湖北省咸宁二中2019年中考数学一模试卷(解析版)
2019年咸宁市中考数学试题、答案(解析版)
2019年咸宁市中考数学试题、答案(解析版)一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的.) 1.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是 ( )AB CD3.下列计算正确的是( )A B 2- C .523a a a ÷= D .236()ab ab =4.若正多边形的内角和是540°,则该正多边形的一个外角为 ( )A .45°B .60°C .72°D .90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的( )(第5题)A .主视图会发生改变B .俯视图会发生改变C .左视图会发生改变D .三种视图都会发生改变6.若关于x 的一元二次方程220x x m +=-有实数根,则实数m 的取值范围是 ( ) A .1m <B .1m ≤C .1m >D .1m ≥7.已知点(1,)A m -,(1,)B m ,(2,)(0)C m n n ->在同一个函数的图象上,这个函数可能是( ) A . y x =B .2y x=-C .2y x=D .2y x =-8.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数1(0)y x x=-<,4(0)y x x=>的图象上,则sin ABO ∠的值为( )(第8题)A .13B .3C .4D .6二、细心填一填(本大题共8小题,每小题3分,共24分)9.计算:01-= .10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是 .11.若整式22x my +(m 为常数,且0m ≠)能在有理数范围内分解因式,则m 的值可以是 (写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得30ACB ∠=︒,点D处测得60ADB ∠=︒,80m CD =,则河宽AB 约为 m ( 1.73≈).(第13题)14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠=︒,则阴影部分的面积为 (结果保留π).(第14题)15.有一列数,按一定规律排列成1,2-,4,8-,16,32-,…,其中某三个相邻数的积是124,则这三个数的和是 .16.如图,先有一张矩形纸片ABCD ,4AB =,8BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论: ①CQ CD =;②四边形CMPN 是菱形;③P ,A 重合时,MN =④PQM △的面积S 的取值范围是35S ≤≤. 其中正确的是 (把正确结论的序号都填上).(第16题)三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤.)17.(本题满分8分,每小题4分)(1)化简:2211m m m ÷--;(2)解不等式组:31,563.x x x +⎧⎨+⎩>≤18.(本题满分7分)在Rt ABC △中,90C ∠=︒,30A ∠=︒,D ,E ,F 分别是AC ,AB ,BC 的中点,连接ED ,EF . (1)求证:四边形DEFC 是矩形;(2)请用无刻度的直尺......在图中作出ABC ∠的平分线(保留作图痕迹,不写作法).(第18题)19.(本题满分8分)小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿着原路匀速跑步6min 返回家中. (1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为720m ?(第19题)20.(本题满分8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(200)在100120x ≤<这一组的是: 100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119 根据以上信息,回答下列问题: (1)表中a ;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 (填“甲”或“乙”),理由是 .(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.(本题满分9分)如图,在Rt ABC △中,90ACB ∠=︒,D 为AB 的中点,以CD 为直径的O e 分别交AC ,BC 于点E ,F 两点,过点F 作FG AB ⊥于点G .(1)试判断FG 与O e 的位置关系,并说明理由. (2)若3AC =, 2.5CD =,求FG 的长.(第21题)22.(本题满分10分)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x 天的生产成本y (元/件)与x (天)之间的关系如图所示,第x 天该产品的生产量z (件)与x (天)满足关系式2120z x =-+.(1)第40天,该厂生产该产品的利润是 元; (2)设第x 天该厂生产该产品的利润为w 元.①求w 与x 之间的函数关系式,并指出第几天的利润最大,最大利润是多少? ②在生产该产品的过程中,当天利润不低于2 400元的共有多少天?(第22题)23.(本题满分10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形. 理解:(1)如图1,点A ,B ,C 在O e 上,ABC ∠的平分线交O e 于点D ,连接AD ,CD . 求证:四边形ABCD 是等补四边形; 探究:(2)如图2,在等补四边形ABCD 中,AB AD =,连接AC ,AC 是否平分BCD ∠?请说明理由. 运用:(3)如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点F ,10CD =,5AF =,求DF 的长.图1图2图3(第23题)24.(本题满分12分)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C . (1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐标;(3)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.(第24题)2019年咸宁市中考试数学答案解析一、精心选一选 1.【答案】C【解析】直接利用有理数、无理数、正负数的定义分析得出答案. 解:0既不是正数也不是负数,0是有理数. 故选:C . 【考点】实数 2.【答案】B【解析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形. 解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B .【考点】勾股定理的证明3.【解析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.解:AB 2,故此选项错误;C 、523a a a ÷=,正确;D 、()3236ab a b =,故此选项错误.故选:C .【考点】合并同类项,二次根式的加减运算,积的乘方运算,同底数幂的乘除运算 4.【答案】C【解析】根据多边形的内角和公式2180n ⋅︒(-)求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.解:∵正多边形的内角和是540︒, ∴多边形的边数为54018025︒÷︒+=, ∵多边形的外角和都是360︒, ∴多边形的每个外角360572=÷=︒. 故选:C .【考点】多边形的内角和与外角和之间的关系 5.【答案】A【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案. 解:如果将小正方体A 放到小正方体B 的正上方,则它的主视图会发生改变,俯视图和左视图不变. 故选:A .【考点】简单组合体的三视图 6.【答案】B【解析】根据方程的系数结合根的判别式0V ≥,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围. 解:∵关于x 的一元二次方程220x x m +=-有实数根,∴2(2)40m =V --≥,解得:1m ≤. 故选:B .【考点】根的判别式 7.【答案】D【解析】由点(1,)A m -,(1,)B m 的坐标特点,可知函数图象关于y 轴对称,于是排除选项A 、B ;再根据(1,)B m ,(2,)C m n -的特点和二次函数的性质,可知抛物线的开口向下,即0a <,故D 选项正确. 解:∵(1,)A m -,(1,)B m , ∴点A 与点B 关于y 轴对称; 由于y x =,2y x=-的图象关于原点对称,因此选项A 、B 错误; ∵n >0, ∴m n m -<;由(1,)B m ,(2,)C m n -可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, ∴D 选项正确 故选:D .【考点】正比例函数,反比例函数,二次函数的图象和性质 8.【答案】D【解析】点A ,B 落在函数1(0)y x x =-<,4(0)y x x=>的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形A O B 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.解:过点A 、B 分别作AD x ⊥轴,BE x ⊥轴,垂足为D 、E , ∵点A 在反比例函数1(0)y x x =-<上,点B 在4(0)y x x=>上, ∴1AOD S =V ,4BOE S =V , 又∵90AOB ︒∠= ∴AOD OBE ∠=∠, ∴AOD OBE △∽△,∴214AOD OBES AO OB S ⎛⎫== ⎪⎝⎭V V , ∴12AO OB = 设OA m =,则2OB m =,AB =, 在Rt AOB △中,sin 5OA ABO AB ∠===,故选:D .【考点】反比例函数的几何意义,相似三角形的性质 二、细心填一填 9.【答案】0【解析】直接利用零指数幂的性质化简得出答案. 解:原式110==-. 故答案为:0.【考点】此题主要考查了实数运算,正确掌握运算法则是解题关键. 10.【答案】23【解析】直接利用概率求法进而得出答案.解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”, ∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:4263=. 故答案为:23. 【考点】此题主要考查了概率公式,正确掌握概率公式是解题关键. 11.【答案】1-【解析】令1m =-,使其能利用平方差公式分解即可.解:令1m =-,整式为22()()x y x y x y -=+-.故答案为:1-(答案不唯一).【考点】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.【答案】 4.5112x y x y +=⎧⎪⎨-=⎪⎩【解析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于x ,y 的二元一次方程组,此题得解. 解:设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x y x y +=⎧⎪⎨-=⎪⎩.故答案为: 4.5112x y x y +=⎧⎪⎨-=⎪⎩.【考点】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 13.【答案】69【解析】在Rt ABC △中,30ACB ∠=︒,60ADB ∠=︒,则30DAC ∠=︒,所以80DA DC ==,在Rt ABD △中,通过三角函数关系求得AB 的长.解:在Rt ABC V 中,30ACB ∠=︒,60ADB ∠=︒, ∴30DAC ∠=︒, ∴80DA DC ==, 在Rt ABD △中,sin sin 60AB ADB AD ︒=∠==,∴8069AB AD ==(米), 故答案为69.【考点】解直角三角形 14.【答案】3π 【解析】根据题意,作出合适的辅助线,即可求得CD 和COB ∠的度数,即可得到阴影部分的面积是半圆的面积减去AOC△和扇形BOC 的面积.解:连接O C 、BC ,作CD AB ⊥于点D , ∵直径6AB =,点C 在半圆上,30BAC ∠=︒, ∴90ACB ∠=︒,60COB ∠=︒,∴AC = ∵90CDA ∠=︒,∴CD =,∴阴影部分的面积是:22336032322360πππ⋅⨯⨯-=,故答案为:3π.【考点】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答. 15.【答案】348-【解析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是124,可以求得这三个数,从而可以求得这三个数的和.解:∵一列数为1,2-,4,8-,16,32-,…, ∴这列数的第n 个数可以表示为1(2)n --, ∵其中某三个相邻数的积是124, ∴设这三个相邻的数为1(2)n --、(2)n -、1(2)n +-,则1112(2)(2)(2)4n n n -+-⋅-⋅-=, 即()1232(2)2n =-,∴32422()n=-,∴324n =, 解得,8n =,∴这三个数的和是:7897(2)(2)(2)(2)(124)(128)3384-+-+-=-⨯-+=-⨯=-,故答案为:384-.【考点】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律. 16.【答案】②③【解析】先判断出四边形C FHE 是平行四边形,再根据翻折的性质可得CN NP =,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ CD =,得Rt Rt CMQ CMD △≌△,进而得30DCM QCM BCP ∠=∠=∠=︒,这个不一定成立,判断①错误;点P 与点A 重合时,设BN x =,表示出8AN NC x ==-,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形C MPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值便可. 解:如图1,图1∴PMN MNC ∠=∠, ∵MNC PNM ∠=∠, ∴PMN PNM ∠=∠, ∴PM PN =, ∵NC NP =, ∴PM CN =, ∵MP CN ∥,∴四边形C NPM 是平行四边形, ∵CN NP =,∴四边形C NPM 是菱形,故②正确; ∴CP MN ⊥,BCP MCP ∠=∠, ∴90MQC D ∠=∠=︒, ∵CP CP =,若CQ CD =,则Rt Rt CMQ CMD △≌△,∴30DCM QCM BCP ∠=∠=∠=︒,这个不一定成立, 故①错误;点P 与点A 重合时,如图2,图2在Rt ABN △中,222AB BN AN +=,即22248x x +=-(),解得3x =,∴835CN ==-,AC =∴12CQ AC ==∴QN ==∴2MN QN == 故③正确;当MN 过点D 时,如图3,图3此时,C N 最短,四边形C MPN 的面积最小,则S 最小为1144444CMPN S S ==⨯⨯=菱形, 当P 点与A 点重合时,C N 最长,四边形C MPN 的面积最大,则S 最大为15454S =⨯⨯=, ∴45S ≤≤,故④错误.故答案为:②③.【考点】折叠问题,菱形的判定与性质,勾股定理的综合应用三、专心解一解17.【答案】(1)化简:2211m m m ÷--; (2)解不等式组:31563x x x +>⎧⎨+⎩… 【解析】(1)直接利用分式的乘除运算法则计算得出答案;(2)分别解不等式进而得出不等式组的解.解:(1)原式2(1)(1)m m m =⨯-- 2m=; (2)31563x x x +⎧⎨+⎩>①≤②, 解①得:2x >-,解②得:3x ≤,所以这个不等式组的解集为:23x -<≤.【考点】分式的乘除运算,不等式组的解18.(1)证明:∵D ,E ,F 分别是AC ,AB ,BC 的中点,∴DE FC ∥,EF CD ∥,∴四边形DEFC 是平行四边形,∵90DCF ∠=︒,∴四边形DEFC 是矩形.(2)连接E C ,DF 交于点O ,作射线BO ,射线BO 即为所求.【解析】(1)首先证明四边形DEFC 是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接E C ,DF 交于点O ,作射线BO 即可.【考点】三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识19.【答案】解:(1)由题意可得,96096080(m /min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min ;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m ;【解析】(1)根据速度=路程/时间的关系,列出等式96096080612-=即可求解; (2)根据题中已知,描点画出函数图象;(3)根据图象可得小慧从家出发后9分钟或16.5分钟分钟离家距离为720m ;【考点】一次函数的应用20.【答案】(1)118(2)甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有31174250027050++++⨯=(人). 【解析】(1)根据中位数,结合条形统计图及所给数据求解可得;∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119, ∴中位数1171191182a +==, 故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)利用样本估计总体思想求解可得.估计一分钟跳绳不低于116次的有31174250027050++++⨯=(人). 【考点】频数分布直方图,中位数及样本估计总体21.【答案】(1)FG 与O e 相切,理由:如图,连接OF ,∵90ACB ∠=︒,D 为AB 的中点,∴CD BD =,∴DBC DCB ∠=∠,∵OF OC =,∴OFC OCF ∠=∠,∴OFC DBC ∠=∠,∴OF DB ∥,∴180OFG DGF ∠+∠=︒,∵FG AB ⊥,∴90DGF ︒∠=,∴90OFG ∠=︒,∴FG 与O e 相切;(2)连接D F ,∵ 2.5CD =,∴25AB CD ==,∴4BC =,∵CD 为O e 的直径,∴90DFC ∠=︒,∴FD BC ⊥,∵DB DC =, ∴122BF BC ==, ∵sin AC FG ABC AB FB ∠==, 即352FG =, ∴65FG =.【解析】(1)如图,连接OF ,根据直角三角形的性质得到CD BD =,得到DBC DCB ∠=∠,根据等腰三角形的性质得到OFC OCF ∠=∠,得到OFC DBC ∠=∠,推出90OFG ∠=︒,于是得到结论;(2)连接D F,根据勾股定理得到4BC ==,根据圆周角定理得到90DFC ∠=︒,根据三角函数的定义即可得到结论.【考点】直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形22.【答案】(1)由图象可知,第40天时的成本为40元,此时的产量为z =﹣2×40+120=40则第40天的利润为:()8040401600-⨯=元故答案为1600(2)① 设直线AB 的解析式为(0)y kx b k =+≠,把(0,70)(30,40)代入得703040b k b =⎧⎨+=⎩,解得701b k =⎧⎨=-⎩.∴直线AB 的解析式为70y x =-+(Ⅰ)当030x <≤时[80(70)](2120)w x x =--+-+221001200x x =-++22(25)2450x =--+∴当25x =时,2450w =最大值(Ⅱ)当3050x <≤时,(8040)(2120)804800w x x =-⨯-+=-+∵w 随x 的增大而减小∴当31x =时,2320w =最大值∴221001200,(030)804800,(3050)x x x w x x ⎧-++<⎪=⎨-+<⎪⎩≤≤ 第25天的利润最大,最大利润为2 450元②(Ⅰ)当030x <≤时,令22(25)24502400x --+=元解得120x =,230x =∵抛物线22(25)2450w x =--+开口向下由其图象可知,当2030x ≤≤时,2400w ≥此时,当天利润不低于2 400元的天数为:3020111+=﹣天.(Ⅱ)当3050x <≤时,由①可知当天利润均低于2 400元综上所述,当天利润不低于2 400元的共有11天.【解析】(1)由图象可知,第40天时的成本为40元,此时的产量为24012040z =-⨯+=,则可求得第40天的利润.(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【考点】二次函数的性质在实际生活中的应用23.【答案】(1)证明:∵四边形ABCD 为圆内接四边形,∴180A C ∠+∠=︒,180ABC ADC ∠+∠=︒,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴»»AD CD =, ∴AD CD =,∴四边形ABCD 是等补四边形;(2)AD 平分BCD ∠,理由如下:如图2,过点A 分别作AE BC ⊥于点E ,A F 垂直CD 的延长线于点F ,则90AEB AFD ∠=∠=︒,∵四边形ABCD 是等补四边形,∴180B ADC ∠+∠=︒,又ADC ADF 180︒∠+∠=,∴B ADF ∠=∠,∵AB AD =,∴ABE ADF(AAS)△≌△,∴A A E F =,∴AC 是BCF ∠的平分线,即AC 平分BCD ∠;(3)如图3,连接AC ,∵四边形ABCD 是等补四边形,∴BAD BCD 180∠+∠=︒,又BAD AD 180E ︒∠+∠=,∴AD BCD E ∠=∠,∵A F 平分EAD ∠, ∴12FAD EAD ∠=∠, 由(2)知,AC 平分BCD ∠, ∴12FCA BCD ∠=∠, ∴FCA FAD ∠=∠,又AFC DFA ∠=∠,∴ACF DAF △∽△,∴AF CF DF AF =, 即5105DF DF +=,∴5DF =.【解析】(1)由圆内接四边形互补可知∠A+∠C =180°,∠ABC+∠ADC =180°,再证AD =CD ,即可根据等补四边形的定义得出结论;(2)过点A 分别作A E ⊥BC 于点E ,A F 垂直CD 的延长线于点F ,证△AB E ≌△AD F ,得到A E =A F ,根据角平分线的判定可得出结论;(3)连接AC ,先证∠E AD =∠BCD ,推出∠F CA =∠F AD ,再证△AC F ∽△DA F ,利用相似三角形对应边的比相等可求出D F 的长.【考点】新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质24.【答案】(1)在122y x =-+中,令y =0,得x =4,令x =0,得y =2∴A (4,0),B (0,2)把A (4,0),B (0,2),代入212y x bx c =-++,得2116402c b c =⎧⎪⎨-⨯++=⎪⎩,解得322b c ⎧=⎪⎨⎪=⎩ ∴抛物线得解析式为213=222y x x -++ (2)如图,过点B 作x 轴得平行线交抛物线于点E ,过点D 作B E 得垂线,垂足为F∵B E ∥x 轴,∴∠BAC =∠AB E∵∠ABD =2∠BAC ,∴∠ABD =2∠AB E即∠DB E +∠AB E =2∠AB E∴∠DB E =∠AB E∴∠DB E =∠BAC设D 点的坐标为(x ,213222x x -++),则B F =x ,D F =21322x x -+ ∵tan ∠DB E =DF BF ,tan ∠BAC =BO AO∴DF BF =BO AO ,即2132224x x x -+= 解得x 1=0(舍去),x 2=2当x =2时,213222x x -++=3 ∴点D 的坐标为(2,3)(3)当B O 为边时,O B ∥EF ,O B =EF设E (m ,122m -+),F (m ,211222m m -++) EF =|(122m -+)﹣(211222m m -++)|=2 解得1m =2,22m =-32m =+当B O 为对角线时,O B 与EF 互相平分过点O 作OF ∥AB ,直线OF 12y x =-交抛物线于点F(21+-21--求得直线EF解析式为12y x =-+或12y x =+ 直线EF 与AB 的交点为E ,点E的横坐标为2-或2-∴E 点的坐标为(2,1)或(2-,12+2--)或(2-+【解析】(1)求得A 、B 两点坐标,代入抛物线解析式,获得b 、c 的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B 、O 、E 、F 四点作平行四边形,以已知线段O B 为边和对角线分类讨论,当O B 为边时,以EF =O B 的关系建立方程求解,当O B 为对角线时,O B 与EF 互相平分,利用直线相交获得点E 坐标.【考点】本题考查了待定系数法,2倍角关系和平行四边形点存在类问题,将2倍角关系转化为等角关系是(2)问题的解题关键,根据平行四边形的性质,以O B 为边和对角线是(3)问题的解题关键,本题综合难度不大,是一道很好的压轴问题.。
2019年湖北省咸宁市中考数学试卷(word版,含答案解析)
2019年湖北省咸宁市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列关于0的说法正确的是()A. 0是正数B. 0是负数C. 0是有理数D. 0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A. B. C. D.3.下列计算正确的是()A. √5−√3=√2B. √(−2)2=−2C. a5÷a2=a3D. (ab2)3=ab64.若正多边形的内角和是540°,则该正多边形的一个外角为()A. 45°B. 60°C. 72°D. 90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 主视图会发生改变B. 俯视图会发生改变C. 左视图会发生改变D. 三种视图都会发生改变6.若关于x的一元二次方程x2−2x+m=0有实数根,则实数m的取值范围是()A. m<1B. m≤1C. m>1D. m≥17.已知点A(−1,m),B(1,m),C(2,m−n)(n>0)在同一个函数的图象上,这个函数可能是()A. y=xB. y=−2xC. y=x2D. y=−x28.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=−1x(x<0),y=4x(x>0)的图象上,则sin∠ABO的值为()A. 13B. √33C. √54D. √55二、填空题(本大题共8小题,共24.0分)9.计算:(√2)0−1=______.10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是______.11.若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是______(写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为______.13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为______m(结果保留整数,√3≈1.73).14.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为______(结果保留π).15.有一列数,按一定规律排列成1,−2,4,−8,16,−32,…,其中某三个相邻数的积是412,则这三个数的和是______.16.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2√5;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是______(把正确结论的序号都填上).三、解答题(本大题共8小题,共72.0分)17.(1)化简:2m2−m ÷1m−1;(2)解不等式组:{x+3>15x≤6+3x18.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).19.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?20.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表年级平均数中位数众数七116a115八119126117七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100, (180)x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=______;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是______(填“甲”或“乙”),理由是______.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.22.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=−2x+120.(1)第40天,该厂生产该产品的利润是_____元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?23.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.x+2与x轴交于点A,与y轴交于点B,24.如图,在平面直角坐标系中,直线y=−12x2+bx+c经过A,B两点且与x轴的负半轴交于点C.抛物线y=−12(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.答案和解析1.【答案】C【解析】解:0既不是正数也不是负数,0是有理数.故选:C.直接利用有理数、无理数、正负数的定义分析得出答案.此题主要考查了实数,正确把握实数有关定义是解题关键.2.【答案】B【解析】解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.3.【答案】C【解析】解:A、√5−√3,无法计算,故此选项错误;B、√(−2)2=2,故此选项错误;C、a5÷a2=a3,正确;D、(ab2)3=a3b6,故此选项错误.故选:C.直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及二次根式的加减运算、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】【分析】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.根据多边形的内角和公式(n−2)⋅180°求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.【解答】解:∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选:C.5.【答案】A【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A.根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.6.【答案】B【解析】【分析】本题考查了根的判别式,牢记“当Δ≥0时,方程有实数根”是解题的关键,属于基础题.根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2−2x+m=0有实数根,∴Δ=(−2)2−4m≥0,解得:m≤1.故选:B.7.【答案】D【解析】解:∵A(−1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=−2x的图象关于原点对称,因此选项A、B错误;∵n>0,∴m−n<m;由B(1,m),C(2,m−n)可知在x≥1时,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.由点A(−1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A、B;再根据B(1,m),C(2,m−n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.本题考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法得出答案.8.【答案】D【解析】解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵点A在反比例函数y=−1x (x<0)上,点B在y=4x(x>0)上,∴S△AOD=1,S△BOE=4,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴(AOOB )2=S△AODS△OBE=14,∴AOOB=12设OA=m,则OB=2m,AB=√m2+(2m)2=√5m,在RtAOB 中,sin∠ABO =OA AB=√5m=√55故选:D .点A ,B 落在函数y =−1x (x <0),y =4x (x >0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.考查反比例函数的几何意义、相似三角形的性质,将面积比转化为相似比,利用勾股定理可得直角边与斜边的比,求出sin∠ABO 的值. 9.【答案】0【解析】解:原式=1−1=0. 故答案为:0.直接利用零指数幂的性质化简得出答案.此题主要考查了实数运算,正确掌握运算法则是解题关键.10.【答案】23【解析】解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:46=23. 故答案为:23.直接利用概率求法进而得出答案.此题主要考查了概率公式,正确掌握概率公式是解题关键. 11.【答案】−1【解析】解:令m =−1,整式为x 2−y 2=(x +y)(x −y). 故答案为:−1(答案不唯一).令m =−1,使其能利用平方差公式分解即可.此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.12.【答案】{x +4.5=yx −1=12y【解析】解:设木条长x 尺,绳子长y 尺,依题意,得:{x +4.5=yx −1=12y . 故答案为:{x +4.5=yx −1=12y. 设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于x ,y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 13.【答案】69【解析】解:在Rt△ABC中,∠ACB=30°,∠ADB=60°,∴∠DAC=30°,∴DA=DC=80,在Rt△ABD中,AB AD =sin∠ADB=sin60°=√32,∴AB=√32AD=√32×80=40√3≈69(米),故答案为69.在Rt△ABC中,∠ACB=30°,∠ADB=60°,则∠DAC=30°,所以DA=DC=80,在Rt△ABD中,通过三角函数关系求得AB的长.本题考查了解直角三角形,熟练应用锐角三角函数关系是解题关键.14.【答案】3π−94√3【解析】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3√3,∵∠CDA=90°,∴CD=3√32,∴阴影部分的面积是:π⋅322−3×3√322−60×π×32360=3π−9√34,故答案为:3π−9√34.根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】−384【解析】解:∵一列数为1,−2,4,−8,16,−32,…,∴这列数的第n个数可以表示为(−2)n−1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(−2)n−1、(−2)n、(−2)n+1,则(−2)n−1⋅(−2)n⋅(−2)n+1=412,即(−2)3n=(22)12,∴(−2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(−2)7+(−2)8+(−2)9=(−2)7×(1−2+4)=(−128)×3=−384,故答案为:−384.根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.16.【答案】②③【解析】解:如图1,∵PM//CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP//CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8−x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8−x)2,解得x=3,∴CN=8−3=5,AC=√AB2+BC2=4√5,AC=2√5,∴CQ=12∴QN=√CN2−CQ2=√5,∴MN=2QN=2√5.故③正确;当MN 过点D 时,如图3,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为S =14S 菱形CMPN =14×4×4=4,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大为S =14×5×4=5,∴4≤S ≤5,故④错误.故答案为:②③.先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CN =NP ,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ =CD ,得Rt △CMQ≌△CMD ,进而得∠DCM =∠QCM =∠BCP =30°,这个不一定成立,判断①错误;点P 与点A 重合时,设BN =x ,表示出AN =NC =8−x ,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形CMPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值便可.此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、勾股定理的综合应用,熟练掌握菱形的判定定理和性质定理、勾股定理是解本题的关键. 17.【答案】解:(1)原式=2m(m−1)×(m −1)=2m ;(2){x +3>1 ①5x ≤6+3x ②, 解①得:x >−2,解②得:x ≤3,所以这个不等式组的解集为:−2<x ≤3.【解析】(1)直接利用分式的乘除运算法则计算得出答案;(2)分别解不等式进而得出不等式组的解.此题主要考查了分式的乘除运算以及不等式组的解,正确掌握解题方法是解题关键. 18.【答案】(1)证明:∵D ,E ,F 分别是AC ,AB ,BC 的中点,∴DE//FC ,EF//CD ,∴四边形DEFC 是平行四边形,∵∠DCF =90°,∴四边形DEFC 是矩形.(2)连接EC ,DF 交于点O ,作射线BO ,射线BO 即为所求.【解析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.本题考查三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)由题意可得,9606−96012=80(m/min)答:小慧返回家中的速度比去文具店的速度快80m/min;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【解析】(1)根据速度=路程/时间的关系,列出等式9606−96012=80即可求解;(2)根据题中已知,描点画出函数图象;(3)根据图象可得小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.20.【答案】118 甲甲的成绩122超过中位数118,乙的成绩125低于其中位数126【解析】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a=117+1192=118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×3+11+7+4+250=270(人).(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.21.【答案】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC =∠DCB ,∵OF =OC ,∴∠OFC =∠OCF ,∴∠OFC =∠DBC ,∴OF//DB ,∴∠OFG +∠DGF =180°,∵FG ⊥AB ,∴∠DGF =90°,∴∠OFG =90°,∴FG 与⊙O 相切;(2)连接DF ,∵CD =2.5,∴AB =2CD =5,∴BC =√AB 2−AC 2=4,∵CD 为⊙O 的直径,∴∠DFC =90°,∴FD ⊥BC ,∵DB =DC ,∴BF =12BC =2,∵sin∠ABC =AC AB =FG FB ,即35=FG 2,∴FG =65.【解析】(1)如图,连接OF ,根据直角三角形的性质得到CD =BD ,得到∠DBC =∠DCB ,根据等腰三角形的性质得到∠OFC =∠OCF ,得到∠OFC =∠DBC ,推出∠OFG =90°,于是得到结论;(2)连接DF ,根据勾股定理得到BC =√AB 2−AC 2=4,根据圆周角定理得到∠DFC =90°,根据三角函数的定义即可得到结论.本题考查了直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.22.【答案】(1)1600.(2)解①设直线AB 的解析式为y =kx +b(k ≠0),把(0,70)(30,40)代入得{b =7030k +b =40,解得{b =70k =−1∴直线AB 的解析式为y =−x +70(Ⅰ)当0<x ≤30时w =[80−(−x +70)](−2x +120)=−2x 2+100x +1200=−2(x −25)2+2450∴当x =25时,w 最大值=2450(Ⅱ)当30<x ≤50时,w =(80−40)×(−2x +120)=−80x +4800,∵w 随x 的增大而减小,∴当x =31时,w 最大值=2320,∴w ={−2x 2+100x +1200,(0<x ≤30)−80x +4800,(30<x ≤50)第25天的利润最大,最大利润为2450元.②(Ⅰ)当0<x ≤30时,令−2(x −25)2+2450=2400元,解得x 1=20,x 2=30.∵抛物线w =−2(x −25)2+2450开口向下,由其图象可知,当20≤x ≤30时,w ≥2400此时,当天利润不低于2400元的天数为:30−20+1=11天(Ⅱ)当30<x ≤50时,由①可知当天利润均低于2400元,综上所述,当天利润不低于2400元的共有11天.【解析】【分析】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.(1)由图象可知,第40天时的成本为40元,此时的产量为z =−2×40+120=40,则可求得第40天的利润.(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)由图象可知,第40天时的成本为40元,此时的产量为z =−2×40+120=40, 则第40天的利润为:(80−40)×40=1600元,故答案为1600.(2)见答案.23.【答案】解:(1)证明:∵四边形ABCD 为圆内接四边形,∴∠A +∠C =180°,∠ABC +∠ADC =180°,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴AD⏜=CD ⏜, ∴AD =CD ,∴四边形ABCD 是等补四边形;(2)AD 平分∠BCD ,理由如下:如图2,过点A 分别作AE ⊥BC 于点E ,AF 垂直CD 的延长线于点F , 则∠AEB =∠AFD =90°, ∵四边形ABCD 是等补四边形, ∴∠B +∠ADC =180°,又∠ADC +∠ADF =180°,∴∠B =∠ADF , ∵AB =AD , ∴△ABE≌△ADF(AAS), ∴AE =AF , ∴AC 是∠BCF 的平分线,即AC 平分∠BCD ;(3)如图3,连接AC , ∵四边形ABCD 是等补四边形,∴∠BAD +∠BCD =180°,又∠BAD +∠EAD =180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=12∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=12∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴AFDF =CFAF,即5DF =DF+105,∴DF=5√2−5.【解析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.24.【答案】解:(1)在y=−12x+2中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入y=−12x2+bx+c,得{c=2−12×16+4b+c=0,解得{b=32c=2∴抛物线得解析式为y=−12x2+32x+2(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE//x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE ∴∠DBE=∠BAC设D点的坐标为(x,−12x2+32x+2),则BF=x,DF=−12x2+32x∵tan∠DBE=DFBF ,tan∠BAC=BOAO∴DFBF =BOAO,即−12x2+32xx=24解得x1=0(舍去),x2=2当x=2时,−12x2+32x+2=3∴点D的坐标为(2,3)(3)当BO为边时,OB//EF,OB=EF设E(m,−12m+2),F(m,−12m2+32m+2)EF=|(−12m+2)−(−12m2+32m+2)|=2解得m1=2,m2=2−2√2,m3=2+2√2当BO为对角线时,OB与EF互相平分过点O作OF//AB,直线OFy=−12x交抛物线于点F(2+2√2,−1−√2)和(2−2√2,−1+√2)求得直线EF解析式为y=−√22x+1或y=√22x+1直线EF与AB的交点为E,点E的横坐标为−2√2−2或2√2−2∴E点的坐标为(2,1)或(2−2√2,1+√2)或(2+2√2,1−√2)或(−2−2√2,3+√2)或(−2+2√2,3−√2)【解析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.本题考查了待定系数法,2倍角关系和平行四边形点存在类问题,将2倍角关系转化为等角关系是(2)问题的解题关键,根据平行四边形的性质,以OB为边和对角线是(3)问题的解题关键,本题综合难度不大,是一道很好的压轴问题.。
2019年湖北省咸宁市中考数学试卷以及答案解析
2019年湖北省咸宁市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分。
)1.(3分)下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数2.(3分)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.3.(3分)下列计算正确的是()A.﹣=B.C.a5÷a2=a3D.(ab2)3=ab6 4.(3分)若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°5.(3分)如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.(3分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥17.(3分)已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x28.(3分)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,共24分)9.(3分)计算:()0﹣1=.10.(3分)一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.11.(3分)若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是(写一个即可).12.(3分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.13.(3分)如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为m(结果保留整数,≈1.73).14.(3分)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).15.(3分)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.16.(3分)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).三、专心解一解(本大题共8小题,满分72分)17.(8分)(1)化简:÷;(2)解不等式组:18.(7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).19.(8分)小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?20.(8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.(9分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.22.(10分)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?23.(10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.2019年湖北省咸宁市中考数学试卷答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分。
2019年湖北省咸宁市中考数学模拟试卷(6月份)(含答案)
2019年湖北省咸宁市中考数学模拟试卷(6月份)一.选择题(满分24分,每小题3分)1.下列各数中,属于无理数的是()A.0.010010001 B.C.3.14 D.﹣2.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1063.计算(﹣x2)3的结果是()A.﹣x6B.x6C.﹣x5D.﹣x84.在平面直角坐标系中,下列函数的图象经过原点的是()A.y=3x2+4x﹣5 B.y=﹣C.y=﹣6x D.y=﹣2x+15.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差6.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°7.如图,M是△ABC三条角平分线的交点,过M作DE⊥AM,分别交AB、AC于D,E两点,设BD=a,DE=b,CE=c,关于x的方程ax2+bx+c=0()A.一定有两个相等实根B.一定有两个不相等实根C.有两个实根,但无法确定是否相等D.无实根8.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则不等式(kx+b)(mx+n)>0的解集为()A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1或x >4二.填空题(满分24分,每小题3分)9.在平行四边形ABCD 中,已知∠A ﹣∠B =60°,则∠C = .10.已知 1<x <3,化简:+|x ﹣1|= .11.如图,在△ABC 中,∠C =90°,AB =10cm ,AC =8cm ,点P 从点A 开始出发向点C 以2cm /s 速度移动,点Q 从B 点出发向点C 以1cm /s 速度移动.若P ,Q 分别同时从A ,B 出发,设运动时间为t ,当四边形APQB 的面积是16cm 2时,则t 的值为 .12.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是 . 13.观察下列等式:a 1=1+,a 2=1+,a 3=1+,a 4=1+,…请你猜想第n 个等式a n = (n 是正整数),并按此规律计算a 1•a 2•a 3•a 4…•a n = .14.已知点A 、B 、C 、D 均在圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形的周长为10cm .,则∠ABC 的度数为 .15.如图,已知点A (3,3),点B (0,2),点A 在二次函数y =x 2+bx ﹣9的图象上,作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交二次函数图象于点C ,则点C 的坐标为 .16.如图,在菱形ABCD中,已知∠ABC=60°,AB=6,E为AD中点,BE与AC交于点O,F为EC上点,且OF∥BC,连接BF,BF与AC交于点M,则OM的长度是.三.解答题17.(8分)(1)计算:(2)8x2y4•(﹣)•()18.(7分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.19.(8分)如图,在平面直角坐标系中,菱形ABCD的顶点B,C在x轴上,反比例函数y=﹣(x<0)的图象经过A,E两点,反比例函数y=(x>0)的图象经过第一象限内的D,H两点,正方形EFCH的顶点F.G在AD 上.已知A(﹣1,a),B(﹣4,0).(1)求点C的坐标及k的值;(2)直接写出正方形EFGH的边长.20.(8分)某校260名学生参加植树活动,要求每人植4至7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成如右的扇形统计图和条形统计图.(1)求这次被调查学生的人数.(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?21.(9分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=,求⊙O的直径.22.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?23.(10分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点.P是对角线AC上一个动点,求PE+PB 的最小值.24.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c 经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:无理数是,故选:B.2.解:316 000 000用科学记数法可表示为3.16×108,故选:C.3.解:(﹣x2)3=﹣x6,故选:A.4.解:A、当x=0时,y=﹣5,不经过原点,故本选项错误;B、当x=0时,y=﹣无意义,不经过原点,故本选项错误;C、当x=0时,y=0,经过原点,故本选项正确.D、当x=0时,y=1,不经过原点,故本选项错误;故选:C.5.解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.6.解:∵圆锥的主视图与左视图都是边长为4的等边三角形,∴圆锥的母线长为4、底面圆的直径为4,则圆锥的侧面展开图扇形的半径为4,设圆锥的侧面展开图扇形的圆心角是n,根据题意,得:=4π,解得:n=180°,故选:D.7.解:∵AM平分∠BAC,DE⊥AM,∴∠ADM=∠AEM,MD=ME=DE=b,∴∠BDM=∠MEC=90°+∠BAC,∴∠BMC=90°+∠BAC,∴∠BDM=∠MEC=∠BMC,∵M是△ABC的内角平分线的交点,∴∠1=∠2,∴△DBM∽△MBC,同理可得出:△BMC∽△MEC,∴△DBM∽△EMC,∴,∴BD•EC=MD•ME,即:ac=b2,即△=b2﹣4ac=0,故选:A.8.解:∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选:C.二.填空题9.解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=60°,把这两个式子相加相减即可求出∠A=∠C=120°,故答案为:120°.10.解:∵1<x<3,∴x﹣3<0、x﹣1>0,则原式=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2,故答案为:2.11.解:在△ABC中,∠C=90°,AB=10cm,AC=8cm,∴BC==6cm.当运动时间为t 秒时,AP =2tcm ,PC =(8﹣2t )cm ,BQ =tcm ,CQ =(6﹣t )cm ,根据题意得:×6×8﹣(8﹣2t )(6﹣t )=16, 整理得:t 2﹣10t +16=0, 解得:t 1=2,t 2=8. ∵8﹣2t ≥0, ∴t ≤4, ∴t =2. 故答案为:2.12.解:∵甲、乙、丙3名学生随机排成一排拍照,共有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲这6种等可能结果,而甲排在中间的只有2种结果,∴甲排在中间的概率为,故答案为:13.解:∵a 1=1+,a 2=1+,a 3=1+,a 4=1+,…∴a n =1+,则a 1•a 2•a 3•a 4…•a n =××××…××==,故答案为:1+、.14.解:∵AC 平分∠BCD , ∴∠ACB =∠ACD , ∵AD ∥BC , ∴∠DAC =∠ACB , ∴∠DAC =∠DCA ,∵∠ADC +∠DAC +∠DCA =180°, ∴∠DAC =∠DCA =∠ACB =30°, ∴弧AB +弧AD +弧CD =180°, ∴BC 是直径, ∴∠BAC =90°,∴∠ABC =90°﹣30°=60°,故答案为:60°.15.解:∵点A(3,3)在二次函数y=x2+bx﹣9的图象上,∴9+3b﹣9=3,解得b=1,∴二次函数为y=x2+x﹣9,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB (AAS),设BD=a,则EF=a,∵点A(3,3)和点B(0,2),∴DF=3﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴3﹣a+2﹣a=3,解得a=1,∴F(2,1),设直线AC的解析式为y=kx+b,则,解得,∴y=2x﹣3,解方程组,可得或,∴C(﹣2,﹣7),故答案为:(﹣2,﹣7).16.解:∵四边形ABCD是菱形,∴AB=BC=AD=6,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=BC=6,∵E是AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴=,∴AO=2,OC=4,∵OF∥BC,BC∥AD,∴OF∥AE,∴△OFC∽△AEC,∴,∴,OF=2,∵OF∥BC,∴,∴,∵OM+MC=4,∴OM=1.故答案为:1.三.解答题17.解:(1)原式=1﹣2+1+=;(2)原式=﹣6x3y2•()=﹣36x2y.18.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.解:(1)将A(﹣1,a)代入y=﹣中,得a=4.∴点A的坐标为(﹣1,4),过点A作AM⊥x轴于点M,过点D作DN⊥x轴于点N,∴∠A MB=∠DNC=90°,∴AM∥DN.则MO=1,AM=4.∵点B(﹣4,0),∴OB=4,BM=BO﹣MO=3.在Rt△ABM中,A B===5,∴四边形ABCD是菱形,∴AD∥BC,AD=BC=MN=5,AM=DN=4,OC=BC﹣BO=5﹣4=1,ON=MN﹣M0=5﹣1=4.∴点C坐标为(1,0),点D坐标为(4,4),把点D(4,4)代入y=中,得k=16;(2)设正方形EFGH的边长为a,则∵E点反比例函数y=﹣(x<0)的图象上,∴在E(﹣,a+4),∵H点在y=的图象上,∴H(,a+4),∴﹣(﹣)=a,解得:a=2﹣2,(负值舍去).∴正方形EFGH的边长为2﹣2.20.解:(1)总人数是:8÷40%=20(人).(2)∵种植5棵的有8人,最多,∴众数为5棵;∵共有20人,∴中位数是第10人和第11人的平均数,∴中位数为=5棵;(3)平均数==5.3(棵).估计260名学生共植树5.3×260=1378(棵).21.(1)证明∵BD是直径,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)证明:连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)解:连接BN,则∠MBN=90°.∵tan∠M=,∴=,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴=,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.5x,∴OM=MN=1.25x,∴OC=2x﹣1.25x=0.75x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.75x=AD=3,解得:x=4,∴MO=1.25x=1.25×4=5,∴⊙O的半径为5.22.解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.23.解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2,即PE+PB的最小值为2.24.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),(,8),当∠FDQ=90°时,F1(,4),当∠FQD=90°时,则F2当∠DFQ=90°时,设F(,n),则FD 2+FQ 2=DQ 2,即+(8﹣n )2++(n ﹣4)2=16,解得:n =6±,∴F 3(,6+),F 4(,6﹣), 满足条件的点F 共有四个,坐标分别为F 1(,8),F 2(,4),F 3(,6+),F 4(,6﹣).。
最新2019年湖北省咸宁市中考数学试卷含答案
最新湖北省咸宁市初中毕业生学业考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃〜2 ℃ ,则这一天的温差是( ) A .1℃ B .-1℃ C .5℃ D .-5℃2. 如图,已知l b a ,//与 b a ,相 交 ,若ο701=∠,则2∠ 的度数等于( )A .ο120B .ο110C .ο100D .ο703.年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为( )A .910123.5⨯B .101012.35⨯C .8101.235⨯D . 11101.235⨯ 3. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5.下列计算正确的是( )A .3332a a a =⋅B .422a a a =+ C. 326a a a =÷D .632-82-a a =)( 6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( )A .121=+x xB .-121=⋅x x C. 21x x < D .21221=+x x 7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8 C.25 D .358. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲 、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用 16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为ο45,测得底部C 的俯角力ο60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数, 1.733≈).14. 如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,,Λ2011216121则这个数列的前个数列的和为____________________________.16.如图,已知ο120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为οο1200(<<αα且)ο60≠α,作点A 关于直线'OM 的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化;③ 当 ο30=α时,四边形OADC 为荽形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:2-38-123+;(2)化简:()()().123---+a a a a 18.已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ; (3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ; (4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数 0 1 2 3 4 5 人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M(1) 试说明点N 也在函数)0(>=x xky 的图象上; (2) 将直线MN 沿y 轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1) 求证DE 是⊙O 的切线;(2) 若,5,52==BC AB 求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:甲种客车 乙种客车载客量(人/辆) 30 42 租金(人/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可); (2)如图2,在四边形ABCD 中,οο140,80=∠=∠ADC ABC ,对角线BD 平分ABC ∠. 求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,ο30=∠=∠HFG EFH .连接EG ,若EFG ∆的面积为32,求FH 的长. 24.如图,直线343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
湖北省咸宁市2019年中考数学试题(含解析)
2019年湖北省咸宁市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分。
)1.下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.3.下列计算正确的是()A.﹣=B.C.a5÷a2=a3D.(ab2)3=ab6 4.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥17.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x28.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,共24分)9.计算:()0﹣1=.10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.11.若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是(写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为m(结果保留整数,≈1.73).14.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).15.有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.16.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC 上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G 处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).三、专心解一解(本大题共8小题,满分72分)17.(8分)(1)化简:÷;(2)解不等式组:18.(7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).19.(8分)小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?20.(8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.(9分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.22.(10分)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?23.(10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.2019年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分。
湖北省咸宁市2019-2020学年中考数学一模考试卷含解析
湖北省咸宁市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是()A.2.098 7×103B.2.098 7×1010C.2.098 7×1011D.2.098 7×10122.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定3.若分式11x有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠04.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+95.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A.0.5 B.1 C.3 D.π6.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A.﹣3或7 B.﹣4或6 C.﹣4或7 D.﹣3或6-=-,则括号内的数是()7.若()53A.2-B.8-C.2 D.88.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a29.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP 的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为()A.B.C.D.10.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.311.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE 交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm12.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t (s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A .AE=6cmB .4sin EBC 5∠= C .当0<t≤10时,22y t 5= D .当t=12s 时,△PBQ 是等腰三角形 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在圆心角为90°的扇形OAB 中,半径OA=1cm ,C 为»AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为_____cm 1.14.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________.15.化简:①16=_____;②2(5)-=_____;③510⨯=_____.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正方形.作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点,顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.17.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.18.如图,如果两个相似多边形任意一组对应顶点P 、P′所在的直线都是经过同一点O ,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O 叫做位似中心,已知△ABC 与△A′B′C′是关于点O 的位似三角形,OA′=3OA ,则△ABC 与△A′B′C′的周长之比是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B .求证:△AED ≌△EBC ;当AB=6时,求CD 的长.20.(6分)已知关于x 的方程x 1+(1k ﹣1)x+k 1﹣1=0有两个实数根x 1,x 1.求实数k 的取值范围; 若x 1,x 1满足x 11+x 11=16+x 1x 1,求实数k 的值.21.(6分)综合与探究:如图,已知在△ABC 中,AB=AC ,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点()3,1C -在二次函数21332y x bx =-++的图像上. (1)求二次函数的表达式;(2)求点 A ,B 的坐标;(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.22.(8分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a+7扩充得到一个新数c ,称所得的新数c 为“如意数”.若a =2,b =﹣1,直接写出a ,b 的“如意数”c ;如果a =3+m ,b =m ﹣2,试说明“如意数”c为非负数.23.(8分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.24.(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.25.(10分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.26.(12分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.27.(12分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】将2098.7亿元用科学记数法表示是2.0987×1011,故选:C.点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10na 的形式,其中110a ≤<,n 是比原整数位数少1的数.2.C【解析】【分析】因为R 不动,所以AR 不变.根据三角形中位线定理可得EF=12AR ,因此线段EF 的长不变. 【详解】如图,连接AR ,∵E 、F 分别是AP 、RP 的中点,∴EF 为△APR 的中位线,∴EF= 12AR ,为定值. ∴线段EF 的长不改变.故选:C .【点睛】本题考查了三角形的中位线定理,只要三角形的边AR 不变,则对应的中位线的长度就不变. 3.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.4.B【解析】【分析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.5.C【分析】连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.【详解】连接OC、OD,∵六边形ABCDEF是正六边形,∴∠COD=60°,又OC=OD,∴△COD是等边三角形,∴OC=CD,正六边形的周长:圆的直径=6CD:2CD=3,故选:C.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.6.C【解析】【分析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.7.C【解析】【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解:253-=-,故选:C.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.8.D【解析】【分析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.9.C【解析】【分析】先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.【详解】由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,y=12x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.10.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.11.C【解析】【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,(cm).故选C.【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.12.D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm ,BEC 11S 40BC EF 10EF 5EF 22∆==⋅⋅=⋅⋅=, ∴EF=1.∴EF 84sin EBC BE 105∠===. (3)结论C 正确,理由如下:如图,过点P 作PG ⊥BQ 于点G ,∵BQ=BP=t ,∴2BPQ 11142y S BQ PG BQ BP sin EBC t t t 22255∆==⋅⋅=⋅⋅⋅∠=⋅⋅⋅=. (4)结论D 错误,理由如下:当t=12s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图,连接NB ,NC .此时AN=1,ND=2,由勾股定理求得:NB=82,NC=217.∵BC=10,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12π+2﹣12 【解析】试题分析:如图,连接OC ,EC ,由题意得△OCD ≌△OCE ,OC ⊥DE ,DE==,所以S 四边形ODCE =×1×=,S △OCD =,又S △ODE =×1×1=,S 扇形OBC ==,所以阴影部分的面积为:S 扇形OBC +S △OCD ﹣S △ODE =+﹣;故答案为.考点:扇形面积的计算.14..【解析】【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:.故答案为:.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.15.4 5 2【解析】【分析】根据二次根式的性质即可求出答案.【详解】①原式24=4;②原式=5-=5;③原式502,故答案为:①4;②5;③2【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.17.28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.18.1:1【解析】分析:根据相似三角形的周长比等于相似比解答.详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC 与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD ∥EC∴四边形AECD 是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3 点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 20. (2) k≤54;(2)-2. 【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得x 2+x 2=2﹣2k 、x 2x 2=k 2﹣2,将其代入x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2中,解之即可得出k 的值.试题解析:(2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2,∴△=(2k ﹣2)2﹣4(k 2﹣2)=﹣4k+5≥0,解得:k≤, ∴实数k 的取值范围为k≤. (2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2,∴x 2+x 2=2﹣2k ,x 2x 2=k 2﹣2.∵x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2,∴(2﹣2k )2﹣2×(k 2﹣2)=26+(k 2﹣2),即k 2﹣4k ﹣22=0, 解得:k=﹣2或k=6(不符合题意,舍去).∴实数k 的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.21.(1)2113362y x x =-++;(2)(1,0),(0,2)A B -;(3)192. 【解析】【分析】(1)将点(3,1)C -代入二次函数解析式即可;(2)过点C 作CD x ⊥轴,证明BAO ACD ≅V V 即可得到1,2OA CD OB AD ====即可得出点 A ,B 的坐标; (3)设点E 的坐标为()2(0)E m m ->,,解方程21132362m m -++=-得出四边形ABEF 为平行四边形,求出AC ,AB 的值,通过ABC V 扫过区域的面积=EFC ABEF S S ∆+四边形代入计算即可.【详解】解:(1)∵点(3,1)C -在二次函数的图象上,21333132b ∴-⨯++=-. 解方程,得16b = ∴二次函数的表达式为2113362y x x =-++. (2)如图1,过点C 作CD x ⊥轴,垂足为D .90CDA ∴∠=︒90CAD ACD ∴∠+∠=︒.90BAC ∠=︒Q ,90BAO CAD ∴∠+∠=︒BAO ACD ∴∠=∠.在Rt BAO V 和Rt ACD △中,∵90BOA ADC BAO ACD AB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BAO ACD ∴≅V V .∵点C 的坐标为(3)1-,, 1,312OA CD OB AD ∴====-=.(1,0),(0,2)A B ∴-.(3)如图2,把ABC ∆沿x 轴正方向平移,当点B 落在抛物线上点E 处时,设点E 的坐标为()2(0)E m m ->,. 解方程21132362m m -++=-得:3m =-(舍去)或72m = 由平移的性质知,AB EF =且//AB EF ,∴四边形ABEF 为平行四边形,72AF BE ∴== 2222215AC AB OB AO ==+=+QABC ∴V 扫过区域的面积=EFC ABEF S S ∆+四边形=171255222OB AF AB AC ⋅+⋅=⨯+192=. 【点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.22.(1)4;(2)详见解析.【解析】【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a =2,b =﹣1∴c =b 2+ab ﹣a+7=1+(﹣2)﹣2+7=4(2)∵a =3+m ,b =m ﹣2∴c =b 2+ab ﹣a+7=(m ﹣2)2+(3+m )(m ﹣2)﹣(3+m )+7=2m 2﹣4m+2=2(m ﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.(1)y=12x;(2)1;【解析】【分析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(32m,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.24.见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.25.(1)点的坐标为;(2);(3)或.【解析】【分析】(1)点A在反比例函数上,轴,,求坐标;(2)梯形面积,求出B点坐标,将点代入即可;(3)结合图象直接可求解;【详解】解:(1)∵点在的图像上,轴,.∴,∴∴点的坐标为;(2)∵梯形的面积是3,∴,解得,∴点的坐标为,把点与代入得解得:,.∴一次函数的解析式为.(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立,得点E的坐标为即的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或.【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键.26.S1,S3,S4,S5,1【解析】【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.故答案为S1,S3,S4,S5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题. 27.(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】【分析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.。
2019年湖北省咸宁市中考数学试卷 含答案和评分标准
湖北省咸宁市2019年初中毕业学业考试数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分)1.下列关于0的说法正确的是( )(A )0是正数 (B )0是负数 (C )0是有理数 (D )0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”,我国对勾股定理得证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理得图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )3.下列计算正确的是( )(A )23-5= (B )2)2(2-=- (C )325a a a =÷ (D )632)(ab ab = 4.若正方形的内角和是540°,则该正多边形的一个外角为( )(A )45° (B )60° (C )72° (D )90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的( )(A )主视图会发生改变 (B )俯视图会发生改变(C )左视图会发生改变 (D )三种视图都会发生改变6.若关于x 的一元二次方程022=+-m x x 有实数根,则实数m 的取值范围是( )(A )1<m (B )1≤m (C )1>m (D )1≥m7.已知点A (-1,m ),B (1,m ),C (2,m-n )(n >0)在同一个函数的图象上,这个函数可能是( )(A )y=x (B )xy 2-= (C )2x y = (D )2-x y = 8.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A,B 恰好分别落在函数)0(4),0(1>=<-=x xy x x y 的图象上,则sin ∠ABO 的值为( ) (A )31 (B )33 (C )45 (D )55二、细心填一填(本大题共8小题,每小题3分,共24分) 9.计算:=-1)2(0 .10.一个质地均匀的小正方体,六个面分别标有数字“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是 .11.若整式m (22my x +为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是 (写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果木条长x 尺,绳子长y 尺,可列方程组为 .13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB=30°,点D 处测得∠ADB=60°,CD=80m ,则河宽AB 约为 m (结果保留整数,73.13 ).14.如图,半圆的直径AB=6,点C 在半圆上,∠BAC=30°,则阴影部分的面积为 (结果保留π).15.有一列数,按一定规律排列成1,-2,4,-8,16,-32,…,其中某三个相邻数的积是124,则这三个数的和是 .16. 如图,先有一张矩形纸片ABCD ,AB=4,BC=8,点M,N 分别在矩形的边AD,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM.下列结论:①CQ=CD;②四边形CMPN 是菱形;③P ,A 重合时,MN=25;④△PQM 的面积S 的取值范围是3≤S ≤5.其中正确的是 (把正确结论的序号都填上).三、专心解一解(本大题共8小题,满分72分)17.(本题满分8分,每小题4分)(1)化简:1122-÷-m m m ;(2)解不等式组:⎩⎨⎧+≤>+xx x 3651318.(7分)在Rt △ABC 中,∠C=90°,∠A=30°,D,E,F 分别是AC,AB,BC 的中点,连接ED,EF.(1)求证:四边形DEFC 是矩形;(2)请用无刻度的直尺在图中作出∠ABC 的平分线(保留作图痕迹,不写作法).19.(8分)小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图像.(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?20.(8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:根据以上信息,回答下列问题:(1)表中a= ;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.(9分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.)若AC=3,CD=2.5,求FG的长.(222.(本题10分)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=-2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w圆.①求w与x之间的函数关系式,并指出第几天的利润最大.最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?23.(10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD 的延长线于点F,CD=10,AF=5,求DF的长.24.(12分)如图,在平面直角坐标系中,直线221+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=221经过A,B 两点且与x 轴的负半轴交于点C. (1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当∠ABD=2∠BAC 时,求点D 的坐标;(3)已知E,F 分别是直线AB 和抛物线上的动点,当B,O,E,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.。
2019年湖北省咸宁市中考数学试卷(解析版)
2019年湖北省咸宁市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.3.下列计算正确的是()A.﹣=B.C.a5÷a2=a3D.(ab2)3=ab64.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1 B.m≤1 C.m>1 D.m≥17.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x28.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.二、填空题(共8小题)9.计算:()0﹣1=.10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.11.若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是﹣(写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为m(结果保留整数,≈1.73).14.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).15.有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣.16.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).三、解答题(共8小题)17.(1)化简:÷;(2)解不等式组:18.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).19.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?20.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表年级平均数中位数众数七116a115八119126117七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116117 119根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.22.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?23.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD =10,AF=5,求DF的长.24.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.2019年湖北省咸宁市中考数学试卷(解析版)参考答案一、单选题(共8小题)1.【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【解答】解:0既不是正数也不是负数,0是有理数.故选:C.【知识点】实数2.【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【解答】解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.【知识点】勾股定理的证明3.【分析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣,无法计算,故此选项错误;B、=2,故此选项错误;C、a5÷a2=a3,正确;D、(ab2)3=a3b6,故此选项错误.故选:C.【知识点】幂的乘方与积的乘方、二次根式的加减法、同底数幂的除法4.【分析】根据多边形的内角和公式(n﹣2)•180°求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.【解答】解:∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选:C.【知识点】多边形内角与外角5.【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A.【知识点】简单组合体的三视图6.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m≥0,解得:m≤1.故选:B.【知识点】根的判别式7.【分析】由点A(﹣1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A、B;再根据B(1,m),C(2,m﹣n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.【解答】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=的图象关于原点对称,因此选项A、B错误;∵n>0,∴m﹣n<m;由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.【知识点】一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、二次函数图象上点的坐标特征8.【分析】点A,B落在函数y=﹣(x<0),y=(x>0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.【解答】解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵点A在反比例函数y=﹣(x<0)上,点B在y=(x>0)上,∴S△AOD=,S△BOE=2,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴()2=,∴设OA=m,则OB=2m,AB=,在RtAOB中,sin∠ABO=故选:D.【知识点】解直角三角形、反比例函数图象上点的坐标特征二、填空题(共8小题)9.【分析】直接利用零指数幂的性质化简得出答案.【解答】解:原式=1﹣1=0.故答案为:0.【知识点】零指数幂、实数的运算10.【分析】直接利用概率求法进而得出答案.【解答】解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:=.故答案为:.【知识点】概率公式11.【分析】令m=﹣1,使其能利用平方差公式分解即可.【解答】解:令m=﹣1,整式为x2﹣y2=(x+y)(x﹣y).故答案为:﹣1(答案不唯一).【知识点】提公因式法与公式法的综合运用12.【分析】设木条长x尺,绳子长y尺,根据绳子和木条长度间的关系,可得出关于x,y的二元一次方程组,此题得解.【解答】解:设木条长x尺,绳子长y尺,依题意,得:.故答案为:.【知识点】由实际问题抽象出二元一次方程组13.【分析】在Rt△ABC中,∠ACB=30°,∠ADB=60°,则∠DAC=30°,所以DA=DC=80,在Rt△ABD中,通过三角函数关系求得AB的长.【解答】解:在Rt△ABC中,∠ACB=30°,∠ADB=60°,∴∠DAC=30°,∴DA=DC=80,在Rt△ABD中,,∴==40≈69(米),故答案为69.【知识点】解直角三角形的应用、勾股定理的应用14.【分析】根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.【解答】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3,∵∠CDA=90°,∴CD=,∴阴影部分的面积是:=3π﹣,故答案为:3π﹣.【知识点】圆周角定理、扇形面积的计算15.【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.【解答】解:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.【知识点】规律型:数字的变化类16.【分析】先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CN=NP,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ=CD,得Rt△CMQ≌△CMD,进而得∠DCM=∠QCM=∠BCP=30°,这个不一定成立,判断①错误;点P与点A重合时,设BN=x,表示出AN=NC=8﹣x,利用勾股定理列出方程求解得x的值,进而用勾股定理求得MN,判断出③正确;当MN过D点时,求得四边形CMPN的最小面积,进而得S的最小值,当P与A重合时,S的值最大,求得最大值便可.【解答】解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.【知识点】菱形的判定与性质、翻折变换(折叠问题)、矩形的性质三、解答题(共8小题)17.【分析】(1)直接利用分式的乘除运算法则计算得出答案;(2)分别解不等式进而得出不等式组的解.【解答】解:(1)原式=×(m﹣1)=;(2),解①得:x>﹣2,解②得:x≤3,所以这个不等式组的解集为:﹣2<x≤3.【知识点】分式的乘除法、解一元一次不等式组18.【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.【知识点】矩形的判定与性质、作图—复杂作图、直角三角形斜边上的中线、三角形中位线定理19.【分析】(1)根据速度=路程/时间的关系,列出算式即可求解;(2)根据题中已知,描点画出函数图象;(3)根据图象可得小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【解答】解:(1)由题意可得,(m/min)答:小慧返回家中的速度比去文具店的速度快80m/min;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【知识点】一次函数的应用20.【分析】(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.【解答】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a==118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×=270(人).【知识点】众数、算术平均数、频数(率)分布直方图、中位数、用样本估计总体21.【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG=90°,于是得到结论;(2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得到∠DFC=90°,根据三角函数的定义即可得到结论.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.【知识点】直线与圆的位置关系、勾股定理、垂径定理、直角三角形斜边上的中线22.【分析】(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40,则可求得第40天的利润.(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40则第40天的利润为:(80﹣40)×40=1600元故答案为1600(2)①设直线AB的解析式为y=kx+b(k≠0),把(0,70)(30,40)代入得,解得∴直线AB的解析式为y=﹣x+70(Ⅰ)当0<x≤30时w=[80﹣(﹣x+70)](﹣2x+120)=﹣2x2+100x+1200=﹣2(x﹣25)2+2450∴当x=25时,w最大值=2450(Ⅱ)当30<x≤50时,w=(80﹣40)×(﹣2x+120)=﹣80x+4800∵w随x的增大而减小∴当x=31时,w最大值=2320∴第25天的利润最大,最大利润为2450元②(Ⅰ)当0<x≤30时,令﹣2(x﹣25)2+2450=2400元解得x1=20,x2=30∵抛物线w=﹣2(x﹣25)2+2450开口向下由其图象可知,当20≤x≤30时,w≥2400此时,当天利润不低于2400元的天数为:30﹣20+1=11天(Ⅱ)当30<x≤50时,由①可知当天利润均低于2400元综上所述,当天利润不低于2400元的共有11天.【知识点】二次函数的应用23.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠F AD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.【解答】解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠F AD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠F AD,又∠AFC=∠DF A,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.【知识点】圆的综合题24.【分析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.【解答】解:(1)在中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF=∵tan∠DBE=,tan∠BAC=∴=,即解得x1=0(舍去),x2=2当x=2时,=3∴点D的坐标为(2,3)(3)当BO为边时,OB∥EF,OB=EF设E(m,),F(m,)EF=|()﹣()|=2解得m 1=2,,当BO为对角线时,OB与EF互相平分过点O作OF∥AB,直线OF交抛物线于点F()和()求得直线EF解析式为或直线EF与AB的交点为E,点E的横坐标为或∴E点的坐标为(2,1)或(,)或()或()或()【知识点】二次函数综合题。
湖北省咸宁市2019年中考数学真题试题(含解析)
湖北省咸宁市2019年中考数学真题试题一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分)1. 咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A. 1℃B. ﹣1℃C. 5℃D. ﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,3所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.2. 如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A. 120°B. 110°C. 100°D. 70°【答案】B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3. 2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A. 123.5×109B. 12.35×1010C. 1.235×108D. 1.235×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】123500000000的小数点向左移动11位得到1.235,所以 123500000000用科学记数法表示为1.235×1011,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A. 主视图和左视图相同B. 主视图和俯视图相同C. 左视图和俯视图相同D. 三种视图都相同【答案】A【解析】【分析】分别画出该几何体的三视图进而得出答案.【详解】如图所示:,故该几何体的主视图和左视图相同,故选A.【点睛】本题考查了三视图,解题的关键是得出该几何体的三视图.5. 下列计算正确的是()A. a3•a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (﹣2a2)3=﹣8a6【答案】D【解析】【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方的运算法则逐一计算可得.【详解】A、a3•a3=a6,故A选项错误;B、a2+a2=2a2,故B选项错误;C、a6÷a2=a4,故C选项错误;D、(﹣2a2)3=﹣8a6,故D选项正确,故选D.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.6. 已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A. x1+x2=1B. x1•x2=﹣1C. |x1|<|x2|D. x12+x1=【答案】D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.7. 如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5D. 5【答案】B【解析】【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【详解】如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB==8,故选B.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等,正确添加辅助线以及熟练应用相关的性质与定理是解题的关键.8. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9. 如果分式有意义,那么实数x的取值范围是_____.【答案】x≠2【解析】分析:根据分式有意义,分母不等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为:x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.10. 因式分解:ab2﹣a=_____.【答案】a(b+1)(b﹣1)【解析】分析:首先提取公因式,再用公式法分解因式即可.详解:原式故答案为:点睛:考查因式分解,本题是提取公因式法和公式法相结合.注意分解一定要彻底.11. 写出一个比2大比3小的无理数(用含根号的式子表示)_____.【答案】【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_________。
2019年湖北省咸宁中考数学试卷含答案-答案在前
湖北省咸宁市2019年初中毕业生学业考试数学答案解析一、精心选一选1.【答案】C【解析】直接利用有理数、无理数、正负数的定义分析得出答案.解:0既不是正数也不是负数,0是有理数.故选:C .【考点】实数2.【答案】B【解析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形. 解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B .【考点】勾股定理的证明3.【解析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.解:AB 2,故此选项错误;C 、523a a a ÷=,正确;D 、()3236ab a b =,故此选项错误.故选:C .【考点】合并同类项,二次根式的加减运算,积的乘方运算,同底数幂的乘除运算4.【答案】C【解析】根据多边形的内角和公式2180n ⋅︒(-)求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.解:∵正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,∵多边形的外角和都是360︒,∴多边形的每个外角360572=÷=︒.故选:C .【考点】多边形的内角和与外角和之间的关系5.【答案】A【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.解:如果将小正方体A 放到小正方体B 的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A .【考点】简单组合体的三视图6.【答案】B【解析】根据方程的系数结合根的判别式0≥,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.解:∵关于x 的一元二次方程220x x m +=-有实数根,∴2(2)40m =--≥,解得:1m ≤.故选:B .【考点】根的判别式7.【答案】D【解析】由点(1,)A m -,(1,)B m 的坐标特点,可知函数图象关于y 轴对称,于是排除选项A 、B ;再根据(1,)B m ,(2,)C m n -的特点和二次函数的性质,可知抛物线的开口向下,即0a <,故D 选项正确.解:∵(1,)A m -,(1,)B m ,∴点A 与点B 关于y 轴对称;由于y x =,2y x=-的图象关于原点对称,因此选项A 、B 错误; ∵n >0,∴m n m -<; 由(1,)B m ,(2,)C m n -可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小,∴D 选项正确故选:D .【考点】正比例函数,反比例函数,二次函数的图象和性质8.【答案】D【解析】点A ,B 落在函数1(0)y x x =-<,4(0)y x x=>的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形A O B 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.解:过点A 、B 分别作AD x ⊥轴,BE x ⊥轴,垂足为D 、E ,∵点A 在反比例函数1(0)y x x =-<上,点B 在4(0)y x x =>上, ∴1AOD S =,4BOE S =,又∵90AOB ︒∠=∴AOD OBE ∠=∠,∴AOD OBE △∽△, ∴214AOD OBE S AO OB S ⎛⎫== ⎪⎝⎭, ∴12AO OB =设OA m =,则2OB m =,AB ==,在RtAOB △中,sin OA ABO AB ∠===,故选:D .【考点】反比例函数的几何意义,相似三角形的性质二、细心填一填9.【答案】0【解析】直接利用零指数幂的性质化简得出答案.解:原式110==-.故答案为:0.【考点】此题主要考查了实数运算,正确掌握运算法则是解题关键.10.【答案】23【解析】直接利用概率求法进而得出答案.解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”, ∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:4263=. 故答案为:23. 【考点】此题主要考查了概率公式,正确掌握概率公式是解题关键.11.【答案】1-【解析】令1m =-,使其能利用平方差公式分解即可.解:令1m =-,整式为22()()x y x y x y -=+-.故答案为:1-(答案不唯一).【考点】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.【答案】 4.5112x y x y +=⎧⎪⎨-=⎪⎩【解析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于x ,y 的二元一次方程组,此题得解.解:设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x y x y +=⎧⎪⎨-=⎪⎩. 故答案为: 4.5112x y x y +=⎧⎪⎨-=⎪⎩. 【考点】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.【答案】69【解析】在Rt ABC △中,30ACB ∠=︒,60ADB ∠=︒,则30DAC ∠=︒,所以80DA DC ==,在Rt ABD △中,通过三角函数关系求得AB 的长.解:在Rt ABC 中,30ACB ∠=︒,60ADB ∠=︒,∴30DAC ∠=︒,∴80DA DC ==,在Rt ABD △中,sin sin 60AB ADB AD ︒=∠==,∴8069AB AD =≈(米), 故答案为69.【考点】解直角三角形14.【答案】3π 【解析】根据题意,作出合适的辅助线,即可求得CD 和COB ∠的度数,即可得到阴影部分的面积是半圆的面积减去AOC △和扇形BOC 的面积.解:连接O C 、BC ,作CD AB ⊥于点D ,∵直径6AB =,点C 在半圆上,30BAC ∠=︒,∴90ACB ∠=︒,60COB ∠=︒,∴AC =∵90CDA ∠=︒,∴CD =,∴阴影部分的面积是:22336032322360πππ⋅⨯⨯-=,故答案为:3π【考点】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】348-【解析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是124,可以求得这三个数,从而可以求得这三个数的和.解:∵一列数为1,2-,4,8-,16,32-,…,∴这列数的第n 个数可以表示为1(2)n --,∵其中某三个相邻数的积是124,∴设这三个相邻的数为1(2)n --、(2)n -、1(2)n +-,则1112(2)(2)(2)4n n n -+-⋅-⋅-=,即()1232(2)2n =-,∴32422()n =-,∴324n =,解得,8n =,∴这三个数的和是:7897(2)(2)(2)(2)(124)(128)3384-+-+-=-⨯-+=-⨯=-, 故答案为:384-.【考点】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.16.【答案】②③【解析】先判断出四边形C FHE 是平行四边形,再根据翻折的性质可得CN NP =,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ CD =,得R t R t C M Q C M D△≌△,进而得30DCM QCM BCP ∠=∠=∠=︒,这个不一定成立,判断①错误;点P 与点A 重合时,设BN x =,表示出8AN NC x ==-,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形C MPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值便可. 解:如图1,图1∵PM CN ∥,∴PMN MNC ∠=∠,∵MNC PNM ∠=∠,∴PMN PNM ∠=∠,∴PM PN =,∵NC NP =,∴PM CN =,∵MP CN ∥,∴四边形C NPM 是平行四边形,∵CN NP =,∴四边形C NPM 是菱形,故②正确;∴CP MN ⊥,BCP MCP ∠=∠,∴90MQC D ∠=∠=︒,∵CP CP =,若CQ CD =,则Rt Rt CMQ CMD △≌△,∴30DCM QCM BCP ∠=∠=∠=︒,这个不一定成立,故①错误;点P 与点A 重合时,如图2,图2设BN x =,则8AN NC x ==-,在Rt ABN △中,222AB BN AN +=,即22248x x +=-(),解得3x =,∴835CN ==-,AC =∴12CQ AC ==∴QN =∴2MN QN ==故③正确;当MN 过点D 时,如图3,图3此时,C N 最短,四边形C MPN 的面积最小,则S 最小为1144444CMPN S S ==⨯⨯=菱形, 当P 点与A 点重合时,C N 最长,四边形C MPN 的面积最大,则S 最大为15454S =⨯⨯=, ∴45S ≤≤,故④错误.故答案为:②③.【考点】折叠问题,菱形的判定与性质,勾股定理的综合应用三、专心解一解17.【答案】(1)化简:2211m m m ÷--; (2)解不等式组:31563x x x +>⎧⎨+⎩【解析】(1)直接利用分式的乘除运算法则计算得出答案;(2)分别解不等式进而得出不等式组的解.解:(1)原式2(1)(1)m m m =⨯-- 2m=; (2)31563x x x +⎧⎨+⎩>①≤②, 解①得:2x >-,解②得:3x ≤,所以这个不等式组的解集为:23x -<≤.【考点】分式的乘除运算,不等式组的解18.(1)证明:∵D ,E ,F 分别是AC ,AB ,BC 的中点,∴DE FC ∥,EF CD ∥,∴四边形DEFC 是平行四边形,∵90DCF ∠=︒,∴四边形DEFC 是矩形.(2)连接E C ,DF 交于点O ,作射线BO ,射线BO 即为所求.【解析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接E C,DF交于点O,作射线BO即可.【考点】三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识19.【答案】解:(1)由题意可得,96096080(m/min) 612-=答:小慧返回家中的速度比去文具店的速度快80m/min;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【解析】(1)根据速度=路程/时间的关系,列出等式96096080612-=即可求解;(2)根据题中已知,描点画出函数图象;(3)根据图象可得小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【考点】一次函数的应用20.【答案】(1)118(2)甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有31174250027050++++⨯=(人).【解析】(1)根据中位数,结合条形统计图及所给数据求解可得;∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数1171191182a+==,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)利用样本估计总体思想求解可得.估计一分钟跳绳不低于116次的有31174250027050++++⨯=(人).【考点】频数分布直方图,中位数及样本估计总体 21.【答案】(1)FG 与O 相切, 理由:如图,连接OF ,∵90ACB ∠=︒,D 为AB 的中点, ∴CD BD =, ∴DBC DCB ∠=∠, ∵OF OC =, ∴OFC OCF ∠=∠, ∴OFC DBC ∠=∠, ∴OF DB ∥,∴180OFG DGF ∠+∠=︒, ∵FG AB ⊥, ∴90DGF ︒∠=, ∴90OFG ∠=︒, ∴FG 与O 相切; (2)连接D F , ∵ 2.5CD =, ∴25AB CD ==,∴4BC =, ∵CD 为O 的直径, ∴90DFC ∠=︒, ∴FD BC ⊥, ∵DB DC =, ∴122BF BC ==,∵sin AC FGABC AB FB∠==, 即352FG =, ∴65FG =.【解析】(1)如图,连接OF ,根据直角三角形的性质得到CD BD =,得到DBC DCB ∠=∠,根据等腰三角形的性质得到OFC OCF ∠=∠,得到OFC DBC ∠=∠,推出90OFG ∠=︒,于是得到结论;(2)连接D F ,根据勾股定理得到4BC ,根据圆周角定理得到90DFC ∠=︒,根据三角函数的定义即可得到结论.【考点】直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形22.【答案】(1)由图象可知,第40天时的成本为40元,此时的产量为z =﹣2×40+120=40 则第40天的利润为:()8040401600-⨯=元 故答案为1600 (2)①设直线AB 的解析式为(0)y kx b k =+≠,把(,70)(3,40)代入得703040b k b =⎧⎨+=⎩,解得701b k =⎧⎨=-⎩.∴直线AB 的解析式为70y x =-+ (Ⅰ)当030x <≤时[80(70)](2120)w x x =--+-+ 221001200x x =-++ 22(25)2450x =--+∴当25x =时,2450w =最大值 (Ⅱ)当3050x <≤时,(8040)(2120)804800w x x =-⨯-+=-+∵w 随x 的增大而减小 ∴当31x =时,2320w =最大值∴221001200,(030)804800,(3050)x x x w x x ⎧-++<⎪=⎨-+<⎪⎩≤≤第25天的利润最大,最大利润为2 450元②(Ⅰ)当030x <≤时,令22(25)24502400x --+=元 解得120x =,230x =∵抛物线22(25)2450w x =--+开口向下 由其图象可知,当2030x ≤≤时,2400w ≥此时,当天利润不低于2 400元的天数为:3020111+=﹣天. (Ⅱ)当3050x <≤时,由①可知当天利润均低于2 400元综上所述,当天利润不低于2 400元的共有11天.【解析】(1)由图象可知,第40天时的成本为40元,此时的产量为24012040z =-⨯+=,则可求得第40天的利润.(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可. 【考点】二次函数的性质在实际生活中的应用23.【答案】(1)证明:∵四边形ABCD 为圆内接四边形, ∴180A C ∠+∠=︒,180ABC ADC ∠+∠=︒, ∵BD 平分ABC ∠, ∴ABD CBD ∠=∠, ∴AD CD =, ∴AD CD =,∴四边形ABCD 是等补四边形;(2)AD 平分BCD ∠,理由如下:如图2,过点A 分别作AE BC ⊥于点E ,A F 垂直CD 的延长线于点F ,则90AEB AFD ∠=∠=︒, ∵四边形ABCD 是等补四边形, ∴180B ADC ∠+∠=︒, 又ADC ADF 180︒∠+∠=, ∴B ADF ∠=∠, ∵AB AD =,∴ABE ADF(AAS)△≌△, ∴A A E F =,∴AC 是BCF ∠的平分线,即AC 平分BCD ∠; (3)如图3,连接AC , ∵四边形ABCD 是等补四边形, ∴BAD BCD 180∠+∠=︒, 又BAD AD 180E ︒∠+∠=, ∴AD BCD E ∠=∠, ∵A F 平分EAD ∠, ∴12FAD EAD ∠=∠, 由(2)知,AC 平分BCD ∠, ∴12FCA BCD ∠=∠, ∴FCA FAD ∠=∠, 又AFC DFA ∠=∠, ∴ACF DAF △∽△,∴AF CFDF AF =, 即5105DF DF +=,∴5DF =.【解析】(1)由圆内接四边形互补可知∠A+∠C =180°,∠ABC+∠ADC =180°,再证AD =CD ,即可根据等补四边形的定义得出结论;(2)过点A 分别作A E ⊥BC 于点E ,A F 垂直CD 的延长线于点F ,证△AB E ≌△AD F ,得到A E =A F ,根据角平分线的判定可得出结论;(3)连接AC ,先证∠E AD =∠BCD ,推出∠F CA =∠F AD ,再证△AC F ∽△DA F ,利用相似三角形对应边的比相等可求出D F 的长.【考点】新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质24.【答案】(1)在122y x =-+中,令y =0,得x =4,令x =0,得y =2 ∴A (4,0),B (0,2)把A (4,0),B (0,2),代入212y x bx c =-++,得2116402c b c =⎧⎪⎨-⨯++=⎪⎩,解得322b c ⎧=⎪⎨⎪=⎩ ∴抛物线得解析式为213=222y x x -++ (2)如图,过点B 作x 轴得平行线交抛物线于点E ,过点D 作B E 得垂线,垂足为F∵B E ∥x 轴,∴∠BAC =∠AB E ∵∠ABD =2∠BAC ,∴∠ABD =2∠AB E 即∠DB E +∠AB E =2∠AB E ∴∠DB E =∠AB E ∴∠DB E =∠BAC设D 点的坐标为(x ,213222x x -++),则B F =x ,D F =21322x x -+ ∵tan ∠DB E =DF BF ,tan ∠BAC =BOAO∴DF BF =BO AO ,即2132224x xx -+= 解得x 1=0(舍去),x 2=2当x =2时,213222x x -++=3 ∴点D 的坐标为(2,3) (3)当B O 为边时,O B ∥EF ,O B =EF设E (m ,122m -+),F (m ,211222m m -++)EF =|(122m -+)﹣(211222m m -++)|=2解得1m =2,22m =-32m =+ 当B O 为对角线时,O B 与EF 互相平分过点O 作OF ∥AB ,直线OF 12y x =-交抛物线于点F (21+-)和(21--求得直线EF 解析式为1y =+或1y x =+直线EF 与AB 的交点为E ,点E 的横坐标为2-或2∴E 点的坐标为(2,1)或(2,1或(22+或(22--+)-+)或(2【解析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段O B为边和对角线分类讨论,当O B为边时,以EF=O B的关系建立方程求解,当O B为对角线时,O B与EF互相平分,利用直线相交获得点E坐标.【考点】本题考查了待定系数法,2倍角关系和平行四边形点存在类问题,将2倍角关系转化为等角关系是(2)问题的解题关键,根据平行四边形的性质,以O B为边和对角线是(3)问题的解题关键,本题综合难度不大,是一道很好的压轴问题.数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前湖北省咸宁市2019年初中毕业生学业考试数 学一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的.) 1.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是 ( )AB C D3.下列计算正确的是( )A=B2- C .523a a a ÷=D .236()ab ab =4.若正多边形的内角和是540°,则该正多边形的一个外角为( )A .45°B .60°C .72°D .90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的( )(第5题)A .主视图会发生改变B .俯视图会发生改变C .左视图会发生改变D .三种视图都会发生改变 6.若关于x 的一元二次方程220x x m +=-有实数根,则实数m 的取值范围是 ( )A .1m <B .1m ≤C .1m >D .1m ≥7.已知点(1,)A m -,(1,)B m ,(2,)(0)C m n n ->在同一个函数的图象上,这个函数可能是( )A . y x =B .2y x=-C .2y x =D .2y x =-8.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数1(0)y x x =-<,4(0)y x x=>的图象上,则sin ABO ∠的值为( )(第8题)A .13BCD二、细心填一填(本大题共8小题,每小题3分,共24分) 9.计算:01-= .10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是 .11.若整式22x my +(m 为常数,且0m ≠)能在有理数范围内分解因式,则m 的值可以是 (写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得30ACB ∠=︒,点D 处测得60ADB ∠=︒,80m CD =,则河宽AB 约为 m (1.73).(第13题)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠=︒,则阴影部分的面积为 (结果保留π).(第14题)15.有一列数,按一定规律排列成1,2-,4,8-,16,32-,…,其中某三个相邻数的积是124,则这三个数的和是 .16.如图,先有一张矩形纸片ABCD ,4AB =,8BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论: ①CQ CD =;②四边形CMPN 是菱形;③P ,A重合时,MN =④PQM △的面积S 的取值范围是35S ≤≤. 其中正确的是 (把正确结论的序号都填上).(第16题)三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤.) 17.(本题满分8分,每小题4分)(1)化简:2211m m m ÷--;(2)解不等式组:31,563.x x x +⎧⎨+⎩>≤18.(本题满分7分)在Rt ABC △中,90C ∠=︒,30A ∠=︒,D ,E ,F 分别是AC ,AB ,BC 的中点,连接ED ,EF .(1)求证:四边形DEFC 是矩形;(2)请用无刻度的直尺......在图中作出ABC ∠的平分线(保留作图痕迹,不写作法).(第18题)19.(本题满分8分)小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿着原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为720m ?(第19题)数学试卷 第5页(共8页) 数学试卷 第6页(共8页)20.(本题满分8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表…,180200x ≤<)在100120x ≤<这一组的是: 100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119 根据以上信息,回答下列问题: (1)表中a = ;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是 (填“甲”或“乙”),理由是 .(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.(本题满分9分)如图,在Rt ABC △中,90ACB ∠=︒,D 为AB 的中点,以CD 为直径的O 分别交AC ,BC 于点E ,F 两点,过点F 作FG AB ⊥于点G . (1)试判断FG 与O 的位置关系,并说明理由. (2)若3AC =, 2.5CD =,求FG 的长.(第21题)22.(本题满分10分)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x (天)之间的关系如图所示,第x 天该产品的生产量z (件)与x (天)满足关系式2120z x =-+.(1)第40天,该厂生产该产品的利润是 元; (2)设第x 天该厂生产该产品的利润为w 元.①求w 与x 之间的函数关系式,并指出第几天的利润最大,最大利润是多少? ②在生产该产品的过程中,当天利润不低于2 400元的共有多少天?(第22题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)23.(本题满分10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形. 理解:(1)如图1,点A ,B ,C 在O 上,ABC ∠的平分线交O 于点D ,连接AD ,CD . 求证:四边形ABCD 是等补四边形; 探究:(2)如图2,在等补四边形ABCD 中,AB AD =,连接AC ,AC 是否平分BCD ∠?请说明理由. 运用:(3)如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点F ,10CD =,5AF =,求DF 的长.图1图2 图3(第23题)24.(本题满分12分)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C . (1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐标;(3)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.(第24题)。
2019年初中毕业升学考试(湖北咸宁卷)数学【含答案及解析】
2019年初中毕业升学考试(湖北咸宁卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是().A.-3.5 B.+2.5 C.-0.6 D.+0.72. 方程2x﹣1=3的解是().A.﹣1 B.﹣2 C.1 D.23. 一个几何体的三视图如图所示,则这个几何体是().A.圆柱 B.圆锥 C.长方体 D.正方体4. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50° B.40° C.30° D.25°5. 下列运算正确的是().A.a6÷a2=a3 B.(a+b)2=a2+b2 C.2﹣3=﹣6 D.=﹣36. 如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为().A.1:2 B.1:4 C.1:5 D.1:67. 如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积().A.由小到大 B.由大到小C.不变 D.先由小到大,后由大到小8. 如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有().A.1个 B.2个 C.3个 D.4个二、填空题9. ﹣6的倒数是.10. 端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖元.11. 将x2+6x+3配方成(x+m)2+n的形式,则m= .12. 如果实数x,y满足方程组,则x2﹣y2的值为.13. 为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.14. 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为.三、选择题15. 古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= .四、填空题16. 如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)五、计算题17. (1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.六、解答题18. 如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.19. 已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.20. 某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:21. 班级最高分平均分中位数众数方差九(1)班100m939312九(2)班9995n938.4td22. 如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.23. 在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.24. 定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理【解析】(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.25. 如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
(4份试卷汇总)2019-2020学年湖北省咸宁市第一次中考模拟考试数学试卷
2019-2020学年数学中考模拟试卷一、选择题 1.函数121y x x =-+-中自变量x 的取值范围是( ) A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠2.某几何体的三视图如图所示,则该几何体的体积为( )A .3B .33C .32D .623.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A.2B.3C.4D.4.如图,反比例函数y =kx(k≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC =CD ,四边形BDCE 的面积为2,则k 的值为( )A.﹣183B.﹣173C.﹣163D.﹣1535.下列所述图形中,是中心对称图形,但不是轴对称图形的是 A .正三角形B .平行四边形C .正五边形D .圆6.如图,正的边长为2,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是( )A. B.2 C. D.47.已知一次函数y =﹣x+m 和y =2x+n 的图象都经过A (﹣4,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( ) A.48B.36C.24D.188.在平面直角坐标系中,已知点()A 4,2-,()B 6,4--,以原点O 为位似中心,相似比为12,把ABO V 缩小,则点A 的对应点A'的坐标是( )A .()2,1-B .()8,4-C .()8,4-或()8,4-D .()2,1-或()2,1-9.若数a 使关于x 的不等式组()3x a 2x 11x2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=ay 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .210.如图所示,点A ,B ,C ,D 在O e 上,CD 是直径,ABD 75∠=o ,则AOC ∠的度数为( )A .15oB .25oC .30oD .35o11.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A.20°B.35°C.40°D.70°12.下列四个几何体中,主视图是三角形的是( ) A .B .C .D .二、填空题13.如图,已知▱ABCD 中,AB =16,AD =10,sinA =35,点M 为AB 边上一动点,过点M 作MN ⊥AB ,交AD 边于点N ,将∠A 沿直线MN 翻折,点A 落在线段AB 上的点E 处,当△CDE 为直角三角形时,AM 的长为_____.14.如图,抛物线y =ax 2﹣1(a >0)与直线y =kx+3交于MN 两点,在y 轴负半轴上存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称,则点P 的坐标是_____15.若关于x 的不等式(2)2a x a ->-的解集为1x <,化简3a -=______. 16.若5x +有意义,则字母x 的取值范围是 .17.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)18.用半径为2cm 的半圆围成一个圆锥的侧面,则这个圆锥的底面半径为____. 三、解答题19.如图,已知:△ABC 的外接圆⊙O 的圆心O 在等腰△ABD 的底边AD 上,点E 为弧AB 上的一点,AB 平分∠EAD ,∠C =60°,AB =BD =3. (1)求证:BD 是⊙O 的切线; (2)求图中阴影部分的面积.20.如图,一次函数y 1=kx+b (k ,b 为常数,k≠0)的图象与反比例函数y 2=mx(m 为常数,m≠0)的图象相交于点M (1,4)和点N (4,n ). (1)反比例函数与一次函数的解析式.(2)函数y2=mx的图象(x>0)上有一个动点C,若先将直线MN平移使它过点C,再绕点C旋转得到直线PQ,PQ交x轴于点A,交y轴点B,若BC=2CA,求OA•OB的值.21.为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:八年级25名学生双休日课外阅读时间统计表阅读时间1小时2小时3小时4小时5小时6小时人数 3 4 6 3 2(2)试确定这个样本的众数和平均数.22.如图,四边形ABCD为菱形,且∠BAD=120°,以AD为直径作⊙O,与CD交于点P.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点C作AB边上的高CE;(2)在图2中,过点P作⊙O的切线PQ,与BC交于点Q.23.学校开展校外宣传活动,有社区板报(A)、集会演讲(B)、喇叭广播(C)、发宣传画(D)四种方式.围绕“你最喜欢的宣传方式”,校团委在全校学生中进行了抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下不完整的统计图表.选项方式百分比A 社区板报mB 集会演讲30%C 喇叭广播25%D 发宣传画10%(1)本次抽查的学生共人,m=;(2)若该校学生有900人,估计其中喜欢“集会演讲”宣传方式的学生约有多少人?24.解不等式组() 5x+33x-1 13x+46-x22⎧>⎪⎨≤⎪⎩①②,请结合题意填空,完成本题的解答,I.解不等式①,得_________;II.解不等式②,得________;III.把不等式①和②的解集在数轴上表示出来:IV.原不等式组的解集为_________.25.如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上,∠OCD=90°,点D在第一象限,OC=6,DC=4,反比例函数的图象经过OD的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C C C B D C D D C B D13.4或8714.(0,-5)15.3﹣a16.x≥﹣5.17.①②③⑤18.1三、解答题19.(1)证明见解析;(2)2π . 【解析】 【分析】(1)连接OB ,根据圆的基本性质,证OB ⊥BD ,即可得BD 是⊙O 的切线;(2)连接OE 、BE ,在Rt △OBD 中,∠D =30°,BD =3,得OB =3,证E ,B 是半圆周的三等分点,得EB ∥AO ,证得S △ABE =S △OBE ,根据S 阴影=S 扇形OEB 可得. 【详解】(1)证明:连接OB , ∵∠C =60°,∴∠AOB =2∠C =120°, ∵OA =OB ,∴∠BAO =∠ABO =30°, ∴AB =BD , ∠BAO =∠D =30°,∴∠ABD =180°﹣∠BAO ﹣∠D =120°, ∴∠OBD =∠ABD ﹣∠ABO =120°﹣30°=90°, 即OB ⊥BD , ∴BD 是⊙O 的切线; (2)连接OE 、BE ,在Rt △OBD 中,∠D =30°,BD =3, ∴OB =3, ∵AB 平分∠EAD , ∴∠EAB =∠BAO =30°, ∴∠EOB =∠BOD =60°, ∴E ,B 是半圆周的三等分点, 又∵OE =OB ,∴△OBE 是等边三角形, ∴∠OEB =∠AOE =60°, ∴EB ∥AO , ∴S △ABE =S △OBE ,∴S 阴影=S 扇形OEB =260(3)2ππ⨯⨯=.【点睛】考核知识点:扇形面积和切线性质.根据所求找出相应条件,是关键. 20.(1)y =4x,y =﹣x+5;(2)OA•OB 的值为18或2. 【解析】 【分析】(1)将点M(1,4)代入y2=mx(m为常数,m≠0)求反比例函数解析式,再求得N的坐标,将M与N两点坐标代入y1=kx+b,即可求解;(2)过C作CH⊥y轴于点H,分三种情况结合三角形相似可求得OA和OB的值,则可求得OA•OB.【详解】(1)将点M(1,4)代入y2=mx(m为常数,m≠0),∴m=1×4=4,∴反比例函数的解析式为y=4x,将N(4,n)代入y=4x,∴n=1,∴N(4,1),将M(1,4),N(4,1)代入y1=kx+b,得到k b44k b1+=⎧⎨+=⎩,∴k1 b5=-⎧⎨=⎩,∴一次函数的解析式为y=﹣x+5;(2)设点C(a,b),则ab=4,过C点作CH⊥OA于点H.①当点B在y轴的负半轴时,如图1,∵BC=2CA,∴AB=CA.∵∠AOB=∠AHC=90°,∠OAB=∠CAH,∴△ACH∽△ABO.∴OB=CH=b,OA=AH=12a,∴OA•OB=12ab=2.②当点B在y轴的正半轴时,如图2,当点A在x轴的正半轴时,∵BC=2CA,∴13 CA AB=∵CH∥OB,∴△ACH∽△ABO.∴13 CH AH CA OB OA AB===∴OB=3b,OA=32a∴9A OB ab182O⋅==;③当点A在x轴的负半轴时,BC=2CA不可能.综上所述,OA•OB的值为18或2.【点睛】本题为反比例函数和一次函数的交点,用C点的坐标表示出OA和OB是解题的关键.21.(1)28%;(2)众数4小时;平均数3.36小时【解析】【分析】(1)先求得阅读时间为4小时的人数,然后除以被调查的人数即可求得其所占的百分比;(2)利用众数及加权平均数的定义确定答案即可.【详解】(1)阅读量为4小时的有25﹣3﹣4﹣6﹣3﹣2=7,所以阅读时间为4小时的人数所占百分比为725⨯100%=28%;(2)阅读量为4小时的人数最多,所以众数为4小时,平均数为(1×3+2×4+3×6+4×7+5×3+6×2)÷25=3.36(小时).【点睛】本题考查了确定一组数据的加权平均数和众数的能力,比较简单.22.(1)见解析;(2)见解析【解析】【分析】(1)连接BD,则P点和BD与⊙O的交点的延长线与AB的交点即为E点;(2)连接BD,则O点和BD与⊙O的交点的延长线与BC的交点即为Q点.【详解】解:(1)如图1,CE为所;(2)如图2,PQ为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定和菱形的性质. 23.(1)300, 35%;(2)270人 【解析】 【分析】(1)由B 选项的人数及其所占百分比可得总人数,总人数减去B 、C 、D 的人数求得A 的人数,再用A 选项人数除以总人数可得m 的值;(2)用总人数乘以样本中B 的百分比可得; 【详解】解:(1)本次抽查的学生人数为90÷30%=300人, 则A 选项的人数为300﹣(90+75+30)=105, m =105300×100%=35%, 故答案为:300、35%;(2)估计该校喜欢“集会演讲”这项宣传方式的学生约有900×30%=270人; 【点睛】考查了扇形统计图及由样本估计总体的知识,解题的关键是读懂统计图、表,并从中整理出进一步解题的信息,难度不大.24.(Ⅰ)x 3>-;(Ⅱ).x 1≤;(Ⅲ)数轴表示见解析;(Ⅳ)3x 1-<≤. 【解析】 【分析】(Ⅰ)先去括号、移项,两边同时除以2即可得答案;(Ⅱ)移项,整理,两边同时除以2即可得答案;(Ⅲ)根据不等式解集的表示方法解答即可;(Ⅳ)根据数轴,找出不等式①②的公共解集即可. 【详解】(Ⅰ)5x+3>3(x-1) 去括号得:5x+3>3x-3 移项得:2x>-6 解得:x>-3. 故答案为:x>-3 (Ⅱ)12x+4≤6-32x 移项得:2x≤2 解得x≤1. 故答案为:x≤1(Ⅲ)不等式①和②的解集在数轴上表示如图所示:由数轴可得①和②的解集的公共解集为-3<x≤1,∴原不等式组的解集为-3<x≤1,故答案为:-3<x≤1【点睛】本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.25.(1)6yx=;(2)133=-+y x.【解析】【分析】(1)先求出点A的坐标,再利用待定系数法求解可得;(2)先求出点B的坐标,再利用待定系数法求解可得.【详解】解:(1)∵∠OCD=90°,点D在第一象限,OC=6,DC=4,∴D(6,4),∵OD的中点为点A,∴A(3,2);设反比例函数解析式为kyx =,那么k=3×2=6,∴该反比例函数的解析式为6yx =;(2)在6yx=中,当x=6时,y=1,则点B(6,1),设直线AB解析式为y=mx+n,(m≠0),代入A,B坐标得,则32 61 m nm n+=⎧⎨+=⎩,解得133mn⎧=-⎪⎨⎪=⎩,∴直线AB解析式为y=﹣13x+3.【点睛】本题主要考查用待定系数法求反比例函数解析式,中等难度,解题的关键是掌握待定系数法求解析式的方法.2019-2020学年数学中考模拟试卷一、选择题1.某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是()A.平均数是15B.众数是10C.中位数是17D.方差是44 32.剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8B.C.4D.4.已知二次函数y=x2+bx+c(b,c是常数)的图象如图所示,则一次函数y=cx+b与反比例函数y=在同一坐标系内的大致图象是()A. B.C. D.5.如图,在等腰ABC ∆中,3,310,sin 5AB AC BC A ===,则AB 的长为()A .15B .510C .20D .105 6.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为( ) A .7 B .8C .9D .10 7.已知3a →=,2b =r ,而且b r 和a r 的方向相反,那么下列结论中正确的是( )A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=- 8.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =A .112.5°B .105°C .90°D .82.5°9.如图,将半径为4cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A .23cmB .43cmC .3cmD .2cm10.在数轴上点M 表示的数为2-,与点M 距离等于3个单位长度的点表示的数为( ) A.1 B.5- C.5-或1D.1-或5 11.如图,直线a ∥b ,等边三角形ABC 的顶点B 在直线b 上,若∠1=34°,则∠2等于( )A .84°B .86°C .94°D .96°12.在同一直角坐标系中,函数y =k x和y =kx ﹣2的图象大致是( )A .B .C .D .二、填空题13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A′处,当A′E⊥AC 时,A′B=___.14.如图4,AD BC P ,AC 、BD 相交于点O ,且:1:4AOD BOC S S =V V .设=u u u v v AD a ,=u u u v vDC b ,那么向量=u u u v AO _____.(用向量a v 、12,x x R ∈Q 表示)15.为了测量某建筑物BE 的高度(如图),小明在离建筑物15米(即DE =15米)的A 处,用测角仪测得建筑物顶部B 的仰角为45°,已知测角仪高AD =1.8米,则BE =_____米.16.如图,某中学综合楼入口处有两级台阶,台阶高AD =BE =15cm ,深DE =30cm ,在台阶处加装一段斜坡作为无障碍通道,设台阶起点为A ,斜坡的起点为C ,若斜坡CB 的坡度i =1:9,则AC 的长为____cm .17.《孙子算经》是中国古代重要的数学著作,共三卷.卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:“鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94条脚.问笼中各有多少只鸡和多少只兔?”,设有鸡x 只,兔子y 只,可列方程组为_____________.18.计算41233⎛⎫-⨯ ⎪ ⎪⎝⎭的结果是___.三、解答题19.先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭,其中a =tan60°﹣2sin30°. 20.如图,A 、B 是直线L 上的两点,AB=4厘米,过L 外一点C 作CD ∥L ,射线BC 与L 所成的锐角∠1=60°,线段BC=2厘米,动点P 、Q 分别从B 、C 同时出发,P 以每秒1厘米的速度沿由B 向C 的方向运动,Q 以每秒2厘米的速度沿由C 向D 的方向运动.设P ,Q 运动的时间为t (秒),当t >2时,PA 交CD 于E .(1)用含t 的代数式分别表示CE 和QE 的长.(2)求△APQ 的面积S 与t 的函数关系式.(3)当QE 恰好平分△APQ 的面积时,QE 的长是多少厘米?21.(问题)探究一次函数y =kx+k+1(k≠0)图象特点.(探究)可做如下尝试:y =kx+k+1=k (x+1)+1,当x =﹣1时,可以消去k ,求出y =1.(发现)结合一次函数图象,发现无论k 取何值,一次函数y =kx+k+1的图象一定经过一个固定的点,该点的坐标是 ;(应用)一次函数y =(k+2)x+k 的图象经过定点P .①点P 的坐标是 ;②已知一次函数y =(k+2)x+k 的图象与y 轴相交于点A ,若△OAP 的面积为3,求k 的值.22.已知:如图①,将∠D =60°的菱形ABCD 沿对角线AC 剪开,将△ADC 沿射线DC 方向平移,得到△BCE ,点M 为边BC 上一点(点M 不与点B 、点C 重合),将射线AM 绕点A 逆时针旋转60°,与EB 的延长线交于点N ,连接MN .(1)①求证:∠ANB =∠AMC ;②探究△AMN 的形状;(2)如图②,若菱形ABCD 变为正方形ABCD ,将射线AM 绕点A 逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.23.飞机飞行需加适量燃油,既能飞到目的地,又使着陆时飞机总重量(自重+载重+油重)不超过它的最大着陆重量,否则飞机需通过空中放油(如图1)减重,达标后才能降落.某客机的主要指标如图2,假定该客机始终满载飞行且它的加油量要使它着陆时的总重量恰好达到135 t .例如,该客机飞1 h 的航班,需加油1×5+(135-120)=20 t .(1)该客机飞3 h 的航班,需加油 t ;(2)该客机飞x h 的航班,需加油y t ,则y 与x 之间的函数表达式为 ;(3)该客机飞11 h 的航班,出发2 h 时有一位乘客突发不适,急需就医.燃油有价,生命无价,机长决定立刻按原航线原速返航,同时开始以70 t/h 的速度实施空中放油.①客机应放油 t;②设该客机在飞行x h 时剩余燃油量为R t ,请在图3中画出R 与x 之间的函数图像,并标注必要数据.24.已知AB 是O e 的直径,弦CD 与AB 相交,BAC 40∠=︒.(1)如图,若D 为弧AB 的中点,求ABC ∠和ABD ∠的度数;(2)如图,若D 为弧AB 上一点,过点D 作O e 的切线,与AB 的延长线交于点P ,若DP//AC ,求∠OCD 的度数.25.为了增强学生的环保意识,某校团委组织了一次“环保知识”考试,考题共10题考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)“答对10题”所对应扇形的心角为_____;(2)通过计算补全条形统计图;(3)若该校共有2000名学生参加这次“环保知识”考试,请你估计该校答对不少于8题的学生人数.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C A B A B D B B C C B132214.11 33+v va b15.8 16.24017.35 2494 x yx y+=⎧⎨+=⎩18.4 三、解答题19.31a+3.【解析】【分析】根据分式加减乘除的运算法则对原式进行化简,再算出a的值,代入即可. 【详解】原式=2(1)(2)13(1)(1)1a a aa a a a-++-⋅=+-+.当a132312-⨯=-时,33311=-+.【点睛】本题考查分式的运算以及特殊角的锐角三角函数值,解题的关键是熟练掌握分式的运算法则及特殊角的三角函数值.20.(1)4(2)t EC t -= ,()2224t t QE t -+= ;(2)()23242APQ S t t =-+V ; (3)6. 【解析】【分析】(1)根据题意的出BP=t ,CQ=2t ,PC=t-2.再根据EC ∥AB ,得出EC PC AB PB =最后得出EC 的值,即可表示出CE 和QE 的长.(2)本题关键是得出S 与t 的函数关系式,那么求面积就要知道底边和高的长,我们可以QE 为底边,过P 引l 的垂线作高,根据P 的速度可以用t 表示出BP ,也就能用BP 和∠1的正弦函数求出高,那么关键是求QE 的长,我们可以根据Q 的速度用时间t 表示出CQ ,那么只要求出CE 即可.因为EC ∥BA ,那么我们可以用相似三角形的对应线段成比例来求CE 的长,根据三角形PEC 和PAB 相似,可得出关于CE 、AB 、PC 、BC 的比例关系式,有BP 、BC 、AB 的值,那么我们就可以用含t 的式子表示出CE ,也就表示出了QE ,那么可根据三角形的面积公式得出关于S 与t 的函数关系式了.(3)如果QE 恰好平分三角形APQ 的面积,那么此时P 到CD 和CD 到l 之间的距离就相等,那么C 就是PB 的中点,可根据BP=2BC 求出t 的值,然后根据(1)中得出的表示QE 的式子,将t 代入即可得出QE 的值.【详解】解:(1)由题意知:BP=t ,CQ=2t ,PC=t-2;∵EC ∥AB ,∴EC PC AB PB = ∴()42t PC AB EC PB t-⋅== ∴()()2224422t t t QE QC EC t t t -+-=-=-=(2)作PF ⊥L 于F ,交DC 延长线于M ,AN ⊥CD 于N .则在△PBF 中,PF=PB•sin60°=3t ∴S △APQ =S △AQE +S △PQE=12QE•AN+12QE•PM=12QE•PF =()222412t t t -+•32t =()23242t t -+(3)此时E 为PA 的中点,所以C 也是PB 的中点则t-2=2,∴t=4()2224t t QE t -+==() 2242444-⨯+=6(厘米)【点睛】本题考查了相似三角形的性质以及解直角三角形的应用等知识点,根据相似三角形得出表示CE的式子是解题的关键所在.21.(1)无论k取何值,一次函数y=kx+k+1的图象一定经过一个固定的点,该点的坐标是(﹣1,1);(2)(﹣1,1);(﹣1,﹣2).【解析】【分析】[发现]利用k有无数个值得到x+1=0,y-1=0,然后解方程求出x、y即可得到固定点的坐标;[应用]①解析式变形得到(x+1)k=y-2x,利用k有无数个值得到x+1=0,y-2x=0,解方程组即可得到P 点坐标;②先利用一次函数解析式表示出A(0,k),再根据三角形面积公式得到12|k|×1=3,然后解绝对值方程即可.【详解】[发现](x+1)k=y﹣1,∵k有无数个值,∴x+1=0,y﹣1=0,解得x=﹣1,y=1,∴无论k取何值,一次函数y=kx+k+1的图象一定经过一个固定的点,该点的坐标是(﹣1,1);[应用]①(x+1)k=y﹣2x,当k有无数个值时,x+1=0,y﹣2x=0,解得x=﹣1,y=﹣2,∴一次函数y=(k+2)x+k的图象经过定点P,点P的坐标是(﹣1,﹣2);②当x=0时,y=(k+2)x+k=k,则A(0,k),∵△OAP的面积为3,∴12|k|×1=3,解得k=±6,∴k的值为6或﹣6.故答案为(﹣1,1);(﹣1,﹣2).【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.22.(1)①证明见解析;②△AMN是等边三角形,理由见解析;(2)见解析.【解析】【分析】(1)①先由菱形可知四边相等,再由∠D=60°得等边△ADC和等边△ABC,则对角线AC与四边都相等,利用ASA证明△ANB≌△AMC,得结论;②根据有一个角是60°的等腰三角形是等边三角形得出:△AMN是等边三角形(2)①成立,根据正方形得45°角和射线AM绕点A逆时针旋转45°,证明△ANB∽△AMC,得∠ANB=∠AMC;②不成立,△AMN是等腰直角三角形,利用①中的△ANB∽△AMC,得比例式进行变形后,再证明△NAM∽△BAD,则△AMN是等腰直角三角形【详解】(1)如图1,①∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠D=60°,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠NAM=60°,∴∠NAB=∠CAM,由△ADC沿射线DC方向平移得到△BCE,可知∠CBE=60°,∵∠ABC=60°,∴∠ABN=60°,∴∠ABN=∠ACB=60°,∴△ANB≌△AMC,∴∠ANB=∠AMC;②如图1,△AMN是等边三角形,理由是:由∴△ANB≌△AMC,∴AM=AN,∵∠NAM=60°,∴△AMN是等边三角形;(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠NAB=∠MAC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°﹣90°﹣45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN AB AM AC=,∴AN AMAB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM=∠ABC=90°,∴△AMN是等腰直角三角形.【点睛】此题考查四边形综合题,运用了菱形的性质,三角形全等,三角形相似,解题关键在于合理运用各种性质进行证明和计算23.(1)30;(2)y =5x +15.(3)①35;②见解析【解析】【分析】(1)根据题意列式解答即可;(2)根据飞机油耗5t/h 可得y 与x 的关系式;(3)①根据题意列式解答即可;②根据题意画图即可.【详解】解:(1)客机飞3h 的航班,需加油3×5+(135-120)=30t .故答案为:30;(2)根据飞机油耗5t/h 可得:y=5x+15.故答案为:y=5x+15;(3)①客机应放油:5×(11-2×2)=35(t ).故答案为:35;②如图所示,【点睛】本题考查了一次函数的应用,解题的关键是根据数量关系,找出函数关系式.24.(1)∠ABC=50°,45ABD ∠=︒;(2)∠OCD=25°.【解析】【分析】(1)由AB 为直径可得∠ACB=90°,进而可求出∠ABC 的度数;根据D 为»AB 的中点可得∠BOD=90°,由等腰三角形的性质即可求出∠ABD 的度数;(2)连接OD ,由切线性质可得90ODP ∠=︒,根据平行线的性质可得∠P=∠CAB=40°,根据外角性质可求出∠AOD 的度数,根据圆周角定理可得∠ACD 的度数,由等腰三角形的性质可得40OCA BAC ∠∠==︒,根据OCD ACD OCA ∠∠∠=-即可得答案.【详解】(1)如图1,连接OD ,∵AB 为直径,∴∠ACB=90°,∴∠ABC=90°-∠BAC=50°,∵D 为弧AB 的中点,180AOB ∠=︒,∴90BOD ∠=︒,∵OD OB =,∴45ABD ∠=︒;(2)如图2,连接OD ,∵DP 切O e 于点D ,∴OD DP ⊥,即90ODP ∠=︒.由DP AC P ,又40BAC ∠=︒,∴40P BAC ∠∠==︒.∵AOD ∠是ODP V 的一个外角,∴130AOD P ODP ∠∠∠=+=︒.∴65ACD ∠=︒.∵,40OC OA BAC ∠==︒,∴40OCA BAC ∠∠==︒.∴654025OCD ACD OCA ∠∠∠=-=︒-︒=︒.【点睛】本题主要考查了切线的性质、圆周角定理,圆的切线垂直于过切点的半径;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;直径所对的圆周角等于90°.熟练掌握相关性质和定理是解题关键.25.(1)108°;(2)见解析;(3)1480人.【解析】【分析】(1)先得出总人数,进而利用圆心角的计算解答即可;(2)得出D 的人数,画出图形即可;(3)根据用样本估计总体解答即可.【详解】解:(1)总人数=(5+8+12+15)÷(1﹣20%)=50,“答对10题”所对应扇形的心角为1536010850︒︒⨯=; 故答案为:108°(2))“答对9题”的人数=50×20%=10,补全条形统计图如图:(3)2000×121015148050++=,所以估计该校答对不少于8题的学生人数为1480人.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于( )A.45°B.120°C.45°或135°D.45°或120° 2.如图,BD ,CE 分别是△ABC 的高线和角平分线,且相交于点O .若AB =AC ,∠A =40°,则∠BOE 的度数是( )A.60°B.55°C.50°D.40°3.如图,平面直角坐标系中,矩形ABCD 与双曲线(0)k y x x=>交于D 、E 两点,将△OCD 沿OD 翻折,点C 的对称C'恰好落在边AB 上,已知OA=3,OC=5,则AE 长为( )A .4B .259C .269D .3 4.下列事件是随机事件的是( )A .人长生不老B .明天就是5月1日C .一个星期有七天D .2020年奥运会中国队将获得45枚金牌5.如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△ABC ,M 是BC 的中点,P 是A’B’的中点,连接PM .若BC =4,∠BAC =30°,则线段PM 的最大值是( )A .8B .6C .4D .56.已知二次函数y =ax 2+bx+c (a≠0)的图象过点(O ,m )(2,m )(m >0),与x 轴的一个交点为(x 1,0),且﹣1<x 1<0.则下列结论:①若点()是函数图象上一点,则y >0;②若点是函数图象上一点,则y >0;③(a+c )2<b 2.其中正确的是( )A.①B.①②C.①③D.②③ 7.如图,直线,若,,则的大小为( )A. B. C. D.8.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A .75B .90C .105D .1209.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案,你认为符合条件的是( )A .等边三角形B .等腰梯形C .菱形D .正五边形 10.下列计算正确的是( )A.a 2⋅a 3=a 6B.a 6÷a 3=a 2C.(ab )2=ab 2D.(﹣a 2)3=﹣a 6 11.如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A '和D '处,若150∠=︒,则2∠的度数是( )A .65︒B .60︒C .50︒D .40︒12.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A .CE =EFB .∠BDF =90°C .△EOD 和△COF 的面积相等D .∠BDC =∠CEF+∠A 二、填空题13.如图点A 在反比例函数y =k x(x <0)的图象上,作Rt △ABC ,直角边BC 在x 轴上,点D 为斜边AC 的中点,直线BD 交y 轴于点E ,若△BCE 的面积为8,则k =_____.14.因式分解:3223x 6x y 3xy -+=______.15.若2552y x x =-+-+,则x=_______ ,y=___________ .16.如图,线段10AB =,点P 在线段AB 上,在AB 的同侧分别以AP 、BP 为边长作正方形APCD 和BPEF ,点M 、N 分别是EF 、CD 的中点,则MN 的最小值是______.17.如图,直线m ∥n ,Rt △ABC 的顶点A 在直线n 上,∠C =90°,若∠1=25°,∠2=75°,则∠B =_____.18.若n 边形的每个外角均为120︒,则 n 的值是________.三、解答题19.某校1200名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.请根据以上信息,解答下列问题:(1)本次抽样调查的样本容量为____;(2)图①中“20元”对应扇形的圆心角的度数为_____°;(3)估计该校本次活动捐款金额为15元以上(含15元)的学生人数.20.如图,在▱ABCD 中,E 是BC 延长线上的一点,AE 与CD 交于点F .求证:△ADF ∽△EBA .21.如图,在“飞镖形”ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.(1)求证:四边形EFGH 是平行四边形;(2)“飞镖形”ABCD 满足条件 时,四边形EFGH 是菱形.22.小雨、小华、小星暑假到某超市参加社会实践活动,在活动中他们参加了某种水果的销售工作,已知该水果的进价为8元/千克.他们通过市场调查发现:当销售单价为10元时,那么每天可售出300千克;销售单价每上涨1元,每天的销售量就减少50千克.(1)求该超市销售这种水果,每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式;(2)一段时间后,发现这种水果每天的销售量均不低于250千克,则此时该超市销售这种水果每天获取的利润w(元)最大是多少?(3)为响应政府号召,该超市决定在暑假期间每销售1千克这种水果就捐赠a元利润(a≤2.5)给希望工程.公司通过销售记录发现,当销售单价不超过13元时,每天扣除捐赠后的日销售利润随销售单价x(元/千克)的增大而增大,求a的取值范围.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD,AC分别交于点E,F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=12,BC=4,求⊙O的半径.25.解不等式组:()-32421152x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.。
2019年湖北省咸宁市中考数学试题
绝密★启用前湖北省咸宁市2019年中考数学试题第I卷(选择题)评卷人得分一、单选题1.下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数【答案】C【解析】【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【详解】0既不是正数也不是负数,0是有理数.故选C【点睛】此题主要考查了实数,正确把握实数有关定义是解题关键.2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A. B. C. D.【答案】B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.3.下列计算正确的是()=2=- C.523a a a ÷= D.236()ab ab =【答案】C【解析】【分析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【详解】A-B 2=,故此选项错误;523C a a a ÷、=,正确;2336D ab a b 、()=,故此选项错误.故选C .【点睛】此题主要考查了合并同类项以及二次根式的加减运算、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【解析】【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体A 放到小正方体B 的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选A .【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.6.若关于x 的一元二次方程220x x m +﹣=有实数根,则实数m 的取值范围是()A.1m < B.1m £ C.1m > D.m 1≥【答案】B【解析】【分析】根据方程的系数结合根的判别式0≥,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【详解】关于x 的一元二次方程220x x m +﹣=有实数根,2240m ∴=≥-(-),解得:1m ≤.故选B .【点睛】本题考查了根的判别式,牢记“当0≥时,方程有实数根”是解题的关键.7.已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是()A.y x= B.2y x =- C.2y x = D.2y x =﹣【答案】D【解析】【分析】由点()()1,,1,A m B m -的坐标特点,可知函数图象关于y 轴对称,于是排除A B 、选项;再根据()()1,,2,B m C m n -的特点和二次函数的性质,可知抛物线的开口向下,即0a <,故D 选项正确.【详解】()()1,,1,A m B m -∴点A 与点B 关于y 轴对称;由于y x y =,=2x-的图象关于原点对称,因此选项,A B 错误;0n >,m n m ∴﹣<;由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小,D ∴选项正确故选D .【点睛】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.8.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点,A B 恰好分别落在函数()()140,0y x y x x x=-<=>的图象上,则sin ABO ∠的值为()A.13B.3C.4D.5【答案】D【解析】【分析】点,A B 落在函数()10y x x =-<,()40y x x=>的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.【详解】过点,A B 分别作AD x ⊥轴,BE x ⊥轴,垂足为,D E,点A 在反比例函数()10y x x =-<上,点B 在()40y x x=>上,14AOD BOE SS ∴=,=,又90AOB ∠︒=AOD OBE ∴∠∠=,AOD OBE ∴∽,214AOD OBE S AO OB S ⎛⎫∴== ⎪⎝⎭,12AO OB ∴=设OA m =,则2OB m AB =,==在RtAOB sin ABO ∠中,=55OA AB ==故选D【点睛】考查反比例函数的几何意义、相似三角形的性质,将面积比转化为相似比,利用勾股定理可得直角边与斜边的比,求出sin ∠ABO 的值.第II 卷(非选择题)评卷人得分二、填空题91-=_____.【答案】0【解析】【分析】直接利用零指数幂的性质化简得出答案.【详解】原式110=-=故答案为:0【点睛】此题主要考查了实数运算,正确掌握运算法则是解题关键.10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.【答案】23.【解析】【分析】直接利用概率求法进而得出答案.【详解】一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:4263=.故答案为:23.此题主要考查了概率公式,正确掌握概率公式是解题关键.11.若整式22x my +(m 为常数,且0m ≠)能在有理数范围内分解因式,则m 的值可以是_____(写一个即可).【答案】-1【解析】【分析】令1m =-,使其能利用平方差公式分解即可.【详解】令1m =-,整式为22)x y x y x y +--((=).故答案为:1-(答案不唯一).【点睛】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.【答案】 4.5112x y x y +=⎧⎪⎨-=⎪⎩【解析】【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于,x y 的二元一次方程组,此题得解.【详解】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x y x y +=⎧⎪⎨-=⎪⎩故答案为: 4.5112x y x y +=⎧⎪⎨-=⎪⎩.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.如图所示,九()1班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得30ACB ∠︒=,点D 处测得6080ADB CD m ∠︒=,=,则河宽AB约为_____m (结果保留整数, 1.73≈).【答案】69【解析】【分析】在Rt ABC 中,3060ACB ADB ∠︒∠︒=,=,则30DAC ∠︒=,所以80DA DC ==,在Rt ABD 中,通过三角函数关系求得AB 的长.【详解】在Rt ABC 中,3060ACB ADB ∠︒∠︒=,=,30DAC ∴∠︒=,80DA DC ∴==,在Rt ABD 中,sin sin602AB ADB AD ︒=∠==,806922AB AD ∴==⨯=≈(米),故答案为:69.【点睛】本题考查了解直角三角形,熟练应用锐角三角函数关系是解题关键.14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠︒=,则阴影部分的面积为_____(结果保留π).【答案】34π-【解析】【分析】根据题意,作出合适的辅助线,即可求得CD 和COB ∠的度数,即可得到阴影部分的面积是半圆的面积减去AOC △和扇形BOC 的面积.【详解】连接OC BC 、,作CD AB ⊥于点D ,直径6AB =,点C 在半圆上,30BAC ∠︒=,9060ACB COB ∴∠︒∠︒=,=,cos3062AC AB ∴=︒=⨯=90CDA ∠︒=,133sin 3022CD AC ∴=︒==∴阴影部分的面积是:223360323223604πππ∙⨯⨯-=-=-,故答案为:34π-【点睛】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.15.有一列数,按一定规律排列成1,2,4,8,16,32,,---⋅⋅⋅其中某三个相邻数的积是124,则这三个数的和是_____.【答案】-384【解析】【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是124,可以求得这三个数,从而可以求得这三个数的和.【详解】一列数为1,24,816,32---⋯,,,,∴这列数的第n 个数可以表示为1(2)n --,其中某三个相邻数的积是124,∴设这三个相邻的数为11222n n n +﹣(﹣)、(﹣)、(﹣),则11122)2)2)4(((n n n +∙∙﹣--﹣=,即32122)2)n (-=(,32424=((2)22)n ∴-=-,324n ∴=,解得,8n =,∴这三个数的和是:7892)(2)(2)++(---=72)(124)128)3⨯-+⨯(-=(-384=-,故答案为:384-.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.16.如图,先有一张矩形纸片48ABCD AB BC ,=,=,点M N ,分别在矩形的边AD BC ,上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:CQ CD ①=;②四边形CMPN 是菱形;③P A ,重合时,MN =;④PQM 的面积S 的取值范围是35S ≤≤.其中正确的是_____(把正确结论的序号都填上).【答案】②③【解析】【分析】先判断出四边形CNPM 是平行四边形,再根据翻折的性质可得CN NP =,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ CD =,得Rt CMQ CMD ≌,进而得30DCM QCM BCP ∠∠∠︒===,这个不一定成立,判断①错误;点P 与点A 重合时,设BN x =,表示出8AN NC x -==,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形CMPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值便可.【详解】如图1,//PM CN ,PMN MNC ∴∠∠=,MNC PNM ∠∠=,PMN PNM ∴∠∠=,PM PN ∴=,NC NP =,PM CN ∴=,//MP CN ,∴四边形CNPM 是平行四边形,CN NP =,∴四边形CNPM 是菱形,故②正确;CP MN BCP MCP ∴⊥∠∠,=,90MQC D ∴∠∠︒==,CP CP =,若CQ CD =,则Rt CMQ CMD ≌,30DCM QCM BCP ∴∠∠∠︒===,这个不一定成立,故①错误;点P 与点A 重合时,如图2,设BN x =,则8AN NC x -==,在222Rt ABN AB BN AN +中,=,即22248x x +-=(),解得3x =,835CN AC ∴==﹣=,,12CQ AC ∴==,QN ∴==,2MN QN ∴==,故③正确;当MN 过点D 时,如图3,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为1144444CMPN S S ==⨯⨯=菱形,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大为15454S =⨯⨯=,45S ∴≤≤,故④错误.故答案为:②③.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、勾股定理的综合应用,熟练掌握菱形的判定定理和性质定理、勾股定理是解本题的关键.评卷人得分三、解答题17.(1)化简:22m m -11m ÷-;(2)解不等式组:31563x x x +>⎧⎨≤+⎩【答案】(1)2m(2)23x ≤﹣<.【解析】【分析】()1直接利用分式的乘除运算法则计算得出答案;()2分别解不等式进而得出不等式组的解.【详解】()1原式()()211m m m =⨯--2m=;()312563x x x +>⎧⎨≤+⎩①②解①得2x >-,:解②得:3x ≤,所以这个不等式组的解集为:23x ≤﹣<.【点睛】此题主要考查了分式的乘除运算以及不等式组的解,正确掌握解题方法是解题关键.18.在Rt ABC 中,9030C A D E F ∠︒∠︒=,=,,,分别是AC AB BC ,,的中点,连接ED EF ,.()1求证:四边形DEFC 是矩形;()2请用无刻度的直尺在图中作出ABC ∠的平分线(保留作图痕迹,不写作法).【答案】(1)证明见解析;(2)作图见解析.【解析】【分析】()1首先证明四边形DEFC 是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.()2连接EC DF ,交于点O ,作射线BO 即可.【详解】()1证明:D E F ,,分别是AC AB BC ,,的中点,////DE FC EF CD ∴,,∴四边形DEFC 是平行四边形,90DCF ∠︒=,∴四边形DEFC 是矩形()2连接EC DF ,交于点O ,作射线BO ,射线BO 即为所求.【点睛】本题考查三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.19.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿着原路匀速跑步6min 返回家中.()1小慧返回家中的速度比去文具店的速度快多少?()2请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象;()3根据图象回答,小慧从家出发后多少分钟离家距离为720?m【答案】(1)小慧返回家中的速度比去文具店的速度快80(/)m min ;(2)作图见解析;(3)小慧从家出发后9分钟或16.5分钟离家距离为720m .【解析】【分析】()1根据速度=路程/时间的关系,列出等式96096080612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后9分钟或16.5分钟离家距离为720m .【详解】(1)由题意可得,96096080612-=/m min ()答:小慧返回家中的速度比去文具店的速度快80/m min ();()2如图所示:()3根据图象可得,小慧从家出发后9分钟或16.5分钟离家距离为720m【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.20.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七年级学生一分钟跳绳成绩频数分布直方图七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:<,<,,<)在100120≤≤⋯≤x≤<这一组的是:x x x608080100180200100101102103105106108109109110110111 112113115115115116117119根据以上信息,回答下列问题:()1表中a=;()2在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.()3该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?【答案】(1)118;(2)甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)270人.【解析】【分析】(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从而得出答案;(3)利用样本估计总体思想求解可得.【详解】(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117,119,∴中位数1171191182a +==故答案为:118;()2在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.()3估计一分钟跳绳不低于116次的有31174250027050++++⨯=(人).【点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.21.如图,在Rt ABC 中,90ACB D ∠︒=,为AB 的中点,以CD 为直径O 的分别交AC BC ,于点E F ,两点,过点F 作FG AB ⊥于点G .()1试判断FG 与O 的位置关系,并说明理由.()2若3 2.5AC CD =,=,求FG 的长.【答案】(1)FG O 与相切,理由见解析;(2)6.5FG =【解析】【分析】()1如图,连接OF ,根据直角三角形的性质得到CD BD =,得到DBC DCB ∠∠=,根据等腰三角形的性质得到OFC OCF ∠∠=,得到OFC DBC ∠∠=,推出90OFG ∠︒=,于是得到结论;()2连接DF ,根据勾股定理得到4BC ==,根据圆周角定理得到90DFC ∠︒=,根据三角函数的定义即可得到结论.【详解】(1)相FG O 与切,理由:如图,连接OF ,90ACB D ∠︒=,为AB 的中点,CD BD ∴=,DBC DCB ∴∠∠=,OF OC =,OFC OCF ∴∠∠=,OFC DBC ∴∠∠=,//OF DB ∴,180OFG DGF ∴∠+∠︒=,FG AB ⊥,90DGF ∴∠︒=,90OFG ∴∠︒=,FG ∴与O 相切;()2连接DF ,2.5CD =,25AB CD ∴==,4BC ==CD 为O 的直径,90DFC ∴∠︒=,FD BC ∴⊥,DB DC =,122BF BC ∴==sin AC FG ABC AB FB ∠==即352FG =,6.5FG ∴=【点睛】本题考查了直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.22.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x 天的生产成本y (元/件)与x (天)之间的关系如图所示,第x 天该产品的生产量z (件)与x (天)满足关系式2120.z x =-+()1第40天,该厂生产该产品的利润是元;()2设第x 天该厂生产该产品的利润为w 元.①求w 与x 之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?【答案】(1)1600;(2)①()221001200,030804800,(3050)x x x x x ⎧-++<≤⎪⎨-+<≤⎪⎩,第25天的利润最大,最大利润为2450元;②当天利润不低于2400元的共有11天.【解析】【分析】()1由图象可知,第40天时的成本为40元,此时的产量为24012040z =-⨯+=,则可求得第40天的利润.()2利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】()1由图象可知,第40天时的成本为40元,此时的产量为24012040z =-⨯+=则第40天的利润为:()8040401600⨯﹣=元故答案为1600()2①设直线AB 的解析式为()0y kx b k +≠=,把()()070,3040,,代入得703040b k b =⎧⎨+=⎩,解得701b k =⎧⎨=-⎩∴直线AB 的解析式为70y x -+=()I 当030x ≤<时()()80702120w x x ⎡⎤--+-+⎣⎦=221001200x x -++=()22252450x --+=∴当25x =时,2450w 最大值=()II 当3050x ≤<时,()()80402120804800w x x =-⨯-+-+=w 随x 的增大而减小∴当312320x w 最大值=时,=221001200,(030)804800,(3050)x x x W x x ⎧-++<≤∴=⎨-+<≤⎩第25天的利润最大,最大利润为2450元②()I 当030x ≤<时,令()222524502400x +﹣﹣=元解得122030x x =,=抛物线()22252450w x +=﹣﹣开口向下由其图象可知,当2030x ≤≤时,2400w ≥此时,当天利润不低于2400元的天数为:3020111-+=天()II 当3050x ≤<时,由①可知当天利润均低于2400元综上所述,当天利润不低于2400元的共有11天.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:()1如图1,点A B C ,,在O 上,ABC ∠的平分线交O 于点D ,连接AD CD ,.求证:四边形ABCD 是等补四边形;探究:()2如图2,在等补四边形ABCD 中AB AD ,=,连接AC AC ,是否平分?BCD ∠请说明理由.运用:()3如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点105F CD AF ,=,=,求DF 的长.【答案】(1)证明见解析;(2)AD 平分BCD ∠,理由见解析;(3)5DF =.【解析】【分析】()1由圆内接四边形互补可知180180A C ABC ADC ∠+∠︒∠+∠︒=,=,再证AD CD =,即可根据等补四边形的定义得出结论;()2过点A 分别作AE BC ⊥于点E ,AF 垂直CD 的延长线于点F ,证ABE ADF △≌△,得到AE AF =,根据角平分线的判定可得出结论;()3连接AC ,先证EAD BCD ∠∠=,推出FCA FAD ∠∠=,再证ACF DAF ∽,利用相似三角形对应边的比相等可求出DF 的长.【详解】()1证明:四边形ABCD 为圆内接四边形,180180A C ABC ADC ∴∠+∠︒∠+∠︒=,=,BD ABC ∠平分,ABD CBD ∴∠∠=,AD CD∴=AD CD ∴=,∴四边形ABCD 是等补四边形;()2AD 平分BCD ∠,理由如下:如图2,过点A 分别作AE BC ⊥于点E ,AF 垂直CD 的延长线于点F ,则90AEB AFD ∠∠︒==,四边形ABCD 是等补四边形,180B ADC ∴∠+∠︒=,又180ADC ADF ∠+∠︒=,B ADF ∴∠∠=,AB AD =,ABE ADF AAS ∴≌(),AE AF ∴=,AC ∴是BCF ∠的平分线,即AC 平分BCD ∠;()3如图3,连接AC ,四边形ABCD 是等补四边形,180BAD BCD ∴∠+∠︒=,又180BAD EAD ∠+∠︒=,EAD BCD ∴∠∠=,AF 平分EAD ∠,12FAD EAD ∴∠∠=,由()2知,AC 平分BCD ∠,12FCA BCD ∴∠=∠FCA FAD ∴∠∠=,又AFC DFA ∠∠=,ACF DAF ∴∽,AF CF DF AF ∴=即5105DF DF +=5DF ∴=【点睛】本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省咸宁二中2019年中考数学一模试卷一.选择题(共10小题,满分30分)
1.﹣2的倒数是()
A.2B.﹣3C.﹣D.
2.下列说法中正确的是()
A.带根号的数是无理数
B.无理数不能在数轴上表示出来
C.无理数是无限小数
D.无限小数是无理数
3.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()
A.α+β=180°B.α+β=90°C.β=3αD.α﹣β=90°4.下列计算正确的是()
A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3 5.以下问题,不适合普查的是()
A.了解一批灯泡的使用寿命
B.学校招聘教师,对应聘人员的面试
C.了解全班学生每周体育锻炼时间
D.进入地铁站对旅客携带的包进行的安检
6.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()
A.B.C.D.
7.下列图案中既是中心对称图形,又是轴对称图形的是()
A.B.
C.D.
8.将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x﹣2)2+1 B.y=x2+1 C.y=(x+1)2+1 D.y=(x﹣1)2 9.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()
①AD是∠BAC的平分线
②∠ADC=60°
③△ABD是等腰三角形
④点D到直线AB的距离等于CD的长度.
A.1 B.2 C.3 D.4
10.如图图中,不能用来证明勾股定理的是()
A.B.
C.D.
二.填空题(满分18分,每小题3分)
11.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为千米.
12.填空:(1)方程x+的根是10,则另一个根是.
(2)如果方程有等值异号的根,那么m=.
(3)如果关于x的方程,有增根x=1,则k=.
(4)方程的根是.
13.如果关于x的不等式组无解,则a的取值范围是.
14.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.15.CD为⊙O的直径,弦AB⊥CD于点E,CD=10,AB=8,则tan∠DAE=.16.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为.
三.解答题(共9小题,满分72分)
17.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.
18.(6分)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
19.(6分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从点C开始沿射线CA方向以1cm/s的速度运动;同时,点Q也从点C开始沿射线CB方向以3cm/s 的速度运动.
(1)几秒后△PCQ的面积为3cm2?此时PQ的长是多少?(结果用最简二次根式表示)(2)几秒后以A、B、P、Q为顶点的四边形的面积为22cm2?
20.(7分)如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点
D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.。