基因组学测验资料整理版
基因组学exam1
命题教师: 教研室或系负责人: 主管院长: 年 月 日200 ~200 学年第 学期期末(中)一、名词解释(每题3分,共24分)基因组 拟基因转化 核酸杂交 密码偏倚 开放阅读框 同源性检索 直向同源二、选择题(请将正确答案的代码填入括号内,每题2分,共10分)1、DNA 和RNA 是由()单体构成的线性无分支的多聚分子。
A 、脱氧核糖核苷酸B 、双脱氧核糖核苷酸C 、核苷酸D 、核糖核苷酸 2、遗传作图的基础是()A 、连锁分析B 、荧光原位杂交C 、限制酶作图D 、序列标记位点作图 3、一段DNA 序列有()种开放阅读框。
A 、3种B 、4种C 、5种D 、6种 4、某一基因上游的外显子和内含子边界通常为()。
A 、ATB 、AGC 、ACD 、GT5、开放阅读框是以终止密码子TAA 、TGA 或 ( ) 结束的。
A 、TAG B 、TTA C 、TGG D 、TTG三、判断正误,并改正(每题3分,共18分)1、线粒体基因组一般为线性DNA分子。
2、转导是指受体细胞从环境中摄取供体细胞释放的DNA片段的过程。
3、物理作图方法主要包括限制酶作图、荧光原位杂交和连锁分析。
4、表达序列标签(EST)是通过直接测定基因组DNA序列而非cDNA序列得到。
5、同源性分析不能直接确定某一新基因的功能。
6、操纵子是原核生物基因组的特征。
四、简答题(每题6分,共36分)1、简述原核生物与真核生物基因组的区别。
2、传统基因组作图方法的有哪些?并简要说明。
3、简述遗传作图的DNA标记类别。
4、简述鸟枪法测序的原理和优缺点。
5、简述Northern杂交的原理及其在基因组研究领域的应用。
6、简述确定基因功能的实验方法。
五、论述题(每题12分,共12分)1、详细阐述链终止法测序的基本原理及发展。
2014-基因组学——最终版
基因组学题库一基因组学介绍1 基因组与基因组学基因组是指生物的整套染色体所含有的全部DNA序列,是生物体所有遗传信息的总和。
基因组学(Genomics)是以生物信息学分析为手段研究基因组的组成、结构、表达调控机制和进化规律的一门学科,研究对象是基因组结构特征、变演规律和生物学意义。
2 C质与C质悖论C值(C value)通常是指某一生物单倍体基因组DNA的总量。
C值悖论(C Value Paradox):生物的复杂性与基因组的大小并不完全成比例增加。
3 人类基因组计划及其8个目标人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。
美、英、法、德、日和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。
按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。
其8个目标:1)人类DNA序列(Human DNA sequence);2)开发测序技术(Develop sequencing technology);3)识别人类基因组序列变异(Identify human genome sequence variation);4)功能基因组学技术(Functional genomics technology);5)比较基因组学(Comparative genomics);6)伦理、法律、社会问题(ELSI: ethical, legal, and social issues);7)生物信息学和系统生物学(Bioinformatics and computational biology);8)Training and manpower。
4 什么是宏基因组(metagenomics)?研究一类在特殊的或极端的环境下共栖生长微生物的混合基因。
生境中全部微小生物遗传物质的总和。
它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。
基因组学复习
联合基因:一段连续的DNA序列编码一组关联的彼此重叠的功能产物遗传图谱:利用遗传学的原理和方法,以遗传图距为单位绘制的染色体上基因与遗传标记之间相对位置物理图谱:采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置表观遗传学调控基因表达的方式包括DNA甲基化,组蛋白的共价修饰,染色体结构的重塑以及小RNA介导的基因沉默等多个方面。
研究证明表观遗传学机制在基因组防御、进化、基因调控等方面都发挥着重要作用。
大量研究表明,DNA甲基化能引起染色质结构、构象、染色体DNA稳定性及蛋白质与DNA 相互作用方式的改变,从而影响基因表达。
一般认为DNA甲基化抑制基因的表达。
印记的基因只占人类基因组中的少数,不超过5%,但在胎儿的生长和行为发育中起着至关重要的作用。
大量研究表明这些修饰与染色体构象、基因组稳定性及基因转录活性相关。
组蛋白甲基化的位点是赖氨酸和精氨酸,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域。
组蛋白H3K9,K27的甲基化与基因的转录抑制及异染色质有关。
连锁群:在染色体中具有不同的连锁程度并按线性顺序排列的一组基因座位(存在于同一染色体上)物理连锁图:DNA分子标记在同源染色体上有具体的物理位置,因此采用DNA分子标记绘制的遗传连锁图又称物理连锁图连锁不平衡:群体遗传学中有关两个或多个不同座位的等位基因成员出现在个体中的非随机关联性序列间隙:因覆盖度的原因而留下的未能测序的序列,仍存在于克隆文库中,这类间隙称为序列间隙。
物理间隙:因克隆载体自身的限制或DNA序列特殊的组成等原因造成某些序列丢失或未能克隆,这些间隙称为物理间隙复制子是DNA的复制单位, 由复制起始点, 复制序列和复制终点组成DNA 复制的意义:1子代保留了亲代DNA的全部信息;2 DNA通过复制和基因表达决定生物特性;3体现了遗传过程的相对保守性;保守性是相对的,不能忽视其变异性DNA拓扑异构酶(DNA Topisomerase )的作用:通过切断、旋转和再连接作用,理顺DNA 链各种酶与蛋白质的作用小结解螺旋酶:解开DNA双螺旋DNA拓朴异构酶:理顺DNA链单链DNA结合蛋白:稳定维持DNA单链状态前导链的合成:在聚合酶III与滑动夹子结合下连续合成。
基因组学答案
基因组学答案名词解释:1基因组:生物的整套染色体所含有的全部DNA序列2物理作图;采用分子生物学技术直接将DNA标记,基因或克隆标定在基因组的实际位置所构建的位置图,物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对3单核苷酸多态性:基因组中单个核苷酸的突变称为点突变4蛋白质组:基因组表达的最终结果是一组蛋白质5开放阅读框:所有编码蛋白质的基因都含有开放读框,它们由一系列5指令氨基酸的密码子组成6兼性异染色质:细胞中非持久性的异染色质,仅在某些细胞或细胞的某一阶段出现7副突变:指在杂合子中某一等位基因影响同一座位上另一等位基因的表达8表观遗传:不涉及DNA序列的编译,但基因的表达模式发生了可遗传的改变,并能通过有丝分裂和减数分裂将改变的基因表达模式传递给子细胞或下一代的过程9染色质重建:染色质由收缩状态向伸展开放状态的转变10基因组印记:印记基因的表达取决于它是在父源染色体上还是在母源染色体上,来自父源和母源的印记基因有所不同1C值;指的是一个单倍体基因组中DNA的总量2限制性片段长度多态性:由于同源染色体同一区段DNA序列的差异,当用限制酶处理时,可产生产生长度不同的限制性片段。
3微卫星序列:其重复单位为1-6个核苷酸,由10-50个重复单位串联组成4遗传作图:采用遗传学分析方法将基因或其它DNA分子标记标定在染色体上构建连锁图称之为遗传连锁图5基因等高线:指连续分布的具有相似碱基组成的DNA片段,她们在基因组中成片相嵌排列6组成性异染色质:这是所有细胞中均有的一种持久性的结构,这些染色质不含任何基因,总是保持紧密的组成状态7基因组:生物的整套染色体所含有的全部DNA序列8染色体重排:涉及染色体不同区段相对位置的重新排列,是基因组进化的重要途径之一9转录物组:基因组在整个生命过程中所表达的全部转录产物的总和10假基因:指来源于功能基因但已使其活性的DNA序列,有沉默的假设基因,也有可转录的假基因基因组学简答题:1生物基因中有哪些异常结构基因?重叠基因、基因内基因、反义基因2有哪些DNA分子标记?限制性片段长度多态性、简单序列长度多态性、单核苷酸多态性3miRNA的生物学功能有哪些?1在mRNA翻译起始后干扰翻译的继续进行2在翻译的起始阶段阻止翻译起始复合物的组装3促使mRNA降解4遗传密码有什么特点?通用性、兼并性、摇摆、偏爱、偏离(课本230)5真核生物DNA复制有哪些特点?1互补单链的合成以5’-3’极性方式进行2DNA两条分子链的合成在时间上和空间上的非对称性的3RNA其实合成不需要引物,但DNA起始复制需要引物。
基因组学复习资料整理
基因组学1. 简述基因组的概念和其对生命科学的影响。
基因组:指一个物种的全套染色体和基因。
广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。
基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。
②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。
Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。
④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。
2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。
该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。
Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。
不同的Ds因子的长度差异由Ac因子发生不同缺失所致。
Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。
当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。
Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。
2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。
3)Ac对Ds的控制具有负剂量效应。
4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。
5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。
基因组学复习题
第1章1)什么是C-值悖理?什么是N-值悖理?C-值悖理:生物基因组的大小同生物进化所处地位的高低无关的现象。
N-值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理2)什么是序列复杂性?基因组中不同序列的DNA总长,用bp 表示。
3)RNA分子有哪些种类?mRNA tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA4)不编码蛋白质的RNA包括哪些类型?tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA5)什么是假基因?假基因是如何形成的?来源于功能基因但已失去活性的DNA序列,有沉默的假基因,也有可转录的假基因。
产生假基因的原因有很多,如编码序列出现终止密码子突变,或者插入和缺失某些核苷酸使mRNA移码,造成翻译中途停止或者异常延伸,合成无活性的蛋白质。
6)假基因能否表达? 为什么?能,假基因相对于原来的基因已经失去功能但是可能产生新的功能。
最初人们认为, 假基因是不能转录的基因, 随着基因组数据的积累, 现在已知有不少假基因仍然保持转录的活性, 特别是起源于重复基因的假基因和获得启动子加工的假基因,但假基因的转录产物已失去原有的功能, 如产生残缺蛋白质。
7)如何划分基因家族? 什么是超基因家族?基因家族:将来自共同的祖先,因基因加倍或变异产生了许多在DNA序列组成上基本一致而略有不同的成员划分为一个基因家族。
超基因家族:起源于共同祖先,由相似DNA序列组成的许多基因亚家族或相似的基因成员构成的群体,它们具有相似的功能。
8)低等生物与高等生物基因组组成有何差别?为什么会产生这些差别?低等生物:1)结构紧凑,一般不存在内含子(古细菌除外);2)大小在5 Mb以下;3)缺少重复序列;4)很少非编码序列。
高等生物:1)结构松弛,含有大量重复序列;2)基因大多为断裂基因,由内含子和外显子构成;3)由线性DNA与蛋白质组成染色体结构; 4)含有细胞器基因组。
基因组学考试重点宝典
2.C 值(C value):是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。
3. C值悖理(paradox) 生物的复杂性与基因组的大小并不完全成比例增加的现象.4.遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA顺序标定在染色体上构建连锁图。
这一方法包括杂交实验和家系分析。
基因或DNA标志在染色体上的相对位置与遗传距离。
遗传距离用重组率来衡量。
即通过计算两个连锁的遗传标记在每次减数分裂中的重组概率,确定两者的相对距离遗传图距单位为 cM,每单位厘摩定义为1%交换值5.物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。
物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对。
6.重组热点(recombination hot spot):染色体的某些位点之间比其他位点之间有更高的交换频率,被称为重组热点。
7.基因组测序覆盖面(coverage):随机测序获得的序列总长与单倍体基因组序列总长之比,覆盖面越大,遗漏的序列越少。
8.密码子偏爱(codon bias):生物有时更加偏爱地使用一个或者一组密码子的现象。
这是在进化过程中基因复制的差异所产生的结果。
(仅供参考)9.开放读框(open reading frame ORF)它们由一系列指令氨基酸的密码子组成,有一个起始点和一个终止点。
10.功能域或外显子洗牌(domain shuffling or exon shuffling)由不同基因中编码不同结构域的片段彼此连接形成的全新编码序列称为功能域或外显子洗牌。
它们有有一个全新的结构组合,可为细胞提供完全不同的生物学功能。
11.直向同源基因(orthologous gene):这是指不同物种之间的同源基因,他们来自物种分割之前的同一祖先。
基因组学复习资料整理(word文档良心出品)
基因组学1. 简述基因组的概念和其对生命科学的影响。
基因组:指一个物种的全套染色体和基因。
广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。
基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。
②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。
Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。
④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。
2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。
该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。
Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。
不同的Ds因子的长度差异由Ac因子发生不同缺失所致。
Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。
当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。
Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。
2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。
3)Ac对Ds的控制具有负剂量效应。
4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。
5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。
基因组学复习题精编版
基因组学复习题文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)第1章1)什么是C-值悖理什么是N-值悖理C-值悖理:生物基因组的大小同生物进化所处地位的高低无关的现象。
N-值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理2)什么是序列复杂性基因组中不同序列的DNA总长,用bp 表示。
3)RNA分子有哪些种类mRNA tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA4)不编码蛋白质的RNA包括哪些类型tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA5)什么是假基因假基因是如何形成的来源于功能基因但已失去活性的DNA序列,有沉默的假基因,也有可转录的假基因。
产生假基因的原因有很多,如编码序列出现终止密码子突变,或者插入和缺失某些核苷酸使mRNA移码,造成翻译中途停止或者异常延伸,合成无活性的蛋白质。
6)假基因能否表达为什么能,假基因相对于原来的基因已经失去功能但是可能产生新的功能。
最初人们认为, 假基因是不能转录的基因, 随着基因组数据的积累, 现在已知有不少假基因仍然保持转录的活性, 特别是起源于重复基因的假基因和获得启动子加工的假基因,但假基因的转录产物已失去原有的功能, 如产生残缺蛋白质。
7)如何划分基因家族什么是超基因家族基因家族:将来自共同的祖先,因基因加倍或变异产生了许多在DNA序列组成上基本一致而略有不同的成员划分为一个基因家族。
超基因家族:起源于共同祖先,由相似DNA序列组成的许多基因亚家族或相似的基因成员构成的群体,它们具有相似的功能。
8)低等生物与高等生物基因组组成有何差别为什么会产生这些差别低等生物:1)结构紧凑,一般不存在内含子(古细菌除外);2)大小在5 Mb以下;3)缺少重复序列;4)很少非编码序列。
高等生物:1)结构松弛,含有大量重复序列;2)基因大多为断裂基因,由内含子和外显子构成;3)由线性DNA与蛋白质组成染色体结构; 4)含有细胞器基因组。
基因组学考试资料 整理版
第一章一、基因组1、基因组(genome):生物所具有的携带遗传信息的遗传物质的总和,是指生物细胞中所有的DNA,包括所有的基因和基因间区域。
2、基因组学:指以分子生物学技术、计算机技术和信息网络技术为研究手段,以生物体内全部基因为研究对象,在全基因背景下和整体水平上探索生命活动的内在规律及其内外环境影响机制的科学。
基因组学包括3个不同的亚领域结构基因组学(structural genomics) :以全基因组测序为目标功能基因组学(functional genomics):以基因功能鉴定为目标比较基因组学(comparative genomics)二、基因组序列复杂性1、C值是指一个单倍体基因组中DNA的总量,以基因组的碱基对来表示。
每个细胞中以皮克(pg,10-12g)水平表示。
C 值悖理(矛盾)(C-value paradox):在结构、功能很相似的同一类生物中,甚至在亲缘关系十分接近的物种之间,它们的C值可以相差数10倍乃至上百倍。
C值反映了总体趋势上,随着生物结构和功能的复杂性的增加,各分类单元中最小基因组的大小随分类地位的提高而递增。
2、序列复杂性单一顺序:基因组中单拷贝的DNA序列重复顺序:基因组中多拷贝的基因序列真核生物基因组DNA组分为非均一性,可分为3种类型:快速复性组分、居间复性组分、缓慢复兴组分三、基因与基因家族1、基因家族:是真核基因组的共同特征,他们来自一个共同的祖先,因基因加倍和趋异,产生了许多在DNA序列上基本一致而略有不同的成员。
包括编码RNA的基因和编码蛋白质的基因2、隔裂基因(split gene):指基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。
3、异常结构基因分类重叠基因:编码序列彼此重叠的基因,含有不同蛋白质的编码序列。
基因内基因:一个基因的内含子中包含其他基因。
反义基因: 与已知基因编码序列互补的的负链编码基因,参与基因的表达调控,可以干扰靶基因mRNA转录与翻译。
基因组学复习题终极版.doc
基因组学复习题终极版。
1 .根据您的理解,我们在未来将面临基因组学方面的主要挑战是什么?1.1表征人类基因组的结构和功能1.2更好地理解人类基因组中可遗传的遗传变异的知识1.3应用基因和代谢途径的新知识来开发人类疾病治疗的新有效方法1.4解释不同物种间进化和变异的机制1.5克隆和表征作物中的关键功能基因1.6使用基因组学工具来提高作物产量和解决世界粮食危机2 .脱氧核糖核酸作为遗传物质的优势是什么?2.1。
脱氧核糖核酸包含大量信息2.2 .互补碱基对确保精确复制2.3 .在水中的高稳定性3 .脱氧核糖核酸的功能如何优于核糖核酸?两者都可以作为遗传物质;许多病毒使用核糖核酸作为它们的遗传物质。
脱氧核糖核酸可能是作为细胞的遗传物质进化而来的,因此核糖核酸可以作为信使核糖核酸,把蛋白质合成的信息传递给核糖体。
这种基因在代谢上是不稳定的,因为它会被核糖核酸酶迅速分解。
脱氧核糖核酸必须是稳定的,核糖核酸必须进化才能完成这一功能。
脱氧核糖核酸和核糖核酸有相同的编码能力。
它们都是具有相似潜在长度的聚合物。
普遍存在于所有生物体内的脱氧核糖核酸,但与核糖核酸并不相同。
有些病毒是异常的,因为-省略部分-e特异性表达,使用转基因技术改变其原始表达组织。
因此,该基因将显示异位表达现象。
外切表达可以使某些性状在新的组织中出现。
因此,可以在此基础上推断基因的功能。
使用组成型启动子可以同时引起过表达和外切表达31 .请简单描述微阵列方案。
机器人将探针脱氧核糖核酸的微小斑点印在阵列上。
将两个样品(测试和参考)的mRNA转化为cDNA,用两种不同的荧光染料(例如cy3和cy5)标记,并允许与阵列杂交。
杂交后,在两种染料独立激发后,用共聚焦激光装置扫描微阵列,以获得两种波长的荧光发射。
测试样品与参考样品中每个基因的相对丰度由相应阵列元件发射的荧光所测量的绿/红比率来反映。
图像分析软件用于确定荧光强度,以便对阵列上所有基因的测试样本和参考样本进行定量比较32 .什么是蛋白质组及其目的?蛋白质组指细胞中所有蛋白质的总和。
基因组学考试重点宝典
2.C 值(C value):是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。
3. C值悖理(paradox) 生物的复杂性与基因组的大小并不完全成比例增加的现象.4.遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA顺序标定在染色体上构建连锁图。
这一方法包括杂交实验和家系分析。
基因或DNA标志在染色体上的相对位置与遗传距离。
遗传距离用重组率来衡量。
即通过计算两个连锁的遗传标记在每次减数分裂中的重组概率,确定两者的相对距离遗传图距单位为 cM,每单位厘摩定义为1%交换值5.物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。
物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对。
6.重组热点(recombination hot spot):染色体的某些位点之间比其他位点之间有更高的交换频率,被称为重组热点。
7.基因组测序覆盖面(coverage):随机测序获得的序列总长与单倍体基因组序列总长之比,覆盖面越大,遗漏的序列越少。
8.密码子偏爱(codon bias):生物有时更加偏爱地使用一个或者一组密码子的现象。
这是在进化过程中基因复制的差异所产生的结果。
(仅供参考)9.开放读框(open reading frame ORF)它们由一系列指令氨基酸的密码子组成,有一个起始点和一个终止点。
10.功能域或外显子洗牌(domain shuffling or exon shuffling)由不同基因中编码不同结构域的片段彼此连接形成的全新编码序列称为功能域或外显子洗牌。
它们有有一个全新的结构组合,可为细胞提供完全不同的生物学功能。
11.直向同源基因(orthologous gene):这是指不同物种之间的同源基因,他们来自物种分割之前的同一祖先。
基因组学复习资料
为什么说基因组学是生命科学的前沿学科?基因组学已成为生命科学的前沿学科,已渗透到各个科学领域,出现了结构基因组学,功能基因组学,蛋白组学,功能蛋白组学,功能酶学,生物信息学,生物计算机,药物基因组学,疾病基因组学等基因研究方向。
1、启动子:细菌中RNA聚合酶结合并启动转录的DNA序列。
2、转录因子:是转录起始过程中RNA聚合酶所需的辅助因子。
3、RNA聚合酶:是能够特异性地与启动子结合并启动转录的蛋白质。
4、转录因子(transcription factor,TF):是转录起始过程中RNA聚合酶所需的辅助因子。
按功能可分为两类: 1.普遍性转录因子(general transcription factor)是转录起始复合物的组成成员,将RNA聚合酶定位在核心启动子上。
2.激活转录因子:对转录起始复合物的组装及转录速率施加影响,决定某一基因是否表达。
5、RNA编辑(RNA editing):改变原有mRNA碱基序列组成的修饰。
有两种方式:①将mRNA分子中某些碱基进行代换,使原有mRNA密码子的含义发生改变②在mRNA分子内部插入某些核苷酸,使mRNA原有的读码框发生大范围的改变6、转录物组(transcriptome):基因组在整个生命过程中所表达的全部转录物的总和。
7、翻译(translation):按照mRNA密码子的排列顺序在核糖体上依次连接对应氨基酸合成多肽链的过程。
8、密码子摆动性(wobble):密码子的第3个碱基选择不同碱基配对的现象。
出现的原因:反密码子位于环化的tRNA序列内,是反密码子的第一个核苷酸与密码子第三个核苷酸不能形成标准的碱基配对。
9、密码子(codon):mRNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表一种氨基酸。
61个氨基酸密码子,3个终止密码子。
10、移码(frame shift):如果翻译时出现反密码子与正密码子的配对间断或重叠,将改变后续的编码信息,这一现象称为移码。
基因组学整理试题
基因组学整理试题填空题:1.位置效应的两种类型:稳定型,花斑型2.细胞器基因组:线粒体基因组,叶绿体基因组3.基因组进化的分子基础:突变,重组,转座4.RNA聚合酶的三种类型:pol1(RNA聚合酶1),pol2(RNA聚合酶2),pol3(RNA聚合酶3)5.转座子分类:DNA转座子,逆转录转座子6.克隆载体的几种类型:YAC,BAC,HAC,MAC7.重叠群组建的方法:步移法,指纹法名词解释:1.C值:是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。
2.C值悖理:生物种属所具有的基因数目与其生物结构的复杂性不成比例的现象.3.N值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理(N所表示的是基因数目)。
4.基因家族:来自一个共同的祖先, 因基因加倍和趋异产生许多在DNA序列上基本一致而略有不同的成员。
1)大部分担负类似的生物学功能.2)比较各个成员间的序列差异,可追踪基因的演变轨迹。
5.假基因:来源于功能基因但已失去原来功能的DNA序列.包括重复假基因、加工假基因、残缺假基因。
6. DNA标记->限制性片段长度多态性( RFLP)同一物种的亚种、品系或个体间基因组DNA 受到同一种限制性内切酶作用而形成不同的酶切图谱的现象->简单序列长度多态性(SSLP)可变排列的简单重复序列, 即重复次数不一,在染色体的同一座位重复序列拷贝数不同; 包括俩种类型:小卫星序列(VNTR)、微卫星序列(SSR)->单核苷酸多态性(SNP)SNP是指同一物种不同个体基因组DNA的等位序列上单个核苷酸存在差异的现象。
其中最少一种在群体中的频率不小于1%;如果出现频率低于1%,则视作点突变。
7.序列间隙:因覆盖率的原因而留下的未能测序的序列,仍存在于克隆文库中, 这类间隙称为序列间隙。
物理间隙:因克隆载体自身的限制或DNA顺序特殊的组成等原因造成某些序列丢失或未能克隆, 这类间隙称为物理间隙。
基因组学考试重点
第一章大规模基因组测序的原理及方法1、基因组学是要提醒下述四种整合体系的相互关系:〔1〕基因组作为信息载体〔碱基对、重复序列的整体守恒及局部不平衡的关系〕〔2〕基因组作为遗传物质的整合体(基因作为功能和构造单位及遗传学机制的关系)〔3〕基因组作为生物化学分子的整合体(基因产物作为功能分子及分子、细胞机制的关系〕〔4〕物种进化的整合体(物种在地理及大气环境中的自然选择〕2、为什么说基因组学是一门大科学?〔1〕“界门纲目科属种〞,地球上现存物种近亿,所有生生灭灭的生物,无一例外,都有个基因组。
〔2〕基因组作为信息载体,它所储存的信息是最根本的生物学信息之一;既是生命本质研究的出发点之一,又是生物信息的归宿。
〔3〕基因组学研究包括对基因产物〔转录子组和蛋白质组〕的系统生物学研究。
〔4〕基因多态性的规模化研究就是基因组多态性的研究。
〔5〕基因组学的研究必然要上升到细胞机制、分子机制和系统生物学的水平。
〔6〕基因组的起源及进化和物种的起源及进化一样是一个新的科学领域。
〔7〕基因组信息正在以天文数字计算,规模化地积累,它的深入研究必将形成一个崭新的学科。
〔8〕基因组的信息是用来发现和解释具有普遍意义的生命现象和它们的变化、内在规律、和相互关系。
〔9〕基因组的信息含量高。
基因组学的研究又在于基因组间的比较。
〔10〕基因组学的复杂性必然导致多学科的引进和介入〔各生物学科、医学、药学、计算机科学、化学、数学、物理学、电子工程学、考古学等〕。
〔11〕基因组学研究的手段和技术已经走在生命科学研究的最前沿。
〔12〕基因组信息来自于高效率和规模化所产生的实验数据。
〔13〕人类基因组方案证明了基因组研究的迫切性和可行性。
3、大规模基因组测序的几个支撑技术是什么?〔1〕Sanger双脱氧末端终止法双脱氧终止法,即sanger测序法,是根据DNA在某一固定的点开场,随机在某一个特定的碱基处终止,并且在每个碱基后面进展荧光标记,产生以A、T、C、G完毕的四组不同长度的一系列DNA片段,然后在尿素变性的PAGE胶上电泳进展检测,从而获得可见的DNA碱基序列。
基因组学复习大全
基因组学复习大全第一章基因组:生物所具有的携带遗传信息的遗传物质总和基因组学:用于概括涉及基因组作图、测序和整个基因组功能分析的遗传学学科分支一、分子基础核苷酸、2’-脱氧核糖、含氮碱基:β-N-糖基键和嘧啶环1N或嘌呤环9N、磷酸基团dNTP,前一个3’-OH和后一个5’-三磷酸缩合成磷酸脂键。
双螺旋:碱基配对、碱基堆积:与DNA双螺旋主轴垂直的相邻碱基对杂环之间的互作,科增加双螺旋稳定性。
大小沟:沿着双螺旋的走向交替分布两个凹槽,具有特征性的结构信息,在基因表达中重要作用,结合蛋白的特定功能域可伸入大小沟,通过氨基酸侧链和碱基杂环上的基团互作读取DNA所包含信息。
DNA甲基化:细菌发生在腺嘌呤6N和胞嘧啶5C,高等只发生在后者。
哺乳动物CpG变为mCpG,植物包括CpG和CpNpG。
RNA:rRNA+tRNA80%、mRNA5%,大多数还含胞质内小RNA(sc)、核仁小RNA(sno),真核还有核内小RNA(sn),小分子干扰miRNA,小干扰siRNA。
几乎所有RNA都会单链区段回折形成分子内双螺旋。
G和U也可配对,形成两对氢键。
RNA核糖2’C上连的不是H而是OH,和DNA差别:⑴非常靠近连接两个核苷酸的磷酸二酯键位置,使RNA对碱性环境非常敏感⑵活泼使RNA构型受限,双螺旋区段在数十碱基对一下⑶限制RNA长度,其易与磷酸二酯键互作断链⑷其可参与同磷酸或碱基的互作而稳定RNA折叠构型,易于形成三级结构,并获得特殊功能⑸T变为U,因此C甲基化形成的U无法区分,增加RNA突变几率。
蛋白质结构:一级:N→C;二级:α螺旋:多肽链中一些连续氨基酸序列自发形成有规律的盘旋,螺距0.54,每圈3.6残基。
β折叠:由侧向平行的多肽链组成,羰酰O和酰胺H 形成氢键。
每条5~8残基。
转角(转环):由3~4个氨基酸残基组成的紧凑U型,两端多肽形成氢键来转折,大多位于蛋白质表面,形成回折使多肽链重新定向。
二级稳定性取决于多肽链中形成的氢键。
基因组学复习资料
基因组学复习资料基因组学复习资料为什么说基因组学是生命科学的前沿学科?基因组学已成为生命科学的前沿学科,已渗透到各个科学领域,出现了结构基因组学,功能基因组学,蛋白组学,功能蛋白组学,功能酶学,生物信息学,生物计算机,药物基因组学,疾病基因组学等基因研究方向。
基因组学形成和发展的科学技术基础?基因组学有哪些特点?1).可能性;2)整体性;3)大科学性(复杂性);4)原创性;5)前沿性;6)竞争性;7)自动化,程序化(标准化),规模化,快速化,产业化。
为什么基因组DNA测序能发现许多新基因?基因组研究已取得那些重要进展?基因组:所有生命都具有指令其生长与发育,维持其结构与功能所必需的遗传信息,生物所具有的携带遗传信息的遗传物质总和称为基因组。
基因组学:是研究生命体全部遗传信息的一门学科。
模式生物:反向遗传学:为什么要在基因组水平上研究生命现象/为什么线粒体基因组大小在不同生物中变化大,而叶绿体基因组大小相对稳定?有什么证据支持细胞器起源的的内共生假说?人类基因组顺序已经完成,但编码蛋白质基因的准确数仍存在不同的看法,为什么?染色体组:不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。
C值:指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。
CpG岛:基因组中富含GC(60%—70%)的DNA区段,一般长度为1—2kb。
支架附着区(SAR):从致密的蛋白质骨架向外伸展的DNA环与染色体骨架附着区结合的DNA顺序成为SAR。
基质附着区(MAR):从致密的蛋白质骨架向外伸展的DNA环与核基质结合的DNA顺序称为MAR。
核型:将中期染色体按照大小与着丝粒的位置依次排列,可组成每种生物特有的染色体组图像,称为核型。
转座子:转座子是基因组中一段可移动的DNA顺序,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。
人类基因组计划中为什么要构建遗传图?人类基因组中有30亿个碱基对,含有大量重复序列,要在这样大的序列中确定某一基因的位置,如同大海捞针。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、基因组序列复杂性
1、C值是指一个单倍体基因组中DNA的总量,以基因组的碱基对来表示。每个细胞中以皮克(pg,10-12g)水平表示。
C 值悖理(矛盾)(C-value paradox):在结构、功能很相似的同一类生物中,甚至在亲缘关系十分接近的物种之间,它们的C值可以相差数10倍乃至上百倍。
优点:速度快,简单易行,成本较低,可以在较短的时间内通过集中机器和人力的方法获得大量的基因片断。
缺点:最终排序结果的拼接组装比较困难,尤其在部分重复序列较高的地方难度较大。此外有许多序列片段难以定位在确切的染色体上,成为游离片断;同时又会有许多地方由于没有足够的覆盖率而形成空缺。这些缺陷最终导致整个基因图会留下大量的空洞,也影响其准确度。
基因组学测验资料整理版
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
第一章
一、基因组
1、基因组(genome):生物所具有的携带遗传信息的遗传物质的总和,是指生物细胞中所有的DNA,包括所有的基因和基因间区域。
原核生物基因组的特征 :原核生物基因数目比真核生物少,大小在5 Mb以下;原核生物基因组结构更紧凑;(极少重复序列;重复基因的数量远远低于真核生物;不存在内含子,基本都是编码序列,无断裂基因。)
第二章
一、为何要绘制遗传图与物理图?
1)基因组太大,必需分散测序,然后将分散的顺序按原来位置组装,需要图谱进行指导。
C值反映了总体趋势上,随着生物结构和功能的复杂性的增加,各分类单元中最小基因组的大小随分类地位的提高而递增。
2、序列复杂性
单一顺序:基因组中单拷贝的DNA序列
重复顺序:基因组中多拷贝的基因序列
真核生物基因组DNA组分为非均一性,可分为3种类型:快速复性组分、居间复性组分、缓慢复兴组分
三、基因与基因家族
基因是首先被使用的标记:基因十分有限,大量的基因间隔区
DNA标记必须有等位型才是有用的
四、遗传图标记及特点:
1.限制性片段长度多态性(restriction fragment length polymorphisms,RFLP)同一物种的亚种、品系或个体间基因组DNA 受到同一种限制性内切酶作用而形成不同的酶切图谱的现象,第一代分子标记。
2)基因组存在大量重复顺序,会干扰排序,因此要高密度基因组图。
3)遗传图和物理图各有优缺点,必须相互整合校正。
二、基因组测序方法、原理及特点:
1. 克隆重叠群法(clone contig method,作图法测序):先构建择合适的BAC或PAC克隆测序,利用计算机拼装。BAC内的空洞基本上都可以利用设计引物等手段填补,形成一条完整的BAC序列。然后由相互关联、部分重叠的BAC克隆连成一个大的重叠群(Contig)。
基因内基因:一个基因的内含子中包含其他基因。
反义基因: 与已知基因编码序列互补的的负链编码基因,参与基因的表达调控,可以干扰靶基因mRNA转录与翻译。
4、假基因:来源于功能基因但已失去活性或者改变原来活性功能的DNA序列.
四、基因组特征比较
真核生物基因组的特征 :复杂性较高的生物基因组结构松弛,在整个基因组范围内分布大量重复顺序(小基因组重复序列较少,大基因组重复序列急剧扩增);含有大量数目不等的线性DNA分子,并且,每个长链DNA都与蛋白质组成染色体结构; 含有细胞器基因组(所有真核生物都具有环状的线粒体DNA,植物细胞还含有环状的叶绿体DNA。)
优点:通过这种方法得到的基因组数据是最为准确和精细的数据,也是基因组测序的最终目标。
缺点工作;此外,费用相对于鸟枪法要稍高一些,完成整个基因组测序周期也要长些。
2. 全基因组鸟枪法(whole-genome shotgun method):是随机先将整个基因组打碎成小片段进行测序,最终利用计算机根据序列之间的重叠关系进行排序和组装,并确定它们在基因组中的正确位置。
2、基因组学:指以分子生物学技术、计算机技术和信息网络技术为研究手段,以生物体内全部基因为研究对象,在全基因背景下和整体水平上探索生命活动的内在规律及其内外环境影响机制的科学。
基因组学包括3个不同的亚领域
结构基因组学(structural genomics) :以全基因组测序为目标
功能基因组学(functional genomics):以基因功能鉴定为目标
1、基因家族:是真核基因组的共同特征,他们来自一个共同的祖先,因基因加倍和趋异,产生了许多在DNA序列上基本一致而略有不同的成员。
包括编码RNA的基因和编码蛋白质的基因
2、隔裂基因(split gene):指基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。
3、异常结构基因分类
重叠基因:编码序列彼此重叠的基因,含有不同蛋白质的编码序列。
特点:1) 处于染色体上的位置相对固定;2) 同一亲本及其子代相同位点上的多态性片段特征不变;3) 同一凝胶电泳可显示等位区段不同多态性片段, 表现为共显性(可鉴定纯合子和杂合子);4) 需要用Southern杂交检测显示。
2. 简单序列长度多态性(simple sequence length polymorphisms,SSLP)第二代分子标记
三、遗传图与物理图
遗传作图(Genetic mapping):采用遗传学分析方法将基因或其它DNA序列标定在染色体上构建连锁图。此方法包括杂交实验,家系分析。遗传图距单位为厘摩(cM), 每单位厘摩定义为1%交换率。(相对位置)
物理作图(Physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。物理图的距离依作图方法而异,如辐射杂种作图的计算单位为厘镭(cR), 限制性片段作图与克隆作图的图距为DNA的分子长度,即碱基对(bp, kb)。(绝对位置)