第11章 磁场中的磁介质 - 2

合集下载

电路及磁路第三版第11章磁路和铁心线圈电路

电路及磁路第三版第11章磁路和铁心线圈电路

所以,曲面A的磁通为
d B dA
A A
A

dA
B
磁通的SI单位:韦伯(Wb)
均匀磁场:磁感应强度量值相等、方向相同的磁场。
第十一章 磁路和铁心线圈电路
如果是均匀磁场,且各点磁感应强度与面积 S 垂直,则该 面积上的磁通为
B A 或 B A

又称磁感应强 度为磁通密度
总的来看:铁磁性物质的B 和H 的关系是非线性的。
O
a2
μ a1
a3 a4 ② B
① ③
H1 H 2 H 3
H
第十一章 磁路和铁心线圈电路
从图中的曲线③ μ- H 可以看到,铁磁性物质的磁导率μ不 是常数,是随H 的变化而变化的。 开始阶段μ较小;随着H 的增大,μ达到最大值,而后随着 磁饱和的出现, H 再增大,μ值下降。 图中的起始磁化曲线可用磁畴理论予以说明。

A
合的空间曲线
第十一章 磁路和铁心线圈电路
安培环路定律:磁场强度矢量H沿任何闭合路径的线 积分等于穿过此路径所围成的面的电流代数和,即

H dl I
l
例如:可写出图中的安培环路定律表达式为
I1
H I2 dl
H dl I1 I 2
l
电流的方向和所选路径 方向符合右手螺旋法则 时为正,否则为负。
二 磁滞回线
◆ 磁滞回线:铁磁性物质 在反复磁化过程中的B-H关 系(在+Hm 和-Hm 间,近似 对称于原点的闭合曲线)。如 交流电机或电器中的铁心常受 到交变磁化。
Bm
H m Br
B
b
a
O Hc
a

大学物理答案第11章

大学物理答案第11章

第十一章恒定磁场11-1两根长度相同的细导线分别多层密绕在半径为R和r的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R=2r,螺线管通过的电流相同为I,螺线管中的磁感强度大小满足()(A)(B)(C)(D)分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C).11-2一个半径为r的半球面如图放在均匀磁场中,通过半球面的磁通量为()(A)(B)(C)(D)题11-2 图分析与解作半径为r的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;.因而正确答案为(D).11-3下列说法正确的是()(A)闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).11-4在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则()(A),(B),(C),(D),题11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C).11-5半径为R的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为()(A)(B)(C)(D)分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B).11-6北京正负电子对撞机的储存环是周长为240 m的近似圆形轨道,当环中电子流强度为8 mA时,在整个环中有多少电子在运行?已知电子的速率接近光速.分析一个电子绕存储环近似以光速运动时,对电流的贡献为,因而由,可解出环中的电子数.解通过分析结果可得环中的电子数11-7已知铜的摩尔质量M =63.75g·mol-1,密度ρ=8.9 g· cm-3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度,求此时铜线内电子的漂移速率v d;(2)在室温下电子热运动的平均速率是电子漂移速率v d的多少倍?分析一个铜原子的质量,其中N A为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度根据假设,每个铜原子贡献出一个自由电子,其电荷为e,电流密度.从而可解得电子的漂移速率v d.将电子气视为理想气体,根据气体动理论,电子热运动的平均速率其中k为玻耳兹曼常量,m e为电子质量.从而可解得电子的平均速率与漂移速率的关系.解(1)铜导线单位体积的原子数为电流密度为j m时铜线内电子的漂移速率(2)室温下(T=300 K)电子热运动的平均速率与电子漂移速率之比为室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8有两个同轴导体圆柱面,它们的长度均为20 m,内圆柱面的半径为3.0 mm,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA电流沿径向流过,求通过半径为6.0 mm的圆柱面上的电流密度.题11-8 图分析如图所示是同轴柱面的横截面,电流密度j对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r的同轴圆柱面上流过的电流I 都相等,因此可得解由分析可知,在半径r=6.0 mm的圆柱面上的电流密度11-9如图所示,已知地球北极地磁场磁感强度B的大小为6.0×10-5T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?解设赤道电流为I,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度因此赤道上的等效圆电流为由于在地球地磁场的N极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10如图所示,有两根导线沿半径方向接触铁环的a、b两点,并与很远处的电源相接.求环心O的磁感强度.题11-10 图分析根据叠加原理,点O的磁感强度可视作由ef、b e、fa三段直线以及ac b、a d b两段圆弧电流共同激发.由于电源距环较远,.而b e、fa两段直线的延长线通过点O,由于,由毕奥-萨伐尔定律知.流过圆弧的电流I1、I2的方向如图所示,两圆弧在点O激发的磁场分别为,其中l1、l2分别是圆弧ac b、a d b的弧长,由于导线电阻R与弧长l成正比,而圆弧ac b、a d b 又构成并联电路,故有将叠加可得点O的磁感强度B.解由上述分析可知,点O的合磁感强度11-11如图所示,几种载流导线在平面内分布,电流均为I,它们在点O的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O处所激发的磁感强度较容易求得,则总的磁感强度.解(a)长直电流对点O而言,有,因此它在点O产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有B0的方向垂直纸面向外.(b)将载流导线看作圆电流和长直电流,由叠加原理可得B0的方向垂直纸面向里.(c)将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得B0的方向垂直纸面向外.11-12载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O的磁感强度B.题11-12 图分析由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O激发的磁感强度,磁感强度的方向依照右手定则确定.点O的磁感强度可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O的叠加.解根据磁场的叠加在图(a)中,在图(b)中,在图(c)中,11-13如图(a)所示,载流长直导线的电流为I,试求通过矩形面积的磁通量.题11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS.为此,可在矩形平面上取一矩形面元d S=l d x,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量11-14已知10 mm2裸铜线允许通过50 A电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题11-14 图分析可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有在导线内r<R,,因而在导线外r>R,,因而磁感强度分布曲线如图所示.11-15有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3.画出B-r图线.题11-15 图分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r的同心圆为积分路径,,利用安培环路定理,可解得各区域的磁感强度.解由上述分析得r<R1R1<r<R2R2<r<R3r>R3磁感强度B(r)的分布曲线如图(b).11-16如图所示,N匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I后,环内外磁场的分布.题11-16 图分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r的圆周为积分环路,由于磁感强度在每一环路上为常量,因而依照安培环路定理,可以解得螺线管内磁感强度的分布.解依照上述分析,有r<R1R2>r>R1r>R2在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若和R2,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径,则环内的磁感强度近似为11-17电流I均匀地流过半径为R的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题11-17 图分析由题11-14 可得导线内部距轴线为r处的磁感强度在剖面上磁感强度分布不均匀,因此,需从磁通量的定义来求解.沿轴线方向在剖面上取面元dS=ldr,考虑到面元上各点B相同,故穿过面元的磁通量dΦ=BdS,通过积分,可得单位长度导线内的磁通量解由分析可得单位长度导线内的磁通量11-18已知地面上空某处地磁场的磁感强度,方向向北.若宇宙射线中有一速率的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.题11-18 图解(1)依照可知洛伦兹力的方向为的方向,如图所示.(2)因,质子所受的洛伦兹力在地球表面质子所受的万有引力因而,有,即质子所受的洛伦兹力远大于重力.11-19霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d=2.0 mm,磁场为B=0.080 T,毫伏表测出血管上下两端的电压为U H=0.10 mV,血流的流速为多大?题11-19 图分析血流稳定时,有由上式可以解得血流的速度.解依照分析11-20带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解根据带电粒子回转半径与粒子运动速率的关系有11-21从太阳射来的速度为0.80×108m/s的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大?若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径地磁北极附近的回转半径11-22如图(a)所示,一根长直导线载有电流I1=30 A,矩形回路载有电流I2=20 A.试计算作用在回路上的合力.已知d=1.0 cm,b=8.0 cm,l=0.12 m.题11-22图分析矩形上、下两段导线受安培力F1和F2的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F3和F4大小不同,且方向相反,因此线框所受的力为这两个力的合力.解由分析可知,线框所受总的安培力F为左、右两边安培力F3和F4之矢量和,如图(b)所示,它们的大小分别为故合力的大小为合力的方向朝左,指向直导线.11-23一直流变电站将电压为500k V的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m-1,若导线间的静电力与安培力正好抵消.求:(1)通过输电线的电流;(2)输送的功率.分析当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d,一导线在另一导线位置激发的磁感强度,导线单位长度所受安培力的大小.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C和电压U 已知,则单位长度导线所带电荷λ=CU,一导线在另一导线位置所激发的电场强度,两导线间单位长度所受的静电吸引力.依照题意,导线间的静电力和安培力正好抵消,即从中可解得输电线中的电流.解(1)由分析知单位长度导线所受的安培力和静电力分别为由可得解得(2)输出功率11-24在氢原子中,设电子以轨道角动量绕质子作圆周运动,其半径为.求质子所在处的磁感强度.h 为普朗克常量,其值为分析根据电子绕核运动的角动量可求得电子绕核运动的速率v.如认为电子绕核作圆周运动,其等效圆电流在圆心处,即质子所在处的磁感强度为解由分析可得,电子绕核运动的速率其等效圆电流该圆电流在圆心处产生的磁感强度11-25如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr(μr<1),导体的磁化可以忽略不计.沿轴向有恒定电流I通过电缆,内、外导体上电流的方向相反.求:(1)空间各区域内的磁感强度和磁化强度;*(2)磁介质表面的磁化电流.题11-25 图分析电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有,利用安培环路定理求出环路内的传导电流,并由,,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解(1)取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有对r<R1得忽略导体的磁化(即导体相对磁导率μr =1),有,对R2>r>R1得填充的磁介质相对磁导率为μr,有,对R3>r>R2得同样忽略导体的磁化,有,对r>R3得,,(2)由,磁介质内、外表面磁化电流的大小为对抗磁质(),在磁介质内表面(r=R1),磁化电流与内导体传导电流方向相反;在磁介质外表面(r=R2),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H(r)和B(r)分布曲线分别如图(b)和(c)所示.。

川师大学物理第十一章-恒定电流的磁场习题解

川师大学物理第十一章-恒定电流的磁场习题解

第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。

(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。

(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。

…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC I B dμββ=-^IB21图11–2图11–1…B(a )AE(b )0(cos30cos150)4π/3Ih μ︒︒=-=方向垂直于纸面向外。

另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。

因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。

(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。

由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=-031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ=-】方向垂直纸面向里。

半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ===方向垂直纸面向里。

因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π22π26I I I I B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。

磁场中的磁介质

磁场中的磁介质

e ev 电子电流 I 2r / v 2r ev evr 2 m IS r 2r 2
m en
I S
e L 2m e
角动量 L me vr
二、原子的磁矩
2.电子的量子轨道磁矩
h L m, m 0,1,2, 1.05 10 34 J S 2 e 24 一个可能的值 m 9.27 10 J / T 2m e
分子电流为
dI n a 2 dr cos i
n m dr cos
M dr cos M dr


dI M dr
三、磁介质的磁化
若 dr 选在磁介质表面,则 d I 为面束缚电流。
面束缚电流密度
dI M cos M r j dr
电流为i,半径为 a,分子磁 矩为 m ,任取一微小矢量 dr 2 a 元 dr ,它与外磁场 B 的夹角 m i 为,则与 dr 套住的分子电 流的中心都是位于以为 dr 轴、 以 a2 为底面积的斜柱体内。 i
m
B
三、磁介质的磁化
若单位体积内的分子数为n ,则与 dr 套连的总
2.磁化强度
单位体积内分子磁矩的矢量和称作磁介质的 磁化强度。 mi M V
单位 安每米(A/m)
3.实验规律
实验发现,在外磁场不是很强时,对所有磁 介质
r 1 M BB
0 r
三、磁介质的磁化
3.束缚电流与磁化强度之间的关系
以顺磁质为例 , 等效分子
电子的自旋磁矩(内禀磁矩) 电子自旋角动量 内禀磁矩
s 2
玻尔磁子
e e mB s 9.27 10 24 J / T me 2me

9-磁介质 大学物理

9-磁介质 大学物理

当线圈中通入电流后,在磁化场的力矩作用下, 当线圈中通入电流后,在磁化场的力矩作用下,各分子环 流的磁矩在一定程度上沿着场的方向排列起来,此时, 流的磁矩在一定程度上沿着场的方向排列起来,此时,软 铁棒被磁化了。 铁棒被磁化了。
对于各向同性的均匀介质,介质内部各分子电流相互抵消, 对于各向同性的均匀介质,介质内部各分子电流相互抵消, 而在介质表面,各分子电流相互叠加, 而在介质表面,各分子电流相互叠加,在磁化圆柱的表面出 磁化面电流( 现一层电流,好象一个载流螺线管,称为磁化面电流 现一层电流,好象一个载流螺线管,称为磁化面电流(或安 培表面电流) 培表面电流)。
(2)电子自旋磁矩 (2)电子自旋磁矩 实验证明: 实验证明:电子有自旋磁矩
ps = 0.927×10-23 A⋅m2 0.927×
(3)分子磁矩 (3)分子磁矩 分子磁矩是分子中所有电子的轨道磁矩和自旋磁矩 与所有核磁矩的矢量和。 与所有核磁矩的矢量和。 三.顺磁质与抗磁质的磁化 顺磁质与抗磁质的磁化 1、顺磁质及其磁化(如铝、 1、顺磁质及其磁化(如铝、铂、氧) 分 子 磁 矩 分子的固有磁矩不为零 pm ≠ 0 无外磁场作用时, 无外磁场作用时,由 于分子的热运动, 于分子的热运动,分 子磁矩取向各不相同, 子磁矩取向各不相同 整个介质不显磁性。 整个介质不显磁性。
B0
I0 Is
Is——磁化电流 磁化电流 js——沿轴线单位长度上的磁 沿轴线单位长度上的磁 化电流(磁化面电流密度) 化电流(磁化面电流密度)
3、磁化强度和磁化电流密度之间的关系: 磁化强度和磁化电流密度之间的关系:
以长直螺线管中的圆柱形磁介质来说明它们的关系。 以长直螺线管中的圆柱形磁介质来说明它们的关系。
磁场中的磁介质

大学物理——第11章-恒定电流的磁场

大学物理——第11章-恒定电流的磁场


单 位:特斯拉(T) 1 T = 1 N· -1· -1 A m 1 特斯拉 ( T ) = 104 高斯( G )
3
★ 洛仑兹力 运动的带电粒子,在磁场中受到的作用力称为洛仑兹力。
Fm q B
的方向一致; 粒子带正电,F 的指向与矢积 B m 粒子带负电,Fm的指向与矢积 B的方向相反。
L
dB
具体表达式
?
5
★ 毕-萨定律
要解决的问题是:已知任一电流分布 其磁感强度的计算
方法:将电流分割成许多电流元 Idl
毕-萨定律:每个电流元在场点的磁感强度为:
0 Idl r ˆ dB 4 πr 2
大 小: dB
0 Idl sin
4 πr
2
方 向:与 dl r 一致 ˆ
整段电流产生的磁场:
r 相对磁导率
L
B dB
8
试判断下列各点磁感强度的方向和大小?
8
7

6

R
1
1、5 点 :
dB 0
0 Idl
4π R 2
Idl

2
3、7 点 : dB 2、4、6、8 点 :
3 4
5
dB
0 Idl
4π R
sin 450 2
9
★ 直线电流的磁场
29
★ 磁聚焦 洛仑兹力
Fm q B (洛仑兹力不做功)
与 B不垂直

//
// cosθ
sin θ
m 2π m R T qB qB
2πm 螺距 d // T cos qB

磁场中磁介质

磁场中磁介质

磁介质的分类
顺磁性介质
抗磁性介质
铁磁性介质
反铁磁性介质
在磁场中容易被磁化的 物质,如铝、铂等。
在磁场中不容易被磁化 的物质,如铜、金等。
在磁场中极易被磁化的 物质,如铁、钴、镍等。
在磁场中具有反铁磁性 的物质,如锰、铬等。
02
磁场对磁介质的影响
磁场对磁介质的作用
磁化现象
磁场对磁介质产生作用,使其内 部磁矩定向排列,形成磁化现象。
剩余磁化强度
当磁场去除后,磁介质仍会保留一部分磁化强度, 称为剩余磁化强度。
磁介质的磁导率
相对磁导率
描述磁介质在磁场中的导磁能力与真空导磁能 力的比值。
最大磁导率
在一定磁场强度下,磁介质的磁导率达到最大 值。
温度系数
表示磁导率随温度变化的系数,某些材料的温度系数较大,对温度变化较为敏 感。
03
磁介质的性质与特点
磁滞现象
磁介质在磁化过程中会出现滞后现 象,即当磁场反向时,磁介质的磁 化强度不会立即消失,而是逐渐减 小。
磁损耗
在交变磁场中,磁介质会因为磁滞 现象和涡流效应产生能量损耗。
磁介质的磁化过程
起始磁化
磁介质在磁场中开始被磁化的过程,起始磁化曲 线通常是非线性的。
磁饱和
随着磁场强度的增加,磁介质的磁化强度逐渐达 到饱和状态,此时磁导率不再变化。
3
磁滞损耗
由于磁滞现象产生的能量损耗,通常表现为热量。
磁介质的损耗特性
介电损耗
01
由于电场作用在磁介质上产生的能量损耗,通常表现为热量。
涡流损耗
02
由于磁场变化产生的涡旋电流在磁介质中产生的能量损耗,通
常表现为热量。

大学物理学下册答案第11章-大学物理11章答案

大学物理学下册答案第11章-大学物理11章答案

第11章稳恒磁场习 题一 选择题11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I 〔其中ab 、cd 与正方形共面〕,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ]〔A 〕10B =,20B = 〔B 〕10B =,02IB lπ= 〔C〕01IB lπ=,20B = 〔D〕01I B l π=,02IB lπ=答案:C解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4IB dμθθπ=-,并结合右手螺旋定那么判断磁感应强度方向,按照磁场的叠加原理,可计算01IB lπ=,20B =。

故正确答案为〔C 〕。

11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,那么在圆心O 处的磁感应强度大小为多少? [ ]〔A 〕0 〔B 〕R I 2/0μ〔C 〕R I 2/20μ〔D 〕R I /0μ 答案:C解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定习题11-1图习题11-2图那么判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O处的磁感应强度大小为0/2B I R =。

11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,那么通过该半球面的磁通量的大小为[ ]〔A 〕B R 2π〔B 〕B R 22π〔C 〕2cos R B πα〔D 〕2sin R B πα 答案:C解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=⋅=。

故正确答案为〔C 〕。

11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量ΦB 将如何变化?[]〔A 〕Φ增大,B 也增大〔B 〕Φ不变,B 也不变 〔C 〕Φ增大,B 不变〔D 〕Φ不变,B 增大 答案:D解析:根据磁场的高斯定理0SBdS Φ==⎰,通过闭合曲面S 的磁感应强度始终为0,保持不变。

磁介质

磁介质

B~H r ~ H
16:58
H 23
3、磁滞回线
饱和磁感应强度 剩 磁
B
BS . Br . b
f . HC
a
初始磁 化曲线
矫顽力
HS
.
HC . c O
.
HS
磁滞回线
H
e . Br
d
16:58
BS
24
①磁化过程不可逆 磁滞回线--不可逆过程 H c B的变化落后于H,从而具有 剩磁,即磁滞效应。
Hc
B
Hc
H ②
r 大,易磁化,也易退磁
用途:适用于交变磁场中 电子设备中的各种电感元件、变压器、 镇流器,电动机和发电机中的铁芯等。 继电器、电磁铁的铁芯也用软磁材料。
16:58
纯铁,硅钢坡莫合金(Fe,Ni),铁氧体等。
30
2、硬磁材料——作永久磁铁
B
Hc
矫顽力(Hc)大(>102A/m),剩磁Br大 H c 磁滞回线的面积大,损耗大。
例1 一环形螺线管,管内充满磁导率为μ,相对磁导 率为μr的顺磁质。环的横截面半径远小于环的半径。 单位长度上的导线匝数为n。
求:环内的磁场强度和磁感应强度
解: H dl H 2r NI L
NI H nI 2r
r
O
B H 0 r H
16:58 13
SB dS 0 LH dl I 0 B H
21
12-3 铁磁质
一、铁磁质的磁化规律 1、铁磁质的特性 (1)能产生特别强的附加磁场 B ,使磁介质中的 B (2)铁磁质的磁导率 不是常量,B 与 H 不是线 性关系 (3) 磁化强度随外磁场而变,其变化落后于外磁 场的变化,而且在外磁场停止作用后,仍保 留部分磁性 (4)一定的铁磁材料存在一特定的临界温度—居 里点,当温度超过居里点时,铁磁质转变为 16:58 22 顺磁质。 远大于 B0 ,其 r B 值可达几百、甚至几千以上 0

大学物理习题答案磁场中的磁介质

大学物理习题答案磁场中的磁介质

大学物理练习题十一、选择题1. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式哪一个是正确的?(A )⎰=⋅12L I l d H ϖϖ正确应为:―2I (B )⎰=⋅2L I l d H ϖϖ正确应为:―I (C )⎰-=⋅3L Il d H ϖϖ 正确应为: +I(D )⎰-=⋅4L Il d H ϖϖ [ D ]2. 磁介质有三种,用相对磁导率r μ表征它们各自的特性时, (A )顺磁质>r μ0,抗磁质<r μ0,铁磁质1>>r μ。

(B )顺磁质>r μ1,抗磁质1=r μ,铁磁质1>>r μ。

(C )顺磁质>rμ1,抗磁质<r μ1,铁磁质1>>r μ。

(D )顺磁质>r μ0,抗磁质<r μ0,铁磁质>r μ1。

[ C ]3. 用细导线均匀密绕成的长为l 、半径为a (l >>a)、总匝数为N 的螺线管中,通以稳恒电流I ,当管内充满相对磁导率为r μ的均匀介质后,管中任意一点的[ D ](A) 磁感应强度大小为NI B r μμ0=。

(B) 磁感应强度大小为l NI B r /μ=。

(C) 磁场强度大小为l NI H /0μ=。

(D) 磁场强度大小为l NI H/=。

解:在管内磁介质中⎰⎰===⋅LNI Hl Hd d H λλϖϖ4. 关于稳恒磁场的磁场强度H ϖ的下列几种说法哪个是正确的?(A )H ϖ仅与传导电流有关。

(B )若闭合曲线内没有包围传导电流,则曲线上各点的H ϖ必为零。

(C )若闭合曲线上各点H ϖ均为零,则该曲线所包围传导电流的代数和为零。

(D )以闭合曲线L 为边缘的任意曲面的H ϖ通量均相等。

[ C ]解:(A )B ϖ与传导电流有关,而M ϖ与磁化电流有关。

因此,由M /B H 0ϖϖϖ-μ=可知,H ϖ不只是跟传导电流有关。

(B )只能说明环路积分为零。

磁场中的磁介质

磁场中的磁介质
§11-1 磁介质的磁化 磁化强度 11-
磁场中的磁介质 第十一 章 磁场中的磁介质
一.磁介质
v v v' B = B0 + B
真空中的 磁感强度 介质磁化后的 附加磁感强度
磁介质中的 总磁感强度 顺磁质 抗磁质 铁磁质
v v B > B0 v v B < B0
v v B >> B0
(铝、氧、锰等) 锰等) (铜、铋、氢等) 氢等) (铁、钴、镍等) 镍等)
R1 < r < R2
v v ∫ H dl = I
l
r
d
I
R2
I 2 π rH = I H= 2πr 0 r I B = H = 2πr
R1
磁场中的磁介质 第十一 章 磁场中的磁介质 §11-2. 磁介质中的安培环路定理、磁场强度 11磁介质中的安培环路定理、
R1 < r < R 2
I
B =
0 r I
弱磁质
§11-1 磁介质的磁化 磁化强度 11分子圆电流和磁矩
磁场中的磁介质 第十一 章 磁场中的磁介质
v m
I
B = B0 + B
'
顺 磁
Is
v B0

无外磁场
有外磁场
§11-1 磁介质的磁化 磁化强度 11-
磁场中的磁介质 第十一 章 磁场中的磁介质
v 无外磁场时抗磁质分子磁矩为零 无外磁场时抗磁质分子磁矩为零 m = 0 v v B0 v' B0 v m 抗 ω 磁 v 质 q v v v q F 的 F v' v 磁 v' m v m v 化 v m' ω
H
O

第11章 恒定电流的磁场

第11章 恒定电流的磁场

第十一章 恒定电流的磁场11.1 选择题(1) 有两条长直导线各载有5A 的电流, 分别沿x 、y 轴正向流动. 在(40, 20, 0)(cm)处的B 是(真空磁导率μ0 = 4π × 10-7N/A 2) [C] (A) 2.5×10-6 T 且沿z 轴负向 (B) 3.5×10-6 T 且沿z 轴负向 (C) 2.5×10-6 T 且沿z 轴正向 (D) 3.5×10-6 T 且沿z 轴正向k y I B πμ2101=,k xI B πμ2202-=k T k x y I k x I k y I B B B 6020*******.211222-⨯=⎪⎪⎭⎫ ⎝⎛-=-=+=πμπμπμ (2) 半径为1a 的圆形载流线圈与边长为2a 的方形载流线圈, 通有相同的电流, 若两线圈中心1O 和2O 的磁感应强度大小相同, 则半径与边长之比21:a a 为[D] (A) 1:1 (B) π212:1 (C) π212:4 (D) π212:81012a IB μ=;()2102cos cos 44θθπμ-⨯=a IB 20202243cos 4cos 2144a I a I πμπππμ=⎪⎭⎫ ⎝⎛-⨯= 21B B =,2010222a I a Iπμμ=, 8221π=a a(3) 无限长空心圆柱导体的内、外半径分别为a 和b , 电流在导体截面上均匀分布, 则在空间各处B 的大小与场点到圆柱中心轴线的距离r 的关系, 定性地分析如图[B](A) (B) (C) (D)解析:∑⎰=⋅内0i LI l d B μ(4) 氢原子处于基态(正常状态)时, 它的电子(e = 1.6×10-19C)可看做是在半径为a = 0.53 × 10-8cm 的轨道做匀速圆周运动, 速率为2.2 × 108cm/s, 那么在轨道中心B 的大小为(真空磁导率μ0 = 4π×10-7N/A 2)[B] (A)8.5×10-8T (B)13T (C)8.5×10-4TRIB 20μ=,a R =,T e I =,v aT π2=,可得204aev B πμ=, 数据带入即可.(6) 载流i 的方形线框, 处在匀强磁场B 中, 如图所示, 线框受到的磁力矩是 (A) 向上 (B) 向下 (C) 由纸面向外 (D) 由纸面向内B p M m ⨯=;n IS p m =m p 的方向与n 的方向相同, n的方向是载流线圈的正法线方向(由右手螺旋法则确定), 正法线方向垂直向外, 磁场的方向水平向右, 那么磁力矩M的方向竖直向上.iB题11.1(6)图a eO题11.1(4)图11.2 填空题(1) 一平面内有互相垂直的导线L 1和L 2, L 1为无限长直导线, L 2为长为2a 的载流直导线, 位置如图所示. 若L 1和L 2同时通以电流I ,那么作用在L 2上的力对于O 点的磁力矩为 .()13ln 220-πμaI建立如图坐标系, 距直导线L 1为x 远处取电流元l Id, 其在产生的磁场中受到的安培力为d d F I l B =⨯,方向向上.2300=d d ln 322aaI I F F I x x xμμππ==⎰⎰ 该力对O 点的磁力矩为d d M r F =⨯()2004d d 4d 1d 22I I a M rIB x a x I x x x x μμππ⎛⎫==-=-⎪⎝⎭2304=d 1d 2a aI a M M x x μπ⎛⎫=-⎪⎝⎭⎰⎰()()222330004=d d 2ln 32ln 312a a a a I II a a x x a a x μμμπππ⎛⎫-=-=- ⎪⎝⎭⎰⎰(2) 矩形截面的螺绕环尺寸见图, 则在截面中点处的磁感应强度为 ; 通过截面S 的磁通量为 .rNI πμ20;210ln 2D D NIh πμ L 2 L 1a2aaI I O题11.2(1)图沿以环心为圆心, 以r 为半径的圆周为积分路径, 应用安培环路定理 NI r B l d B L02μπ=⋅=⋅⎰ ; rNIB πμ20=; 对于截面中点处, ()1214r D D =+通过截面S 的磁通量为⎰⎰⋅=ΦS m S B ⎰⎰⎰⋅==2200121212D D S hdr rNI dS r NIπμπμ2100ln 2ln 212D D NIh r NIh DD πμπμ== (3)每单位长度的质量为0.009kg/m 的导线, 取东西走向放置在赤道的正上方, 如图. 在导线所在的地点的地磁是水平朝北, 大小为5310T -⨯, 问要使磁力正好支撑导线的重量, 导线中的电流应为 .2940A(5)0d LB l I μ⋅=∑⎰内; ∑⎰=⋅insi LI l d H;NI l d H L=⋅⎰; A I 3=;11.4 将一无限长直导线弯成图示的形状, 其上载有电流I , 计算圆心O 点处B 的大小.解:可分为三部分电流, 两侧的半无限长直导线和中间的圆弧, 在O 点产生的磁感应强度均为垂直向里.半无限长导线, 由P53已知结果可知()210cos cos 4θθπμ-=aIB 左侧:3cosπr a =, 01=θ, 62πθ=右侧:3cos πr a =, 651πθ=,πθ=2 圆弧部分导线, 由P54已知结果可知R I B πϕμ40=, 式中r R =, 32πϕ=以上三部分求和, 可得总磁感应强度r Ir I B 623100μπμ+⎪⎪⎭⎫ ⎝⎛-=, 垂直向里.11.9电缆由导体圆柱和一同轴的导体圆筒构成, 使用时电流I 从导体流出, 从另一导体流回, 电流均匀分布在横截面上, 如图所示. 设圆柱体的半径为r 1, 圆筒的内、外半径分别为r 2和r 3, 若场点到轴线的距离为r , 求r 从0→∞范围内各处磁感应强度的大小.解:0d 2LB l rB I πμ⋅==∑⎰内当1r r <时, 2021d 2r B l rB I r ππμπ⋅==⎰,2102r Ir B πμ=当21r r r <<时,0d 2B l rB I πμ⋅==⎰, 02I B rμπ=当32r r r <<时, ()()22202232d 21r r B l rB I r r ππμπ⎡⎤-⎢⎥⋅==--⎢⎥⎣⎦⎰,()()222322302r r r r r I B --=πμ当3r r >时,d 0B l I I ⋅=-=⎰, 0=B11.10如图所示, 一根半无限长的圆柱形导体, 半径为R 1, 其内有一半径为R 2的无限长圆柱形空腔, 它们的轴线相互平行, 距离为a (R 2 < a < R 1-R 2), I 沿导体轴线方向流动, 且均匀地分布在横截面积上. 求: (1) 圆柱体轴线上B 的大小; (2) 空腔部分轴线上B 的大小;(3) 设R 1 = 10mm, R 2 = 0.5mm, a = 5.0mm, I = 20A, 分别计算上述两处B 的大小.()()2122212122211R R R I R R R I I -=-=ππ,()()2222212222212R R R I R R R I I -=-=ππ 21R R o B B B +=()222122022R R a IR B B R o -==πμT 6102-⨯=21o o o B B B '''+=()2221012R R a IaB o -='πμT 4102-⨯=11.13如图所示, 一半径为R 的无限长半圆柱面导体, 其上电流与其轴线上一无限长直导线的电流等值、反向, 电流I 在半圆柱面上均匀分布. 求: (1) 轴线上导线单位长度所受的力;(2) 若将另一无限长直导线(通有方向与半圆柱面相同的电流I )代替圆柱面, 产生同样的作用力, 该导线放在何处?题11.13图(1)R Ii π=, 0000d d d d d 2222I i l iR i B R R R μμμθμθππππ====,0d d cos 22x i B μθπθπ⎛⎫=- ⎪⎝⎭ 00d =d cos 22x x i B B πμθπθπ⎛⎫=- ⎪⎝⎭⎰⎰()000020cos 222i i i I R πμμμμθππππ=-=== 0d d sin 22y i B μθπθπ⎛⎫=- ⎪⎝⎭,00d =d sin 22y y i B B πμθπθπ⎛⎫=- ⎪⎝⎭⎰⎰, 0=y B (由对成性可知)22yx B B B +=R I 20πμ=,BIl F =RI220πμ=(j R I F 220πμ=亦可)(2)dI R I πμπμ220220=; 2R d π=; 2R y π-=11.14载有电流I 1的长直导线, 旁边有一个正三角形线圈, 边长为a , 电流为I 2, 它们共面, 如图所示. 三角形一边与长直导线平行, 三角形中心O 到直导线的距离为b, 求I 1对该三角形的作用力.解:AB 段:⎪⎪⎭⎫ ⎝⎛-=a b I B 632101πμ, ⎪⎪⎭⎫ ⎝⎛-==a b aI I a B I F 632210121πμ, 方向沿x 负向;BC 段:选择电流元dl xI I dl B I dF πμ2210222==;6cos πdxdl =I 1I 1⎰⎰+-==3333210226cos2b b x dx I I dF F ππμ⎪⎪⎪⎪⎭⎫⎝⎛-+=323ln 3210a b a b II πμ ⎪⎪⎪⎪⎭⎫ ⎝⎛-+==323ln 323cos 21022a b a b I I F F x πμπ; ⎪⎪⎪⎪⎭⎫⎝⎛-+==323ln 23sin 21022a b a b I I F F y πμπ 同理可得AC 段受力⎪⎪⎪⎪⎭⎫⎝⎛-+=323ln 32103a b a b I I F πμ ⎪⎪⎪⎪⎭⎫⎝⎛-+==323ln 323cos 21033ab a b I I F F x πμπ; ⎪⎪⎪⎪⎭⎫⎝⎛-+==323ln 23sin 21033a b a b I I F F y πμπ y y F F 23=, 方向相反, 抵消.合力, 方向沿x 正向,x x F F F F 321++-=11.18盘面与均匀磁场B 成φ角的带正电圆盘, 半径为R, 电荷量Q 均匀分布在表面上. 圆盘已角速度ω绕通过盘心, 与盘面垂直的轴转动. 求此带电旋转圆盘在磁场中所受的磁力矩.解:dS dq σ=()rdr πσ2=, 由于圆盘以ω旋转, 故圆环中电流T dq dI =πω2dq =rdr σω=, 式中2RQ πσ= dr r dIS dp m 3σπω==⎰⎰==R m m dr r dp p 03σπω2244141QR R ωσπω==⎪⎭⎫ ⎝⎛-=ϕπ2sin B p M m ϕωcos 412B QR =方向满足B p M m⨯=11.25螺绕环平均周长l =10cm, 环上线圈N=200, 线圈中电流I =100mA. 试求: (1)管内B 和H 的大小;(2)若管内充满相对磁导率μr =4200的磁介质, 管内B 的大小. 解:(1)∑⎰=⋅0I l d H; 02NI r H =πrNI H π20=, 000nI B μ=, 可知H =200A/m, B 0=2.5×10-4T (2)H H B r μμμ0==, 可知B =1.05T常见载流体的磁感应强度无限长载流直导线外距离导线r 处,0=2IB rμπ,圆电流轴上距离圆心x 处,()203222=2R INB xRμ+ (N 是线圈匝数)无限长密绕直螺线管内部,0=B nI μ (n 是单位长度上的线圈匝数)圆电流圆心处,0=2IB Rμ无限大均匀载流平面外,01=2B i μ(i 是流过单位长度的电流)一段载流圆弧导线在圆心处,0=4I B Rμϕ(φ以弧度为单位)OIBI11 / 11安徽信息工程学院 大学物理(2) 韩玉龙 0B =;00=224I I B R R μμππ=⋅;000121211+=+444I I I B R R R R μμμ⎛⎫= ⎪⎝⎭;002=228I I B R R μμππ=⋅OI。

西北工业大学《大学物理上》课件-第十一章磁场中的磁介质

西北工业大学《大学物理上》课件-第十一章磁场中的磁介质
·26 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
例 试判断下列起始磁化曲线所对应的磁介质类型。
a :铁磁质; b :顺磁质 ( μ >μ0 ); c :抗磁质 ( μ <μ0 );
·27 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
一、物质的分子磁矩
1. 电子的轨道磁矩: 等效成圆电流:
§11. 1 磁介质 磁化强度
2. 电子自旋磁矩: 3. 核自旋磁矩: 分子磁矩 =电子轨道磁矩+电子自旋磁矩+核自旋磁矩
·3 ·
Chapter 11. 磁场中的磁介质
二、顺磁质与抗磁质
§11. 1 磁介质 磁化强度
1. 顺磁质: 分子磁矩≠0 (亦称分子的固有磁矩)
·12 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
1. 磁介质: 顺磁质:介质内B > B0 ; 抗磁质:介质内B < B0 ;
2. 磁化强度:
3. M与磁化电流的关系:
( The end )·13 ·
Chapter 11. 磁场中的磁介质
§11. 2 磁介质中的安培环路定理
§11. 1 磁介质 磁化强度
js : 面磁化电流的线密度。 一般地有如下关系:
: 磁介质表面外法线单位 矢量。
·11 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
试判断 : 顺磁质中的磁化电流方向。
分析: 顺磁质
与 同向。
即:磁化电流 内侧:向上 外侧:向下
( 俯视图 )
抗磁质
氢 铜 铋 汞×10 - 5 -3.2×10 - 5

第11章 磁场中的磁介质

第11章 磁场中的磁介质

r (1 e ) D r 0 E E
或相对介电常量
0 r磁导率
r称为相对磁导率
r称为相对电容率
16
例: 一无限长载流圆柱体,通有电流I ,设电流 I 均 匀分布在整个横截面上。柱体的磁导率为μ,柱外为 真空。 求:柱内外各区域的磁场强度和磁感应强度。 解: r R r2 LH dl H 2r I R 2 I Ir Ir B H 2 2R 2 2R
10
a
b
M
d
c

M dl M ab J s ab I s/

M dl I si
11
二、磁场强度、磁介质中的安培环路定理
有磁介质存在时,任一点的磁场是由传导电流I0 和磁化电流IS共同产生的.

L

L
B dl 0 ( I I s ) 0 I 0 M dl
2
§11.1
磁介质的分类
磁介质: 能与磁场产生相互作用的物质 磁 化: 磁介质在磁场作用下所发生的变化 磁导率: 描述不同磁介质磁化后对愿外磁场的影响 总磁场:
/ B B0 B
根据 B 的大小和方向
(1) 顺磁质 B > B0
/ B0 B
可将磁介质分为四大类
(3) 铁磁质 B >> B0
27
(2)硬磁材料——作永久磁铁 钨钢,碳钢,铝镍钴合金 矫顽力(Hc)大(>102A/m),剩磁Br大 磁滞回线的面积大,损耗大。 还用于磁电式电表中的永磁铁。 耳机中的永久磁铁,永磁扬声器。 (3)矩磁材料——作存储元件 锰镁铁氧体,锂锰铁氧体
-Hc

第十一章稳恒磁场

第十一章稳恒磁场
于π)的正弦成正比,即: 结论
式的中 单K位为有比关例。系数,其值与介质的种dB类和选用
14
在国际单位制中, μ0称为真空磁导率,
K
0
0
4
/ 4P
10r7 Tθ
mId lA
I
1
故有:
dB的方向用右手螺旋法则确定:
右手弯曲的四指由Idl的方
向沿小于180°的θ角转向 r的方向,则伸直拇指的指 向就是dB 的方向。
5
一、磁感应强度
为了描述磁场中各点的磁场强弱和方向,引入磁 感应强度。用B表示,
定义
B Fm q0v
单位:特斯拉(T)。
比值B是一个与运动电荷的性质无关、仅与该点 磁场的性质有关的常量。
B为矢量,其方向用右手螺旋法则确定:
6
特斯拉
右手螺旋法则:
将右手拇指与其余四指垂直,先将四指的指向与 7 Fm方向相同,再使其向的v方向弯曲,这时拇指
大多数生物大分子是抗磁质,少数是顺磁质,极少呈铁磁质
43
三、超导体及其磁学特性
1、超导体 超导现象:当物质的温度下降到某一定值时, 该物质的电阻完全消失的现象称为超导现象。 超导性:物质失去电阻的性质叫超导性。 超导体:具有超导性的物质叫超导体。 超导体失去电阻的温度称为临界温度Tc, 可能成为超导体的物质是:①位于元素周期表 中部的金属元素(除一价金属、铁磁质、和抗 磁质)②许多化合物或合金。
磁感应线的特点:
I
I
通电螺线管的磁感应线
磁感应线是闭合的曲线,密集的地方磁场较
强,稀疏的地方磁场较弱。
9
1、磁通量
通过某曲面磁感应线的总数 称为通过该曲面的磁通量。
用Φ表示。
通过面积元dS的磁通量为:

大学物理 第十一章 电流与磁场

大学物理 第十一章 电流与磁场
2) 提供非静电力的装置。
A
E
B
Ek
凡电源内部都有非静电力,
U
非静电力使正电荷由负极经电源内部到达正极。
A
UB
引入:非静电场强
Ek
=
单位正电荷所受的非静电力。
Ek E
Fk qEk
2 电动势ε
A非
L qEk
dl

qEk
dl
qEk 外
dl
内 qEk
dl
★ 结论:当电荷在闭合电路中运动一周时,只有非静电力做功
右手法则,dB (
Idl
r
)
(11-29)
2. 载流导线的磁场
B
l
0 4
Idl r0
r2
(矢量积分) (11-30)
方向判断练习
• dB
r
Idl
dB
r
Idl
r
Idl
dB
dB
r
Idl

二、毕 - 沙 定律 的应用(重点 计算B的方法之一)
1. 一段直电流的磁场
I
讲义 P.324 例 11-1
一 磁现象 磁场 — 运动电荷周围存在的一种物质。
1. 运动电荷 电流
磁场;
2. 磁场可脱离产生它的“源”独立存在于空间;
3. 磁力通过磁场传递,作用于运动电荷或载流导线;
4. 磁场可对载流导线做功,所以具有能量。
演示磁场电流相互作用
I
SN
二、磁感应强度 B
1. 实验结果
z
F
B
F q, v, B, sin
五、欧姆定律 (Ohm’s law)
R是与U 和I 无关的常量。
I U R

磁场中的磁介质教案

磁场中的磁介质教案

磁场中的磁介质教案第一章:磁场的基础知识1.1 磁场的定义与特性介绍磁场的概念,解释磁场的强度、方向和分布。

讨论磁场的单位,导入磁通量、磁感应强度的概念。

1.2 磁极与磁性介绍磁极的分类,解释磁性材料的性质。

讨论磁性材料的磁化、去磁和剩磁的概念。

第二章:磁介质的基本概念2.1 磁介质的定义与分类介绍磁介质的定义,解释磁介质的分类及特点。

讨论磁介质的微观结构,引入磁畴和磁介质的行为。

2.2 磁介质的磁化介绍磁介质的磁化现象,解释磁化强度的概念。

讨论磁介质的磁化曲线和磁化率,引入相对磁导率和绝对磁导率的概念。

第三章:磁场中的磁介质3.1 磁场对磁介质的影响介绍磁场对磁介质磁化的影响,解释磁场强度与磁介质磁化强度之间的关系。

讨论磁场对磁介质磁化方向的影响,引入磁介质的各向异性。

3.2 磁介质在磁场中的响应介绍磁介质在磁场中的响应,解释磁介质感应电流的产生。

讨论磁介质的磁化强度与感应电流之间的关系,引入磁介质的磁响应特性。

第四章:磁介质的磁化过程4.1 磁介质的磁化机制介绍磁介质的磁化机制,解释磁畴的排列和变化。

讨论磁介质磁化的热力学原理,引入自由能和磁化能量的概念。

4.2 磁介质的磁化过程介绍磁介质的磁化过程,解释磁介质在外磁场作用下的磁化行为。

讨论磁介质的磁化过程的动态特性,引入磁化率和磁响应时间的概念。

第五章:磁介质的应用5.1 磁介质的存储性质介绍磁介质的存储性质,解释磁记录的原理。

讨论磁盘、磁带等存储介质的特点和应用。

5.2 磁介质的传感器应用介绍磁介质的传感器应用,解释磁传感器的工作原理。

讨论磁传感器在汽车、电子等领域的应用和前景。

第六章:磁介质的物理性质6.1 磁导率与磁介质类型深入探讨磁导率的定义和计算方法。

介绍不同类型磁介质的磁导率特性,如顺磁性、抗磁性和铁磁性材料。

6.2 磁驰豫与磁介质稳定性解释磁驰豫现象及其对磁介质稳定性的影响。

探讨不同磁介质材料的磁驰豫机制,如自旋反转和电子交换过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗磁质。试求真空和介质中的H和B,并计算与导
体相邻的介质表面层的磁化面电流密度js。 1 解:1) B1 B2 0 i jS 2 0 H1 H2 B H
i js H1
H1 ab H2 cd iab
H1
传导电流
i 0
H2
* 磁畴的变化可用金相显微镜观测
当温度升高时,热运动会瓦解磁畴内磁矩的规则排 列;在临界温度(相变温度Tc )时,铁磁质完全变成 了顺磁质。居里点 Tc (Curie Point)
r 1 m
m — 磁化率
m > 0 顺磁质, m < 0 抗磁质
注意:上式不适用于铁磁质,因为其 M 和 B 是非线性、非单值关系。
4
磁化电流源于分子电流的有序排列,是一种等效
的宏观电流分布,在激发磁场、受磁场作用方面
和传导电流完全等效。与传导电流不同之处是:
不产生焦耳热,不伴随电荷的宏观位移。
外场 B0
磁场
磁介质中总场 B B0 B
磁介质
磁化引起附加场 B
磁化
为反映磁介质被磁化的程度,定义磁化强度矢量
:单位体积中分子磁矩的矢量和: 单位:Am-1
M = lim
V 0
p
i
mi
ቤተ መጻሕፍቲ ባይዱV
五. 磁介质的磁化规律 实验表明,对各向同性线性磁介质:
m r 1 1 M B B 0 1 m 0 r
j与i反向
四、铁磁质—强磁质
1、高值
B r B0
铸钢r =5002200,硅钢r =7000,坡莫合金r=105 因此很小的电流就能在铁磁质中产生很强的磁场。 2、非线性 相对磁导率r要随磁场的强弱发 生变化,因此B和H的关系是非
B, r
B~H
线性的。 作为信号传输器件时
0 r I B 2 r
3、无限长的载流圆柱体外充满介质的磁场:
外部为
内部为
2 r Ir H 2 2 R
H
0 Ir B 2 R 2
8
磁介质内表面的总束缚电流:
同理外表面
方向垂直向里即与轴平行向下
【例5】均匀面电流沿无限大导体薄片流动 i,面
上方为真空,下方充满磁导率为 的均匀无限大
磁化:在磁场作用下,物质产生磁性或磁性发生
变化的现象。 磁介质
I0 保持传导电流 I0 不变,在长直密绕螺线管内充满 均匀各向同性磁介质后,管内磁场变为:
B r B0
B Bo B
附加磁场
r — 相对磁导率
磁化效果:在磁介质的界面或体内出现宏观电流 ,产生附加磁场 介质的磁化过程和极化过程类似: 外场源 I0 (传导电流)
0
0i
n jS ×
i M
磁化电流
H2
0 j B1 B2 0
(2) 计算与导体相邻的介质表面层的磁化面电流
密度js
0 M H2 i 1 0 0 0 B2
0 jS M i 0
与1相差不大。在一般性(精度要求不高)的问题中,
可以把抗磁质和顺磁质的相对磁导率r 看作是1。 对铁磁质,B和H间是非线性的, 相对磁导率r»1 。
铁磁质磁化的机制——铁磁性主要来源于电子的 自旋磁矩。 根据现代理论,铁磁质相邻原子的电子之间存在 很强的“交换耦合作用”,使得在无外磁场作用 时,电子自旋磁矩能在小区域内自发地平行排列 ,形成自发磁化达到饱和状态的微小区域。这些 区域称为“磁畴”。磁畴的线度约104m。
在无外磁场的作用下磁畴取向平均抵消,能量最 低,不显磁性。 B 有 无 外 外 磁 磁 场 场
在外磁场较弱时,1-自发磁化方向与外磁场方向相同或 2-相近的那些磁畴逐渐增大(畴壁位移),在外磁场较 强时,磁畴自发磁化方向作为一个整体,不同程度地转 向外磁场方向。 B 当全部磁畴都沿外磁场方 有 向时,铁磁质的磁化就达到饱 外 和状态。饱和磁化强度MS等 于每个磁畴中原来的磁化强度, 磁 场 该值很大,这就是铁磁质磁性 r大的原因。
B Br -Hc
H
磁滞回线
铁磁性材料类别:
实验表明,不同铁磁性物质的磁滞回线形状相差很大. B B B O
H
O
H
O
H
软磁材料
软磁材料的磁滞回线比 较瘦,剩磁和矫顽力都 很小,常用来作变压器 和电磁铁的铁心。
硬磁材料 矩磁铁氧体材料 硬磁材料的磁滞回线显得胖, 有较大的剩磁和矫顽力,常用 来作永久磁体、记录磁带或电 子计算机的记忆元件。
M m H
m—磁化率
1+ m H =
B
0
令: r 1+m
B=0 r H H
r——相对磁导率 ——磁导率
1、密绕长直螺线管内充满介质的磁感应强度:
H nI
B 0 r nI
2、环形螺线管内部充满介质的磁感应强度:
NI H 2r
I
0 r NI B 2r
等于该闭合路径l所包围的磁化电流的代数和。
磁介质中的高斯定理
B B0 B
为零。

s
B dS 0
磁力线无头无尾。穿过任何一闭合曲面的磁通量
磁介质中的安培环路定理

定义磁场强度
L
H dl I
L
H
B
0
M
单位:安培/米(A/m)
——沿任一闭合路径磁场强度的环流等于该闭合 路径所包围的传导电流的代数和。
由于磁化电流是磁介质磁化的结果,所以磁化电
流和磁化强度之间一定存在着某种关系。
p M V
mi
js
即磁化强度M在量值上等于磁化面电流密度。
js M n
磁化电流线密度的大小等于磁化强度的切向分量。
5
磁化强度的环流为
M dl Mab j ab I
l s
s
磁化强度的环流 ( 磁化强度沿闭合路径 l 的线积分 )
竞赛报名与辅导通知
1、每周五下午(5-8节,B/100)的竞赛提高班 照常(本周五补习近代物理部分) 2. 参加竞赛同学可于本周五上课时补报名 (报名费50元/人)
3、第10、11、12、13周周末开设赛前练习与辅导: 地点:A/106 时间:11月13日(周六)8:30-11:30;1:30-4:30 11月20日(周日)同上 11月27日(周日)同上 12月4日 (周日)同上
,如变压器铁芯,要尽量工作在 线性段,以减小信号的失真。
r ~ H
H
3、有磁滞—有剰磁现象
一般说来,抗磁质和顺磁质在外磁场消失时,磁性
也消失。但铁磁质不同,外磁场消失后,还会保留
部分磁性,这就是磁滞现象。
Br—剩磁 Hc —矫顽力(使铁磁质中的磁 场完全消失所需加的反向磁 场的大小) 不同铁磁质的磁滞回线的形 状是不同,它们各具有不同的 剩磁Br和矫顽力Hc。根据磁 滞回线的胖瘦可把铁磁质分 为硬磁材料和软磁材料。
【例5】 图示为三种不同的磁介质
的B~H关系曲线,其中虚线表示的
B
a b
是B=oH的关系。a、b、c各代表
哪一类磁介质的B~H关系曲线: a代表 铁磁质 的B~H关系曲线。 b代表 顺磁质 的B~H关系曲线。 c代表 抗磁质 的B~H关系曲线。
c
H
抗磁质和顺磁质的B和H间是线性关系,相对磁导率r
相关文档
最新文档