藻类处理氮磷和重金属废水

藻类处理氮磷和重金属废水
藻类处理氮磷和重金属废水

藻类生物膜技术

1 藻类生物膜处理污水的原理

利用藻类生物膜处理废水的技术在许多年以前就被提出来了,但在近年来才受到关注。藻类可以有效地利用污水中的N、P,且在此过程中产生氧气,有利于BOD物质的去除,又由于光合作用增加了pH值也可以起到消毒作用(减少大肠杆菌及有毒细菌数量,并且它还可以缔合外源物质(如重金属),即去除了污水中的营养盐,又促进了N、P等元素的循环,增加了生物量,创造了更多的经济价值。所以,藻类系统对于去除引起富营养化问题的氮、磷化合物以及污水深度处理提供了一个优良的解决方法。

1.1对氮、磷的去除

氮是藻类生物量的一个重要元素,一般而言,约占藻类干重的10%,藻类可利用的氮源范围包括无机氮和有机氮,而藻类利用不同形态的N的优先顺序为,NH4+-N > NO3—N > 简单有机氮(如尿素、简单的氨酸等)。藻类消化吸收无机氮,转化生物量的能力可以有效的进行氮化合物的解毒。无机氮的同化作用包括三个步骤:首先,硝酸盐、亚硝酸盐、氨吸收,由一种特定的通透酶介导并需要能量;其次,依赖ATP将硝酸盐还原为铵,需要8个电子,由两个酶活化催化(硝酸盐还原酶、亚硝酸盐酶);最后,将钱并入碳骨架。

许多藻类除了自养方式之外,还可以运用有机物进行混合营养,直接吸收多种有机氮如尿素、氨基酸等,有些藻类能固定大气中的氮并加以利用。

从对氮的需求观点来看,城市污水富含满足藻类生长的氮源,氨态氮是城市污水含量最高的无机氮源;其次是尿素(有机氮),它可以直接或被细菌转化为氨氮而被藻类利用;而水中的游离氨浓度过高却会对藻类的生长造成抑制。

有学者认为藻细胞合成的磷仅占藻细胞干重的1%,但它是细胞核酸的主要成分,在能量的转化过程中起着重要作用。

磷的自然界存在形态主要有溶解性磷(DP)、颗粒磷(PP),其中溶解性磷又分为可溶性活性磷(DRP)和可溶性非活性磷(DUP)。有人研究表明磷用于能量传递和核酸合成细胞的过程,主要以无机离子H2PO4-、HPO42-的形式被吸收。磷的消耗依赖于培养基中的磷浓度,细胞内的磷浓度,pH值,Na+、K+、Mg2+等离子的浓度和温度。细胞内的磷被用作合成有机或无机化合物。藻类用底物水平磷

酸化、氧化磷酸化和光合磷酸化三种不同的过程将其转化成高能有机化合物。一般反应式为:

前两个过程,能量来自呼吸底物的氧化,或来自线粒体的电子转运系统。在第三个系统中,光能被转化结合成ATP。

1.2 对重金属的去除

在藻类吸收重金属的动力学过程中,第一步是快速的物理吸附,不需要代谢提供能量,重金属只是简单地被吸附到藻细胞表面上,这些金属有一部分可以经蒸馏水的反复清洗而洗掉;第二步是与代谢活动有关的主动吸收,这一过程发生于活体细胞,是由于生物体代谢活动的结果,属于较慢的化学吸附,而且由于重金属一般具有很强的生物毒性,当细胞中积累的重金属达到一定量时,细胞将被钝化或杀死。对于死亡的藻细胞来说,则不存在主动吸收的过程。

日前大部分的研究者都认为,藻类对水体中重金属的去除效果主要取决于第一阶段的快速吸附。采用活体藻细胞来去除水中的重金属并非有效的方法,一方面是因为主动吸收过程对重金属的富集速率很低,另一方面需要考虑培养条件和重金属毒性等复杂因素的影响。这就使得很多学者以非活体藻类为材料来进行吸附实验,并发现它们对重金属的吸附去除率常常高于活体材料。

藻吸附金属离子的基本机理是金属阳离子与藻细胞壁功能基之间的表面络合作用。通常,微生物的细胞表面主要由多聚糖、蛋白质和脂类组成,这些成分中含有可与金属离子结合的羧基、磷酞基、羟基、硫酸脂基、氨基和酞胺基等官能基团,其中的氮、氧、硫可作为配位原子与金属络合。藻酸盐是藻类细胞壁的重要组分,人们对藻酸盐的化学组成和结构进行研究发现,藻酸盐是由1,4-R-D 甘露糖醛酸(M)和a-L-古罗糖醛酸(G)两种酸性单糖无序排列而成的线型缩合高聚物。不同种类的多聚糖中所含的羟基、氨基、羧基、硫酸根以及磷酸根等阴离子在吸附中起着重要作用,成为溶液中金属阳离子结合的位点。Fourest和V olesky 在研究中发现富含M单元的藻类易于吸附Cd,而富含G单元的藻类易于吸附Ca。红外光谱技术己经被用于金属离子与生物细胞壁之间作用机制的研究,但到目前为止,还未获得明确的结论。

除了表面络合作用外,离子交换也是吸附机理中的一个重要因素。Kuyucak

和V olesky在研究Ascophyllum nodosum对Co(II)的吸附中发现,藻酸盐中所含的K+、Ca2+、Mg2+等阳离子可以与溶液中的Co(II)发生交换。文献认为,褐藻对于重金属的吸着作用主要归于褐藻细胞壁的主要成分褐藻胶的离子交换性质,褐藻胶是一种天然高聚物,含有很多羧基,水溶液中的金属离子可以和羧基上的H+进行离子交换。但也有研究认为,藻酸盐中的阳离子进入溶液并非由于和溶液中的重金属离子进行了交换,而是由于溶解或与H+、Na+等电解质离子交换的结果。Brady等研究了非活性根霉对Cu(II)、Z n(II)、Cd(II)、Pb(II)和Mn(II)的吸附,也发现了Ca2+、Mg2+、H+从生物体上被置换下来并进入溶液中的现象,吸附量越大,释放出来的Ca2+、Mg2+、H+也越多,但交换下来的离子总量与被吸附重金属离子的总量相比只占很小的一部分,说明离子交换并非主要的吸附机理。

2 藻类生物膜去除氮磷污水的效果

2.1 实验装置设计

图2-1为藻类生物膜废水处理实验装置示意图。装置所用材料厚度为δ5mm 的有机玻璃,总共分为4个廊道,其中3个廊道为藻类生物膜反应器,另外1个廊道为沉淀槽(用于泥水分离)。每个廊道的尺寸为L×B×H=0.1×0.1×0.8m,单个廊道的容积为8L,藻类生物膜反应槽总容积为24L。填料为放射状弹性聚氯乙烯填料,外形为多环串连,其中圆形载体直径为10cm。

图2-1 藻类生物膜反应装置示意图

藻类生物膜连续流反应装置主要由以下几部分组成:原(集)水水箱、蠕动

泵、藻类生物膜反应器、沉淀池及一些管道和阀门。其工艺流程如下:在原水水箱中的原水经过蠕动泵的提升和转子流量计的流量控制,通过进水管从藻类生物膜连续流反应装置的上部流入第一个藻类生物膜反应器。然后通过连接管流入第二和第三个藻类生物膜反应器进行生物处理。最后进入沉淀池,在沉淀池中藻泥和水进行分离,水通过出水管收集进入集水水箱。由于藻类生物膜的新陈代谢作用,老化的藻类生物膜脱落,脱落的及经泥水分离的藻泥通过装置底部的藻泥排放口进行收集,进行后续处理。

图2-2 藻类生物膜反应装置正面实图

2.2 藻类挂膜及驯化

取藻液1000mL加入藻类生物膜反应装置中,再加21L BG11培养基,用搅拌棍将藻液搅拌均匀进行静态培养。在装置四周总共安装上8盏20W的荧光灯进行光照,光照强度为3500lx左右,这样混合藻在BG11培养基中静态培养4天;然后再加入模拟氮磷污水进行培养驯化,每天用模拟废水置换出3L藻液,

连续置换7天;最后用模拟废水将藻液全部置换,稳定几周,直到在填料上形成藻类生物膜,在填料上很清楚地看到有大量的气泡生成,标志在填料上形成了成熟的藻类生物膜。

A:挂膜之前载体表面B:挂膜20天载体表面

C:挂膜30天载体表面D:挂膜成熟后载体表面局部

图5-3 挂膜期间的载体表面

载体表面在挂膜过程的变化如图2-3。图2-3A为未挂膜的载体;在挂膜20天后,载体表面的颜色发生了变化,颜色变为浅绿色如图2-3B,说明载体上的藻类生物膜正在形成过程中;在挂膜30天后,载体表面的颜色变为深绿色,并且其表面有很多的气泡产生如图2-3C,说明藻类在载体表面已经形成了成熟的藻类生物膜,并且其活性良好。图2-3D为挂膜成熟后载体表面局部照片,白色为藻类生物膜上的气泡。

2.3 动态实验

我们主要考虑以下两点:1、排放标准,COD要在第4天才小于50mg/L的标准;2、考虑到连续动态试验与批量试验的水流条件有所差异,为保证处理效果,所以根据静态实验的结果,我们确定了藻类生物膜处理装置的水力停留时间为4

天,但综合考虑其他因素,最后在进行动态实验时,该装置的水力停留时间为5天。动态实验连续进行了24天,对原水和出水每天各取样1次,按照废水水质分析方法检测和分析COD 、TP 、TN 和NH 3-N 等4项水质指标。

图2-4表示了该装置动态实验过程中进水与出水TP 的浓度变化情况。

0.00

2.004.006.008.00

10.0012.000

2

4

6

8

10

12

14

16

18

20

22

24

time t/d

T P /m g .l -1

图2-4 动态实验中进水与出水TP 浓度的运行效果

从图2-4中可以看出,当TP 的进水浓度在7.22-10.22mg/L 范围内波动时,出水TP 浓度基本上保持在0.5mg/L 以下,在24天的运行时间内,只有第2、5、20、21天等4天TP 的出水浓度超过了0.5mg/L ,分别为0.56mg/L 、0.51mg/L 、0.53mg/L 和0.56mg/L 。该装置除磷的效果非常好,连续运行24天中,TP 进水平均浓度为9.04mg/L ,出水平均浓度为0.42mg/L ,TP 的平均去除率达到了95.38%。

图2-5表示了动态实验过程中进水与出水TN 和NH 3-N 的浓度变化情况。在图2-5中可以看出,TN 和NH 3-N 的处理效果非常稳定,尽管TN 和NH 3-N 的进水浓度有波动,但TN 出水浓度一般保持在5mg/L 以下,而NH 3-N 的出水浓度也基本保持在2.5mg/L 以下。连续运行24天中,TN 和NH 3-N 进水平均浓度分别为26.25mg/L 和12.29mg/L ,其出水平均浓度分别为4.22mg/L 和2.16mg/L ,TN 和NH 3-N 的平均去除率达到了83.93%和82.38%。

0.00

5.0010.0015.0020.0025.00

30.000

2

4

6

8

10

12

14

16

18

20

22

24

time t/d

T N 、N H 3-N /m g .l -1

图-5 动态实验中进水与出水TN 和NH 3-N 运行效果

图2-6表示了动态实验过程中进水与出水COD 的浓度变化情况。在动态实验的24天中,COD 的去除效果也一直稳定,出水中COD 浓度一直保持在50mg/L 以下。在整个运行过程中,COD 进水平均浓度为498.70mg/L ,出水平均浓度为38.34mg/L ,COD 的平均去除率达到了92.31%。

0.00

100.00200.00300.00400.00500.00600.000

2

4

6

8

10

12

14

16

18

20

22

24

time t/d

C O D

/m g .l -1

图2-6 动态实验中进水与出水COD 运行效果

图2-7表示了动态实验过程中进水与出水水质效果比较图。进水为人工配制的污水,颜色比较浑浊(见图2-7A ),其浊度值为83.5NTU ,经过藻类生物膜处理和沉淀后,水质变清(见图2-7B ),浊度也降到了12.4NTU ,浊度去除率为85.15%。

图2-7 动态实验中进水与出水水质效果比较

3 藻类生物膜去除锌离子的效果

利用2.1中的实验装置和2.2中得驯化和挂膜方法,得到挂膜良好的藻类生物膜处理系统,加入含5mg/L 锌离子废水21L ,进行静态处理,处理时间为8天。

表3-1 藻类生物膜处理锌离子的效果

time/d ρ(Zn)/mg·L -1 Removal rate(Zn)/%

0 5000.0000 0.00 1 3657.9933 26.84 2 1725.1907 65.50 3 1277.3243 74.45 4 986.2410 80.28 5 573.1667 88.54 6 619.6370 87.61 7 897.5860 82.05 8 841.0050

83.18

01000

200030004000500060000

1

2

3

45

6

7

8

9

time/d

ρ(Z n )/m g ·L -1

-

图3-1 锌离子浓度随时间的变化

0.00

10.0020.0030.0040.0050.0060.0070.0080.0090.00100.000

2

4

6810

time/d

R e m o v a l r a t e (Z n )/%

图3-2 锌离子去除效率随时间的变化

由表3-1、图3-1和3-2可以看出,当实验进行到第5天时,锌离子的去除效果达到了最优,锌离子的浓度为573.1667mg/L ,去除率为88.54%。

金属废水处理概况

概述 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机 器制造、轻工、电子等行业。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重 金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高, 目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环 是发展的主流方向。 1电镀重金属废水治理技术的现状 1 .1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉 法和硫化物沉淀法等。 1.1.1中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。 中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过 预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 1.1.2硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。与中和沉淀法相比,硫化物 沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,而且反应的pH值在7—9之间,处理后的废水一般不用中和。硫化物沉淀法的缺点是[2]:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时防止有害气体硫化氢生成和硫化物离子残留问题。 1.2氧化还原处理 1.2.1化学还原法

电镀废水中各种重金属废水处理反应原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 (2) 2.含氰废水 (3) 3.含镍废水 (4) 4.含锌废水 (5) 5.含铜废水 (6) 6.含砷废水 (8) 7.含银废水 (9) 8.含氟废水 (10) 9.含磷废水 (11) 10.含汞废水 (11) 11.氢氟酸回收 (14) 12.研磨废水 (14) 13.晶体硅废水 (15) 14.含铅废水 (17) 15.含镉废水 (17)

1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。 含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件 下,六价铬主要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬 的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv

重金属废水生物制剂法处理与回用技术

技术汇集 智慧互联 全球共享网站首页关于我们登录注册通讯员登录中文English 您现在的位置: 首页> 技术供给> 详情 重金属废水生物制剂法处理与回用技术 所属领域:水污染防治 > 工业废水 [匹配需求] 行 业:有色金属 电镀 化工 钢铁重金属 电子工业 冶金 矿业 地 区:湖南 成 熟 度:推广阶段 关 键 词:生物制剂,重金属废水,深度处理,回用,冶炼,有色金 属,矿山,酸性,电镀,化工,采矿,选矿,尾矿库 合作方式:直接购买 合作开发 其他合作方式 信息来源: 推荐单位: 点 击 数:5227 我要对接 收藏打印返回基本信息 技术概述生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,使用过程无需进行分离纯化,也不需外加营养源。生物制剂在低 pH 条件下呈胶体粒子状态存在,富含的多功能基团,可与Cu2+,Pb2+,Zn2+,Hg2+,Cd2+ 等重金属离子成键形成生物配合体。生物制剂在pH 3-4时开始水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。同时协同脱钙,调整废水水质,使净化水中钙离子稳定低于50 mg/L,净化水可全面回用于冶炼企业,实现重金属离子(铜、铅、锌、镉、砷、汞等)和钙离子的同时高效净化,净化水中各重金属离子浓度远低于《铅、锌工业污染物排放标准》(GB25466-2010),能够直接回用,水解渣通过压滤机压滤后可以作为冶炼的原来对其中的有价金属进行回收,达到重金属“零排放”的目的。 技术优势①抗重金属冲击负荷强,净化高效,运行稳定,对于浓度波动很大且无规律的废水,经新工艺处理后净化水中重金属低于或接近《生活饮用水水源水质标准》(CJ3020-93); ②废水中钙离子可控脱除,效果明显,可控到50mg/L以下,净化水回用率95%以上; ③净化水COD、SS达到一级排放标准; ④渣水分离效果好,出水清澈,水质稳定; ⑤水解渣量比中和法少,重金属含量高,利于资源化; ⑥对于100-300mg/L重金属废水,生物制剂投加成本0.3-0.8元/m3; ⑦处理设施均为常规设施,占地面积小,投资建设成本低,工艺成熟。对于现有石灰中和法处理系统只需增加生物制剂的贮备槽和药剂投加泵等系 统,改造费用低。微信关注 APP下载 12345

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

重金属废水处理原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件下,六价铬主 要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬的还原在酸性条件下反应较 快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚

硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3 沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2.含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu(CN) 2- 以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN) 6 4- 被氧化后仍然以络离 子存在,所以氰离子并不能解离氧化,增加了破氰难度。 氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN?+OCl?+H 2 O==CNCl+2OH??

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

生物制剂深度处理重金属废水及资源化技术

生物制剂深度处理重金属废水及资源化技术集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

生物制剂深度处理重金属废水及资源化技术 适用范围 应用于选矿尾矿库废水、有色金属冶炼废水、有色金属压延加工废水、矿山酸性重金属废水、电镀废水、化工重金属废水处理。 基本原理 生物制剂是以硫杆菌为主的复合特异功能菌群在非平衡生长(缺乏氮、氧、磷、硫)条件下大规模培养形成的代谢产物与某种无机化合物复配,形成的一种带有大量羟基、巯基、羧基、氨基等功能基团的聚合物,在低pH条件下呈胶体粒子状态存在,可与金属离子Cu2+,Pb2+,Zn2+,Hg2+,Cd2+成键形成生物配合体。然后在pH9~10时水解,诱导生物配位体形成的“胶团”长大,并形成溶度积非常小的、含有多种元素的非晶态的化合物,从而使重金属离子高效脱除。 生物制剂与重金属配合图如下所示: 工艺流程 生物制剂处理常规重金属废水工艺流程图如下所示: 流程说明:重金属废水经收集至调节池进行水质水量调节,然后经提升泵进入配合反应池,在配合反应池中加入生物制剂与废水中的重金属离子发生配合反应,生成重金属配合物,实现重金属离子的深度脱除;在水解反应池中加入石灰乳调节体系pH值进行水解反应,在絮凝反应池中加入PAM絮凝后进入沉淀池实现固液分离,固液分离后的上清液进入清水池,在清水池经硫酸调节pH值至6-9后外排或回用。污泥经脱水后根据需要安全处置或回用。 根据企业水质不同,可调整为不同工艺; 当废水需脱钙回用时,应增加脱钙剂和脱钙反应池,其余流程不变; 当废水为选矿废水,含有CODCr时,应增加氧化剂和氧化反应池,其余流程不变;当废水需要脱铊时,应增加稳定剂和稳定反应池,其余流程不变; 当废水需要脱氟时,应增加脱氟剂和脱氟反应池,其余流程不变。 关键技术或设计特征 该技术经取样分析,经过筛选和分离得到三株细菌:PannonibacterphragmitetusT1,,,这三株细菌能够耐受Pb2+、Cr6+、Mn2+、Zn2+、Cu2+、Ni2+、Cd2+、Co2+、Ag+、Hg2+多种重金属。 在整个系统的运行过程中,无废气产生,节约能源。系统抗污染物冲击负荷强,净化高效,运行稳定。 处理快速高效,反应时间只需10-30min,且工艺稳定,高效处理CODCr的同时,对重金属离子实现同时深度脱除。 设备设施简单,布局紧凑,投资成本低,可结合自控系统减少人工劳动力。 对于常规的重金属废水处理药剂成本很低,且处理后的净化水能够满足回用的要求。 典型规模 生物制剂处理重金属废水处理规模不限,日处理规模可从几立方米到几万立方米。 推广情况 该技术已经被广泛应用于株洲冶炼集团(14400m3/d)、河南豫光金铅集团(5000m3/d)、中金岭南凡口铅锌矿(14400m3/d)、湖南水口山康家湾矿(5500m3/d)、锡矿山闪星锑业(10000m3/d)、江西铜业铅锌金属有限公司(8000m3/d)、紫金铜业有限公司(1500m3/d)、株洲清水塘重金属污水处理厂(10000m 3/d)、永州福嘉(300m3/d)、郴州金贵银业(100m3/d)等50多家大型采选矿、冶炼、化工企业。由该技术处理废水总量占当前我国铅锌总产能水量的60%以上,实现年处理重金属废水量为11000万m 3,废水减排量4000万m3,重金属减排量230t/a。 典型案例 (一)项目概况 水口山康家湾重金属废水生物制剂处理及回用设施设计处理水量5500m3/d,污水来源于选矿废水,2014年3月开工建设,于2015年1月完成调试并建成投产。 (二)技术指标 根据水口山集团康家湾矿、长沙质监站和湖南诚信监理有限公司共同出具的验收报告,项目出水达到《铅锌工业污染物排放标准》(GB25466—2010)。以平均进水铅为L,锌为L,CODCr为99,SS为208计,该污水处理设施每年削减CODCr约吨,重金属离子吨,其中Pb减排吨,Zn减排吨。同时该

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

含重金属废水处理技术介绍

含重金属废水处理技术介绍-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

含重金属废水处理技术介绍 一、废水情况简介 1.1 含重金属废水处理难点 重金属种类多,一些重金属需要特殊的处理方法 含重金属废水一般可生化性不高,污泥需要特别处理 国内当前的一些处理方法(加碱沉淀法)运行成本高,企业负担重 1.2含重金属废水处理方法 含重金属离子废水的处理方法主要有:氧化还原法、 离子交换法、 电解法、 反渗透法、气浮法、化学沉淀法等。这些处理方法在净化效率及经济效益方面都存在一些问题,而吸附法的研发可以很好的解决效率和经济效益问题,值得重视。 二、我们的工艺 2.1 工艺流程 调节池 微电解反应器 混合沉淀综合池 含重金属废水 污泥处理 固化处理 重金属回收

2.2工艺说明 ?通过微电解反应器对水中Cr6+有很好的去除效果,在混合沉淀综合池投加石灰乳或氢氧化钠,进行沉淀,沉淀物送入干化机 ?煤质改良活性炭是一种专门吸附悬浮态重金属物质的活性炭,保证出水达标,吸附饱和的煤质改良活性炭通过廉价的再生过程,可以重复使用 ?沉淀物通过板框压滤机干化后,再经过集中的处理回收重金属。处理后污泥达到《国家危险废物填埋污染控制标准》(GB18598-2001)中规定的危险废物进入填埋区的标准后,进行无害化填埋,或采用水泥作为固化基材进行稳定化 ?吸附饱和的煤质改良活性炭的再生处理过程中通过浸出回收重金属、热解等过程将煤质改良活性炭再生,循环利用 ?根据不同的水质可进行优化设计,在水中六价铬含量符合国家排放标准的情况下,工艺中可不需要微电解反应器 2.3 煤质活性炭介绍 煤质类吸附剂主要指泥炭、褐煤等,资源丰富的低品质煤质类矿物。经过适当处理如炭化、活化等能改善煤质类吸附剂的吸附性能。泥炭和褐煤是一种天然腐殖酸类物质,它们与活性炭等吸附剂相似,具有微孔结构和较大的比表面积,有优异的吸附性能。专家研究表明,它们可用于金属离子的吸附。褐煤和

重金属废水处理方法

在环境与人类健康领域,重金属主要指汞(Hg)、镉(Cd)、铅(Pb)、铬(cr)、砷(As)、铜(Cu)、锌(Zn)、钴(Co)、镍(Ni)等重金属。他们以不同的形态存在于环境之中,并 在环境中迁移、积累。采矿、冶金、化工等行业是水体中主要的人为污染源。重金属在食物链中的过量富集会对自然环境和人体健康造成很大的危害。 1.1 沉淀法 1.1.1 氢氧化物沉淀法 往重金属废水中加入碱性溶液,利用OH一与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废 水中的各种重金属离子同时以氢氧化物沉淀的形式析出。 1.1.2 硫化物沉淀法 将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此。硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。 1.1.3 还原一沉淀法 这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。 1.1.4 絮凝浮选沉淀法 通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。 1.2 物理化学法 1.2.1 吸附法 (1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。 (2)树脂吸附。环保是树脂吸附法的一个重要的特点t41,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。 (3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。 1.2.2 浮选法

含重金属废水处理技术介绍

含重金属废水处理技术介绍 一、废水情况简介 含重金属废水处理难点 重金属种类多,一些重金属需要特殊的处理方法 含重金属废水一般可生化性不高,污泥需要特别处理 国内当前的一些处理方法(加碱沉淀法)运行成本高,企业负担重 含重金属废水处理方法 含重金属离子废水的处理方法主要有:氧化还原法、 离子交换法、 电解法、 反渗透法、气浮法、化学沉淀法等。这些处理方法在净化效率及经济效益方面都存在一些问题,而吸附法的研发可以很好的解决效率和经济效益问题,值得重视。 二、我们的工艺 工艺流程 调节池 微电解反应器 混合沉淀综合池 含重金属废水 污泥处理 固化处理 重金属回收

工艺说明 通过微电解反应器对水中Cr 6+有很好的去除效果,在混合沉淀综合池投加石灰乳或氢氧化钠,进行沉淀,沉淀物送入干化机 煤质改良活性炭是一种专门吸附悬浮态重金属物质的活性炭,保证出水达标,吸附饱和的煤质改良活性炭通过廉价的再生过程,可以重复使用 沉淀物通过板框压滤机干化后,再经过集中的处理回收重金属。处理后污泥达到《国家危险废物填埋污染控制标准》(GB18598-2001)中规定的危险废物进入填埋区的标准后,进行无害化填埋,或采用水泥作为固化基材进行稳定化 吸附饱和的煤质改良活性炭的再生处理过程中通过浸出回收重金属、热解等过程将煤质改良活性炭再生,循环利用 根据不同的水质可进行优化设计,在水中六价铬含量符合国家排放标准的情况下,工艺中可不需要微电解反应器 煤质活性炭介绍 煤质类吸附剂主要指泥炭、 褐煤等,资源丰富的低品质煤质类矿物。经过适当处理如炭化、 活化等能改善煤质类吸附剂的吸附性能。泥炭和褐煤是一种天然腐殖酸类物质,它们与活性炭等吸附剂相似,具有微孔结构和较大的比表面积,有优异的吸附性能。专家研究表明,它们可用于金属离子的吸附。褐煤和泥炭含有羟基、 羧基等活性基团,其吸附性能与这些活性基团有关,金属离子在其表面既有物理吸附,又有化学吸附。天然泥炭不需要任何预处理就能用于吸附去除水中的重金属离子。但其机械强度较低,对水的亲合力强,化学稳定性较低, 达标排放或循环使用 煤质改良活性炭吸附器 活性炭再生 重金属提取回收

重金属废水的微生物废水处理工艺

重金属废水的微生物废水处理工艺 一、微生物法治理电镀废水技术 1.主要技术内容 (1)基本原理用从电镀污泥中获得的SR系列复合功能菌,高效还原六价铬为三价铬,三价铬、锌、铜、镍和镉等二价金属离子被菌体富集,再经固液分离,废水被净化,污泥中金属再用微生物或化学法回收,固液分离的上清液可以回用。 (2)技术关键本技术的关键是菌体的培养和“菌废比”的合理调控,这是保证处理水质达到排放标准或回用的重要条件。一般采用厌氧技术培养菌体,培养液可以是生活污水,粪便,高浓度有机废水,也可以人工配制。采用中温发酵技术。根据废水中的金属离子的浓度和培养的菌体的浓度决定“菌废比”,具体情况具体决定。 (3)工艺流程微生物治理电镀废水工艺流程见图9-24。 2.主要技术指标 (1)净化能力本技术对废水成分变化的适应性强,各金属离子浓度的范围为:铬1mg/L~1000mg /L,锌1mg/L~1000mg/L,铜1mg/L~1000mg/L,镍1mg/L~500mg/L,镉1mg/L~500mg/L。本技术不仅能处理单一的金属废水,也可处理混合的金属废水。废水的pH值可在4~8范围内变化。每天处理废水量可达1m3~1000m3以上。 (2)特点利用微生物高效快速还原六价铬,无二次污染,能回收菌泥中的金属,因此,使用周期长,管理方便。如果能利用生活污水、食品加工废水等培养微生物,可以实现以废治废。 (3)出水水质处理后排放水中六价铬、总铬、锌、铜、镍、镉等金属低于国家GB8978-1996污水综合排放标准,见表9-15。

3.投资分析对于日处理100t废水的规模而言,1992年价格为总投资30万元,其中土建15万元,设备10万元,其他5万元。 本技术主要设备使用期可达40年,运行费用约为每吨废水0.20元。 4.主要设备微生物法治理电镀废水技术的主要设备有培菌池,生物反应器,调节池,泵房,沉淀池,消毒池,主控室,化验室等。 二、硫酸盐生物还原法处理含锌废水 硫酸盐生物还原法处理含锌废水其原理是利用硫酸盐还原菌SRB在厌氧条件下产生硫化氢,硫化氢和废水中的重金属反应,生成金属硫化物沉淀以去除重金属离子。 1.废水处理工艺流程见图9-25。

重金属污染物的来源及处理办法

重金属污染物的危害、来源及处理方法研究 [摘要]随着工业排污量急剧增加,大量重金属污染排向了物环境中。在一定条件下,某些重金属(例如汞)还能在某些微生物的作用下转化为毒性更大的有机物质。另外,有毒重金属可以长期停留与积累在环境中,通过食物链逐级富集,最终进入人体,甚至通过遗传或母乳使婴儿受害,主要表现为富集在人体某些器官内形成慢性中毒。因此,重金属污染物的处理技术成为一个研究的热点,其成果有着重大的现实意义。 [关键词] 重金属工业污染离子交换电解吸附 一、引言 随着社会的不断发展,人们比以往任何时候都更加崇尚工业与自然环境的和谐发展,这种理念已不断渗透到各学科之中,在治理污染技术的开发上也应该寻求这种绿色产业。充分发挥自然界的天然自净化功能,是在污染治理与环境修复领域开发绿色环保技术的体现,更是完整地利用天然自净化功能的反应。本文阐述了重金属的危害、来源及其存在形式,并重点论述了处理重金属污染物的方法。 二、废水中重金属污染物的来源 1.铅的来源。铅常被用作原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业。铅板制作工艺中排放的酸性废水(pH3=铅浓度最高,电镀废液产生的废水铅浓度也很高。 2.镉的来源。镉是一种灰白色的金属,自然界中主要以二价形式存在。镉电镀可以为钢、铁等提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的福用于电镀、颜料、塑料稳定剂、合金及电池等行业,含镉废水的来源还包括金属矿山的采选、冶炼、电解、农药、医药、电镀、纺织印染等行业的生产过程中。 3.镍的来源。废水中镍的来源废水中的镍主要以二价离子存在,比如硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。含镍废水的工业来源很多,其中主要是电镀业,此外,采矿、冶金、石油化工、纺织等工业,以及钢铁厂、印刷等行业排放的废水中也含有镍。

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

重金属废水处理技术探讨

重金属废水处理技术探讨 摘要:随着经济的快速发展,大量的生产废水随之排放,导致水源和土壤受到 影响,重金属含量增多,污染越来越严重。重金属废水具有累积性、持续性、难 降解性和毒害性等特点,废水的长期排放会导致排污口附近生态环境恶化,生物 多样性逐渐减少,并通过食物链最终影响到人体。因此,关于重金属废水处理技 术的探讨具有重要的意义。本文详细探讨了重金属废水处理技术,旨在实现重金 属废水的回收利用。 关键词:重金属;废水;处理技术 重金属离子的废水主要来自于化工工业以及矿山开采以及机械加工等行业, 其所排放的重金属废水由于不能通过被生物降解的方式进行处理,长期沉积便会 对于存在的水体产生相当严重的危害,一旦危害出现,可能所导致就将是极度严 重且无法挽回的重大损失。因此,污水处理企业对于重金属废水的排放一定高度 的重视,并采取科学有效的方式进行污水有效处理,以从根本上保障重金属污水 处理的科学有效,保障水质安全。 1 化学处理法 1.1.化学沉淀法 化学沉淀法是通过向重金属废水中投加药剂,发生化学反应使重金属离子变 成不溶性物质而沉淀分离出来的方法。包括中和沉淀法、硫化物沉淀法、钡盐沉 淀法、铁氧体沉淀法等。化学沉淀法处理重金属废水具有工艺简单、去除范围广、经济实用等特点,是目前应用最广泛的处理重金属废水的方法。但这种方法很容 易受到沉淀剂和反应条件的影响,需要对沉淀剂投加量及反应条件进行准确控制。 1.2电化学法 电化学法应用电解的基本原理,使废水中重金属离子在阳极和阴极上分别发 生氧化还原反应,使重金属富集,废水中的重金属离子在阴极得到电子被还原, 这些重金属或沉淀在电极表面或沉淀到反应器底部,从而去除废水中的重金属, 并且可以回收利用。这种方法不会将废水中重金属离子的浓度降低很多,且耗能大,比较适合重金属离子浓度较高且回收价值高的电镀废水。 2 离子交换法 离子交换法是利用重金属离子与离子交换树脂发生交换反应,使废水中重金 属浓度降低的方法。离子交换树脂是一种含有离子交换基团的高分子材料。离子 交换树脂不溶于酸、碱及有机溶剂。离子交换树脂可分为阳离子交换树脂、阴离 子交换树脂和螯合树脂等。有些离子交换树脂对不同离子的亲合力不同,可以实 现对不同重金属离子的选择性分离。离子交换树脂交换吸附饱和后需进行再生。 离子交换法具有处理容量大,处理水质好,可以回用等优点,在重金属废水处理中,离子交换树脂主要用于回收有价的贵金属和稀有金属。离子交换法处理电镀 行业重金属废水已有几十年的历史,早在1980年左右,仅沈阳市就有100多家 电镀厂采用离子交换树脂除铬;上海市造船厂等企业采用强酸性阳离子交换树脂 净化镀铬浓废液也有多年历史,还有些厂家采用阳离子交换树脂,处理镀锌、镀 铜钝化液。离子交换纤维是近年来发展较快的一种新型离子交换材料,在重金属 废水处理、分离、提取中的应用研究越来越广泛。颗粒状离子交换树脂相比,离 子交换纤维吸附效果明显,交换能力强,吸附容量大,再生效果好,强度大,再 生频率高。提高离子交换树脂的吸附容量、交换速度、再生利用性及机械强度是

相关文档
最新文档