PD .从点A 经过折线BCDF 点P 【详解】解:如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是从点A 经过线段BF 到点P .故本题选:B .4.在一条沿直线l 铺设的电缆一侧有P ,Q 两个小区,要求在直线l 上的某处选取一点M ,向P ,Q 两个小区铺设电缆,现有如下四种铺设方案,图中实线表示铺设的电缆,则所需电缆材料最短的是()A .B .C .D .【详解】解:观察四个选项中的图形发现:选项D 中,点Q 与点P 关于直线l 对称点的连线交l 于M ,根据轴对称的性质可知:PM QM +为最短,即所需电缆材料最短.故本题选:D .5.如图,3AB =,2AD =,1BC =,5CD =,则线段BD 的长度可能是()A.3.5B.4C.4.5D.5【详解】解:由“两点之间,线段最短”得:BD-<<+,15∴<<,BD3232BD∴<<,BD-<<+,465151BD∴<<.45四个选项中,只有4.5在这个范围内.故本题选:C.6.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE AB BC=+;(4)在线段BD上取点P,使PA PC+的值最小.【详解】解:如图所示:.考察题型五比较线段的大小1.如图,用圆规比较两条线段的长短,其中正确的是()A .A B A C ''''>B .A B A C ''''=C .A B A C ''''<D .不能确定【详解】解:如图用圆规比较两条线段的长短,A B A C ''<''.故本题选:C .2.如图,AC BD >,则AD 与BC 的大小关系是:AD BC .(填“>”或“<”或“=”)【详解】解:AC BD > ,AC CD BD CD ∴+>+,AD BC ∴>.故本题答案为:>.3.如图,下列关系式中与图不符合的式子是()A .AD CD AB BC-=+B .AC BC AD BD -=-C .AC BC AC BD -=+D .AD AC BD BC-=-【详解】解:A 、AD CD AB BC -=+,正确,B 、AC BC AD BD -=-,正确;C 、AC BC AB -=,而AC BD AB +≠,故本选项错误;D 、AD AC BD BC -=-,正确.故本题选:C .考察题型六线段的中点1.下列说法正确的个数有()①若AB BC =,则点B 是AC 中点;②两点确定一条直线;③射线MN 与射线NM 是同一条射线;④线段AB 就是点A 到点B 之间的距离.A .1B .2C .3D .4【详解】解:①没有说明A 、B 、C 在同一条直线上,故可能出现这种情况,不合题意;②两点确定一条直线,符合题意;③射线MN 是以M 为端点,射线NM 是以N 为端点,射线MN 与射线NM 不是同一条射线,不合题意;④线段AB 是指连接A 、B 两点的线段,是一条有长度的几何图形,点A 到点B 之间的距离是指点A 和点B 之间的直线距离,是线段AB 的长度,不合题意.故本题选:A .2.如图,点D 是线段AC 上一点,点C 是线段AB 的中点,则下列等式不成立的是()A .AD BD AB +=B .BD CD CB -=C .2AB AC =D .12AD AC =【详解】解:由图可知:AD BD AB +=,BD CD CB -=,故选项A 、选项B 符合题意; 点C 是线段AB 的中点,2AB AC ∴=,故选项C 符合题意;D 是不是线段AC 的中点,12AD AC ∴≠,故本题选项D 不合题意.故本题选:D .3.小亮正确完成了以下两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE 到F ,使点D 是线段EF 的一个三等分点”.针对小亮的作图,小莹说:“点B 是线段AC 中点”.小轩说:“2DE DF =”.下列说法正确的是()A .小莹、小轩都对B .小莹不对,小轩对C .小莹、小轩都不对D .小莹对,小轩不对【详解】解:①“延长线段AB 到C ,使BC AB =”,如图①所示,此时点B 是AC 的中点;2综上,小莹说得对,小轩说得不对.故本题选:D.考察题型七线段长度的有关计算1.平面上有三点A、B、C,如果10BC=,那么()AC=,3AB=,7A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【详解】解: 1073==+=+,AB AC BC∴点C在线段AB上.故本题选:A.2.已知直线AB上有两点M,N,且8+=,则P点的位置()MP PN cmMN cm=,再找一点P,使10A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在【详解】解: 108MP PN cm MN cm+=>=,∴分两种情况:如图,P点在直线AB上或在直线AB外.故本题选C.3.点A、B、C在同一直线上,10BC=)=,则(=,2AC cmAB cmA.12cm B.8cm C.12cm或8cm D.以上均不对【详解】解:①如图,点C在A、B中间时,=-=-=;BC AB AC cm1028()②如图,点C在点A的左边时,BC AB AC cm=+=+=;10212()综上,线段BC的长为12cm或8cm.故本题选:C.4.已知点A、B、C位于直线l上,其中线段4AB=,且23=,若点M是线段AC的中点,则线段BC ABBM的长为()A.1B.3C.5或1D.1或4综上,线段BM 的长为5或1.故本题选:C .5.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD ,BC 的中点,下列结论:①若AD BM =,则3AB BD =;②AC BD =,则AM BN =;③2()AC BD MC DN -=-;④2MN AB CD =-.其中正确的结论是()A .①②③B .③④C .①②④D .①②③④【详解】解:如图,AD BM = ,AD MD BD ∴=+,12AD AD BD ∴=+,2AD BD ∴=,2AD BD BD BD ∴+=+,即3AB BD =,故①正确;AC BD = ,AD BC ∴=,∴1122AD BC =,M 、N 分别是线段AD 、BC 的中点,AM BN ∴=,故②正确;AC BD AD BC -=- ,222()AC BD MD CN MC DN ∴-=-=-,故③正确;222MN MC CN =+ ,MC MD CD =-,22()2MN MD CD CN ∴=-+,12MD AD = ,12CN BC =,1122()22MN AD BC CD AD CD BC CD AB CD ∴=+-=-+-=-,故④正确.故本题选:D .6.已知A ,B ,C ,D 四点在同一直线上,线段8AB =,点D 在线段AB 上.(1)如图1,点C是线段AB的中点,13CD BD=,求线段AD的长度;(2)若点C是直线AB上一点,且满足:4:1AC BC=,2BD=,求线段CD的长度.:4:1AC BC=,8AB=,:4:1AC BC=,8AB=,7.(1)如图1,点C在线段AB上,M,N分别是AC,BC的中点.若12AB=,8AC=,求MN的长;(2)设AB a=,C是线段AB上任意一点(不与点A,B重合),①如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;②若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,直接写出MN的值.8.如图1,已知B、C在线段AD上.(1)图1中共有条线段;(2)①若AB CD=,比较线段的长短:AC BD(填:“>”、“=”或“<”);②(图2)若18AD=,14MN=,M是AB的中点,N是CD的中点,求BC的长度.③(图3)若AB CD=,M是AB的中点,N是CD的中点,直接写出BC的长度.(用=,MN b≠,AD a含a,b的代数式表示)1.同一平面内的三条直线最多可把平面分成多少部分()A.4B.5C.6D.7【详解】解:任意画三条直线,相交的情况有四种可能:1、三直线平行,将平面分成4部分;2、三条直线相交同一点,将平面分成6部分;3、两直线平行被第三直线所截,将平面分成6部分;4、三条直线两两相交于不同的三个点,将平面分成7部分;综上,同一平面内的三条直线最多把平面分成7个部分.故本题选:D .2.如图,已知点A 、点B 是直线上的两点,12AB =厘米,点C 在线段AB 上,且8AC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发,在直线上运动,则经过秒时线段PQ 的长为6厘米.【详解】解:12AB = 厘米,8AC =厘米,1284CB ∴=-=(厘米);①点P 、Q 都向右运动时,(64)(21)-÷-21=÷2=(秒);②点P 、Q 都向左运动时,(64)(21)+÷-101=÷10=(秒);③点P 向左运动,点Q 向右运动时,(64)(21)-÷+23=÷23=(秒);④点P 向右运动,点Q 向左运动时,(64)(21)+÷+103=÷103=(秒);综上,经过2、10、23或103秒时线段PQ 的长为6厘米.故本题答案为:2、10、23或103.3.如图,点M 在线段AN 的延长线上,且线段20MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;⋯⋯连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010(M N M N M N ++⋯+=)A .910202-B .910202+C .1010202-D .1010202+【详解】解: 线段20MN =,线段AM 和AN 的中点1M ,1N ,4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。
61 线段、射线以及直线(解析版)
2021-2022学年七年级数学上册同步课堂专练(苏科版)6.1线段、射线以及直线一、单选题1.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【详解】解:A. 根据直线MN与直线NM表示方法是同一条直线,故选项A正确;B. 射线PM与射线MN是端点不同,不是同一条射线,故选项B说法不正确;C. 射线PM与射线PN是同一条射线,端点相同,方向相同,故选项C正确;D. 根据线段MN与线段NM表示方法是同一条线段,故选项D正确.故选择:B.2.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【详解】解:A ,B 两点间的距离是指连接A ,B 两点间的线段的长度,故选:D .3.根据语句“直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M .”画出的图形是( )A .B .C .D .【答案】D【详解】解:A .直线2l 不经过点M ,故本选项不合题意;B .点M 在直线1l 上,不在直线2l 上,故本选项不合题意;C .点M 在直线1l 外,故本选项不合题意;D .直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M ,故本选项符合题意;答案:D .4.以下说法正确的是( )A .钝角的一半一定不会小于45︒B .两点之间直线最短C .延长直线AB 到点E ,使BE AB =D .连接两点间的线段就是这两点的距离【答案】A【详解】解:A 、钝角的一半一定不会小于45︒,说法正确,符合题意;B 、两点之间线段最短,故原来的说法错误,不符合题意;C 、延长线段AB 到点E ,使BE =AB ,故原来的说法错误,不符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:A.5.下列说法正确的是()A.射线比直线短B.两点间的长度叫两点间的距离C.经过三点只能作一条直线D.两点确定一条直线【答案】D【详解】解:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、连接两点的线段的长度叫做两点间的距离,错误;C、经过不在一条直线的三点能作三条直线,错误;D、两点确定一条直线,是公理,正确;故选:D.+++最小,则点P()6.如图,线段AB、CD,在平面内找一点P,若使得PA PB PC PDA.线段AB的中点B.线段AD的中点C.线段AB和线段CD的交点D.线段AD和线段BC的交点【答案】D【详解】解:线段AB和线段CD,在平面内找一点P,使得它到四端点的距离和P A+PB+PC+PD最小,则点P是线段AD和线段BC的交点,故选:D.7.下列说法正确的是()A.延长射线AB到C B.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.8.下列说法正确的个数为()①用一个平面去截一个圆锥,截面的形状可能是一个三角形;①若2AB=AC,则点B是AC的中点;①连接两点的线段叫做这两点之间的距离;①在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离比B到原点的距离大.A.1个B.2个C.3个D.4个【答案】A【详解】解:①用一个平面去截一个圆锥,截面的形状可能是一个三角形;判断正确,故符合题意;①若2AB=AC,则点B不一定是AC的中点;判断错误,故不合题意;①连接两点的线段的长度叫做这两点之间的距离;判断错误,故不符合题意;①在数轴上,点A 、B 分别表示有理数a 、b ,若a >b ,则A 到原点的距离B 到原点的距离大;判断错误,故不符合题意.故选:A .二、填空题9.已知线段20AB =,14AM BM =,点P 、Q 分别是AM 、AB 的中点.(1)如图,当点M 在线段AB 上时,则PQ 的长为___________.(2)当点M 在直线AB 上时,则PQ 的长为__________.【答案】8 8或403【详解】解:(1)如图,当点M 在线段AB 上时20AB =,14AM BM =, 145AM AB ∴==,4165BM AB ==, 点P 、Q 分别是AM 、AB 的中点,122AP AM ∴==,1102AQ AB ==, 1028PQ AQ AP ∴=-=-=,故答案为:8.(2)由(1)得:当点M 在线段AB 上时,8PQ =;当点M 在线段AB 外时,如图:20AB =,14AM BM =, 132044AB BM AM BM BM BM ∴=-=-==, 803BM ∴=,203AM = 点P 、Q 分别是AM 、AB 的中点,11023AP AM ∴==,1102AQ AB ==, 10401033PQ AQ AP ∴=+=+=, 故答案为:8,403. 10.如图1,AB 是一条拉直的细绳,,C D 两点在AB 上,且:2:3AC BC =,:3:7AD BD =.则(1):CD AD =_________;(2)若将点C 固定,将AC 折向BC ,使得AC 落在BC 上(如图2),再从点D 处剪断,使细绳分成三段,分成的三段细绳的长度由小到大之比为____________.【答案】1①3 2①3①5【详解】解:(1)①:2:3AC BC =,AC CB AB +=,①:2:(23)2:5AC AB =+=, ①25AC AB =; ①:3:7AD BD =,AD DB AB , ①:3:(37)3:10AD AB =+=, ①310AD AB =; ①231=51010CD AC AD AB AB AB =--=, ①13::1:31010CD AD AB AB ==. (2)设对折后点D 关于C 点对称处为D ,被剪断两处分别是点D 和D ,剪开的三段细绳依次是AD 、DD '、D B ',①根据上题,310AD AB =; 11=22105DD DC AB AB '=⨯=;311=5102D B CB CD CB CD AB AB AB ''-=-=-=; ①DD AD D B ''<<. ①131::::2:3:55102DD AD D B AB AB AB ''==. 故答案为:(1)1①3(2)2①3①5.11.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =7cm ,BC =3cm ,则AD 的长为_____cm .【答案】11【详解】解:①MN =MB +BC +CN ,MN =7cm ,BC =3cm ,①MB +CN =7﹣3=4cm ,①M 是AB 的中点,N 是CD 的中点,①AB =2MB ,CD =2CN ,①AD =AB +BC +CD =2(MB +CN )+BC =2×4+3=11cm .故答案为:11.12.将一条弯曲的公路改成直道,这样就可以缩短路程,其中的道理用我们学过的几何知识解释为:___________.【答案】两点之间,线段最短【详解】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间,线段最短,故答案为:两点之间,线段最短.三、解答题13.如图,90PAQ ∠=︒,点B 、点C 分别在边PA 、QA 上,且12cm BA =,6cm CA =,动点M 沿AP 边从点A 出发,向点B 以2cm /s 的速度运动;动点N 沿QA 边从点C 出发,向点A 以1cm /s 的速度运动;若M 、N 同时运动,用(s)t 表示移动的时间.(1)当AM AN =时,求t 的值;(2)①当t 为何值时,点M 恰好在AB 的13处? ①在①的前提下,AM AN +等于BA CA +的13吗? 【答案】(1)2t =;(2)①2t =或4t =;①不等于.【详解】解:(1)由题意得:2cm,cm AM t CN t ==,6cm CA =,(6)cm AN CA CN t ∴=-=-,当AM AN =时,则26t t =-,解得2t =;(2)①当13AM AB =时,即12123t =⨯,解得2t =, 当23AM AB =时,即22123t =⨯,解得4t =, 综上,当2t =或4t =时,点M 恰好在AB 的13处; ①当2t =时,24(cm)AM t ==,64(cm)AN t =-=, 则8(cm)AM AN +=,12618(cm)BA CA +=+=, 此时181863≠⨯=; 当4t =时,28(cm)AM t ==,62(cm)AN t =-=,则10(cm)AM AN +=, 此时1101863≠⨯=; 综上,在①的前提下,AM AN +不等于BA CA +的13. 14.如图所示,点 A 、B 、C 、D 表示在同一直线上的四个车站的位置.求:(1)A 、D 两站的距离;(2)C 、D 两站的距离;(3)若C 为AD 的中点,求a 与b 之间所满足的相等关系.【答案】(1)4a +3b ;(2)a +3b ;(3)2a =3b .【详解】解:(1)a +b +3a +2b =4a +3b .故A 、D 两站的距离是4a +3b ;(2)3a +2b ﹣(2a ﹣b )=3a +2b ﹣2a +b =a +3b .故C 、D 两站的距离是a +3b ;(3)依题意有a +b +2a ﹣b =a +3b ,则2a =3b ,(或a =32b ). 15.对数轴上的点P 进行如下操作:先把点P 表示的数乘以()0m m ≠,再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P ',我们称P '为点P 的“倍移点”.例如点P 表示的数是1,当2m =,3n =时,那么倍移点P '表示的数是1235⨯+=.数轴上,点A ,B ,C ,D 的“倍移点”分别为'A ,B ′,'C ,D .(1)当12m =,1n =时,若点A 表示的数为-2,则点A '表示的数为____________;若点B '表示的数是3,则点B 表示的数为____________;(2)当4n =时,若点D 表示的数为3,点D 表示的数为-5,则m 的值为_____________;(3)若线段5A B AB ''=,请写出你能由此得到的结论,并说明理由.【答案】(1)0;4;(2)-3;(3)m =±5,见解析【详解】解:(1)①点A 表示的数为-2,①-2×12+1=0, ①它的对应点A '表示的数为0,设点B 表示的数为x ,①点B '表示的数是3,①x ×12+1=3,解得:x=4,故答案为:0,4;(2)由题意得:3m+4=-5,解得:m=-3,故答案为:-3;(3)设点A表示的数为a,点B表示的数为b,则点A′表示的数为am+n,点B′表示的数为bm+n,①|bm+n-am-n|=5|b-a|,①|m(b-a)|=5|b-a|,解得:m=±5,①若线段A'B'=5AB,m=±5.。
人教版四年级数学上册第3单元线段、直线、射线附答案
人教版四年级数学上册第3单元4.线段、直线、射线一、我会选。
(每小题2分,共10分)1.小米画出了一条5厘米长的()。
A.直线B.射线C.线段2.直线和射线相比,()。
A.直线长B.射线长C.无法比较3.把线段向一端无限延伸后,就可以得到一条()。
A.线段B.射线C.直线4.把一条长5厘米的线段向两端各延长3厘米,得到的是一条()。
A.直线B.线段C.射线5.下列说法正确的是()。
A.直线的长度是射线的两倍B.线段比射线短,射线比直线短C.射线只是直线的一部分,所以直线比射线长D.直线和射线都能无限延伸二、我会填。
(每空2分,共24分)1.照样子,用字母来表示线段。
()或()2.线段有()个端点,()可以量出长度。
3.直线()端点,射线有()个端点,无法测量()和()的长度。
4.把线段的两端无限延长,就可以得到一条()。
线段和射线都是()的一部分。
5.射线可以用端点和射线上的另一个点来表示。
如:记作()记作()三、我会辨(对的在括号里打“√”,错的打“×”)。
(每小题2分,共8分) 1.小明用尺子测量出射线的长度是5分米。
() 2.直线很长,可以画出1万米长的直线。
() 3.直线和射线都没有端点,所以它们都不能量出长度。
() 4.手电筒射出的光线可以看成是射线。
()四、分一分。
(9分)五、数一数。
(每空2分,共18分)1.下图中共有()条射线,列式:________________2.下图中共有()条线段,列式:________________3.下图中共有()条线段,列式:________________4.下图中共有()条直线,有()条射线,有()条线段。
六、按要求做一做。
(共23分)1.过A点画一条直线。
(4分)2.过A、B两点画直线。
(4分)3.先以点A为端点画一条射线。
(6分)4.下面有5个点,经过任意2个点画直线能画几条?动手画一画,并列式计算出来。
(9分)七、我会应用。
(8分)小米家装一根长条状晾衣架,至少需要几颗钉子才能把这根长条状晾衣架固定在墙上?说说你的理由。
中考数学专题复习《直线、射线、线段》测试卷(附带答案)
中考数学专题复习《直线射线线段》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________知识点1. 定义与性质:线段:线段是由两个端点及其之间的所有点组成的。
它有一个固定的长度并且可以在数轴上表示一个区间。
例如线段AB表示从点A到点B的所有点的集合。
射线:射线有一个起点(称为端点)并从该点沿一个方向无限延伸。
射线有一个端点和一个方向但没有固定的长度。
例如射线AB表示从点A出发沿AB方向无限延伸的线的集合。
直线:直线由无数个点组成没有端点并且向两端无限延伸。
直线没有固定的长度并且可以通过任意两个不重合的点来确定。
例如通过点A和点B可以确定一条直线。
2. 表示方法:线段:通常使用两个端点的字母来表示如线段AB。
在数轴上也可以使用一个区间来表示如[A, B]。
射线:使用起点和另一个点的字母来表示并指明方向如射线AB(从A出发经过B)。
直线:可以通过两点来表示如直线AB。
在数轴上直线可以用一个小写字母或两个不等的点来表示。
3. 几何特性:线段:是有限长的可以度量其长度。
线段是构成其他几何图形(如三角形四边形等)的基本元素。
射线:有一个端点和一个方向因此是无限长的不能度量其长度。
射线在几何学和物理学中有应用如光线和雷达波的传播。
直线:没有端点因此是无限长的也不能度量其长度。
直线是构成平面图形和立体图形的基本元素如平行四边形圆等。
4. 轴对称性:线段:线段是轴对称图形其对称轴是垂直于线段并通过其中点的直线。
射线:射线也是轴对称图形其对称轴是包含其端点的直线。
直线:直线是轴对称图形有无数条垂直于它的直线可以作为对称轴。
专项练一单选题1.下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2.我们知道若线段上取一个点(不与两个端点重合以下同)则图中线段的条数为++=条若线段上取三个点123+=条若线段上取两个点则图中线段的条数为1236+++=条……请用你找到的规律解决下列实际问题:杭甬铁路则图中线段的条数为123410(即杭州—宁波)上有萧山绍兴上虞余姚4个中途站则车站需要印的不同种类的火车票为( )A .6种B .15种C .20种D .30种3.下列命题中 是假命题的是( )A .三个角对应相等的两个三角形全等B .﹣3a 3b 的系数是﹣3C .两点之间 线段最短D .若|a |=|b | 则a =±b4.在下列说法①联接两点的线中 线段最短 ①相等的角是对顶角 ①过直线外一点有且只有一条直线与已知直线平行 ①两点间的线段是这两点的距离 ①20.196精确到百分位得20.2中 正确的是( )A .①①B .①①C .①①D .①①5.已知线段AB 长2cm .现延长AB 到点C 使3BC AB =.取线段AB 的中点D 线段CD 的长为( )A .5cmB .3cmC .7cmD .1cm6.如图 以A B C D E 为端点 图中共有线段( )A .7条B .8条C .9条D .10条7.如图所示 下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线 ①图中有两条射线 ①直线AB 和直线BA 是同一条直线 ①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .18.如图 在菱形ABCD 中 60ABC ∠=︒ E 是边BC 的中点 P 是对角线BD 上的一个动点 连接AE AM 若12AP BP +的最小值恰好等于图中某条线段的长 则这条线段是( )A .AB B .AEC .BD D .BE9.如图 点C 是线段AB 的中点 点D 是线段CB 上任意一点 则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12ABD .AD =12(CD +AB ) 10.若将点A (-1 3)向右平移2个单位 再向下平移4个单位得到点B 则点B 在第( )象限A .一B .二C .三D .四二 填空题11.绷紧的琴弦 人行横道都可以近似地看做 它有 个端点 手电筒 探照灯所射出的光线可以近似地看做 它有 个端点 笔直的铁轨可以近似地看做 它有 端点.12.A B C 三点在同一条直线上 若BC=2AB 且AB=m 则AC= . 13.如图 已知线段12AB = 延长线段AB 至点C 使得12BC AB =点D 是线段AC 的中点 则线段BD 的长是 .14.如图 等边ABC 的边长为4 AD 是BC 边上的中线 F 是AD 边上的动点 E 是AC 边上一点 若2AE = 当EF CF +取得最小值时 则ECF ∠= .15.若O 的半径为33 圆心O 为坐标系的原点 点P 的坐标是()3,5 点P 在O .16.已知线段AB=18cm P Q 是线段AB 上的两个点 线段AQ=12cm 线段BP=14cm 则线段PQ= .17.如图 直线243y x =+与x 轴 y 轴分别交于点A 和点B 点C D 分别为线段AB OB 的中点 点P 为OA 上一动点 PC PD +最小值是 .18.菱形OBCD 在平面直角坐标系中的位置如图所示 顶点B (2 0) ①DOB =60° 点P是对角线OC 上一个动点 E (0 则EP +BP 的最小值为 .19.如图 C 为线段AD 上一点 点B 为CD 的中点 且8cm AD = 2cm BD =.若点E 在AD 上 且EA=3cm BE 的长为 .20.如图 AD 为等边ABC 的高 E F 分别为线段AD AC 上的动点 且AE CF = 当BF CE +取得最小值时 AFB ∠的度数为 .三 解答题21.线段和角是我们初中数学常见的平面几何图形 它们的表示方法 和差计算以及线段的中点 角的平分线的概念等有很多相似之处 所以研究线段或角的问题时可以运用类比的方法.(1)特例感知:如图1 已知10cm AB = 点D 是线段AC 的中点 点E 是线段BC 的中点.若6cm BC 则线段DE =________cm .(2)数学思考:如图1 已知10cm AB = 若C 是线段AB 上的一个动点 点D 是线段AC 的中点 点E 是线段BC 的中点 线段DE 的长会发生变化吗?说明理由.(3)知识迁移:如图2 OB 是AOC ∠内部的一条射线 把三角尺中60︒角的顶点放在点O 处 转动三角尺 当三角尺的边OD 平分AOB ∠时 在角尺的另一边OE 也正好平分BOC ∠ 求AOC ∠的度数.22.如图 C 为线段AB 的中点 点D 在线段CB 上.(1)图中共有_________条线段(2)图中AD AC CD =+ BC AB AC =- 类似地 请你再写出两个有关线段的和与差的关系式:①_________ ①_________(3)若8AB = 1.5DB = 求线段CD 的长.23.补全解题过程已知:如图 点C 是线段AB 的中点 2CD =cm 8BD =cm 求AD 的长.解:①2CD=cm 8BD=cm①CB CD=+______=______cm①点C是线段AB的中点①AC CB==______cm①AD AC=+_______=_______cm24.(1)已知线段8AB=点C在线段AB的延长线上M N分别是线段AC与线段BC 的中点求线段MN的长(2)已知线段8cmAB=点C在线段AB的反向延长线上M N分别是线段AC与线段BC的中点则线段MN的长为cm.25.如图线段1134BD AB CD==点M N分别是线段AB CD的中点且20cmMN=求AC的长.参考答案:1.D2.D3.A4.A5.C6.D7.C8.B9.D10.D11.线段两射线 1 直线0个. 12.m或3m13.314.30︒15.外16.8cm17.5183119.3或9cm20.105︒/105度21.(1)5(2)不会(3)120︒22.(1)6 (2)(2)①BC=CD+DB ①AD=AB−DB (答案不唯一)(3)CD=2.5.23.BD10 10 CD12.24.(1)4 (2)425.48cm。
直线、射线、线段练习题(含答案)
1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。
4-2 直线、射线、线段(基础训练)(解析版)
4.2 直线、射线、线段 【基础训练】 一、单选题1.如图,4,7CB cm DB cm ==,点D 为AC 的中点,则AB 的长为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【分析】由图形可知,AB 等于各线段的和,即分别求出AD ,DC .然后相加即可得出AB 的长度. 【详解】解:由题意知,CB =4cm ,DB =7cm ,所以DC =3cm ,又点D 为AC 的中点,所以AD =DC =3cm ,故AB =AD +DB =10cm .故选:B . 【点睛】 本题主要考查学生灵活运用线段的和、差、倍、分转化线段之间的数量关系的能力.2.在开会前,工作人员进行会场布置在主席台上由两人拉着一条绳子然后以“准绳”为基准摆放茶杯这样做的理由是( )A.两点之间线段最短B.两点确定一条直线C.两点之间,直线最短D.过一点可以作无数条直线【答案】B【分析】根据直线的性质:两点确定一条直线可得答案.【详解】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【点睛】此题主要考查了直线的性质,关键是掌握两点确定一条直线.3.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【分析】根据两点间的距离定义即可求解.【详解】解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.【点睛】本题考查了两点间的距离的定义.4.日常生活中,手电筒发射出来的光线,类似于几何中的()A.折线B.直线C.射线D.线段【答案】C【分析】根据直线,射线和线段的区别即可得出答案.【详解】手电筒可近似看成一个点,所以手电筒发射出来的光线相当于一个从一个端点出发的一条射线,故选:C.【点睛】本题主要考查射线,掌握直线,射线和线段的区别是关键.5.下列说法中,错误的是()A.射线AB和射线BA是同一条射段B.经过两点只能作一条直线C.经过一点可以作无数条直线D.两点之间,线段最短【答案】A【分析】直接利用线段的性质以及直线的性质分别分析得出答案.【详解】解:A、射线AB和射线BA不是同一条射线,故此选项错误,符合题意;B、经过两点只能作一条直线,正确,不合题意;C、经过一点可以作无数条直线,正确,不合题意;D、两点之间,线段最短,正确,不合题意;故选:A.【点睛】此题主要考查了线段的性质以及直线的性质,正确把握相关性质是解题关键.6.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点之间直线最短C.两点确定一条直线D.以上说法都不对【答案】C【分析】根据题意可知应用的是两点确定一条直线,从而可得出答案.【详解】把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是两点确定一条直线,故选:C.【点睛】本题主要考查数学知识的实际应用,掌握基本的数学事实是解题的关键.7.如图,AB=CD,那么AC与BD的大小关系是()A.AC<BD B.AC=BD C.AC>BD D.不能确定【答案】B【分析】由题意可知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【详解】根据题意和图示可知AB=CD,而BC为AB和CD共有线段,故AC=BD,故选:B.【点睛】注意根据等式的性质进行变形,读懂题意是解题的关键.8.如图,从A地到B地有四条路线,由上到下依次记为路线①、①、①、①,则从A地到B地的最短路线是路线().A.①B.①C.①D.①【答案】C【分析】结合题意,根据两点之间线段最短的性质分析,即可得到答案.【详解】根据题意得,从A地到B地的最短路线是路线①故选:C.【点睛】本题考查了最短路径的知识;解题的关键是熟练掌握两点之间线段最短的性质,从而完成求解.9.下列说法错误的是()A.0既不是正数也不是负数B.经过两点有一条直线,并且只有一条直线C.两点之间,线段最短D.射线AB与射线BA是同一条射线【答案】D【分析】据有理数的知识和基本图形的相关知识逐一分析,先出符合题意的选项.【详解】对于A,0既不是正数也不是负数,说法正确,不符合题意;对于B,经过两点有一条直线,并且只有一条直线,说法正确,不符合题意;对于C,两点之间,线段最短,说法正确,不符合题意;对于D,射线AB与射线BA的端点不同,延伸方向不同,故“射线AB与射线BA是同一条射线”这一说法错误,符合题意.故选:D.【点睛】此题考查有理数的分类和基本几何图形的相关知识,理解相关知识点是关键.10.下列四个生活,生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设;①把弯曲的公路改直,就能缩短路程;①用两个钉子就可以把木条固定在墙上;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可用公理“两点之间,线段最短”来解释的现象是()A.①①B.①①C.①①D.①①【答案】A【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【详解】①从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确;①把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;①植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”.故错误;故选:A.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.11.下列说法正确的是()A.直线AB与直线BA不是同一条直线B.射线AB与射线BA是同一条射线C.延长线段AB和延长线段BA的含义一样D.经过两点有一条直线,并且只有一条直线【答案】D【分析】根据直线、射线、线段的意义和表示方法进行判断即可.【详解】解:A.直线AB与直线BA是同一条直线,因此A不正确,故A不符合题意;B.射线AB与射线BA不是同一条射线,因此B不正确,故B不符合题意;C.延长线段AB和延长线段BA的含义不一样,因此C不正确,故C不符合题意;D.经过两点有一条直线,并且只有一条直线是正确的,故D符合题意;故选:D.【点睛】本题考查直线、射线、线段的意义,理解直线、射线、线段的意义是正确判断的前提,掌握直线的性质是正确判断的关键.12.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点【答案】B【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上要钉牢一根木条,至少要钉两颗钉子,能解释这一实际应用的数学知识是两点确定一条直线,A C D不符合题意,B符合题意,故,,故选:.B【点睛】本题考查的是直线的性质,掌握两点确定一条直线的实际应用是解题的关键.13.如图,某同学用剪刀治直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这现象的数学知识是()A.两点之间,直线最短B.两点之间,线段最短C.两点确定一条直线D.经过一点有无数条直线【答案】B【分析】根据线段的性质,可得答案.【详解】解:由于两点之间线段最短,所以剩下树叶的周长比原树叶的周长小.故选:B.【点睛】本题考查的是线段的性质,利用线段的性质是解题关键.14.下列语句正确的有()(1)线段AB就是A、B两点间的距离;AB=;(2)画射线10cm(3)A,B两点之间的所有连线中,线段AB最短;=,那么B是AC的中点.(4)如果AB BCA.1个B.2个C.3个D.4个【答案】A【分析】根据两点间的距离,射线的定义与性质,线段的中点的定义,对各小题分析判断即可得解.【详解】解:因为线段AB的长度是A、B两点间的距离,所以(1)错误;因为射线没有长度,所以(2)错误;因为两点之间,线段最短.即A,B两点之间的所有连线中,最短的是A,B两点间的距离,所以(3)正确;因为点A、B、C不一定共线,所以(4)错误.综上所述,正确的有1个.故选:A.【点睛】本题考查的是线段、射线的定义与性质,线段的中点,两点间的距离,要求学生准确把握概念与性质是解决本题的关键.15.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【分析】根据直线的表示方法可判定A ,利用射线的表示方法可判定B ,C ,利用线段表示方法可判定D . 【详解】解:A . 根据直线MN 与直线NM 表示方法是同一条直线,故选项A 正确;B . 射线PM 与射线MN 是端点不同,不是同一条射线,故选项B 说法不正确;C . 射线PM 与射线PN 是同一条射线,端点相同,方向相同,故选项C 正确;D . 根据线段MN 与线段NM 表示方法是同一条线段,故选项D 正确.故选择:B . 【点睛】 本题考查直线,射线,线段的定义与表示方法,掌握直线,射线,线段的表示方法是解题关键. 16.下列说法正确的是( )A .两点之间直线最短B .平面内的三点可以在一条直线上C .延长射线AB 到点C ,使得BC AB =D .作直线5OB =厘米【答案】B 【分析】 根据线段的性质和直线的性质,以及射线的定义分别判定可得. 【详解】A. 两点之间线段最短,错误,故A 不合题意;B. 平面内的三点可以在一条直线上,表述正确,故B 符合题意;C. 延长线段AB 到点C ,使得BC =AB ,表述错误,故C 不符合题意;D. 作直线OB =5厘米,错误,直线没有长度,故D 不符合题意.故选:B .【点睛】考查了线段的性质,直线的性质,以及射线的定义,熟记概念内容,理解题意是解题的关键.17.把一条弯曲的道路改成直道,可以减少路程,其理由是()A.过两点有且只有一条直线B.两点之间线段最短C.垂线段最短D.两点间线段的长度叫两点间的距离【答案】B【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短.【详解】解:把一条弯曲的道路改成直道,可以减少路程,其理由是两点之间线段最短故选B.【点睛】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.18.下列说法正确的是()A.两点之间的所有连线中,直线最短B.一个角的余角一定比这个角大C.同角(或等角)的补角相等D.经过两点有无数条直线【答案】C【分析】根据“两点之间,线段最短“;互余的两个角的和为90°;补角的性质以及两点确定一条直线逐一判断即可.【详解】A、两点之间的所有连线中,线段最短,故原说法错误,故本选项不合题意;B、一个角的余角不一定比这个角大,如60°角的余角是30°,故原说法错误,故本选项不合题意;C、同角(或等角)的补角相等,说法正确,故本选项符合题意;D、经过两点有且只有一条直线,故原说法错误,故本选项不合题意;故选:C.【点睛】本题主要考查了“两点之间,线段最短“,两点确定一条直线以及补角的定义与性质,熟记相关定义是解答本题的关键.19.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【分析】根据射线,直线的性质以及线段的性质解答.【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.【点睛】 本题考查直线、射线的性质,是基础考点,难度较易,掌握相关知识是解题关键.20.如图,已知直线上顺次三个点A 、B 、C ,已知10cm AB =,4cm BC =.D 是AC 的中点,M 是AB 的中点,那么MD =( )cm .A .4B .3C .2D .1【答案】C 【分析】由10AB =cm ,4BC =cm .于是得到14AC AB BC =+=cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD AD AM =-,于是得到结论. 【详解】解:①10AB =cm ,4BC =cm ,14AC AB BC ∴=+=cm , D 是AC 的中点, 172AD AC ∴==cm ; M 是AB 的中点,152AM AB ∴==cm , 2D M AD AM ∴=-=cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.21.如图所示,下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线;①图中有两条射线;①直线AB 和直线BA 是同一条直线;①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .1【答案】C 【分析】 根据射线、直线、线段的表示方法判断即可. 【详解】解:①射线AB 和射线BA 不是同一条射线,端点不同,故①错误;①图中有四条射线,故①错误;①直线AB 和直线BA 是同一条直线,故①正确;①线段AB 和线段BA 是同一条线段,故①正确;故选:C . 【点睛】 本题考查了射线、直线、线段的表示方法,解题关键是注意它们的联系和区别.22.下列说法,其中正确的个数有( )(1)绝对值越小的数离原点越近;(2)多项式2235x x -+是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.A .4个B .3个C .2个D .1个 【答案】C【分析】 根据绝对值的定义、多项式、两点间的距离、相交线的定义即可得出结论. 【详解】解:(1)绝对值越小的数离原点越近,此说法正确;(2)多项式2235x x -+是二次三项式,此说法正确;(3)连接两点之间的线段的长度是两点之间的距离,此说法错误;(4)三条直线两两相交有1个或3个交点,此说法错误.故选C . 【点睛】 本题考查了两点间的距离、绝对值、多项式、相交线的定义,熟练掌握各定义是解题的关键.23.下列说法正确的是( )A .延长直线AB 到点CB .射线是直线的一部分C .画一条长2cm 的射线D .比较射线、线段、直线的长短,直线最长【答案】B 【分析】利用直线定义可判断A ,利用射线定义判断B ,利用射线的性质判断C ,利用直线与射线性质判断D 即可. 【详解】解:A. 延长直线AB 到点C ,直线向两方无限延伸,不能延长,故A 选项不正确;B. 射线是直线的一部分,故B 选项正确;C. 画一条长2cm 的射线,射线向一方无限延伸,射线不能度量,故C 选项不正确 ;D. 比较射线、线段、直线的长短,直线最长,射线向一方无限延伸,直线向两方无限延伸不能比较长短,故D选项不正确.故选择:B.【点睛】本题考查直线的定义与性质,射线的定义与性质,线段定义,掌握直线的定义与性质,射线的定义与性质,线段定义是解题关键.24.观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;①射线AC和射线AD是同一条射线;①线段AC和线段CA是同一条线段;①三条直线两两相交时,一定有三个交点.A.1B.2C.3D.4【答案】C【分析】根据直线的表示方法对①进行判断;根据射线的表示方法对①进行判断;根据线段的性质对①进行判断;通过分类讨论对①进行判断.【详解】解:①直线没有方向,直线BA和直线AB是同一条直线,故①说法正确;①射线AC和射线AD是同一条射线,故①说法正确;①线段AC 和线段CA 是同一条线段,故①说法正确;①三条直线两两相交时,一定有三个交点,还可能有一个,故①说法不正确.共3个说法正确.故选:C . 【点睛】 本题考查了直线、射线、线段的含义,解题的关键在于结合图形进行分析.25.如图,已知C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A .4B .6或8C .6D .8【答案】B 【分析】由于E 在直线AD 上位置不明定,可分E 在线段DA 的延长线和线段AD 上两种情况求解. 【详解】解:若E 在线段DA 的延长线,如图1,①EA =1,AD =9,①ED =EA +AD =1+9=10,①BD =2,①BE =ED -BD =10-2=8;若E 线段AD 上,如图2,EA =1,AD =9,①ED =AD -EA =9-1=8,①BD =2,①BE =ED -BD =8-2=6,综上所述,BE 的长为8或6.故选:B . 【点睛】 本题考查的是线段的中点、线段的和差计算,对题目进行分类讨论是解题的关键.26.已知点P 是CD 中点,则下列等式中:①PC PD =;①12PC CD =;①2CD PD =;①PC PD CD +=;正确的个数是( )A .1个B .2个C .3个D .4个 【答案】D【分析】根据线段中点的性质进行判断即可.【详解】解:①P 是CD 中点,①12PC PD CD ==,2CD PD =,PC PD CD +=, 因此①①①①都正确,故选:D.【点睛】本题考查了与线段中点有关的各线段之间的熟练关系,熟悉线段中点的含义是解题的关键.27.已知点C为线段AB上一点,AC=2BC,若线段AB的长为6cm,则线段AC的长为()A.6cm B.4cm C.3cm D.2cm【答案】B【分析】根据AC=2BC,可知AC=23AB,代入求值即可.【详解】解:①点C为线段AB上一点,AB=6cm,AC=2BC,①AC=23AB=4cm;故选:B.【点睛】本题考查了线段的计算,解题关键是准确理解题意,熟练的进行计算.28.2019年11月1日,隆生大桥正式通车,缓解了东江大桥与中信大桥的交通压力,其特点是“直”,明显缩短了江北与水口的距离,其主要依据是()A.两点确定一条直线B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两点之间,线段最短【答案】D【分析】直接利用线段的性质分析得出答案.【详解】解:隆生大桥正式通车,最大的特点是“直”,明显缩短了江北与水口的距离,其主要依据是:两点之间,线段最短.故选:D.【点睛】此题主要考查了线段的性质,正确理解题意是解题关键.29.下列叙述正确的是()A.线段AB可表示为线段BA B.直线可以比较长短C.射线AB可表示为射线BA D.直线a,b相交于点m【答案】A【分析】分别根据直线、射线以及线段的定义判断得出即可.【详解】解:A、线段AB可表示为线段BA,此选项正确;B、直线不可以比较长短,此选项错误;C、射线AB的端点是A,射线BA的端点是B,故不是同一射线,此选项错误;D、点用大写字母表示的,此选项错误,故选:A【点睛】此题主要考查了直线、射线以及线段的定义,正确区分它们的定义是解题关键.30.已知线段AB长为5,点C为线段AB上一点,点D为线段AB延长线上一点,若12BC BD AC==,则线段AC的长为()A.53B.103C.153D.203【答案】B【分析】利用线段的和差和等量关系用AC表示AB,根据5AB=即可得出AC.【详解】解:如图所示:①12BC BD AC==,①1322AB AC BC AC AC AC =+=+=,①5 AB=,①22105333 AC AB==⨯=,故选:B.【点睛】本题考查线段的和差.能结合题意正确构造出线段图是解题关键. 二、填空题31.如图,已知点B 在线段AC 上,9AB =,6BC =,P 、Q 分别为线段AB 、BC 上两点,13BP AB =,13CQ BC =,则线段PQ 的长为_______.【答案】7【分析】根据已知条件算出BP 和CQ ,从而算出BQ ,再利用P A =BP +BQ 得到结果.【详解】解:①AB =9,BP =13AB , ①BP =3,①BC =6,CQ =13BC , ①CQ =2,①BQ =BC -CQ =6-2=4,①PQ =BP +BQ =3+4=7,故答案为:7.【点睛】本题考查了两点间距离,线段的和差,熟练掌握线段上两点间距离的求法,灵活运用线段的和差倍分关系解题是关键.32.如图,线段AB =10,BC =6,点D 上线段AC 的中点,则线段AD 的长为 __.【答案】8【分析】根据线段AB=10,BC=6,可以求得线段AC的长,再根据点D是线段AC的中点,从而可以求得线段AD的长.【详解】解:①线段AB=10,BC=6,①AC=AB+BC=16,①点D是线段AC的中点,①AD=12AC=11682⨯=,故答案为:8.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.33.如图:点C为线段AB上的一点,M、N分别为AC、BC的中点,AB=40,则MN=_____.【答案】20【分析】由题意易得11,22MC AC CN CB==,进而可得111222MN MC CN AC CB AB=+=+=,进而问题可求解.【详解】解:①M 、N 分别为AC 、BC 的中点, ①11,22MC AC CN CB ==, ①AB =40, ①11120222MN MC CN AC CB AB =+=+==; 故答案为20.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.34.如图,C 是线段AB 上的一点,且13,5AB CB ==,M 、N 分别是AB 、CB 的中点,则线段MN 的长是_____________.【答案】4【分析】根据中点定义可得到AM =BM =12AB ,CN =BN =12CB ,再根据图形可得NM =BM -BN ,即可得到答案. 【详解】解:①M 是AB 的中点,①AM =BM =12AB =6.5, ①N 是CB 的中点,①CN =BN =12CB =2.5, ①MN =BM -BN =6.5-2.5=4.故答案为:4.【点睛】此题主要考查了求两点间的距离,解题的关键是根据条件理清线段之间的关系.35.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【详解】解:①MN=MB+BC+CN,MN=7cm,BC=3cm,①MB+CN=7﹣3=4cm,①M是AB的中点,N是CD的中点,①AB=2MB,CD=2CN,①AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.【点睛】本题考查了两点间的距离;利用中点性质转化线段间的关系是解题关键.三、解答题36.已知:如图,点,C D在线段AB上,点D是AB中点,1,123AC AB AB==.求线段CD长【答案】2 【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论. 【详解】①D 为线段AB 的中点,①AD =12AB =12×12=6, ①AC =13AB , ①AC =13×12=4, ①CD =AD -AC =6-4=2.【点睛】本题考查线段中点相关的计算,理解中点的定义,掌握线段中的计算法则是解题关键.37.如图,已知C 、D 两点将线段AB 分成2①3①4三段,点E 是线段BD 的中点,点F 是线段CD 上一点,且2CF DF =,12cm EF =,求线段AB 的长.【答案】36【分析】设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,根据题意可用x 表示出DF 、DE 的长,再根据12EF =,即可求出x ,最后即可求出AB 的长.【详解】解:根据题意可设线段AC 、CD 、DB 的长度分别为2x ,3x ,4x ,①2CF DF =, ①133DF x x =⨯=, ①12DE BD =, ①1422DE x x =⨯=. ①EF DF DE =+,①212x x +=,解得:4x =.①24344436AC D DB A C B =⨯+⨯+⨯==++.【点睛】本题考查线段的n 等分点和中点的有关计算.根据题意找出线段之间的数量关系是解答本题的关键. 38.(1)如图,已知线段AB ,请用尺规按下列要求作图:①延长线段AB 到C ,使BC=AB ;①延长线段BA 到D ,使AD=AC .(2)在(1)所作的图中,若点E 是线段BD 的中点,AB=2cm ,求线段AE 的长.【答案】(1)①见解析;①见解析;(2)1cm【分析】(1)①根据题意画出图形即可;①根据题意画出图形即可;(2)首先根据图形求出AC 的长度,进而得出AD 的长度,然后利用中点求出DE 的长度,最后利用AE AD CE =-求解即可. 【详解】(1)①如图,①如图,(2)如图,2cm,AB BC AB ==,4cm AC AB BC ∴=+=,4cm AD AC ∴==,6cm DB AD AB ∴=+=.①点E 是线段BD 的中点, 13cm 2DE DB ∴==, 1cm AE AD CE ∴=-=.【点睛】本题主要考查线段的和与差,掌握线段之间的关系是关键.39.如图,点C 在线段AB 上,AC =6cm ,MB =10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;【答案】(1)7cm ;(2)6.5cm . 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长. 【详解】解:(1)①AC=6cm ,点M 是AC 的中点, ①132MC AC cm ==, ①1037BC M B M C cm . (2)①N 是BC 的中点, ①1 3.52CNBC cm ①3 3.5 6.5M N M C CN cm .【点睛】本题考查了两点间的距离,熟悉相关性质是解题的关键.40.如图,线段6cm AC =,线段15cm BC =,点M 是AC 的中点,在线段CB 上取一点N ,使得:1:2CN NB =,求MN 的长.【答案】8cm【分析】因为点M 是AC 的中点,则有12MC AM AC ==,又因为:1:2CN NB =,则有13CN BC =,故MN MC NC =+可求.【详解】解:M 是AC 的中点,6AC =cm ,132MC AC ∴==cm , 又因为:1:2CN NB =,15BC =,153NC BC ∴==cm . 8MN MC NC ∴=+=cm ,MN ∴的长为8cm .【点睛】本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键,本题点M 是AC 的中点,则有12MC AM AC ==,还利用了两条线段成比例求解. 41.(1)如图,用没有刻度直尺和圆规画图:①点C 是线段AB 处一点,画射线CB ,画直线AC ;①延长线段AB 到E ,使3AE AB =;(2)在(1)的条件下,如果2AB cm =,O 是线段AE 的中点,求线段OB 的长.【答案】(1)①见解析;①见解析;(2)1cm(1)①根据射线和直线的定义作图即可,①作直线AB ,以AB 为半径作圆,圆与直线AB 交点作圆心,即可得;(2)根据延长线的定义以及线段的和差计算即可得. 【详解】解:(1)①如图所示:①如图所示:(2)由图可知2AB cm =,236AE cm =⨯=, 116322OA AE cm ∴==⨯=, 1OB OA AB cm ∴=-=【点睛】本题考查了无刻度直尺和圆规画图,根据线段中点计算线段的长度;掌握好相关的定义,根据线段中点的特性解题是关键.42.如图,已知线段AB =6,延长AB 至C ,使BC =2AB ,点P 、Q 分别是线段AC 和AB 的中点,求PQ 的长.【答案】PQ 的长为6.结合图形、根据线段中点的定义计算. 【详解】解:①BC =2AB ,AB =6,①BC =2×6=12,①AC =AB +BC =6+12=18,①点P 、Q 分别是线段AC 和AB 的中点,①AP =12AC =12×18=9, AQ =12AB =12×6=3, ①PQ =AP -AQ =9-3=6,故PQ 的长为6.【点睛】本题考查了两点间的距离、线段中点的定义,掌握线段的和差的计算方法、中点的定义是解题的关键. 43.尺规作图,已知:线段(),a b a b >,求作:AB a b =+.(保留作图痕迹,不写作法)【答案】见解析【分析】先在射线AM 上依次截取AC =a ,再截取CB =b ,则线段AB =a +b .【详解】解:如图,线段AB 即为所作.【点睛】本复考查了作图-复杂作图:杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.44.如图,延长线段AB 到点C ,使2BC AB =,取AC 的中点D .已知3cm BD =,求AC 的长.【答案】18 【分析】设cm AB x =,则2cm BC x =,先根据线段的和差可得3cm AC x =,再根据线段的中点的定义可得3cm 2CD x =,然后根据线段的和差可得1cm 2BD x =,结合3cm BD =可求出x 的值,由此即可得出答案. 【详解】设cm AB x =,则2cm BC x =,3cm AC AB BC x ∴=+=,点D 是AC 的中点,13cm 22CD AC x ∴==, 1cm 2BD BC CD x ∴=-=,。
【小学数学】人教版数学四年级上册.线段、直线、射线
2021-2021学年人教版数学四年级上册3.1线段、直线、射线3.1线段、直线、射线一、选择题1.(2021四上·南关期末)下图中()表示线段.A. B. C.【答案】B【考点】线段、直线、射线的认识及表示【解析】【解答】解:A项:是直线;B项:是线段;C项:是射线。
故答案为:B。
【分析】线段有2个端点,不能向两端无限延伸,能测量长度;直线没有端点,可以向两端无限延伸,不能测量长度;射线有1个端点,可以向一端无限延伸,不能测量长度。
2.下面的图形中有()条线段.A. 5B. 6C. 7D. 8【答案】B【考点】线段、直线、射线的认识及表示【解析】【解答】根据线段的意义可知,这个图形共有6条线段。
【分析】线段是直线上两个点和它们之间的部分叫做线段。
3.学校的一条直跑道长60米,这条直跑道是()A. 直线B. 射线C. 线段【答案】C【考点】线段、直线、射线的认识及表示【解析】【解答】能测量出跑道的长度,说明跑道是线段.故答案为:C【分析】直线没有端点,无限长;射线有一个端点,无限长;线段有两个端点,有限长;由此判断即可.4.(2021四上·邻水期末)琪琪画了一条15厘米的线段,浩浩画了一条射线,()画的线长.A. 琪琪B. 浩浩C. 不能确定【答案】C【考点】线段、直线、射线的认识及表示【解析】【解答】解:线段有两个端点、它的长度是有限的;射线有一个端点,它的长度是无限的;所以射线和线段是无法比较大小的.故选:C.【分析】根据直线、线段和射线的特点:直线没有端点、它是无限长的;线段有两个端点、它的长度是有限的;射线有一个端点,它的长度是无限的;进行解答即可.5.(2021四下·兴县月考)李欣画了一条长7cm的()A. 线段B. 射线C. 直线【答案】A【考点】线段、直线、射线的认识及表示【解析】【解答】李欣画了一条长7cm的线段.故答案为:A.【分析】此题主要考查了直线、射线、线段的特征,线段有两个端点,长度有限;射线有一个端点,长度无限;直线没有端点,长度无限,据此解答.二、判断题6.判断对错.小明画一条10厘米长的射线.【答案】错误【考点】线段、直线、射线的认识及表示【解析】【解答】根据射线的特征可知,射线是无限长的,无法测量实际长度,原题说法错误.故答案为:错误【分析】射线只有一个端点,无限长;直线没有端点,无限长;线段有两个端点,有限长;由此判断即可.7.火眼金睛辨对错.因为射线只能向一端无限延长,所以射线比直线短.【答案】错误【考点】线段、直线、射线的认识及表示【解析】【解答】射线和直线都是无限长的,无法比较射线与直线的长短,原题说法错误.故答案为:错误【分析】直线没有端点,无限长;射线有一个端点,无限长;线段有两个端点,有限长;根据三种线的特征判断即可.8.判断对错.两条直线相交可以确定一点.【答案】正确【考点】线段、直线、射线的认识及表示【解析】【解答】两条直线相交有一个交点,所以两条直线相交可以确定一点,原题正确.故答案为:正确【分析】同一平面内,两条直线有两种关系,相交或不相交,相交的两条直线有一个交点;由此判断即可.9.画一条2厘米长的直线。
上海沪教版-四年级数学上 线段、射线、直线-含答案
A. 1个 B. 2个
C. 没有 D. 无数个
2. 北京至济南的铁路长1000千米,它可以看作一条( )。
A. 线段 B. 射线 C. 直线
3. 能量出长度的是( ) A. 直线 B. 射线 C. 角 D. 线段
4. 经过两点可以画( )条直线。
A. 1 B. 2
C. 无数条
三角形是由三条线段围成的。
射线:有一个端点,它的长度是无限的;进行解答即可。 根据线段、射线和直线的特点可得:线段可以量出长度;
故选:D。
4. 经过两点可以画( )条直线。
A. 1 B. 2
C. 无数条
答案:A
解析:经过两点只能画1条直线,据此进行选择。 经过两点可以画1条直线。 故选:A。
5. 下列说法中,正确的是( )。 A. 周角只有一条边 B. 过两点只能画一条直线 C. 射线可以用直尺度量长度 D. 直线有一个端点
故选:B。
6. 在一条射线上截取4厘米的线段,可以截取( )段。 A. 2 B. 3 C. 5
D. 无数
答案:D
解析:根据线段和射线的含义:线段有两个端点,有限长;射线有一个端点,无限长;可知:在一条射线上截取4厘
米的线段,可以截取无数段;据此选择即可。此题考查了线段、射线的含义,应注意理解和灵活运用。
因为线段有限长,射线无限长,所以在一条射线上截取4厘米的线段,可以截取无数段。
7. 下面的
答案:B 解析:由射线的意义知:射线有一个端点,无限长,据此解答即可。
图中以三点为顶点的射线各有2条, 共:2 × 3 = 6条
故选:B。
8. 经过一点可以画( )条直线。
5. 下列说法中,正确的是( )。 A. 周角只有一条边 B. 过两点只能画一条直线 C. 射线可以用直尺度量长度 D. 直线有一个端点
四年级 直线、线段、射线 带答案
1.⼀个三⻆形是由三条( )围成的。
A.直线B.射线C.线段2.图中有( )条线段。
A.条B.条C.条D.条3.经过两点可以画( )条直线。
A.B.C.⽆数条4.经过下⾯三点中的任意两点,⼀共可以画( )条直线。
A.B.C.D.⽆数5.直线、射线和线段三者⽐较⻓度,( )。
A.直线⽐射线⻓B.射线⽐线段⻓C.线段⽐直线⻓D.三者⽆法⽐6.从直线外⼀点到这条直线的距离,是指这⼀点到这条直线的( )的⻓。
456712123C.直线D.垂直线段7.直线上两点间的⼀段叫( )。
A.直线B.射线C.线段8.下列说法正确的是( )。
A.最⼩的⾃然数是B.公顷⼤于平⽅千⽶C.直线⽐射线⻓D.正⽅形相邻的两条边垂直9.下列线中,( )是直线,( )射线,( )是线段。
A.B.C.D.10.琪琪画了⼀条厘⽶的线段,浩浩画了⼀条射线,( )画的线⻓。
A.琪琪B.浩浩C.不能确定11.画⼀条毫⽶的( )。
A.直线1101154512.下⾯的图中有( )条射线。
A.B.C.13.⼀条( )⻓⽶,⻆的两条边都是( )。
A.线段;线段B.射线;直线C.线段;射线14.直线、射线和线段三者⽐较( )A.直线⽐射线⻓B.射线⽐线段⻓C.线段⽐直线⻓D.三者⽆法⽐15.同⼀平⾯内有五个点,经过任意两点画⼀条线段,最多可画( )条不同的线段。
A.B.C.D.16.图中有( )线段。
A.条B.条C.条17.在⼀条射线上截取厘⽶的线段,可以截取( )段。
16830005810156434C.D.⽆数18.在⼀条直线上⼀共有三个不同的点,这些点⼀共可以组成( )条不同的线段。
A.B.C.19.经过平⾯内的两点可以画( )条直线。
A.两B.⼀C.⽆数20.是由两条( )组成的。
A.线段B.射线C.直线D.曲线21.下列语句,表达正确的是( )A.在同⼀个圆内,半径的⻓度是直径的⼀半B.直线⽐射线⻓C.过两个点可以画出⽆数条直线D.⼤于的⻆都是钝⻆22.下⾯说法错误的是( )。
第11讲 线段、射线、直线(5大考点)(解析版)
第11讲线段、射线、直线(5大考点)考点考向一、直线相关概念1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2. 表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.二、线段相关概念1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图所示,在A,B两点所连的线中,线段AB的长度是最短的.注:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如图所示,点C是线段AB的中点,则12AC CB AB==,或AB=2AC=2BC.若点C是线段AB的中点,则点C一定在线段AB上.三、射线相关概念1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图所示,直线l上点O和它一旁的部分是一条射线,点O是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA.(2)也可以用一个小写英文字母表示,如图8所示,射线OA可记为射线l.注: (1)端点相同,而延伸方向不同,表示不同的射线.如图中射线OA,射线OB是不同的射线.(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图中射线OA、射线OB、射线OC都表示同一条射线.四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表注:(1)联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.考点精讲一.直线、射线、线段(共4小题)1.(2021秋•淮安期末)如图,共有线段()A.3条B.4条C.5条D.6条【分析】根据在一直线上有n 点,一共能组成线段的条数的公式:,代入可直接选出答案.【解答】解:线段AB、AC、AD、BC、BD、CD 共六条,也可以根据公式计算,=6,故选D.【点评】在线段的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.2.(2021秋•溧阳市期末)甲、乙两地开通了高铁,中途有三个站停靠,如果站与站之间的路程及站点与甲、乙两地的路程都不相等,那么高铁公司需要在这段路上准备几种不同的高铁票()A.5种B.10种C.20种D.40种【分析】先求出线段的条数,再计算票价和车票的种数.【解答】解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“A→C”与“C→A”票价相同,但车票不同,故需要准备20种车票.故选:C.【点评】本题考查了线段,运用数学知识解决生活中的问题.解题的关键是需要掌握正确数线段的方法.3.(2021秋•泗洪县期末)如图,在直线l上有A,B,C三点,则图中的线段共有 3 条.【分析】根据线段的概念求解.【解答】解:图中线段有AB、AC、BC这3条,故答案为:3.【点评】本题主要考查线段的定义,掌握线段的定义和数线段的方法.4.(2021秋•东台市期末)对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,我们把M、P两点间距离的最小值称为点M关于线段AB的“靠近距离”,记作d1(点M,线段AB);把M、P两点间的距离的最大值称为点M关于线段AB的“远离距离”,记作d2(点M,线段AB).特别的,若点M与点P重合,则M,P两点间的距离为0.已知点A表示的数为﹣5,点B表示的数为2.如图,若点C表示的数为3,则d1(点C,线段AB)=1,d2(点C,线段AB)=8.(1)若点D表示的数为﹣7,则d1(点D,线段AB)= 2 ,d2(点D,线段AB)=9 ;(2)若点M表示的数为m,d1(点M,线段AB)=3,则m的值为﹣8或5 ;若点N表示的数为n,d2(点N,线段AB)=12,则n的值为﹣10或7 .(3)若点E表示的数为x,点F表示的数为x+2,d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.【分析】(1)根据已知给出的定义,进行计算即可解答;(2)分两种情况,点E在点A的左侧,点E在点B的右侧.【解答】解:(1)∵点D表示的数为﹣7,∴d1(点D,线段AB)=DA=﹣5﹣(﹣7)=2,d2(点D,线段AB)=DB=2﹣(﹣7)=9,故答案为:2,9.(2)①当点M在点A的左侧:有AM=3,∴m=﹣8;当点M在点B的右侧:有BM=3,∴m=5,∴m的值为﹣8或5.②当点N在点A的左侧:有BN=12,∴n=﹣10;当点N在点B的右侧:有AN=12,∴n=7,∴n的值为﹣10或7.(3)分三种情况:当点E在点A的左侧,d2(点F,线段AB)=BF=2﹣(x+2)=﹣x,d1(点E,线段AB)=AE=﹣5﹣x,∵d2(点F,线段AB)是d1(点E,线段AB)的3倍,∴﹣x=3(﹣5﹣x),∴x=﹣7.5,当点E在线段AB上时,d1(点E,线段AB)=0,不合题意舍去,当点E在点B的右侧,d2(点F,线段AB)=AF=x+2﹣(﹣5)=x+7,d1(点E,线段AB)=EB=x﹣2,∵d2(点F,线段AB)是d1(点E,线段AB)的3倍,∴x+7=3(x﹣2),∴x=6.5,综上所述:x的值为:﹣7.5或6.5.【点评】本题考查了数轴上点的距离相关问题,理解题目已知给出的定义是解题的关键.二.直线的性质:两点确定一条直线(共4小题)5.(2021秋•常州期末)如图,已知A、B、C三点,过点A可画直线BC的平行线的条数是()A.0条B.1条C.2条D.无数条【分析】先过B,C两点画直线BC,在根据过直线外一点有且只有1条直线与已知直线平行可求解.【解答】解:如图,故选:B.【点评】本题主要考查直线,射线,线段,平行线,掌握过直线外一点有且只有1条直线与已知直线平行的性质是解题的关键.6.(2021秋•宜兴市期末)在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③【分析】直接利用直线的性质以及线段的性质分析得出答案.【解答】解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.【点评】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.7.(2021秋•阜宁县期末)下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点之间线段最短分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.8.(2021秋•淮安期末)要在墙上固定一根木条,至少需要两根钉子,理由是两点确定一条直线.【分析】根据直线的性质求解即可.【解答】解:根据直线的性质,要在墙上固定一根木条,至少需要两根钉子,理由是:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题考查直线的性质.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.三.线段的性质:两点之间线段最短(共7小题)9.(2021秋•如皋市期末)两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是两点之间,线段最短.【分析】直接利用线段的性质分析得出答案.【解答】解:将弯曲的公路改直,可以缩短路程,这是根据两点之间,线段最短.故答案为:两点之间,线段最短.【点评】此题主要考查了线段的性质,正确掌握相关性质是解题关键.10.(2021秋•秦淮区期末)下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩.其中,可以用“两点之间,线段最短”来解释的现象是②(填序号).【分析】根据线段的性质、垂线的性质、直线的性质分别进行分析.【解答】解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最短;③体育课上,老师测量某个同学的跳远成绩,根据垂线段最短;故答案为:②.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.11.(2021秋•仪征市期末)校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为()A.直线外一点与直线上点之间的连线段有无数条B.过一点有无数条直线C.两点确定一条直线D.两点之间线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:校园中常常看到“在草坪上斜踩出一条小路”,其原因是两点之间线段最短,故选:D.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.12.(2021秋•盱眙县期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.沿桌子的一边看,可将桌子排整齐B.用两颗钉子固定一根木条C.把弯路改直可以缩短路程D.用两根木桩拉一直线把树栽成一排【分析】根据直线的性质,线段的性质逐一判断即可得.【解答】解:A、沿桌子的一边看,可将桌子排整齐体现基本事实“两点确定一条直线”;B、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;C、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;D、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;故选:C.【点评】本题主要考查线段的性质,解题的关键是掌握两点之间线段最短的性质.13.(2021秋•建湖县期末)下列生产和生活现象:①把弯曲的公路改直,就能缩短路程;②用两个钉子就可以把木条固定在墙上;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用“两点确定一条直线”来解释的现象有②③.(填序号)【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断后利用排除法求解.【解答】解:①把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故此项不符合;②用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故此项符合;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故此项符合;④从A地到B地架设电线,总是尽可能沿着线段AB架设.是利用了“两点之间,线段最短”,故此项不符合.故答案为:②③.【点评】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.14.(2021秋•射阳县校级期末)如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线()A.①B.②C.③D.④【分析】由题意从A到B,肯定要尽量缩短两地之间的里程,就用到线段的性质:两点之间线段最短.【解答】解:根据两点之间线段最短可得,从A地到B地的最短路线是路线③.故选:C.【点评】本题考查了线段的性质.解题的关键是掌握线段的性质:两点之间线段最短,本题比较基础.15.(2021秋•邗江区期末)有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两棵树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有②(填序号).【分析】分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【解答】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两棵树的位置,就能确定同一行所在的直线根据两点确定一条直线;故答案为:②.【点评】此题主要直线和线段的性质,关键是掌握两点确定一条直线;两点之间,线段最短.四.两点间的距离(共13小题)16.(2021秋•如皋市期末)如图,点C为线段AB上一点,AB=5,BC=2,则AC=()A.7 B.6 C.4 D.3【分析】根据线段的和差即可得到结论.【解答】解:∵AB=5,BC=2,∴AC=AB﹣BC=5﹣2=3,故选:D.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差关系是解答此题的关键.17.(2021秋•江都区期末)如图,点C是AB的中点,点D是BC的中点,则下列等式中正确的有()①CD=AB;②CD=AB﹣BD;③CD=AD﹣CB;④CD=2AD﹣AB.A.4个B.3个C.2个D.1个【分析】根据两点间的距离计算方法进行计算即可得出答案.【解答】解:①∵点C是AB的中点,∴BC=AC=,∵点D是BC的中点,∴,∴;所以①说法错误;②∵CD=BC﹣BD,∴CD=﹣BD.所以②说法正确;③∵CD=AD﹣AC,∴CD=AD﹣BC.所以③说法正确;④∵AD=AC+CD,∴2AD﹣AB=2(AC+CD)﹣AB=2AC+2CD﹣AB=AB+2CD﹣AB=2CD,∴CD≠2AD﹣AB,所以④说法不正确.所以说法正确的由②③共2个.故选:C.【点评】本题主要考查了两点间的距离,熟练掌握两点间距离的计算方法进行求解是解决本题的关键.18.(2021秋•海门市期末)如图,A,B,C,D四点在同一直线上,点M是线段AB的中点,点N是线段CD的中点,MN=a,BC=b,则线段AD的长度可表示为()A.a+b B.a+2b C.2a﹣b D.2b﹣a【分析】由已知M是AB的中点,N是CD的中点,推出AM=MB=AB,CN=ND=CD,则推出AB+CD=2a﹣2b,从而得出答案.【解答】解:∵M是AB的中点,N是CD的中点,∴AM=MB=AB,CN=ND=CD,∵MN=MB+BC+CN=a,∴MB+CN=MN﹣BC=a﹣b,∴AB+CD=2MB+2CN=2(a﹣b),∴AD=AB+BC+CD=2a﹣2b+b=2a﹣b,故选:C.【点评】此题考查的知识点是两点间的距离,关键是根据线段的中点及各线段间的关系求解.19.(2021秋•海门市期末)如图,已知线段AB,延长线段AB至点C,使BC=3AB,点D是线段AC的中点.请说明点B是线段AD的中点.【分析】根据BC=3AB,求得AC=4AB,根据线段中点的定义即可得到结论.【解答】解:∵BC=3AB,∴AC=4AB,∵点D是线段AC的中点,∴AD=AC=2AB,∴BD=AD﹣AB=AB,∴点B是线段AD的中点.【点评】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.20.(2021秋•广陵区期末)如图,已知线段AB=18cm,延长AB至C,使得.(1)求AC的长;(2)若D是AB的中点,E是AC的中点,求DE的长.【分析】(1)根据BC与AB的关系可得BC,由AC=AB+BC可得答案;(2)根据线段中点的定义分别求出AE和AD的长度,再利用线段的和差得出答案.【解答】解:(1)∵BC=AB,AB=18cm,∴BC=×18=6(cm),∴AC=AB+BC=24(cm),故AC的长为24cm;(2)∵D是AB的中点,E是AC的中点,∴AD=AB=9cm,AE=AC=12cm,∴DE=12﹣9=3(cm),故DE的长为3cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.(2021秋•阜宁县期末)已知线段AB=2cm,延长AB到点C,使BC=4cm,D为AB的中点,则线段DC=5cm.【分析】先根据题意找出各点的位置,然后直接计算即可.【解答】解:画出图形如下所示:则DC=DB+BC=AB+BC=1+4=5cm.故答案为:5cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.(2021秋•射阳县校级期末)如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且,求线段AE的长.【分析】(1)根据中点定义,求得BC的长,再由线段的和差计算结果;(2)分两种情况:①当点E在点B的右侧时,②当点E在点B的左侧时,分别根据线段的和差中点定义计算即可.【解答】解:(1)∵点C是线段AB的中点,AB=8cm,∴BC=AB=4cm,∴CD=BC﹣BD=4﹣3=1(cm);(2)①当点E在点B的右侧时,如图:∵BD=3cm,BE=BD,∴BE=1cm,∴AE=AB+BE=8+1=9(cm);②当点E在点B的左侧时,如图:∵BD=3cm,BE=BD,∴BE=1cm,∴AE=AB﹣BE=8﹣1=7(cm);综上,AE的长为9cm或7cm.【点评】此题考查的是两点间的距离,掌握线段中点的定义是解决此题关键.23.(2021秋•宿城区期末)已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,求线段AC的长.【分析】(1)把x=﹣3代入方程,即可求出k;(2)画出符合的两种情况,求出AC的长即可.【解答】解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,当C在线段AB上时,如图1,∴AC=2cm;当C在BA的延长线时,如图2,∵BC=2AC,AB=6cm,∴AC=6cm,即AC的长为2cm或6cm.【点评】本题考查了求两点之间的距离、线段的中点、一元一次方程的解等知识点,能求出符合的所有情况是解此题的关键.24.(2021秋•宿城区期末)如图所示,点C是线段AB上的点,点M、N分别是AC、BC的中点,若CB=3cm,MN=4.5cm,则线段MB的长度是6cm.【分析】根据线段中点的定义可求解NC,结合MN=4.5cm可求解MC,进而可求解.【解答】解:∵点N是BC的中点,CB=3cm,∴NC=BC=1.5cm,∵MN=4.5cm,∴MC=MN=NC=4.5﹣1.5=3cm,∴MB=MC+CB=3+3=6cm,故答案为:6cm.【点评】本题考查两点间的距离,熟练掌握线段中点的定义与线段的和差是解题关键.25.(2021秋•射阳县校级期末)如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=10cm,BD=4cm.(1)求线段CD的长;(2)若点E是线段AB上一点,且,求线段AE的长.【分析】(1)先计算BD,再算CD.(2)先算BE,再算AE.【解答】解:(1)∵点C是线段AB的中点,∴BC=AB=5(cm).∴CD=BC﹣BD=5﹣4=1(cm).(2)如图:∵BE=BD=2(cm),∴AE=AB﹣BE=10﹣2=8(cm).【点评】本题考查求线段的长度,将所求线段转化为其它线段的和或差是求解本题的关键.26.(2021秋•邗江区期末)如图,C是线段AB上一点,M是AC的中点,N是BC的中点.(1)若AM=1,BC=4,求MN的长度;(2)若AB=6,求MC+NB的长度.【分析】(1)利用线段的中点性质求出MC和CN的长度即可解答;(2)利用线段的中点性质求出MC+NB=AB即可解答.【解答】解:(1)∵M是AC的中点,N是BC的中点,∴AM=MC=1,CN=BC=×4=2,∴MN=MC+CN=1+2=3;(2)∵M是AC的中点,N是BC的中点,∴AM=MC=AC,CN=NB=BC,∴MC+NB=AC+BC=AB=×6=3,∴MC+NB的长度为3.【点评】本题考查了两点间距离,熟练掌握线段的中点性质是解题的关键.27.(2021秋•启东市期末)如图,有公共端点P的两条线段MP,NP组成一条折线M﹣P﹣N,若该折线M﹣P﹣N上一点Q把这条折线分成相等的两部分,我们把这个点Q叫做这条折线的“折中点”.已知点D是折线A﹣C﹣B的“折中点”,点E为线段AC的中点,CD=3,CE=5,则线段BC的长为4或16 .【分析】根据题意分两种情况画图解答即可.【解答】解:①如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴AD=DC+CB∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AD=AC﹣DC=7∴DC+CB=7∴BC=4;②如图,CD=3,CE=5,∵点D是折线A﹣C﹣B的“折中点”,∴BD=DC+CA∵点E为线段AC的中点,∴AE=EC=AC=5∴AC=10∴AC+DC=13∴BD=13∴BC=BD+DC=16.综上所述,BC的长为4或16.故答案为4或16.【点评】本题考查了两点间的距离,解决本题的关键是根据题意画出两个图形进行解答.28.(2021秋•宜兴市期末)已知:点M,N,P在同一条直线上,线段MN=a,线段PN=b(a >b),点A是MP的中点.求线段MP与线段AN的长.(用含a,b的代数式表示)【分析】分两种情况分析并配上图,(1)当点P在N点左侧时,如图所示MP=MN﹣NP=a﹣b,点A为MP的中点,得AN=AP+PN从而用含a,b的代数式表示;(2)当点P在N点右侧时,如图所示:MP=MN+NP=a+b,得出AN=AP﹣PN得到含a,b的代数式表示的式子.【解答】解:(1)当点P在N点左侧时,如图所示MP=MN﹣NP=a﹣b,∵点A为MP的中点,∴,∴AN=AP+PN=(a+b)+b=a+b;(2)当点P在N点右侧时,如图所示:MP=MN+NP=a+b,∵点A为MP的中点,∴,∴AN=AP﹣PN=(a+b)﹣b=a﹣b,∴线段MP的长是a+b或a﹣b;线段AN的长是a+b或a﹣b.【点评】本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.五.比较线段的长短(共4小题)29.(2021秋•姑苏区校级期末)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选:A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.30.(2021秋•姜堰区期末)通过度量可知,如图所示的△ABC中,AB<BC<CA,则图中②号(填序号)位置是顶点A.【分析】根据图形直接可判断得到答案.【解答】解:由图可知,②③位置组成的边最小,即②③位置中,一个是A、另一个是B,①②位置组成的边最大,即①②位置中,一个是A、另一个是C,∴②号位置表示A,故答案为:②.【点评】本题考查线段长度比较,能根据图形比较线段长短是解题的关键.31.(2021秋•滨海县期末)如图,A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC=BD(填“>”、“=”或“<”);②若BC=AC,且AC=16cm,则AD的长为20 cm;(2)若线段AD被点B、C分成了2:3:4三部分,且AB的中点M和CD的中点N之间的距离是18cm,求AD的长.【分析】(1)①由已知同加BC即得答案;②求出BC和AB,根据AB=CD得到CD,即可得到AD;(2)设AM=BM=xcm,根据已知得x+3x+2x=18,即可求出AD=9x=27cm.【解答】解:(1)①∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:=;②∵BC=AC,AC=16cm,∴BC=12cm,∴AB=AC﹣BC=4cm,∵AB=CD,∴CD=4cm,∴AD=AC+CD=20cm;故答案为:20;(2)如图:设AM=BM=xcm,根据已知得:AB=2xcm,BC=3xcm,CD=4xcm,∴AD=9xcm,CN=DN=CD=2xcm,∵MN=18,∴BM+BC+CN=18,即x+3x+2x=18,解得x=3,∴AD=9x=27(cm).答:AD的长是27cm.【点评】本题考查线段中点及线段的和差,解题的关键是根据已知,用方程思想解决问题.32.(2021秋•玄武区期末)如图,B、C两点把线段AD分成三部分,AB:BC:CD=2:5:3,M为AD的中点.(1)判断线段AB与CM的大小关系,说明理由.(2)若CM=10,求AD的长.【分析】(1)设AB=2x,BC=5x,CD=3x,依据中点的定义以及线段的和差关系,即可得到线段AB与CM的大小关系;(2)依据CM=10,可得2x=10,求得x的值,即可得到AD的长.【解答】解:(1)AB=CM,理由如下:设AB=2x,BC=5x,CD=3x,则AD=2x+5x+3x=10x,∵M为AD的中点,∴MD=AD=5x,∴CM=MD﹣CD=5x﹣3x=2x,∴AB=CM.(2)∵CM=10,∴2x=10,解得x=5,∴AD=10x=10×5=50.【点评】本题主要考查了比较线段的大小关系,解决问题的关键是利用线段的和差关系列方程求解.巩固提升一、单选题1.(2020·江苏·沭阳县修远中学七年级阶段练习)已知线段AB=6,C是直线AB上一点,BC=3,则线段AC长为( )A.6 B.3 C.6或9 D.3或9【答案】D【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据题意正确地画出图形解题.【详解】解:本题有两种情形:①当点C在线段AB上时,如图1,∵AC=AB-BC,又∵AB=6,BC=3,∴AC=6-3=3;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=6,BC=3,∴AC=6+3=9.综上可得:AC=3或9.故选:D.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.2.(2020·江苏·射阳县实验初级中学七年级期末)如图,在墙上固定一根木条,至少要固定两个点,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间,线段最短C.直线上有无数个点D.点动成线【答案】A【分析】根据直线的性质:两点确定一条直线进行解答即可.【详解】解:在墙上固定一根木条,至少要固定两个点,能解释这一实际应用的数学知识是两点确定一条直线,故选:A.【点睛】此题主要考查了直线的性质,是需要记忆的内容.。
直线、射线、线段知识点总结(含例题)
直线、射线、线段知识点1.直线(1)定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.(2)直线公理:经过两点___________直线,并且___________直线.简单说成:___________.(3)表示方法:直线AB或直线a.(4)当两条不同的直线有一个公共点时,我们就称这两条直线___________,这个公共点叫做它们的___________.2.射线(1)定义:直线上的一点和它一旁的部分叫做射线.(2)特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.(3)表示方法:射线AB或射线a.3.线段(1)定义:直线上两个点和它们之间的部分叫做线段.(2)特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(3)表示方法:线段AB或线段a.(4)两点的所有连线中,___________最短.简单说成:两点之间,___________.(5)连接两点间的___________,叫做这两点的距离.4.方法归纳:(1)过一点的直线有___________;直线是是向___________方向无限延伸的,无端点,不可度量,不能比较大小;(2)要注意区别直线公理与线段的性质:直线公理是指___________,线段的性质是指两点之间线段最短;在线段的计算过程中,经常涉及线段的性质、线段的中点以及方程思想.(3)延伸与延长是不同的,线段不能___________,但可以___________,直线和射线能___________,但是不能___________;(4)直线和线段用两个大写字母表示时,与字母的前后顺序___________,但射线必须是表示端点的字母写在前面,不能互换;(5)直线中“有且只有”中的“有”的含义是___________,“只有”的含义是,“有且只有”与“确定”的意义相同;(6)射线:一要确定___________,二要确定___________,二者缺一不可.K知识参考答案:1.(2)有一条,只有一条,两点确定一条直线;(4)相交,交点3.(4)线段,线段最短;(5)线段的长度4.(1)无数条,两个(2)两点确定一条直线(3)延伸,延长,延伸,延长(4)无关(5)存在性,唯一性(6)端点,延伸方向K—重点(1)直线公理;(2)线段的性质K—难点直线、射线、线段的概念K—易错直线、射线、线段的联系和区别一、直线、射线、线段【例1】下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个【答案】A【解析】①射线OP端点是O,从O向P无限延伸,射线PO端点是P,从P向O无限延伸,所以不是同一条射线,故①错误;【名师点睛】(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.二、直线的性质(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.【例2】平面上有四点,过其中每两点画出一条直线,可以画直线的条数为A.1或4 B.1或6C.4或6 D.1或4或6【答案】D【解析】如图所示:分别根据四点在同一直线上、三点在同一条直线上、任意三点均不在同一条直线上描出各点,再根据两点确定一条直线画出各直线可知:平面上有四点,过其中每两点画出一条直线,可以画直线的条数为1或4或6.故选D.三、线段的性质线段公理:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.【例3】把一条弯曲的公路改为直路,可以缩短路程,其理由是A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小【答案】A【解析】把一条弯曲的公路改为直路,其理由是:两点之间,线段最短.故选A.四、两点之间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.【例4】已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm【答案】A五、比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.【例5】如图,四条线段中,最短和最长的一条分别是A.ac B.bdC.ad D.bc【答案】B【解析】通过观察测量比较可得:d线段长度最长,b线段最短.故选B.。
初一数学直线、射线、线段含答案
初一数学直线、射线、线段中考要求例题精讲直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴ 也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)lAB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:模块一直线、射线、线段的概念【例1】下列说法正确的是()A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB与射线BA是同一条射线D. 过两点P Q、可画出两条射线【解析】略【答案】A【巩固】下列说法中正确的是()A. 直线的一半是射线B. 延长线段AB至C,使BC AB=C. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【解析】略【答案】C【例2】下列语句准确规范的是( )A. 直线a b、相交于一点mB. 延长直线ABC. 反向延长射线AO(O是端点)D. 延长线段AB到C,使BC AB=【解析】略【答案】D【巩固】下面说法中错误的是( )A. 直线AB和直线BA是同一条直线B. 射线AB和射线BA是同一条射线C. 线段AB和线段BA是同一条线段D. 把线段AB向两端无限延伸便得到直线BA【解析】略【答案】B【巩固】下列叙述正确的是()A.孙悟空在天上画一条十万八千里的直线B.笔直的公路是一条直线C.点A一定在直线A B上D.过点A、B可以画两条不同的直线,分别为直线A B和直线B A 【解析】略【答案】C【例3】 根据直线、射线、线段各自的性质,如下图,能够相交的是( )D.C.B.B AA.【解析】略【答案】B【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是( )C.B.A.【解析】略 【答案】C【巩固】下列叙述正确的是( )A .可以画一条长5cm 的直线B .一根拉紧的线是一条直线C .直线AB 经过C 点D .直线AB 与直线BA 是不同的直线【解析】略 【答案】C【例4】 如图所示根据要求作图:⑴连结AB ;⑵作射线AC ;⑶作直线BC .ABC【解析】略 【答案】如图A模块二 直线公理公理:两点确定一条直线【例5】如图,图中共有条线段.【解析】1234515++++=.【答案】15【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线? 【解析】略【答案】1条或3条.模块三线段的相关计算【例6】如图所示,M是线段A B的中点,则1______2A M=,2_____2_____AB==.【解析】12AM AB=,22AB AM BM==.【答案】AM;AM;BM.【巩固】判断:若3c mA BBC==,则说明B是A C的中点.【解析】错误,如图,虽然3c mA BB C==,但B不是A C的中点,要明确点B把线段A C分成两条相等的线段才可.【答案】错误AB C【巩固】判断:已知A,B,C三点在同一条直线上,12AC AB=,那么C是A B的中点.【解析】错误,几何中的题目如果无图,要特别注意读准题意,适时分类求解.如下图⑴,⑵,均满足题意.【答案】错误(1) (2)【例7】如图,已知线段AB上依次有三个点C D E,,把线段AB分成2:3:4:5四个部分,56AB=,求BD的长度.【解析】根据题意可设2345AC x CD x DE x EB x ====,,,,所以有:1456436AB AC CD DE EB x x BD DE EB =+++====+=,,.【答案】36【巩固】已知14cm AD =,B C ,是AD 上顺次两点,且::2:3:2AB BC CD =,E 为AB 的中点,F 为CD的中点,求EF 的长.E【解析】设2AB x =,3BC x =,2CD x =,23214x x x ++=,2x =,510EF x == 【答案】10【例8】 如图,已知线段A B 上依次有三个点,,C D E 把线段A B 分成2:3:4:5四个部分,,,,M P Q N 分别是,,,A C C D D E E B的中点,若21,M N =求P Q 的长度. EQDPA【解析】根据题意可设234510.5212 3.57AC x CD x DE x EB x MN x x PQ x =========,,,,,, 【答案】7【巩固】摄影组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中 午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A B ,两市相距多少千米?【解析】根据题意画图,D 为中午赶到的小镇,E 为傍晚赶到的地方,根据题意可得:1140022AD DC BE CE DE ===,,,所以有111200222AD BE DC CE DE +=+==,则600AB AD DE EB =++=(千米).【答案】600千米模块四 两点之间线段最短【例9】 从家到学校共有条路可以走,如图所示,若想走最近的路,应选择 (填序号).这是根据 .学校家【解析】略【答案】②;两点之间,线段最短.【例10】 如图,已知A B ,在直线的两侧,在l 上求一点P ,使PA PB +最小;B l图1【解析】如图,连接,A B ,A B 与的交点即为所求的P 点,利用“两点之间线段最短”, 教师不妨可在其他出处取一点P ,显然''A P B PA B+>.l图1-1【答案】如图l图1-1【巩固】如图,有一个正方体的盒子1111ABCD A B C D -,在盒子内的顶点A 处有一只蜘蛛,而在对角的顶点1C 处有一只苍蝇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲练习卷直线、射线、线段(1)
1.如下左图所示,下列不正确的语句是().
A.直线AB与直线BA是同一条直线。
B.射线OB与射线OA是同一条射线
C.射线OA与射线AB是同一条射线。
D.线段AB与线段BA是同一条线段
2.如上右图中不同的线段有()条. A.4条 B.8条 C.10条 D.15条
3.对于图(1),从左向右依次数,以A为端点的线段________条,以B为端点的线段______条;对于图(2),从左向右依次数,以A为端点的线段
______条,以B?为端点的线段_____条,以C为
端点的线段____条;请总结一下规律,数一数
图(3)中有哪些线段,共多少条.
4.如图所示,线段AB被分成2:3:3三部分,其中AP长为4厘M,?则线
段的总长为().A.15厘MB.16厘M C.17厘M D.18厘M
5.已知线段AB=10厘M,PA+PB=10厘M,下列说法正确的是().
A.点P不能在直线AB上; B.点P只能在直线AB上
C.点P只能在线段AB上; D.点P只能在线段AB的延长线上
6.对于直线AB,线段CD,射线EF,在图中能相交的是_______.
7.下列语句表述正确的是().
A.延长直线AB B.延长射线OC C.画直线AB=BC D.延长线段AB
8.下列说法正确的是().
A.线段AB和射线AB对应同一图形。
B.线段AB和线段BA表示同一线段
C.射线MP上有两个端点。
D.射线MP和射线PM表示同一射线
9.按下列要求画出图形.
(1)直线AB外有一点C.
(2)点C,D是线段AB的三等分点.
(3)直线AB,BC交于点B,以点B为端点有一条射线BN.
(4)延长线段MN到C,使NC=MN.
(5)线段a与b交于点A.
10.下列说法错误的是().
A.过一点可以作无数条直线 B.过已知三点可以画一条直线
C.一条直线通过无数个点 D.两点确定一条直线
11.要在墙上固定一根直木条,至少要钉______个钉子.
12.往返于A,B两地的客车,中途停靠三个站,问:
(1)有种不同的票价?(2)要准备种车票?
1 / 4。