相似三角形常用辅助线做法
相似三角形中几种常见的辅助线作法(有辅助线)
![相似三角形中几种常见的辅助线作法(有辅助线)](https://img.taocdn.com/s3/m/dd55ebf30740be1e640e9a43.png)
相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线 段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。
主要的辅助线有以下 几种: 一、添加平行线构造“ A “ X 型例1:如图,D 是厶ABC 的 BC 边上的点,BD DC=2 1,E 是AD 的中 BE EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P,贝U ••• PE=EF BP=2PF=4E 所以 BE=5EF : BE: EF=5 1.解法二:过点 D 作BF 的平行线交AC 于点Q, ••• BE EF=5: 1. E 作BC 的平行线交AC 于点S , E 作AC 的平行线交BC 于点T ,BCC 边上的点',,BD DC=2 1, E 是 AD 的中点,求AF: CF 的值.D 作CA 的平行线交 D 作BF 的平行线交E 作BC 的平行线交 E 作AC 的平行线交 ABC 的 AB 边和AC 边上各取一点D 和 使 AD= AE, DE 延长线与BC 延长线相交于F ,求证: (证明:过点C 作CG//FD 交AB 于G ) 例 3:女口图,△ ABC 中, ABvAC 在 AB AC 上分别截取 BD=CE DE, BC 长线相交于点F ,证明:AB- DF=AC EF. 分析:证明等积式问题常常化为比例式,再通过相似三角形对 比例来证明。
不相似,因而要通过两组三角形相似,运用中间 得到,为构造相似三角形,需添加平行线。
• 方法一:过E 作EM//AB,交BC 于点M 则厶EM OAABC (两角等,两三角形相似)•方法二:过D 作DN//EC 交BC 于 N.解法三:过点 解法四:过点 BE _BT ; 点,求: 变式:T 如'图,D 是厶ABC 的F, 过点 过点 过点 过点 解法一 解法二 解法三 解法四 例2:如图,在△ 和厶EFB 相似, ••• BE EF=5 1. 连结BE 并延长交AC 于BF 于点 AC 于点 AC 于点BC 于点 P, Q s,T ,应边成比代换 例4:在厶ABC 中, D 为AC 为CB 延长线上的一点, AB 于 F 。
相似三角形之常用辅助线
![相似三角形之常用辅助线](https://img.taocdn.com/s3/m/1b98b7647f1922791788e844.png)
相似三角形之常用辅助线在与相似有关得几何证明、计算得过程中,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。
而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。
专题一、添加平行线构造“A"“X”型定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。
定理得基本图形:例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC变式练习:已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想)例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。
例3、BE=AD,求证:EF·BC=AC·DF变式1、如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC得延长线相交于点F,证明:AB·DF=AC·EF。
例4、已知:如图,在△ABC中,AD为中线,E在AB上,AE=AC,CE交AD于F,EF∶FC=3∶5,EB=8cm,求AB、AC得长、变式:如图,,求。
(试用多种方法解)说明:此题充分展示了添加辅助线,构造相似形得方法与技巧.在解题中方法要灵活,思路要开阔.总结:(1)遇燕尾,作平行,构造字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段得比得前项或后项,在同一直线得线段得端点作为引平行线得EF EF EFEF点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形 一、基本图形例1、,,那么吗?试说明AC BD AC BC CA CD ⊥=⋅22理由?(用多种解法)v变式练习:平行四边形ABC D中,CE ⊥A E,CF ⊥AF,求证:A B·AE+AD ·AF=AC 2例2、如图,RtA BC 中,CD 为斜边AB 上得高,E 为CD 得中点,AE 得延长线交B C于F,FG AB 于G,求证:FG =CFBF【练习】1.如图,一直线与△ABC 得边AB,AC 及BC 得延长线分别交于D,E,F 。
相似三角形之常用辅助线
![相似三角形之常用辅助线](https://img.taocdn.com/s3/m/1acf1fd2a98271fe900ef985.png)
相似三角形之常用辅助线在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。
而有些时候,这样的相似三角形在问题中,并不是十分明显。
因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。
专题一、添加平行线构造“ A ”“X ”型定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:例1、平行四边形ABCD中, E为AB中点,AF: FA 1 : 2,求AG GC变式练习:如图,直线交厶ABC的BC,AB两边于D,E,与CA延长线交于F,若—;;=2,求BE:EA的比值.例3、BE^ AD,求证:EF- BO AC- DF变式练习:已知在△ ABC中,AD是/ BAC的平分线.求证:AB BDAC CDBD例2、如图,直线交△ ABC的BC,AB两边于D,E,与CA延长线交于F,若 -DCFC=2,求BE:EA的比值.FA(本题有多种解法,多想想)变式1、如图,△ ABC中,AB<AC,在AB、AC上分别截取BD=CE , DE, BC的延长线相交于点F,证明:AB・DF=AC EF。
例4、已知:如图,在△ ABC中,AD为中线,E在AB上, AE=AQ CE交AD于F,EF: FC=3 : 5,EB=8cm,求AB AC的长.AE 1 AF竺丄,求比。
(试用多种方法解)DE 2 BFA说明:此题充分展示了添加辅助线,构造相似形的方法和技巧•在解题中方法要灵活,思路要开阔. 总结:(1)遇燕尾,作平行,构造.字一般行。
(2)引平行线应注意以下几点:1)选点:一般选已知(或求证)中线段的比的前项或后项,在冋一直线的线段的端点作为引平行线的点。
2)引平行线时尽量使较多已知线段、求证线段成比例。
专题二、作垂线构造相似直角三角形基本图形例1、如图, ABC 中,AB AC, BD AC,那么BC22CA CD吗?试说明理由?(用多种变式练习:平行四边形ABCD中, CEL AE, CF丄AF,求证:AB- A曰AD- AF= AC于G ,求证:FG 2 =CF ?BF2.如图,在△ ABC中,AB=AC D在AB上, E在AC的延长线上,BD=3CE DE交BC于F, 求DF: FE的值。
中考相似三角形之常用辅助线
![中考相似三角形之常用辅助线](https://img.taocdn.com/s3/m/02078428c850ad02df80410d.png)
中考相似三角形之常用辅助线Revised on November 25, 2020相似三角形之常用辅助线在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。
而有些时候,这样的相似三角形在问题中,并不是十分明显。
因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。
专题一、添加平行线构造“A ”“X ”型定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC变式练习:已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想)例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若DCBD =FA FC=2,求BE:EA 的比值.变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FEED =2,求BE:EA 的比值.例3、BE =AD ,求证:EF ·BC =AC ·DF变式1、如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB·DF=AC·EF 。
例4、已知:如图,在△ABC 中,AD 为中线,E 在AB 上,AE=AC ,CE 交AD 于F ,EF ∶FC=3∶5,EB=8cm,求AB 、AC 的长.变式:如图,21==DE AE CD BD ,求BFAF。
(试用多种方法解)CDBDAC AB =A B CEF A B C EF A BCEF A BC EF说明:此题充分展示了添加辅助线,构造相似形的方法和技巧.在解题中方法要灵活,思路要开阔. 总结:(1)遇燕尾,作平行,构造 字一般行。
几何证明题辅助线经典方法
![几何证明题辅助线经典方法](https://img.taocdn.com/s3/m/820b80ef29ea81c758f5f61fb7360b4c2e3f2a98.png)
几何证明题辅助线经典方法
引言
几何证明题是数学中常见的题型,也是学生们认识几何图形、发现几何规律的重要手段。
辅助线是解决几何证明题时常用的方法之一,本文将介绍几种经典的辅助线方法。
方法一:画垂直平分线
对于某些几何图形中的线段,我们可以通过画垂直平分线来辅助证明。
垂直平分线将线段分成两等分,从而在几何证明过程中起到重要的辅助作用。
方法二:画过顶点的高
在证明三角形相等或等腰三角形时,辅助线中的高是常见的方法之一。
通过画一条从顶点到对边的垂线,我们可以将几何图形转化为更容易处理的形式,从而证明所需结论。
方法三:画过顶点的中位线
在证明平行四边形或矩形时,辅助线中的中位线是一种常见的
方法。
通过画一条从顶点到对边中点的线段,我们可以将问题简化,并且利用矩形或平行四边形的性质得到所需结论。
方法四:画三角形的内切圆
在证明三角形的某些性质时,画三角形的内切圆是一种常见的
辅助线方法。
内切圆与三角形的各边均相切,通过利用内切圆的性质,我们可以得到有关三角形的一些重要结论。
方法五:画过顶点的角平分线
在证明两角相等或证明某些三角形相似时,画过顶点的角平分
线是一种常见的辅助线方法。
通过将角细分为两等分,我们可以得
到有关角度的一些重要关系,从而得到所需结论。
结论
辅助线方法在解决几何证明题时起到了重要的作用。
以上介绍
的几种经典辅助线方法仅是其中的一部分,通过熟练掌握这些方法,并结合具体问题,我们可以更好地解决几何证明题,提高数学水平。
初中三角形8种辅助线的作法
![初中三角形8种辅助线的作法](https://img.taocdn.com/s3/m/15214a1b26284b73f242336c1eb91a37f111323f.png)
初中三角形8种辅助线的作法说到三角形,大家脑袋里第一反应应该就是那三条边和三角形的三个角吧?对,就是这种形状。
那你知道怎么在这些三角形里画出一些特殊的辅助线吗?这些线啊,往往能帮你解决一些看似复杂的问题,让三角形的“奥秘”暴露无遗,简直是数学界的小妙招。
好啦,今天就来聊聊这八种常见的辅助线,保证让你瞬间变身三角形达人!我敢打赌,学会了这些,你会觉得自己就像是三角形里的“魔术师”,每画一条线,都会有新的发现,新的答案。
最简单的辅助线之一就是角平分线。
想象一下,你有一个三角形,某个角很大,你就想把这个角一分为二,变成两个完全一样的小角,咋办呢?对啦,画个角平分线。
它可不是随便一画的,要从角的顶点开始,朝着对边走过去,确保把这个角“平分”成两个一样大的小角。
说白了,角平分线就是帮助我们把角“对半切”的神奇线。
画完后,你会发现,原本难解的问题竟然迎刃而解,想想是不是挺爽的?然后,还有一种叫垂直平分线的辅助线。
别看它名字听起来有点复杂,实际上它就是从三角形的一个边中点出发,垂直地画一条线,直接穿过这个边。
它的作用就像是让三角形中的某一条边被“公平对待”一样,平均分开。
你可以通过这条线,找到三角形的某些对称性,帮助你解决一些难题,尤其是那些涉及到对称性的题目,简直就是救命稻草。
如果你觉得角平分线和垂直平分线还不够酷,那我得给你介绍高线。
它的名字也挺威风的,是不是有种“高大上的感觉”?其实它就是从三角形的一个顶点,垂直地落到对边的延长线上,形成一个直角。
听起来是不是有点高深?但是一旦你学会了高线,你就能解决很多跟直角、面积相关的问题。
这条线虽然看起来简单,但它可以帮助你在一瞬间算出很多复杂的几何问题,简直就是三角形中的秘密武器。
你以为高线已经够神奇了吗?那我再告诉你,中线更是妙不可言。
它从三角形的一个顶点出发,直奔对边的中点,直接把这条边“分成了两半”。
很显然,中线的作用就是帮助你在三角形中找出一个平衡点,很多时候,掌握了中线,你就能找到三角形内心的“宁静”——也就是一些难以捉摸的关系。
思维特训(十一) 相似三角形中的辅助线作法归类
![思维特训(十一) 相似三角形中的辅助线作法归类](https://img.taocdn.com/s3/m/b6de7728680203d8ce2f24de.png)
思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系. 作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X ”型相似;(2)作平行线转换线段比;(3)作垂直证明相似.图11-S -1类型一 作平行线构造“A ”型或“X ”型相似1.如图11-S -2,已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 延长线上一点,OE 交BC 于点F ,若AB =a ,BC =b ,BE =c ,求BF 的长.图11-S -22.如图11-S -3,在△ABC 中,AD 为BC 边上的中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F .求证:AE DE =2AF BF. 图11-S -33.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =12,连接DF 交AC 于点E . (1)如图△,当E 恰为DF 的中点时,请求出AD AB的值; (2)如图△,当DE EF =a (a >0)时,请求出AD AB的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG △AB 交AC 于点G ,构造相似三角形解决问题;乙:过点F 作FG △AC 交AB 于点G ,构造相似三角形解决问题;丙:过点D 作DG △BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中AD AB的值. 图11-S -4类型二 作平行线转换线段的比4.如图11-S -5,B 为AC 的中点,E 为BD 的中点,求AF AE的值. 图11-S -55.如图11-S -6,已知等边三角形ABC ,D 为AC 边上的一动点,CD =nDA ,连接BD ,M 为线段BD 上一点,∠AMD =60°,连接AM 并延长交BC 于点E .(1)若n =1,则BE CE =______,BM DM=______; (2)若n =2,如图△,求证:BM =6DM ;(3)当n =________时,M 为BD 的中点(直接写出结果,不要求证明).图11-S -66.2019·朝阳 已知:如图11-S -7,在△ABC 中,点D 在AB 上,E 是BC 的延长线上一点,且AD =CE ,连接DE 交AC 于点F .(1)猜想证明:如图△,在△ABC 中,若AB =BC ,学生们发现:DF =EF .下面是两位学生的证明思路:思路1:过点D 作DG △BC ,交AC 于点G ,可通过证△DFG △△EFC 得出结论;思路2:过点E 作EH △AB ,交AC 的延长线于点H ,可通过证△ADF △△HEF 得出结论. 请你参考上面的思路,证明DF =EF (只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图△),过点D 作DM △AC 于点M ,试探究线段AM ,MF ,FC 之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图△,在△ABC 中,若AB =AC ,∠ABC =2△BAC ,AB BC=m ,请你用尺规作图在图△中作出AD 的垂直平分线交AC 于点N (不写作法,只保留作图痕迹),并用含m的代数式直接表示FN AC的值. 图11-S -7类型三 作垂直证相似7.如图11-S -8,在△ABC 中,∠C =90°,D 为边AB 的中点,M ,N 分别为边AC ,CB 上的点,且DM ⊥DN .(1)求证:DM DN =BC AC; (2)若BC =6,AC =8, CM =5,直接写出CN 的长.图11-S -88.如图11-S -9,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连接AD . 问题引入:(1)如图△,当D 是BC 边的中点时,S △ABD ∶S △ABC =________;当D 是BC 边上任意一点时,S △ABD ∶S △ABC =________(用图中已有线段表示).探索研究:(2)如图△,在△ABC 中,O 是线段AD 上一点(不与点A ,D 重合),连接BO ,CO ,试猜想S △BOC 与S △ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图△,O 是线段AD 上一点(不与点A ,D 重合),连接BO 并延长交AC 于点F ,连接CO 并延长交AB 于点E .试猜想OD AD +OE CE +OF BF的值,并说明理由. 图11-S -99.如图11-S -10,已知一个直角三角形纸片ACB ,其中,∠ACB =90°,AC =4,BC =3,E ,F 分别是AC ,AB 边上的点,连接EF .(1)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且S 四边形ECBF =3S △EDF ,则AE =________;(2)如图△,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且MF △CA ,求EF 的长;(3)如图△,若FE 的延长线与BC 的延长线相交于点N ,CN =1,CE =47,求AF BF的值. 图11-S -10详解详析1.解:如图,过点O 作OM △BC 交AB 于点M .∵O 是AC 的中点,OM ∥BC ,∴M 是AB 的中点,即MB =12a , ∴OM 是△ABC 的中位线,OM =12BC =12b . ∵OM ∥BC ,∴△BEF ∽△MEO ,∴BF MO =BE ME , 即BF 12b =c a 2+c ,∴BF =bc a +2c . 2.证明:如图,过点D 作DG △CF 交AB 于点G .∵DG ∥CF ,D 为BC 的中点,∴G 为BF 的中点,FG =BG =12BF . ∵EF ∥DG ,∴AE DE =AF GF =AF 12BF =2AF BF . 3.解:(1)甲同学的想法:如图△,过点F 作FG △AB 交AC 于点G ,∴△AED ∽△GEF ,∴AD GF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =GF .∵FG ∥AB ,∴△CGF ∽△CAB ,∴GF AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =GF AB =CF CB =13. 乙同学的想法:如图△,过点F 作FG △AC 交AB 于点G ,∴AD AG =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =AG .∵FG ∥AC ,∴AG AB =CF CB. ∵CF BF =12,∴CF CB =13,∴AD AB =AG AB =CF CB =13. 丙同学的想法:如图③,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴GD =CF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC .∵CF BF =12,∴CF BC =13. ∴AD AB =DG BC =CF BC =13. (2)如图△,过点D 作DG △BC 交CA 的延长线于点G ,∴∠C =△G ,∠CFE =△GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF. ∵DE EF =a ,∴ED =aEF , ∴DG =aCF .∵DG ∥BC ,∴∠C =△G ,∠B =△ADG ,∴△ADG ∽△ABC ,∴AD AB =DG BC . ∵CF BF =12,∴CF BC =13,即BC =3CF . ∴AD AB =DG BC =aCF 3CF =a 3. 4.解:取CF 的中点G ,连接BG .∵B 为AC 的中点,∴BG AF =12,且BG △AF . 又E 为BD 的中点,∴F 为DG 的中点,△EF BG =12,∴EF AF =14, ∴AF AE =43. 5.解:(1)当n =1时,CD =DA .∵△ABC 是等边三角形,∴BD ⊥AC ,∠BAC =60°,∴∠ADM =90°.又△△AMD =60°,∴∠MAD =30°,∴∠BAE =△BAC -△MAD =30°,即△BAE =△EAD ,∴AE 为△ABC 的中线,∴BE CE=1. 在△AMD 中,DM =12AM (30°角所对的直角边等于斜边的一半). ∵∠BAM =△ABM =30°,∴AM =BM ,∴BM DM=2. (2)证明:△△AMD =△ABD +△BAE =60°,∠CAE +△BAE =60°,∴∠ABD =△CAE .又△BA =AC ,∠BAD =△ACE =60°,∴△BAD △△ACE (ASA),∴AD =CE ,∴CD =BE .如图,过点C 作CF △BD 交AE 的延长线于点F ,∴FC BM =CE BE =AD CD =12①,DM FC =AD AC =13②,由△×△得DM BM =16,∴BM =6DM . (3)△M 为BD 的中点,∴BM =MD .∵△BAD ≌△ACE ,∴AD =CE ,∴CD =BE .∵△AMD ∽△ACE ,△BME ∽△BCD ,△AD AE =MD CE ,BM BC =ME CD, ∴AD =MD ·AE CE ③,CD =BC ·ME BM④, 由△×△得CD =5-12DA ,∴n =5-12. 6.解:(1)思路1:如图△,过点D 作DG △BC ,交AC 于点G .∵AB =BC ,∴∠A =△BCA .∵DG ∥BC ,∴∠DGA =△BCA ,∠DGF =△ECF ,∴∠A =△DGA ,∴DA =DG .∵AD =CE ,∴DG =CE .又△△DFG =△EFC ,∴△DFG ≌△EFC ,∴DF =EF .思路2:如图△,过点E 作EH △AB ,交AC 的延长线于点H .∵AB =BC ,∴∠A =△BCA .∵EH ∥AB ,∴∠A =△H .∵∠ECH =△BCA ,∴∠H =△ECH ,∴CE =EH .∵AD =CE ,∴AD =EH .又△△AFD =△HFE ,∴△DF A ≌△EFH ,∴DF =EF .(2)结论:MF =AM +FC .证明:如图△,由思路1可知:DA =DG ,△DFG ≌△EFC ,∴FG =FC .∵DM ⊥AG ,∴AM =GM .∵MF =FG +GM ,∴MF =AM +FC .(3)AD 的垂直平分线交AC 于点N ,如图△所示.连接DN ,过点D 作DG △CE 交AC 于点G .设DG =a ,BC =b ,则AB =AC =mb ,AD =AG =ma .∵∠ABC =2△BAC ,设△BAC =x ,则△B =△ACB =2x ,∴5x =180°,∴x =36°,∴∠A =36°. ∵NA =ND ,∴∠A =△ADN =36°.∵∠ADG =△B =72°,∴∠NDG =△A =36°.又△△DGN =△AGD ,∴△GDN ∽△GAD ,∴DG 2=GN ·GA .易知DG =DN =AN =a ,∴a 2=(ma -a )·ma ,两边同除以a ,得m 2a -ma -a =0. ∵DG ∥CE ,∴DG ∶CE =FG △FC =DG △DA =1△m .∵CG =mb -ma ,∴FG =1m +1·m (b -a ), ∴FN =GN +FG =ma -a +1m +1m (b -a )=m 2a -a +mb -ma m +1=mb m +1, ∴FN AC =mbm +1mb =1m +1. 7.解:(1)证明:如图,过点D 作DP △BC 于点P ,DQ ⊥AC 于点Q ,∴∠DQM =△DPN =90°.又△△C =90°,∴四边形CPDQ 为矩形,∴∠QDP =90°,即△MDQ +△MDP =90°. ∵DM ⊥DN ,∴∠MDN =90°,即△MDP +△NDP =90°,∴∠MDQ =△NDP ,∴△DMQ ∽△DNP ,∴DM DN =DQ DP. ∵D 为AB 的中点,DQ ∥BC ,DP ∥AC ,∴DQ =12BC ,DP =12AC ,∴DQ DP =BC AC ,∴DM DN=BC AC. (2)由题意得AQ =CQ =4,MQ =CM -CQ =5-4=1,DQ =12BC =3,DP =12AC =4. ∵△DMQ ∽△DNP ,∴MQ NP =DQ DP ,∴NP =43. 又CP =PB =3,∴CN =3-43=53. 8.解:(1)1△2 BD △BC(2)猜想S △BOC 与S △ABC 之比应该等于OD △AD .理由:如图,分别过点O ,A 作BC 的垂线OE ,AF ,垂足分别为E ,F ,∴OE ∥AF ,∴OD ∶AD =OE △AF .∵S △BOC =12BC ·OE ,S △ABC =12BC ·AF , ∴S △BOC ∶S △ABC =⎝⎛⎭⎫12BC ·OE ∶⎝⎛⎭⎫12BC ·AF =OE △AF =OD △AD . (3)猜想OD AD +OE CE +OF BF的值是1.理由如下: 由(2)可知:OD AD +OE CE +OF BF =S △BOC S △ABC +S △BOA S △ABC +S △AOC S △ABC =S △BOC +S △BOA +S △AOC S △ABC =S △ABC S △ABC=1. 9.解:(1)△将△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S △ABC =4S △AEF .在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.∵∠EAF =△BAC ,∴Rt △AEF ∽Rt △ABC ,∴S △AEF S △ABC =(AE AB)2,即(AE 5)2=14,∴AE =2.5. (2)连接AM 交EF 于点O ,如图△,∵将△ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,∴AE =EM ,AF =MF ,∠AFE =∠MFE .∵MF ∥CA ,∴∠AEF =△MFE ,∴∠AEF =△AFE ,∴AE =AF ,∴AE =EM =MF =AF ,∴四边形AEMF 为菱形.设AE =x ,则EM =x ,CE =4-x .∵四边形AEMF 为菱形,∴EM ∥AB ,∴△CME ∽△CBA ,∴CM CB =CE CA =EM AB, 即CM 3=4-x 4=x 5,解得x =209,CM =43. 在Rt △ACM 中,AM =AC 2+CM 2=4103. ∵S 菱形AEMF =12EF ·AM =AE ·CM , ∴EF =2×43×2094103=4109. (3)如图△,过点F 作FH △BC 于点H ,∵EC ∥FH ,∴△NCE ∽△NHF , ∴CN ∶NH =CE △FH ,即1△NH =47∶FH ,∴FH ∶NH =4△7. 设FH =4x ,NH =7x ,则CH =7x -1,BH =3-(7x -1)=4-7x .∵FH ∥AC ,∴△BFH ∽△BAC ,∴BH ∶BC =FH △AC ,即(4-7x )△3=4x △4,解得x =0.4,∴FH =4x =85,BH =4-7x =65.第11页/共11页 在Rt △BFH 中,BF =(65)2+(85)2=2, ∴AF =AB -BF =5-2=3,∴AF BF =32.。
小专题(六) 相似三角形的辅助线添作技巧
![小专题(六) 相似三角形的辅助线添作技巧](https://img.taocdn.com/s3/m/0945a4fa866fb84ae55c8d18.png)
小专题(六) 相似三角形的辅助线添作技巧本专题主要通过添加适当的辅助线构造相似三角形,运用相似三角形的知识来解决数学问题.添作辅助线的方法有:添作平行线、添作垂线、连接线段等.类型1 巧添平行线求线段的比1.如图,在△ABC 中,点D ,E 分别在BC ,AC 上,BE 与AD 交于点F ,且BD=DC ,AE ∶AC=1∶3,求AFFD 的值.解:过点A 作AG ∥BC 交BE 的延长线于点G ,那么△AEG ∽△CEB ,△AFG ∽△DFB ,∴AG BC =AE EC =12,又BD=DC , ∴AG=BD ,∴AFFD =AGBD =1.2.如图,在▱ABCD 中,E 是BC 的中点,在AB 上截取BF=12FA ,EF 交BD 于点G ,求BG ∶GD 的值.解:过点E 作EM ∥AB 交BD 于点M ,那么△BFG ∽△MEG ,∴BGGM =BFEM .∵AB ∥CD ,∴EM ∥CD ,∵BE=EC ,∴BM=MD ,∴EM=12CD ,∵BF=12FA ,∴BF=13AB , ∵AB=CD ,∴BFEM =BGGM =23,∵BM=MD ,∴BG ∶GD=2∶8=1∶4.类型2 巧连线段证线段之间的关系3.如图,在正方形ABCD 中,M 为AD 中点,以M 为顶点作∠BMN=∠MBC ,MN 交CD 于点N. 求证:DN=2NC.解:延长MN ,BC 交于点E ,连接MC ,设AB=2a ,那么AM=a ,BM=√5a.由△BAM≌△CDM,那么BM=MC,且∠BCM=∠CBM=∠BMN.∴△BMC∽△BEM.∴BMBE =BCBM,即√5aBE=√5a,∴BE=52a,∴CE=BE-BC=52a-2a=12a.∵四边形ABCD为正方形,∴∠D=∠DCB=90°,即∠D=∠NCE=90°.∵∠DNM=∠CNE,∴△MDN∽△ECN,∴DNNC =MDCE=a12a=2,即DN=2NC.4.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处(AE为折痕,点E在CD上),在AD上截取DG,使DG=CF.求证:(1)△ABF∽△FCE;(2)BD⊥GE.解:(1)∵四边形ABCD是矩形,∴∠ABF=∠C=∠ADC=90°,∴∠BAF+∠BFA=90°,由折叠的性质可得∠AFE=∠ADC=90°,∴∠CFE+∠BFA=90°,∴∠BAF=∠CFE,∴△ABF∽△FCE.(2)由(1)知EFAF =FCAB,又EF=ED,AF=AD,FC=GD,∴DEAD=GDAB.又∵∠BAD=∠GDE=90°,∴△BAD∽△GDE,∴∠ADB=∠DEG,又∠ADB+∠BDC=90°,∠DEG+∠BDC=90°,∴BD⊥GE.类型3巧添垂线求线段的长5.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,点F在边BC上,且BF=2FC,AF分别与DE,DB相交于点M,N,求MN的长.解:过点F作FH⊥AD于点H,交ED于点O,那么FH=AB=2,∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF=√FH 2+AH 2=√22+22=2√2,∵OH ∥AE ,∴HO AE =DH AD =13,∴OH=13AE=13,∴OF=FH-OH=2-13=53,∵AE ∥FO ,∴△AME ∽FMO ,∴AM FM =AE FO ,即AM FM =153=35,∴AM=38AF=3√24,∵AD ∥BF ,∴△AND ∽△FNB ,∴ANFN =AD BF =32,∴AN=35AF=6√25,∴MN=AN-AM=6√25−3√24=9√220. 类型4 巧添垂线求线段的比6.如图,在△ABC 中,AB=AC ,E ,F ,G 分别是BC ,AB ,AC 上一点,∠FEG=2∠B. (1)求证:∠BFE=∠AGE ; (2)假设BECE =12,求EFEG 的值.解:(1)∵2∠B+∠A=180°,∴∠FEG+∠A=180°,∴∠BFE=∠AGE. (2)过点E 作EM ⊥AB 于点M ,作EN ⊥AC 于点N ,∴△EMF ∽△ENG ,∴EFEG =EM EN ,易证△EBM ∽△ECN ,∴EM EN=BECE=12,∴EF EG=12.7.如图,△ABC 中,AB=AC ,∠BAC<60°,D 为BC 延长线上一点,E 为∠ACD 内部一点,且∠ABE=∠ECD=45°,求BE AC的值.解:作AF ⊥BC 于点F ,BG ⊥CE 交EC 的延长线于点G.∵AB=AC ,∴BF=FC=12BC.∵∠ABE=∠ECD=∠BCG=45°,∴∠CBG=45°,BG=√22BC=√2BF.又∵∠ABF=∠EBG ,∴Rt △ABF ∽Rt △EBG ,∴BEAB =BGBF =√2,∴BEAC =√2.8.如图,将一个直角三角板的直角顶点P 放在矩形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与BC 相交于点E ,且AD=10,DC=8,求AP ∶PE 的值.解:过点P作PM⊥AB于点M,PN⊥BC于点N,易证△APM∽△EPN,那么AP∶PE=PM∶PN=AD∶DC=10∶8=5∶4.。
模型总结: 相似三角形模型解析及辅助线作法梳理
![模型总结: 相似三角形模型解析及辅助线作法梳理](https://img.taocdn.com/s3/m/ff0d11f7f9c75fbfc77da26925c52cc58bd6907a.png)
相似三角形(模型-辅助线)一、本章概述相似作为几何学习的一个重要内容,大量的出现在中考试卷中,它与勾股定理和锐角三角形函数并列为初中几何计算三大工具。
本章重点讲解相似的几个模型,如A字形,8字形,一线三等角等模型。
二、知识回顾1、图形的相似(1)相似图形:形状相同的图形叫做相似图形(2)相似多边形:对应角相等,对应边的比相等。
相似多边形对应边的比为相似比。
2.相似三角形(3)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
(4)相似三角形的判定①预备定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等。
②判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③传递性定理:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(5)相似三角形的性质①相似三角形的对应角相等,对应边成比例②相似三角形的周长的比等于相似比;对应线段的比等于相似比;面积比等于相似比的平方。
3.位似(6)多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心。
(7)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
1.相似基本模型一、本节概述本节重点讲解“A”字形和“8”字形的应用和构造方法,这两个模型是相似三角形中最为基础的两个模型,但应用十分广泛。
1.“A”字形相似2. ”8”字形相似二、典例精析能力目标:1.熟练掌握正A型相似和正8型相似模型:2.借助平行线构造正A型相似和正8型相似模型解决相关问题。
【例1】已知:图下图,AD(1)若E为AD的中点,射线CE交AB于F,则(2)若E为AD上一点,且,射线CE交AB于F,则思维探究:方法一:通过平行线构造相似解析:过A点作A P//BC交CF于点P,“8”字模型A P CD方法二:过A作A H//CF交BC延长线于H,则方法三:作DK//CF交AB于K,则方法四:作DM//AB交CF于M,则AF=DM,( 2 ) 构造平行线,通过线段比解决问题作B P//AD交CF于点P,大家可尝试过其他点作平行线,解答中用了A点和D点,其它的同学们自己尝试。
巧添辅助线证相似三角形
![巧添辅助线证相似三角形](https://img.taocdn.com/s3/m/81649802caaedd3382c4d347.png)
初中数学巧添辅助线证相似三角形编稿张亚一校林卉二校杨雪审核杨国勇一、添加平行线构造“A”、“8”型1. 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似。
(1)定理的基本图形:(2)燕尾图形辅助线的添加方法GEDCBAGFEDCBAGFEDCBADEFCBA注意:(1)选择构造平行线的点的原则为不破坏已知条件中的数量关系;(2)一般会出现两组三角形相似,注意相似三角形的对应边;(3)通过线段比例之间的等量代换求解。
2. 方法归纳:(1)遇燕尾,作平行,构造“A”字“8”字一般行。
(2)引平行线应注意以下几点:①选点:一般选已知(或求证)中线段的比的前项或后项,以同一直线的线段的端点作为引平行线的点。
②引平行线时,不破坏已知条件中的数量关系,尽量使较多已知线段、求证线段成比例。
二、作垂线构造相似直角三角形1. 基本图形2. 所用知识点(1)等量代换——等角的余角相等。
(2)相似三角形对应高线的比等于相似比。
注意:(1)相似三角形中对应边要找准。
(2)利用高线解决问题,一般会用到设未知数,列方程的思想。
例题 平行四边形ABCD 中,CE ⊥AE ,CF ⊥AF ,求证:2··AB AE AD AF AC =+。
解析:作BM ⊥AC 于点M ,可证△ABM ∽△ACE ,则AB •AE =AM •AC ,易得△BCM ∽△CAF ,则BC •AF =CM •AC ,故得出结论。
答案:作BM ⊥AC 于点M ,则∠AMB =∠AEC =90°,∵∠BAM =∠CAE ,∴△ABM ∽△ACE , ∴AB •AE =AM •AC ,∵∠BCM =∠CAF ,易得△BCM ∽△CAF , ∴BC •AF =CM •AC ,∴()2••••AB AE BC AF AM AC CM AC AC AM CM AC +=+=+=。
∵AD =BC ,∴2··AB AE AD AF AC =+。
几何证明题辅助线的技巧和方法
![几何证明题辅助线的技巧和方法](https://img.taocdn.com/s3/m/637c448ea0c7aa00b52acfc789eb172ded639915.png)
几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。
它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。
以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。
1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。
这样,我们可以得出相应的角度和边的关系,进而证明几何问题。
2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。
通
过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。
这种方法常常用于证明三角形的等边、等腰等性质。
3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。
通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。
4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。
内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。
5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。
通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。
总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。
通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。
相似三角形构造相似辅助线双垂直模型
![相似三角形构造相似辅助线双垂直模型](https://img.taocdn.com/s3/m/52a313f55727a5e9846a61bc.png)
相似三角形构造相似辅助线双垂直模型Modified by JEEP on December 26th, 2020.构造相似辅助线(1)——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N 是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
求C、D两点的坐标。
6.答案:解:分两种情况第一种情况,图象经过第一、三象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴∵A(2,1),=45°∴OC=2,AC=1,AO=AB∴AD=OC=2,BD=AC=1∴D点坐标为(2,3)∴B点坐标为(1,3)∴此时正比例函数表达式为:y=3x第二种情况,图象经过第二、四象限过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴∵A(2,1),=45°∴OC=1,AC=2,AO=AB∴AD=OC=1,BD=AC=2∴D点坐标为(3,1)∴B点坐标为(3,﹣1)∴此时正比例函数表达式为:y=x7.答案:解:情形一:情形二:情形三:8.答案:证明:方法一:连接PC,过点P作PD⊥AC于D,则PD案:A解题思路:如图过点D作AB的平行线交BC的延长线于点M,交x轴于点N,则∠M=∠DNA=90°,由于折叠,可以得到△ABC≌△ADC,又由B (1,3)∴BC=DC=1,AB=AD=MN=3,∠CDA=∠B=90°∴∠1+∠2=90°∵∠DNA=90°∴∠3+∠2=90°∴∠1=∠3∴△DMC∽△AND,∴设CM=x,则DN=3x,AN=1+x,DM=∴3x+=3 ∴x=∴,则。
相似三角形中的辅助线与常见模型
![相似三角形中的辅助线与常见模型](https://img.taocdn.com/s3/m/5942531dbfd5b9f3f90f76c66137ee06eff94e24.png)
相似三角形中的辅助线与常见模型相似三角形的性质、定理都是由“平行线分线段成比例”定理衍生出的,在其中隐藏着许多基本图形,我们需要灵活运用基本图形,才能掌握添加辅助线的规律。
第一层次:直接从题设图形中寻找基本图形。
从已知图形和结论特征中发现,挑选出平行线是关键;第二层次:根据题意特点(如题目中出现的比例式或涉及的比例线段),构造图形。
方法1:以FA/FB为主体,以∠F为公共角,BC为一条边,过A 作AG//BC。
这样就构造出了A型及X型。
方法2:以FA/FB为主体,以∠F为公共角,AE为一条边,过B 作BG//AE。
这样就构造出了A型及一对全等三角形。
方法3:以FA/FB为主体,以∠FAE为对顶角,过B作BG//AE。
这样就构造出了A型及X型。
方法4:如左下图,以AE/CE为主体,以∠FAC为公共角,过点C作CG//FD交BF延长线于点G,构造出两组A型,分别在▲ACG 与▲BCG中。
方法5:如右下图,以AE/CE为主体,∠FEA为对顶角,过点C作CG//FB,构造出一组X型和一对全等三角形。
方法6:同时以FA/FB与AE/CE为主体,∠B为公共角或∠C为公共角,过点A作AG//DF,构造出两组A型,分别在▲ACG与▲BDF中。
在解决此类问题时,①要注意联想平行线分线段成比例的几个基本图形(A型或X型);②考虑所构造出的A型及X型后所得的线段与所要证明的比例式中线段的内在联系。
方法7:由于图中出现了燕尾形三角形,因此本题也可以借助梅氏定理进行解决。
以三角形ABC 为三角形,直线DEF为截线,则有:(链接:梅氏定理)1、A型或斜A型2、X型或斜X型3、共边共角型(子母三角形)3-1、直角三角形中的共边三角形3-2、一线三等角模型(等腰三角中)3-3、一线三等角模型(正方形中)4、双垂型三角形(4对相似三角形)5、手拉手模型(链接:手拉手模型)在与比例线段和相似三角形的证明中,往往隐藏着以上的这些模型,在证明或计算时,先观察是否可以直接应用模型,如果没有模型,则根据已知或结论之间的关系构造辅助线。
相似形中常用的辅助线
![相似形中常用的辅助线](https://img.taocdn.com/s3/m/c64925659b6648d7c1c7469f.png)
相似形中常用的辅助线山东 程方岩添加辅助线实际上就是构造出某种图形,构造哪些图形?这就需要掌握一些基本图形.相似三角形中的基本图形如下图所示:这些基本图形可以把它们当作一种数学模型,在解决问题时就可以去观察,看看能不能运用上它们,这就是建模的思想方法.1、添加平行线构造平行线型基本图形,我们称之为“A”、“X”型.例1、已知:如图,过△ABC 的顶点C 任作一条直线,与边AB 及中线AD 分别交于点F 和E ,求证:AE:ED=2AF:FB .分析:要证线段成比例,而题中没有平行条件,故无法证明,所以想到引平行线,构建基本图形“A”、“X”型.证明:过B 作BN ∥CF 交AD 的延长线于N ,∴.,BDCD DNED EN AE FBAF ==∵BD=CD ,∴2ED=2DN=EN , ∴,2EDAE FB AF =∴AE:ED=2AF:FB . 注意:引平行线时注意以下几点:(1)选点:一般选已知(或求证)中线段的比的前项(或后项)在同一直线的线段的端点作为引平行线的点;(2)引平行线时尽量使较多已知线段来求证线段成比例;(3)引平行线的实质是构造“A”、“X”型基本图形,在上例中过每个已知点均可引平行线构造“A”型或“X”型,进而使结论获证,故本题有多种证法,仅过E 点就有四种方法,都能证明结认正确,有兴趣的读者可以去研究.2、根据条件,构造相似三角形的基本图形.例2、在△ABC 中,∠A 、∠B 、∠C 所对的边分别用a 、b 、c 表示.(1)如图,在△ABC 中,平行线型CCBNEFDCBA图(2)图(1)a baCBACBA∠A=2∠B ,且∠A=600,求证:a 2=b (b+c );(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.(1)中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC ,其中∠A=2∠B ,关系式a 2=b (b+c )是否仍然成立?并证明你的结论.分析:(1)由∠A=2∠B ,且∠A=600,易得∠C=900.所以在Rt △ABC 中,三边a 、b 、c 之间的关系为,c=2b ,a=3b .所以a 2=3b 2,b (b+c )=3b 2,则a 2=b (b+c ).(2)要证a 2=b (b+c ),则需构造有关a 、b 与(b+c )的相似的三角形,且a 为公共边.对照基本图形,有类似的图形,这提醒我们延长BA 到D ,使AD=b ,则∠D=∠ACD ,又∠BAC=∠D+∠ACD ,所以∠BAC=2∠D ,得到∠B=∠D ,DC=BC (如图).于是构造出了有关a 、b 与(b+c )的三角形,易证△BCD ∽△CAD 相似,于是得到a 2=b (b+c ).a D CB。
相似三角形解题方法技巧步骤辅助线解析
![相似三角形解题方法技巧步骤辅助线解析](https://img.taocdn.com/s3/m/f257756b49d7c1c708a1284ac850ad02de800710.png)
相似三角形解题方法、技巧、步骤、辅助线解析 贵有恒何必三更眠五更起,最无益只怕一日曝十日寒。
一、 相似、全等的关系全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广•因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为 基础. 二、 两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要添加适当的辅助线,构造出基本图形,从而使问题得以解决三、三角形相似的证题思路:判定两个三角形相似思路:1 )先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2) 再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3) 若无对应角相等,则只考虑三组对应边是否成比例;1、已知一对等角①找另一角,两角对应相等,两三角形相似;②找夹边对应成比例,两边对应成比例且夹角相等,两三角形相似2、 已知两边对应成比例①找夹角相等,两边对应成比例且夹角相等,两三角形相似;③找第三边也对应成比例,三边对应成比例,两三角形相似3、 已知可能的一个直角三角形 ①找一个直角,斜边、直角边对应成比例,两个直角三角形相似;②找另一角,两角对应相等,两三角形相似 ③找两边对应成比例判定定理1或判定定理44、 与等腰三角形有关的①找顶角对应相等 判定定理1②找底角对应相等判定定理1③找底和腰对应成比例判定定理35、 相似形的传递性 若4 1S^ 2,^ 23,则厶 3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所 代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只 要证明这两个三角形相似就行了,这叫做“竖定”。
全等三角形六种辅助线方法
![全等三角形六种辅助线方法](https://img.taocdn.com/s3/m/13c16472ff4733687e21af45b307e87100f6f84d.png)
全等三角形六种辅助线方法全等三角形是指具有相同形状和大小的三角形。
在解决与全等三角形相关的问题时,辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。
下面将介绍全等三角形的六种辅助线方法。
一、垂直辅助线法垂直辅助线法是指通过某个顶点引一条垂直线与对边相交,从而将三角形分割成两个直角三角形。
利用直角三角形的性质,我们可以更方便地求解各种问题。
二、角平分线法角平分线法是指通过某个顶点引一条角平分线与对边相交,将三角形分割成两个等角的三角形。
利用等角三角形的性质,我们可以更容易地求解各种问题。
三、高线法高线法是指通过某个顶点引一条垂直于底边的线段,将三角形分割成一个直角三角形和一个等腰三角形。
利用这两个三角形的性质,我们可以更快速地解决问题。
四、中线法中线法是指连接三角形的两个顶点和底边中点,将三角形分割成三个相似的三角形。
利用相似三角形的性质,我们可以更高效地解决问题。
五、中垂线法中垂线法是指通过三角形的每条边的中点引一条垂直于对边的线段,将三角形分割成三个直角三角形。
利用直角三角形的性质,我们可以更轻松地解决问题。
六、对称线法对称线法是指通过三角形的某个顶点引一条对称线,将三角形分割成两个全等的三角形。
利用全等三角形的性质,我们可以更直接地解决问题。
通过以上六种辅助线方法,我们可以更灵活地分析和解决与全等三角形相关的问题。
这些方法使得计算更加简便,推理更加直观,提高了问题解决的效率。
同时,这些方法也加深了我们对全等三角形的理解,拓宽了我们的数学思维。
在实际应用中,我们可以根据具体问题的要求选择合适的辅助线方法,以便更好地解决问题。
全等三角形的六种辅助线方法是垂直辅助线法、角平分线法、高线法、中线法、中垂线法和对称线法。
这些方法在解决与全等三角形相关的问题时起到了重要的作用,使我们能够更快速、准确地解决问题。
希望通过这篇文章的介绍,能够帮助大家更好地理解和应用这些方法。
相似三角形添加辅助线的方法举例
![相似三角形添加辅助线的方法举例](https://img.taocdn.com/s3/m/00d7f22c26d3240c844769eae009581b6bd9bdba.png)
相似三角形添加辅助线的方法举例1.垂直角辅助线:当三角形中存在垂直角时,我们可以通过添加一条垂直角辅助线来将问题简化。
例如,在一个直角三角形中,我们可以通过从直角顶点到斜边的任意一点画一条垂直辅助线,这样可以将原问题转化为两个相似的直角三角形的求解。
2.中位线辅助线:在一个任意三角形中,我们可以通过连接每个顶点与对边中点的线段来得到三条中位线。
这些中位线的交点被称为三角形的重心。
通过画三角形重心与其他顶点的连线,可以将原问题转化为多个相似的三角形的求解。
3.等角辅助线:当我们需要证明两个三角形相似时,可以通过添加等角辅助线来帮助我们得到一些相等的角度。
例如,在两个直角三角形中,如果我们能找到一个等角辅助线使得两个直角形成的角相等,那么我们可以推断这两个三角形相似。
4.比例辅助线:当我们需要求解相似三角形的长边与短边的比例时,可以利用比例辅助线。
例如,在两个相似三角形中,我们可以通过添加比例辅助线,将两个相似三角形分割成若干个相似的小三角形,并且利用小三角形的边长比例来求解长边与短边的比例关系。
5.平行辅助线:当我们需要证明两个三角形相似时,可以通过添加平行辅助线来帮助我们得到一些对应边平行的关系。
例如,在两个直角三角形中,如果我们能找到一条边使得它与另一个直角三角形的对边平行,那么我们可以推断这两个三角形相似。
以上是一些常见的相似三角形添加辅助线的方法,它们可以帮助我们更好地理解问题、简化问题以及找到解决问题的方法。
在实际解题过程中,根据问题的不同,我们可以选择适合的辅助线方法来解决问题。
相似三角形的辅助线技巧
![相似三角形的辅助线技巧](https://img.taocdn.com/s3/m/171bb578c381e53a580216fc700abb68a982ade1.png)
︵
AHCD 的面积为 21,求△HBC 的面积.
九
【分析】延长 BA 与 CD,两延长线交于点 F,由 CH 垂直于 BF,得到一对直角相等,由
年
CH 为角平分线得到一对角相等,再由 CH 为公共边,利用 ASA 可得出三角形 CFH 与三
级
角形 CBH 全等,由全等三角形的对应边相等得到 CF=CB,且 BH=HF,由 BH=3AH,
1
∴AE= 2AB=1,
∵AB∥DC,
∴△AEM∽△GDM,
∴
=
= ;
(2)∵△ADG 是等腰直角三角形,
∴在 Rt△ADG 中,由勾股定理得:AG= √3 + 3 =3√2,
∵AB∥DC,
15
相似三角形的辅助线技巧
数
【解答】解:
(1)如图,连接 FC、AD.
学
∵点 F 是 AB 的中点,CD=BC,
︵
∴FC 是△ADB 的中位线,
九
1
∴FC= 2AD,
年
∴△EFC∽△EDA,
级
∥
︶
∴
=
∴
= ;
=2,
(2)∵点 F 是 AB 的中点,AB=18,FB=EC,
1
∴EC= 2AB=9.
由(1)知,
=2,则
=2,故 AE=18,
∴AC=AE+EC=18+9=27.
9
相似三角形的辅助线技巧
【点评】本题考查了相似三角形的判定与性质.此类题要注意作平行线,能够根据相似
三角形对应边成比例即可求得线段的比.
2.如图,已知△ABC 的边 AB 上有一点 D,边 BC 的延长线上有一点 E,且 AD=CE.DE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形常用辅助线做法
作平行线构造相似三角形
1.添加平行线构造x型或A型相似三角形
2.从复杂图形中找出一个恰当的点,并做平行线达到解题目的。
【典例赏析】
【当堂练习】
【课后练习】
1.如图,D是△ABC的BC边上的点,BD:DC=2:1,E是AD的中点,连接BE并延长交AC于F,求(1)BE:EF的值。
(2)AF:FC的值。
2.如图,在△ABC中,D为AC上一点,E为延长线上一点,且BE=AD,ED和AB 交于F。
求证:
EF:FD=AC:BC
阅读下面的材料:
小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE 上一点,BF的延长线交射线CD于点G. 如果,求的值
(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为(用含a的代数式表示).
(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E 是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为(用含m,n的代数式表示).。