场论与张量

合集下载

高等流体力学之第1讲 —— 场论与张量初步

高等流体力学之第1讲 —— 场论与张量初步
高等流体与气体动力学
Advanced Fluid and Gas Dynamics
大连理工大学能源与动力学院
主讲教师:刘宏升
二、怎样学习流体力学
1 透过数学公式抓物理本质 三大规律 守恒律 本构律 源律
2 结合实际问题(学位论文)
3 及时了解学科发展新动向
1
4
前言
一、关于流体力学
1 古老而年轻的科学 2 涉及众多学科与工程的基础科学 3 三大分支
练习题:设 u = f ( x , y , z ) ∈ C 2 , 求 grad u和 div(grad u ).
解: gradu = { f x , f y , f z }, div(gradu) = f xx + f yy + f zz .
散度定理——高斯定理
∫∫ S
An
d
若定义An为矢量A在面元法线n方向的投影,则 A·ds = An ds;若把A理解为流体的流速,则Ands就 表示穿过ds的流量,这就是叫通量的原因。
对于闭曲面S,取其外侧为正,则: 表示A从S流出的通量.
ψ > 0 时,表示有净流量流出,存在流体源; ψ < 0 时,表示有净流量流入,存在流体负源; ψ = 0 时,表示没有净流量流出,无净流体源。
理论流体力学 实验流体力学 计算流体力学
2
三、补充参考书
1. 吴望一:流体力学(上,下),北京大学出版社 2. 张兆顺等:流体力学(第二版),清华大学出版社 3. Zacrow,Hoffman: Gas dynamics Vol.1,2 4. 邹高万等:粘性流体力学,国防工业出版社 5. 王新月等:气体动力学基础,西北工业大学出版社
∂x ∂y ∂z 在点 M (x, y, z) 的散度。记为 :

习题答案—第二章

习题答案—第二章

第二章 正交曲线坐标系下的张量分析与场论1、用不同于书上的方法求柱坐标系和球坐标系的拉梅系数及两坐标间的转换关系ij β。

解:①柱坐标系k z j i r++=ϕρϕρs i n c o s ,2222222dz H d H d H ds z ++=ϕρϕρ ()()k dz j d d i d d r d+++-=ϕϕρρϕϕϕρρϕcos sin sin cos()()222222222222222222222222222222c o s s i n s i n c o s c o s s i n 2c o s s i n s i n c o s s i n 2c o s c o s s i n s i n c o s dz d d dz d d d d dz d d d d d d d d dz d d d d r d r d ds ++=++++=+++++-=+++-=⋅=ϕρρϕϕρϕϕρρϕρϕϕρϕϕρϕϕρρϕϕϕρϕρϕϕρρϕϕϕρρϕϕϕρρϕ故:1=ρH ,ρϕ=H ,1=z H ②球坐标系k R j R i R r θφθφθc o s s i n s i n c o s s i n ++=,2222222φθφθd H d H dR H ds R ++=()()()kd R dR j d R d R dR id R d R dR r dθθθφφθθφθφθφφθθφθφθsin cos cos sin sin cos sin sin sin sin cos cos cos sin -++++-+= ()()()2222222222s i n s i n c o s c o s s i n s i n c o s s i n s i ns i n s i n c o s c o s c o s s i n φθθθθθφφθθφθφθφφθθφθφθd R d R dR d R dR d R d R dR d R d R dR r d r d ds ++=-++++-+=⋅=故:1=R H ,R H =θ,θφsin R H = ③两坐标间的转换关系ij βφr re e θe φPθru re e zu ze r(1)圆柱坐标系 (2)球坐标系由球坐标系与直角坐标系的坐标变换矩阵为:sin cos sin sin cos cos cos cos sin sin sin cos 0r e i e j e k θφθφθφθθφθφθφφ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪⎢⎥=-⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥-⎣⎦⎩⎭⎩⎭注意,圆柱坐标系中的θ和球坐标系的φ相等。

第八章 矢量算法与场论初步张量算法与黎曼几何初步 SECTION4

第八章 矢量算法与场论初步张量算法与黎曼几何初步 SECTION4

§4 张量算法一、 张量概念[张量的一般定义] 若一个量有n N 个分量,而每个分量在n 维空间R n 中的坐标变换()n i i x x x x ''⋅⋅⋅=,,1 (i = 1 , ·, n )之下,按下面的规律变化:lm mm l l j l mj j i i i i i i j j j j j i i T x x x x x x x x T⋅⋅⋅⋅⋅⋅'''⋅⋅⋅⋅⋅⋅∂∂⋅⋅⋅∂∂∂∂⋅⋅⋅∂∂='111111 1 1 式中l mj j i i T ⋅⋅⋅⋅⋅⋅11是x i的函数,11l mj j i i T ⋅⋅⋅⋅⋅⋅是x i '的函数,则量lmj j ii T ⋅⋅⋅⋅⋅⋅11(共有n N个分量)称为l 阶逆变(或抗变)m 阶协变的N (=l +m )阶混合张量(或称为(l +m )型混合张量).张量概念是矢量和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量(例如T jk i)好比“立体矩阵”(图8.18右).更高阶的张量不能用图形表达.下面列出n =2时的张量示意图:[张量举例]1可乘张量 设由逆变分量和协变分量所给定的两个矢量a , b 是已知的,则由等式i k i k k i ik k i ik k i ik b a T b a T b a T b a T ====⋅,.,,确定的都是二阶张量,称为可乘张量.2克罗内克尔符号克罗内克尔符号δj i 是一阶逆变一阶协变的二阶混合张量,这是因为从ij ji i i xx x x δ=∂∂∂∂'' 可得i j j j i i j i i i i j xx x x x x x x δδ''''''∂∂∂∂=∂∂∂∂= [二阶对称张量与反对称张量] 若张量满足等式k i i k ki ik ki ik T T T T T T ===,,则分别称为二阶对称协变张量、二阶对称逆变张量和二阶对称混合张量.若张量满足等式T T T T T T ik ki ik ki k i i k =-=-=-,,则分别称为二阶反对称协变张量、二阶反对称逆变张量和二阶反对称混合张量. 张量的逆变(协变)指标的对称性质在坐标变换下是不变的.在三维空间中,二阶反对称张量与矢量等价.二、 张量代数[指标的置换] 指标置换是张量代数的最简单运算,利用它可作出新的张量.例如,通过指标置换,可由张量T ki 得到新的张量T ik ,它的矩阵是张量T ki 的矩阵的转置矩阵. [加(减)法] 同类型的若干个张量的对应分量相加(或相减)就得到一个新的同类型张量的分量,这种运算称为张量的加法(或减法).任何二阶张量可分解为对称张量与反对称张量两部分.例如()()ki ik ki ik ik T T T T T -++=2121[张量的乘法] 把两个张量的分量按各种可能情形相乘起来,就会得到一个新张量的分量.这个张量的逆变与协变的阶数分别等于原来两个张量的逆变与协变的阶数之和.这种运算称为张量的乘法.例如khl mk l hm s s tt r r p p s s r r t t p p T T T ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11111111这是一个l +k 阶逆变m +h 阶协变的混合张量,它的阶数为l +m +k +h . 注意,张量乘法的次序是不可交换的.[张量的缩并] 对一个给定的混合张量,把它的一个逆变指标与一个协变指标相等的相加起来,得出阶数较低(逆变和协变各低一阶)的张量,这种运算称为张量的缩并.例如lml mss s q q s s s q q T T ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=212122是一个l -1阶逆变m -1阶协变的混合张量.[指标的升降] 在应用中经常用二阶逆变张量()()a a ij ij det ≠0的相乘与缩并来“升高”张量的协变指标,用二阶协变张量()()a a ij ij det ≠0相乘与缩并来“降低”张量的逆变指标.这种运算称为指标的升降.例如T ijk 就可由a ij和a ij 升降:ijkkp jm il lmp ijk jm il k lm ijk il jk l lmp ijk kp jm il lm j ijk km il lm k ijk jm il lij ijk kl l ik ijk jl ljk ijk il T a a a T T a a T T a T T T a a a T T a a T T a a T T a T T a T T a =========,,,,,,[张量的商律] 设T j j i i ml11⋅⋅⋅⋅⋅⋅和Tj j i i ml 11''''⋅⋅⋅⋅⋅⋅各为一组x i 和x i '的函数,如果对任意逆变矢量λi 与λ'i 及任一指标j k ,j k '使jk i i j j j l m k T λ⋅⋅⋅⋅⋅⋅⋅⋅⋅11与''⋅⋅⋅''⋅⋅⋅'⋅⋅⋅'kl m k j i i j j j T λ11 成为张量,则T j j i i m l11⋅⋅⋅⋅⋅⋅必为张量.这种判别张量的法则称为张量的商律.例如 T k l m ij 与T k l m i j '''''各为x i ,x i '的函数,而且m mk k j j i i lij klm l j i m l k x x x x x x x x T T ''''''''''∂∂∂∂∂∂∂∂=λλ则m mk k j j i i l l l ij klm l j i m l k xx x x x x x x x x T T ''''''''''''∂∂∂∂∂∂∂∂∂∂=λλ即0'=⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂-''''''''''l m m l l k k j j i i ij klm j i m l k x x x x x x x x x x T T λ 对所有的λ'l 都成立,所以上式括号中的表达式等于零,因此T klm ij是张量.以任意协变矢量代替逆变矢量可得相仿的结果. [张量密度] 按下面规律变化的量⋅⋅⋅⋅⋅⋅⋅⋅⋅'''⋅⋅⋅'⋅⋅⋅'⋅⋅⋅∂∂⋅⋅⋅∂∂⋅⋅⋅∂∂=l k wa a k kl l l k T xx x x x x T 称为张量密度,式中w 为一常数,称为张量密度的权.张量就是权为零的张量密度.根据张量的阶数,还可以定义标量密度和矢量密度.两个指标的数目相同,且权相同的张量密度之和是一个同类型的张量密度.两个张量相乘时,权相加.三、 张量分析上述张量都假定它的分量是空间R n 中点M (x i)的函数:()T T xj j i i j j i i im l m l 1111⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= 当点M (x i )在空间R n中某一区域D 中变动时,则称T j j i i m l11⋅⋅⋅⋅⋅⋅是区域D 中的一个张量场.上面所建立的张量代数的各种运算,都可以应用到张量场上来.对于张量场还有一个不变的运算——绝对微分(也称为协变微分),这就是张量分析要讨论的内容.一个标量场的普通导数是一个协变矢量场(梯度场)的分量.但是,一般说来,一个张量场的普通导数并不构成新的张量场.[仿射联络空间] 若对空间R n中的每一坐标系(x i),在一已知点M 给定了一组(n 3个)数k ij Γ,并在坐标变换()x x x i i i ''=下,它们按下列规律变化k ijkk j j i i kk j i k k j i x x x x x x x x x x x Γ∂∂∂∂∂∂+∂∂∂∂∂=Γ'''''''''2 (1) 则称在点M 给定了一个联络对象(或联络系数),其中偏导数是在点M 取值的. 假定在空间R n中给定了联络对象场()()n k ij k ij x x M ,,1⋅⋅⋅=ΓΓ而且这些函数是连续可微的,则称R n为仿射联络空间,记作L n.一般说来,k ji k ij ΓΓ≠[挠率张量] (1)式中k ij Γ的变换规律包括两项:第一项不依赖于旧坐标系中的k ij Γ;第二项依赖于k ij Γ,并和张量的变换规律的形式完全相同.由于第一项对两个下标''i j ,是对称的,它一般不等于零,所以k ij Γ不是一个张量.但是k ji k ij k ij T ΓΓ-=构成一个张量,称为仿射联络空间L n的挠率张量.如果挠率张量k ij Γ等于零,即k ji k ij ΓΓ=则称所给定的空间是无挠率的仿射联络空间,记作L n 0.[矢量的绝对微分与平行移动] 若在空间L n中给定一个逆变矢量{}a i ,则在坐标变换下有iMi i i a x x a ⎪⎪⎭⎫ ⎝⎛∂∂=''(2) 这构成矢量{}a i 在点M 的变换规律.如果从点M ( x i )移到点N (x i +d x i),则有()i i jM ji i M i i i i a a x x x x x x a a d d d 2+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=+''''式中d a i表示矢量{}a i 从M 移到N 时的改变量的分量.在上式中只取一次项就得到ji Mji i iM i i i x a x x x a x x a d d d 2⎪⎪⎭⎫ ⎝⎛∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂='''(3) 若变换的二阶偏导数在M 不等于零,则一个矢量的改变量决不是一个矢量的分量. 如果R n 为仿射联络空间,可由(1),(2),(3)式得到()kj i jk i Mi i k j i k j i x a a x x x a ad d d d ΓΓ+⎪⎪⎭⎫ ⎝⎛∂∂=+'''''''这表明k j ijk i i x a a Da d d Γ+=是一个逆变无穷小矢量.称Da i为矢量{}a i 在点M 处关于分量为d x i的位移MN 的绝对微分.如果联络对象()0=MijkΓ,则绝对微分与普通微分一致.若矢量{}Da i 等于零,即k j ijk i i x a a Da d d Γ+==0就称矢量{}a i 关于联络i jk Γ从点M 平行地移动到点N .当()0=MijkΓ,分量a i 保持不变(d a i= 0)时,矢量从点M 平行移动到点N ,就相当于欧氏空间中的平行移动. 如果给定一条曲线Cx i = x i( t )和一个逆变矢量{}a i ,沿这条曲线C 可以作伴随于{}a i 的矢量tx a t a t Da kj i jk i i d d d d d Γ+= 称它为沿曲线C 的导矢量.如果{}a i 的导矢量为零,即0d d d d =+tx a t a kj i jk i Γ (4) 则矢量a i自身沿曲线C 平行地移动,(4)式与坐标系的选择无关,就是说,矢量沿曲线的平行移动在坐标变换下是不变的.同样地可以考虑协变矢量{}a i 的绝对微分与平行移动.称k i ijk j j x a a Da d d Γ-=为协变矢量{}a i 关于位移d x i的绝对微分.平行移动的条件为0d d =-k i i jk j x a a Γ或沿曲线C 平行移动的条件为0d d d d =-tx a t a kiijk j Γ [协变导数] 从逆变矢量与协变矢量的绝对微分的定义公式可以得到量j i jk k i a xa Γ+∂∂和i ijk kja x a Γ-∂∂它们是关于指标k 协变的二阶张量,分别称为矢量{}a i 和{}a j 的协变导数,分别记作a i k ;和a j k ;或∇k i a 和∇k j a .[张量的绝对微分与平行移动及其协变微分法]由乘积的微分公式和张量的定义可以推出张量的平行移动规律. 例如,三阶张量的平行移动规律为()s rik l rs l ir r ks l rk r is l ik x T T T T d d ΓΓΓ-+=四阶张量的平行移动规律为()s lrij k rs rk ij l rs lk ir r js lk rj r is lk ij x T T T T T d d ΓΓΓΓ--+=可以看出,张量平行移动规律中所包含的项数与张量的阶数是相同的, 对于张量的逆变指标, 类似于逆变矢量平行移动的规律; 对于张量的协变指标, 类似于协变矢量平行移动的规律.记()s lr ij k rs rk ij l rs lk ir r js lk rj r is lk ij lk ij x T T T T T DT d d ΓΓΓΓ--+-=则称DT ij lk 为张量T ij lk 的绝对微分. [张量的协变导数及其运算法则]lr ij k rs rk ij l rs lk ir r js lk rj r is slkijlk ij s lk s ij T T T T x T T T ΓΓΓΓ++--∂∂=∇≡;称为张量T ij lk 的协变导数,它是一个五阶张量的分量.在普通导数中,对于已微分的张量的每个指标再加上一项就可以构成任意张量的协变导数,对于逆变指标,这项的形式是⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=⋅⋅⋅⋅⋅⋅ri rs s i T T Γ;对于协变指标是⋅⋅⋅+-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅r r ks s k T T Γ;协变导数的运算法则如下:1若干个同样结构的张量之和的协变导数等于各个张量的协变导数之和,即()∇+=∇+∇⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅s j j i i j j i i s j j i i s j j i i T U T U m l m l m l m l111111112满足积的微分法则,即()()()()∇=∇+∇+∇s s s s ABC A BC A B C AB C[自平行曲线] 在仿射联络空间中,如果切于曲线上一点M 0的每个矢量{}a i0沿这曲线平行移动时是切于这曲线的,则称这曲线为自平行曲线.设曲线的方程为x i=x i(t ), 它的切矢量为tx i d d ,它沿曲线平行移动的条件为0d d d d d d 22=+t x t x tx kj i jk i Γ 这就是联络ijk Γ的自平行曲线的微分方程.设()ikj i jk i jk S ΓΓ+=21 上面的微分方程可写成t x t x S tx kj i jk i d d d d d d 22-= 系数S jk i 显然关于j 和k 是对称的,并构成一个仿射联络.称S jk i 构成伴随于ijk Γ的对称仿射联络,如果i jk Γ关于j , k 也是对称的,则S jk i 与ijk Γ一致.。

第03讲预备知识-场论1

第03讲预备知识-场论1

e3
顺时针为负
置换符号说明: i、j 、k取值不同值时, εijk取1 或-1(6个),其余分量(21个)为零。即:
e2 e1 逆时针为正
ε 123 = ε 231 = ε 312 = 1
ε 132 = ε 213 = ε 321 = −1
置换法则:任意2个自由指标对换后差一个负号 正负取值规律:按右图中,逆时针取值为正,顺时针取值为负。
a = ax i + a y j + az k
任意一点M的矢径 矢径微分
r = xi + yj + z k
M z y o x
a
dr = dxi + dyj + dzk
dr × a = 0
r
叉积为零:
这就是向量线的微分方程(Differential Equation) 在直角坐标系(System Of Rectangular Coordinates)当中表示为
可以列表表示:
e1
′ e1
e2
e3
α 11 α12 α13 α 21 α22 α23
α 31 α 32 α 33
ei′ = α ij e j ei = α ji e ′j
e′ 2
′ e3
上述关系可简写为:
同理,老坐标的单位向量可用新坐标的单位向量表示:
根据上述单位向量的性质和关系可导出:
ei ⋅ e j = e′ ⋅ e′j i
a ⋅ bc = (a ⋅ b)c = (b ⋅ a )c = c (a ⋅ b)
ab ⋅ cd = a (b ⋅ c )d = (b ⋅ c )ad = ad (c ⋅ b) c ⋅ ab ⋅ d = (c ⋅ a )(b ⋅ d ) = (b ⋅ d )(c ⋅ a )

教材张量分析与场论

教材张量分析与场论
其中
一个表达式中,哑指标必须是成对出现的,其名称是可以改变的,每一项的自由指标的多少以及名称都应是一样的。一个表达式中的自由指标的名称要换必须同时换,而且不能与其它指标的名称相同。如线性变换 这个表达式中有三项 , , ,其中第二项有哑指标j,可以换成k,或l,但不能换成i,因为这一项中i为自由指标。在这三项中都有自由指标i,要换必须同时换,如换成k,即可写为 ,但不能换成j,因为第二项中j为哑指标。
标量
矢量分量
张量分量
这里所说的张量可以称为二阶张量,因为有两个自由指标。矢量有一个自由指标,类似地可以称为一阶张量。类似地,标量可以称为零阶张量。
张量的定义还可以推广到高阶的情况,可以定义一般的n阶张量,一般张量的定义:在每一个坐标系下都有3n个量,它们按关系
从一个坐标系变换到另一个坐标系,这样的量称为n阶张量。
对点积运算可以按如下形式进行
其中用到了上边的推导的结果,即 。这与前边点积可写为 = 的结果一致。由此可以看出, 的作用是使该式中的指标j变为指标i, 也称为换标符号。
利用 的换标作用,一个函数的微分可以进行如下的推导
利用 及约定求和使得推导变得很方便了。
1.2记号 、矢积(叉乘)、 关系
在介绍矢积之前,我们先定义另一个记号 ,
由ε的定义可知 ; 。
可以用ε来表示三阶行列式
=
=
或=
也可以写成
在直角坐标系中基矢量{ }的矢积(叉乘)定义如下:设( )构成右手系,则定义
; ;

例如
例如
容易把矢积推广到一般矢量的情况,设 ; ; 叉乘 仍为一个矢量
的分量为 ,例如 中不为零的项只有 和 ,因此
一般的情况下由 推不出 。只有在任意的 上成立时,才能推得出该式。

流体力学-第一讲 场论与张量分析初步

流体力学-第一讲 场论与张量分析初步

ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk

电磁现象的基本规律-1

电磁现象的基本规律-1

1.1 场论和张量分析
3. 本节目的:
在直角坐标的正交线性变换下简介张量及其运算 回顾和介绍场论相关知识: 正交曲线坐标系(给出结果,不予证明) 高斯公式、斯托克斯公式和格林公式(推广) δ 函数(基本性质及其应用) 张量分析运算技巧 在直角坐标下推导和证明张量微分恒等式:“下标法”和“符号法” 推导矢量和二阶张量的不变量 为狭义相对论铺垫:构建张量和张量微分方程(参见第8章)
xi = a ji x′j
d xi = xi( 2 ) − xi(1) ,
对上式再用一次条件(1.1.4): a ji ali = δ jl , 或 A ⋅ AT = 方向也不变(整个矢量不变) x ′ = x′e ′ = x e = x i i j j x j e j = aij xi′e j = xi′ei′ 将逆变换式 x j = aij xi′ 代入上式得
ei′ ⋅ e ′j = ail el ⋅ a jk e k = ail a jk el ⋅ e k = ail a jl = δ ij
′ 由基矢等于坐标梯度也可导出基矢变换关系: ei
2011-2-21
= ∇xi′ = aij ∇x j = aij e j
7
第一章 电磁现象的基本规律
第一章 电磁现象的基本规律
第一章 电磁现象的基本规律(13课时)
节次
1.1 1.2 1.3 1.4 1.5
1.1 场论和张量分析
1. 问题的由来 为描述时空中的物质运动,必须
a) 引入参考系(4维)和坐标系(3维) ─ 实现对时空的定量描述 b) 引入物理量 ─ 实现对物质运动的定量描述 c) 建立相关物理量的联系 ─ 基本物理规律
2011-2-21
第一章 电磁现象的基本规律

第一章-场论及张量初步分析

第一章-场论及张量初步分析

全国范围内温度场分布
速度场
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.2 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
rotxa
az y
a y z
rot y a
ax z
az x
rot z a
a y x
ax y
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
i jk
rota
x y z
ax ay az
1.6 环量. 旋度. 斯托克斯定理
矢量线:线上每一点的切线方向与该 点的矢量方向重合
dr
r r
根据矢量定义有: a dr 0
直角坐标形式:
1.3 梯度-标量场不均匀性的量度
对于给定标量场 (r,t),用它的梯度
来表明在任一时刻标量场中每点邻域 内的函数变化。
函数在M点上沿曲线S方 向的方向导数:
表明函数φ(r,t)在M点上 沿曲线S方向的变化率
p31
p13
1 2
p23
p32
0
二阶反对称张量
2 1
0
张量分解定理
二阶张量可以唯一地分解成为一个对称张 量和一个反对称张量之和。
P
1 2
P
Pc
1 2
P
Pc

1第一章-场论与张量基本知识

1第一章-场论与张量基本知识

(r), a(r)
1.1 标量、矢量、场
场的几何表示
标量场可用函数等值面(线)来表示。 可直观看出函数值的大小分布,以及变 化快慢
矢量场可用矢量线来表示。 任一点的矢量方向可由矢量线的切线方 向定出;也可以从矢量线的疏密程度估 计矢量在各点的大小。
1.2 标量场的梯度
方向导数(Directional Gradient)
1. 如果一个方程式或表达式的一项中,一种下标只出现一次,则 称之为自由指标,自由指标在表达式或方程的每一项中必须只 出现一次。 2. 如果在一个表达式或方程的一项中,一种指标正好出现两次, 则称之为哑指标,它表示从1到3求和。哑指标在其他任何项中 可以刚好出现两次,也可以不出现。 3. 如果在一个表达式或方程中的一项中,一种指标出现的次数多 于两次,则是错误的。
2 3
2
ij ij ij ij
i 1 j 1
3
3
1111 1212 1313 21 21 22 22 23 23 31 31 32 32 33 33
1.4 张量表示法
自由指标: 定义:凡在同一项内不重复出现的指标。如
i j k x y z
是一个矢性微分算子,即在运算中具有矢量和微分的双重性质, 其运算规则是:
u u u u i j k x y z
Ay Ax A A i j z k x y z
Az Ay Ax Az Ay Ax A y z i z x j x y k
2 ( ) ( ),ij xi x j
uk ,ij
2uk xi x j
1.5 坐标变换与张量定义

高等流体力学——习题

高等流体力学——习题

习题一 场论和张量代数(习题一中黑体符号代表矢量)1.(一)用哈密顿符号法证明:rot n n n n n n n n n n n n n n C C ⨯=-⨯∇⨯=-⨯∇⨯=-∇⋅+⋅∇=-∇⋅+⋅∇()()()()()()C 12因为n 为单位向量,n n ⋅=1,故 ∇⋅=()n n 0,于是rot n n n n ⨯=⋅∇().注意: 将rot n n ⨯写成rot n n n n ⨯=∇⨯⨯()是不正确的。

右端表示矢量][)(pk q jpqijk x n n ∂∂εε.直接写rot n n n n n n n n ⨯=-⨯∇⨯=-∇⋅+⋅∇()()()尽管也能给出证明,但由第二步(反用混合积公式)到第三步却是错误的,一定要引入辅助矢量n C 才能进行正确的推导。

(二)张量表示法证明:()()1()()2n n n ijk jmnk jik jmn k im kn km in k m m mk i k k k k i k in n nn n n x x x n n n n n n x x x εεεεδδδδ∂∂∂⨯==-=--∂∂∂∂∂∂⋅=-+=-+⋅∇=⋅∇∂∂∂rot n n n n n n2.(一)哈密顿符号法:grad(a n a n n a n a ⋅=∇⋅=⨯∇⨯+⋅∇)()()(); rot(a n a n n a n a ⨯=∇⨯⨯=⋅∇-∇⋅)()()().于是n a n a n n n a n a n n a a a ⋅⋅-⨯=⋅⨯∇⨯+∇⋅=⋅∇⋅=∇⋅=[()()][()()]()grad rot div(二)张量表示法:()()[grad()rot()]()j j j p ki ijki j ijk kpq q i j i j j p j ii j ip jq iq jp q ij j i j i j a n a a n n n n x x x x a a a a n n n n n n x x x x εεεδδδδ⎛⎫⎛⎫∂∂∂∂⨯⋅⋅-⨯=-=- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎡⎤∂∂∂∂=--=-⎢⎥∂∂∂∂⎢⎥⎣⎦a n n a n a n div j i j ji i ja n x a Q n n Q x ⎡⎤∂+⎢⎥∂⎢⎥⎣⎦∂=+=+∂ a其中()0j j i i i jji j j i ij i ja a a aQ n n n n n n n x x x x ∂∂∂∂=-=-=∂∂∂∂(进行j i ,指标互换),证毕。

「第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2」

「第八章矢量算法与场论初步张量算法与黎曼几何初步SECTION2」

§2 场论初步一、 场论的基本概念及梯度、散度与旋度[标量场] 空间区域D 的每点M (x ,y ,z )对应一个数量值ϕ(x,y ,z ),它在此空间区域D 上就构成一个标量场,用点M (x,y,z )的标函数ϕ(x ,y ,z )表示.若M 的位置用矢径r确定,则标量ϕ可以看作变矢r 的函数ϕ=ϕ(r ).例如温度场u (x ,y,z ),密度场),,(z y x ρ,电位场e(x ,y ,z )都是标量场.[矢量场] 空间区域D 的每点M (x ,y,z )对应一个矢量值R (x ,y,z),它在此空间区域D 上就构成一个矢量场,用点M (x ,y ,z )的矢量函数R(x ,y,z)表示.若M 的位置用矢径r 确定,则矢量R 可以看作变矢r的矢函数R (r):R (r )=X(x ,y,z )i +Y(x ,y ,z )j +Z (x ,y,z )k例如流速场 υ(x ,y ,z ),电场E (x,y,z ),磁场H (x ,y ,z )都是矢量场.与标量场的情况一样,矢量场概念与矢函数概念,实质上是一样的.沿用这些术语(标量场、矢量场)是为了保留它们的自身起源与物理意义.[梯度]grad ϕ=(x ∂∂ϕ,y ∂∂ϕ,z ∂∂ϕ)=∇ϕ=x ∂∂ϕi +y ∂∂ϕj+z∂∂ϕk 式中∇=ix ∂∂+jy ∂∂+kz∂∂称为哈密顿算子,也称为耐普拉算子.gr ad ϕ有的书刊中记作de lϕ.grad ϕ的方向与过点(x ,y ,z )的等量面ϕ=C的法线方向N重合,并指向ϕ增加的一方,是函数ϕ变化率最大的方向,它的长度等于N∂∂ϕ. 梯度具有性质:grad(λϕ+μψ)=λ gr ad ϕ+μgrad ψ (λ、μ为常数)grad(ϕψ)=ϕ grad ψ+ψ gr ad ϕ gra dF (ϕ)=()ϕϕgrad F ' [方向导数]l ∂∂ϕ=l·g ra dϕ=x ∂∂ϕcos α+y ∂∂ϕcos β+z∂∂ϕc os γ式中l =(cos α,c os β,cos γ)为方向l 的单位矢量,α,β,γ为其方向角.方向导数为ϕ在方向l 上的变化律,它等于梯度在方向l 上的投影. [散度]d iv R =x X ∂∂+y Y ∂∂+zZ ∂∂=∇·R =div (X , Y , Z) 式中∇为哈密顿算子. 散度具有性质:d iv (λa +μb)=λ div a +μdi vb (λ、μ为常数) div(ϕa )=ϕdiv a+a g rad ϕ div(a ×b )=b·ro t a-a ·rot b[旋度]rot R =(z Y y Z ∂∂-∂∂)i +(xZ z X ∂∂-∂∂)j +(y X x Y ∂∂-∂∂)k =∇×R=ZYXz y x ∂∂∂∂∂∂k j i式中∇为哈密顿算子,旋度也称涡度,rot R有的书刊中记作cu rl R .旋度具有性质:r ot(λa +μb )=λ rot a +μro t b (λ、μ为常数) rot(ϕa )=ϕrot a +a ×grad ϕro t(a ×b )=(b ·∇)a -(a ·∇)b +(div b )a -(di v a)b[梯度、散度、旋度混合运算] 运算g rad 作用到一个标量场ϕ产生矢量场grad ϕ,运算d iv 作用到一个矢量场 R产生标量场d iv R,运算rot 作用到一个矢量场R 产生新的矢量场r ot R .这三种运算的混合运算公式如下:d iv rot R =0 rot gr ad ϕ=0div gr adϕ=22x ∂∂ϕ +22y∂∂ϕ+22z ∂∂ϕ=∆ϕg rad di v R=∇(∇R ) ro t rot R =∇×(∇×R )div gra d(λϕ+μψ)=λ d iv g rad ϕ+μdiv gra dψ (λ、μ为常数)d iv grad(ϕψ)=ϕd iv g rad ψ+ψdiv grad ϕ+2gra dϕ·grad ψg rad div R-ro t ro t R =∆R式中 ∇为哈密顿算子,∆=∇·∇=∇2为拉普拉斯算子.[势量场(守恒场)] 若矢量场R (x,y ,z )是某一标函数ϕ(x ,y ,z )的梯度,即R =gra dϕ 或 X=x ∂∂ϕ,Y =y ∂∂ϕ,Z =z∂∂ϕ则R称为势量场,标函数ϕ称为R 的势函数.矢量场R 为势量场的充分必要条件是:rot R =0,或y X ∂∂ =x Y ∂∂,z Y ∂∂=y Z ∂∂,x Z ∂∂=zX∂∂ 势函数计算公式ϕ(x,y ,z )=ϕ(x0,y 0,z 0)+()⎰xx x z y x X 0d ,,00+()⎰yy y z y x Y 0d ,,0+()⎰zz z z y x Z 0d ,,[无散场(管形场)] 若矢量场R 的散度为零,即div R =0,则R 称为无散场.这时必存在一个无散场T,使R=r ot T,对任意点M有T =14π⎰V r d rot R式中r为d V到M的距离,积分是对整个空间进行的.[无旋场] 若矢量场R 的旋度为零,即r ot R =0,则R 称为无旋场.势量场总是一个无旋场,这时必存在一个标函数ϕ,使R =grad ϕ,而对任意点M 有ϕ=-14π ⎰V r d div R式中r 为d V 到M 的距离,积分是对整个空间进行的.二、 梯度、散度、旋度在不同坐标系中的表达式1.单位矢量的变换[一般公式] 假定x =f(ξηζ,,),y =g (ξηζ,,),z =h (ξηζ,,)把(ξηζ,,)空间的一个区域 一对一地连续映射为(x,y ,z )空间的一个区域D ,并假定f ,g ,h 都有连续偏导数,因为对应是一对一的,所以有ξ=ϕ(x ,y ,z ),()()ηψζχ==x y z x y z ,,,,,再假定ϕψχ,,也有连续偏导数,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=ζζηηξξζζηηξξζζηηξξd d d d d d d d d d d d z z z z y y y y x x x x 或逆变换⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=z z y y x x z z y y x x z z y y x x d d d d d d d d d d d d ζζζζηηηηξξξξ沿d x,dy ,d z 方向的单位矢量记作i ,j ,k ,沿ζηξd ,d ,d 方向的单位矢量记作ζηξe e e ,,,则有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂=222222222ζζζζζζηηηηηηξξξξξξζηξz y x z y x z y x zy x z y x z y x k j i e k j i e kj i e [圆柱面坐标系的单位矢量] 对于圆柱面坐标系(图8.11)⎪⎩⎪⎨⎧===z z y x ϕρϕρsin cos ()002≤≤∞≤<-∞<<∞ρϕπ,,z 单位矢量为⎪⎩⎪⎨⎧=+-=+=k e j i e j i e zϕϕϕϕϕρcos sin sin cos 它们的偏导数为000=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂zz z zzze e e e e e e e e e e ϕρϕρρϕϕρρρρϕϕϕ,,[球面坐标系的单位矢量] 对于球面坐标系(图8.12)⎪⎩⎪⎨⎧===θϕθϕθcos sin sin cos sin r z r y r x ()0020≤<∞≤<≤≤r ,,ϕπθπ单位矢量为⎪⎩⎪⎨⎧+-=-+=++=j i e k j i e k j i e ϕϕθϕθϕθθϕθϕθϕθcos sin sin sin cos cos cos cos sin sin cos sin r它们的偏导数为θϕϕθϕϕθθϕθθθϕθϕθϕθθθe e e e e e e 0e e e e e 0e e e cos sin ,cos ,sin ,,--=∂∂=∂∂=∂∂=∂∂-=∂∂=∂∂=∂∂=∂∂=∂∂r rr rr rr r 2.矢量的坐标变换[一般公式] 一个由(x ,y ,z)坐标系所表达的矢量可以用(ξηζ,,)坐标系来表达:υ=(x υ,υy,υz)=x υi+υy j +υz k=ζζηηξξυυυe e e ++式中⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=222222222222222222222222222ζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζζζυζηηηυηξξξυξυζηξζηξζηξz y x z z y x z z y x z z y x yz y x y z y x y z y x x z y x x z y x x z y x[圆柱面坐标系与直角坐标系的互换] 由圆柱面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧=+=-=z zy x υυϕυϕυυϕυϕυυϕρϕρcos sin sin cos 由直角坐标系到圆柱面坐标系的变换公式⎪⎩⎪⎨⎧=+-=+=z zy x y x υυϕυϕυυϕυϕυυϕρcos sin sin cos [球面坐标系与直角坐标系的互换] 由球面坐标系到直角坐标系的变换公式⎪⎩⎪⎨⎧-=++=-+=θυθυυϕυϕθυϕθυυϕυϕθυϕθυυθϕθϕθsin cos cos sin cos sin sin sin cos cos cos sin r zr y r x 由直角坐标系到球面坐标系的变换公式⎪⎩⎪⎨⎧+-=-+=++=ϕυϕυυθυϕθυϕθυυθυϕθυϕθυυϕθγcos sin sin sin cos cos cos cos sin sin cos sin y x z y x z y x 3.各种算子在不同坐标系中的表达式设U =U (x,y ,z )是一个标函数,V =V (x ,y ,z )是一个矢函数. [在圆柱面坐标系中各种算子的表达式]哈密顿算子 ~∇=ρρ∂∂e +ϕρϕ∂∂1e +zz ∂∂e梯 度 grad U = ~∇U=ρρ∂∂U e +ϕρϕ∂∂U 1e +z U z ∂∂e散 度 di vV = ~∇·V =()zz ∂∂+∂∂+∂∂υϕυρρυρρϕρ11 旋 度 ro tV= ~∇×V =ρϕυϕυρe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z 1+ϕρρυυe ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂z z +()z e ⎪⎪⎭⎫⎝⎛∂∂-∂∂ϕυρρρυρρϕ11拉普拉斯算子 ∆U =d iv grad U =2222211z UU U ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂ϕρρρρρ [在球面坐标系中各种算子的表达式]哈密顿算子 ~~∇=r r ∂∂e +θθ∂∂r 1e +ϕθϕ∂∂sin r 1e梯 度 grad U= ~~∇U =r U r ∂∂e +θθ∂∂U r 1e +ϕθϕ∂∂U r sin 1e散 度 di v V=~~∇·V =()()ϕυθθυθθυϕθ∂∂+⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂sin sin sin r r r r r r 11122 旋 度 rot V = ~~∇×V=()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ϕυθυθθθϕsin sin r 1r e +()⎥⎦⎤⎢⎣⎡∂∂-∂∂ϕυϕυθr r r r r 11sin θe +()⎥⎦⎤⎢⎣⎡∂∂-∂∂θυυθr r rr r 11ϕe 拉普拉斯算子 ∆U =d iv g rad U=2222221111ϕθθθθθ∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂U r U r r r U r r rsin sin sin三、 曲线积分、曲面积分与体积导数[矢量的曲线积分及其计算公式] 矢量场R (r )沿曲线Γ的曲线积分定义为⎰ΓR (r )·d r =∑=∞→→ni n r 1lim∆R(i r ~)·∆ri-1 式中∆ri -1=ri -r i -1,右边极限与i r ~的选择无关,曲线 Γ由A 到B (图8.13)若矢函数R (r )是连续的(就是它的三个分量是 连续函数), 曲线Γ也是连续的, 且有连续转动的切线, 则曲线积分()⎰⋅Γr r R d存在.若R (r)为一力场,则P=()⎰⋅Γr r R d 就等于把一质点沿着Γ 移动时力R 所作的功. 矢量曲线积分的计算公式如下: ()⎰Γ⋅r r R d =()⎰++z Z y Y x X d d d Γ()⎰+⋅21ΓΓr r R d =()⎰⋅1Γr r R d +()⎰⋅2Γr r R d (图8.14)()⎰⋅Γr r R d =-()⎰-⋅Γr r R d()()[]⎰⋅+Γr r T r R d =()⎰⋅Γr r R d +()⎰⋅Γr r T d()⎰⋅Γr r R d k =k ()⎰⋅Γr r R d(k 为常数)[矢量的环流] 如果Γ为一闭曲线,则沿曲线Γ 的曲线积分()⎰⋅Γr r R d =()⎰++Γz Z y Y x X d d d 称为矢量场R (r )沿闭曲线Γ 的环流.势量场沿任何闭曲线的环流都等于零.如果R(r)为一势量场,且它的势函数为ϕ时,则曲线积分()⎰⋅Γr r R d =()⎰⋅B Ar r R d =ϕ(B )-ϕ(A )与连接A ,B 两点的路径无关,只依赖于A,B 两点的 位置(图8.15).[矢量的曲面积分] 设S 为一曲面,令N =()cos ,cos ,cos αβγ表示在曲面S 上一点的法线单位矢量, 而dS =N d S表示面积矢量元素.又设ϕ(r)=ϕ(x , y ,z )是定义在曲面S 上的连续标函数,R (r )=(X(x , y,z),Y (x , y ,z ), Z (x, y ,z ))是定义在曲面S上的连续矢函数,这里规定法线单位矢量与曲面分布在切面的两侧.则曲面积分有如下的三种形式:1标量场的通量(或流量)ϕS⎰⎰dS =ϕS yz⎰⎰d y d z i +ϕS zx ⎰⎰d z d x j +ϕS xy⎰⎰d x d y k式中S yz ,S zx ,Sxy 分别表示曲面S 在Oyz 平面,Oz x平面, O xy平面上的投影.Sx y的正负号规定如下:当从z轴正方 向看去时,看到的是曲面S 的正面,认为S xy 为正,如果 看到的是曲面的反面,则认为S xy 为负(图8.16).2矢量场的标通量S⎰⎰R ·d S =S yz⎰⎰X d yd z +S zx ⎰⎰Y d z d x+S xy⎰⎰Z d xd y式中S yz 等的意义同1.3矢量场的矢通量S⎰⎰R ×d S=S yz⎰⎰(Z j-Yk )dy d z +S zx ⎰⎰(X k-Z i)dz d x +S xy⎰⎰(Y i -Xj )d x d y式中S y z等的意义同1.[矢量的体积导数] 如果S 是包围体积V 的闭曲面,并包含点r,则沿闭曲面S 的曲面积分(S⎰ϕd S ,S⎰R ·dS,S⎰R ×d S )与体积V之比,当V 趋于零时(即它的直径→0)的极限称为标量场ϕ(或矢量场R )在点r 处的体积导数(或空间导数). 1标量场ϕ的体积导数就是它的梯度:grad ϕ=VSV ⎰→Sd limϕ02矢量场R的体积导数之一是它的散度:div R=VSV ⎰⋅→SR d lim3矢量场R 的另一个体积导数是它的旋度: rot R=-V S V ⎰⨯→S R d lim四、 矢量的积分定理[高斯公式]⎰⎰⎰V div R dV =S ⎰⎰R ·d S=S⎰⎰R ·N d S 即()⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SS Z Y X z y x z Z y Y x X d cos cos cos d d d γβα 式中S 为空间区域V 的边界曲面,N =()cos ,cos ,cos αβγ为在S 上一点的法线单位矢量,R(r)=(X (x , y,z ),Y (x , y,z ),Z (x , y ,z ))在V +S上有连续偏导数.[斯托克斯公式] S ⎰⎰r ot R ·dS=S ⎰⎰rot R ·N d S =L⎰R ·d r 即y x y X x Y x z x Z z X z y z Y y Z S d d d d d d ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ = ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S S y X x Y x Z z X z Y y Z d cos cos cos γβα = ⎰++L z Z y Y x X d d d式中S 为一定曲面的一侧,L 为曲面S 的闭边界曲线(L 的正向与N 构成右手系).S的每点有切面,其方向连续地依赖于曲面上的点,而边界曲线L上的每点都有切线(图8.17). R (r )=(X (x , y ,z ),Y (x , y ,z ),Z (x , y,z ))在曲面的所有点单值,并在与S 足够靠近的点处有连续偏导数.[格林公式]⎰⎰S ψϕgrad ·dS =()⎰⎰⎰⋅+VV d grad grad Δψϕψϕ ()⎰⎰-S ϕψψϕgrad grad ·d S =()⎰⎰⎰∆-∆VV d ϕψψϕ式中S 为空间区域V 的边界曲面,ϕψ,为两个标函数,在S上具有连续偏导数,且在V 上具有二阶连续偏导数,∆为拉普拉斯算子,特别⎰⎰S ϕgrad ·d S =⎰⎰⎰∆V V d ϕ 即⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=∂∂+∂∂+∂∂S V V z y x y x z x z y z y x d d d d d d d 222222ϕϕϕϕϕϕ。

0 场论与张量基本知识

0 场论与张量基本知识

l 上的单位向量, 设e cos i sin j 是方向
由方向导数公式知
f f f f f cos sin { , } {cos , sin } x y l x y gradf ( x , y ) e | gradf ( x , y ) | cos , 其中 ( gradf ( x, y ), e ) f 当 cos( gradf ( x , y ), e ) 1时, 有最大值. l
如果已知区域 S 中的场,根据斯托克斯定理即可求出
边界 l 上的场,反之亦然。
1.2.6 基本运算公式列表
a、微分公式
(1) 1
(2) 1 (3) (4)
1 2 2 1 f f A B A B
数学中的高斯定理 (Gauss’s theorem) 将体积 积分与面积积分联系起来,在流体力学中,可以 利用这一定理将通量与散度联系在一起。 令 V 为一封闭曲面所包围的体积,在曲面上 考虑一微小面积 dS,其外法线方向为n, dS= ndS 是一向量 ( 其大小为 dS ,方向为 n) ,令 A 表示一个 标量场、向量场或张量场,则高斯公式为
1.2.2 向量场的散度
(2) 向量A的散度 在直角坐标系中,A=Ax i+Ay j+Az k
Ax Ay Az div A A x y z
散度等于零 (divA = 0) 的向量场称为无源场或管式 场。div u=0是不可压缩流体流动的连续性方程。 散度基本运算法则:
在向量场 A 中任取一点 M ,包围 M 作一微小体积 ΔV , 其界面的表面积为ΔS。考虑向量A通过ΔS面的通量,除以 体积ΔV,令体积ΔV向M点无限收缩,得极限

高等流体力学—场论及张量初步

高等流体力学—场论及张量初步
diva lim
Vz diva lim V 0 x y z Q
1.4 矢量的通量.散度.奥高定理
a x a y a z diva lim V 0 x y z Q
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
az a y rotx a y z a x a z rot y a z x a y ax rotz a x y
1.6 环量. 旋度. 斯托克斯定理
grad i j k x y x
dr dxi dyj dzk
梯度的主要性质
grad i j k x y z
dr dxi dyj dzk
dr grad
dx dy dz x y z
an:矢量a在法线方向的投影 an dS:矢量a通过面积元dS的通量
1.4 矢量的通量.散度.奥高定理
在整个曲面上积分,得矢量a通过S面的通量
a dS n
s
实质上相当于函数的面积分
1.4 矢量的通量.散度.奥高定理
当S面为封闭曲面时,通量为:
a dS n
s
1.4 矢量的通量.散度.奥高定理
S 0
a dr
L
S
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系
a dr a dx a dy a dz x y z
L L
a z a y cos(n, x) s z y
i rota x ax j y ay k i z x az x j y y k 0 z z

第二章 正交曲线坐标系中的张量分析与场论

第二章 正交曲线坐标系中的张量分析与场论

第二章 正交曲线坐标系中的张量分析与场论上一章讨论了张量的代数运算,而连续介质力学要求研究连续介质微元体之间的关系,这就要求把微积分引入张量的运算中,从而形成了张量分析与场论。

本章我们将重点介绍正交曲线坐标系中的张量分析及一些有关场论的知识,关于一般曲线坐标系中张量分析的知识不在我们课程讲授的范围之内,我们在第三章中给出有关内容的简单介绍,供有兴趣者参考。

相对于一般曲线坐标系,有些文献和教科书上也把正交曲线坐标系称为非完整系物理标架。

2.1、矢量函数、及其导数与微分1).如果一个矢量A 随着某一参数q 在变化,则称这个矢量()q A为矢量函数,在直角坐标,也称笛卡尔坐标中()q A可表示为()()()()k q A j q A i q A q A z y x++=如果把矢量A 的起点放在原点,随着q 的变化,A的端点将在空间描述出一条曲线,这条曲线称为A的矢端曲线,矢端曲线是以参数形式给出的。

矢端曲线上一点M ,矢量叫做点M 的矢径,用r表示。

矢端曲线的参数方程为A r=,即其分量满足的方程为()q A x x =; ()q A y y =; ()q A z z = 例:圆柱螺旋线。

参数方程为:()k a j a i a rθθθθ++=sin cos其中θ为参数。

2).矢量函数的导数矢量函数的导数的定义为:如()()qq A q q A q A q q ∆-∆+=∆∆→∆→∆ 00lim lim存在,则称为()q A 在q 点的导数或导矢,记为qA ∆∆或A '。

在直角坐标中,由于i e是常矢量,因此导数的表达式为()()()()i i i i i q i i i i q q e qA e q q A q q A q e q A e q q A q Adq A d∂∂=∆-∆+=∆-∆+=∆∆=→∆→∆→∆000lim lim lim即k dqdA j dq dA i dq dA dq A d z y x++=s导矢()q A '的几何意义:如果导矢A ' 存在,且0≠'A ,则A '的方向表示矢端曲线的切线方向,并指向q 增加的方向。

2203高等流体力学

2203高等流体力学

科目代码:2203 科目名称:高等流体力学
一、考试的总体要求
掌握流体力学的基本理论和流场分析与计算的基本方程、基本方法,运用所学的流体力学理论及方法分析和求解基本的流场分析计算问题。

二、考试的内容
1.场论和张量初步:掌握梯度、散度、旋度的概念,利用哈密顿算子进行基本的微分运算;掌握张量表示法、二阶张量基本概念和二阶张量的微分运算。

2、流体的物理性质:掌握连续介质模型,流体中一点的应力张量的概念,流体的压缩性和膨胀性。

3、流体运动学:理解描述流体运动的两种方法,理解理想流体与粘性流体等概念;掌握流线方程和迹线方程,掌握质点导数的计算。

理解柯西-亥姆霍兹速度分解定理及物理意义,掌握流体微团变形与转动的计算;掌握流场旋度的概念与基本计算;理解本构方程。

4、流体力学基本方程:理解控制体和质量体(系统)的概念,输运公式及其物理意义;掌握积分形式与微分形式的连续性方程、运动方程、能量方程建立的条件、方法和物理意义。

理解和掌握伯努利方程及其使用条件。

理解初始条件和边界条件的提法。

5、理想流体动力学:理解欧拉方程,掌握有旋流动的运动学性质,凯尔文定理,涡旋不生不灭定理;掌握不可压缩无旋流动中速度势的物理意义,掌握流函数及势函数的概念与计算。

6、粘性流体动力学:理解不可压缩牛顿型流体的连续方程、运动方程和能量方程,掌握粘性流体运动的相似定律,理解相似准则的物理意义;理解流体力学方程简化分析的基本方法。

三、考试的题型
简答题、分析题、计算题、论述题。

《物理场论》标量矢量和张量

《物理场论》标量矢量和张量

一个数量场可以用一个数性函数 u 来表示。通 常假定数性函数 u是单值、连续且有一阶连续的
偏导数。
数量场的等值面
等值面:数性函数 u 取相同值的点连接起来构
成的一个曲面,定义为:
u(x, y, z) C ( C 为常数)
比如温度场的等温面,电位场的等电位面等。
由隐函数存在定理可知,在函数 u 为单值,且
证明:将
C
D
看作一个矢量,由矢量混合积
的旋转法则可以得到:
( A B) (C D) A [B (C D]
A [C(B D) D(B C)]
( A C)(B D) ( A D)(B C)
P(x, y, z) r
o
xex
yey
y
x
矢量的点积
矢量点积的物理背景:广泛的应用。
W

F
s
常力
F
W


F

ds
O 变力
s
矢量的点积
矢量点积的矩阵表示:矢量可以用列矩阵表示。




A Axex Ayey Azez
Ax
A

P(x, y, z)
yj
y
矢量均可以表示为基的线性组合
r xi yj zk
r xex yey zez
矢量的概念
z
矢量的模:矢量的长度
r

r

x2 y2 z2
zez
r
o
xex
单位矢量:一个矢量与其模相除。 x
r

第一章 场论和张量初步

第一章 场论和张量初步

第一章 场论和张量初步1.1 场的定义及分类设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。

均匀场:同一时刻内各点函数的值都相等。

反之为不均匀场。

定常场:场内函数值不依赖于时间。

反之为不定常场。

1.2场的几何表示标量场:等位线。

矢量场:矢量线的微分方程:(,,,)(,,,)(,,,)x y z dx dy dza x y z t a x y z t a x y z t ==积分,将t 看成参数,即得矢量线的分析表达式。

1.3梯度——标量场不均匀性的量度梯度:大小为n ϕ∂∂,方向为n ,的矢量称为标量函数ϕ的梯度,以grad n n ϕϕ∂=∂表之。

在s 方向上的方向导数等于梯度矢量在s 方向上的投影。

梯度grad ϕ在直角坐标系中的表达式为grad i j k x y z ϕϕϕϕ∂∂∂=++∂∂∂总结起来,梯度的主要性质是:1)梯度grad ϕ描写了场内任一点M 领域内函数ϕ的变化状况,它是标量场不均匀性的量度。

2)梯度grad ϕ的方向与等位面的法线重合,且指向ϕ增长的方向,大小是n 方向上的方向导数n ϕ∂∂;3)梯度矢量grad ϕ在任一方向s 上的投影等于该方向的方向导数;4)梯度grad ϕ的方向,即等位线的法线方向是函数ϕ变化最快的方向。

定理1 梯度grad ϕ满足关系式d dr grad ϕϕ=∙定理2 若a grad ϕ=,且ϕ是矢径r 的单值函数,则沿任一封闭曲线L 的线积分La dr⋅⎰等于零,反之,若矢量a 沿任一封闭曲线L 的线积分La 0dr ⋅=⎰则矢量a 必为某一标量函数ϕ的梯度。

例:计算仅与矢径大小r 有关的标量函数ϕ(r )的梯度ϕgrad 。

I )利用性质(2),标量函数=ϕϕ(r )的等位面是以坐标原点为心的球面,而球面的法线方向,即矢径r 的方向,故ϕgrad 的方向就是矢径r 的方向其次的大小是=r r ϕϕ∂∂’()于是rii )利用性质(5),显然x d r dr x ϕϕ∂∂=∂∂,d r y dr y ϕϕ∂∂=∂∂,z d rdr z ϕϕ∂∂=∂∂因222r x y z =++故r x x r ∂=∂,r y y r ∂=∂,r z z r ∂=∂于是x d x r dr ϕϕ∂=∂,y d y r dr ϕϕ∂=∂,z z d r dr ϕϕ∂=∂而=r r xi yj zk d grad ij k x y z r dr ϕϕϕϕϕϕϕ∂∂∂++∂=++==∂∂∂∂’()iii )利用定理1,r r dr rdrrϕϕϕ=’’()d (r)=()因2r r r ⋅=微分得r dr rdr ⋅=于是r d r drrϕϕ=⋅’()根据定理1r最后我们指出,写成a grad ϕ=的矢量场亦称位势场,ϕ称为位势函数。

流体力学习题

流体力学习题

流体力学习题习题一 场论和张量代数1.证明 ()n n n n ⋅∇=⨯rot ,其中n 为单位向量。

2.证明n a n a n a ⋅⋅-⨯=[()()]grad rot div ,其中a 是变矢量,n 是单位常矢量。

3.用两种方法证明()()∇⨯⨯=-⋅∇-⨯⨯+a b a b a b a b a b rot +rot div 。

4.有一张量,将其分解为对称的和反对称的两部分,并以w 表示相当于反对称部分的矢量,12i ijk jk w p ε=。

试证 ()()2()P P ⋅⋅-⋅⋅=⋅⨯u v v u w u v ,其中u 及v 为任意矢量。

5.张量P 为反对称张量的充分必要条件是:对任意矢量a 有下述恒等式成立:a a ⋅⋅=()P 0习题二 流体运动描述1. 流体质点绕oz 轴以等角速度ω 旋转,(1)试以欧拉变量写出流体运动的速度场;(2)试以拉哥朗日变量写出流体质点的运动规律;(3)试分析流场的流线和轨迹;(4)试求流体质点的加速度;(5)用极坐标解此题。

2. 一维收缩管内的不可压缩流动,其速度分布为:)/1(1L x V V +=,试决定:(1)流场内任一质点的加速度(2)给出 t=0时刻位于0x x =点的质点的运动规律,并比较用两种方法得到的加速度。

3. 流体质点在定常流场内运动,流体质点是否具有加速度,为什么?4. 设流场为:2Xt u =,2Yt v =,0=w 。

试求流场的流线,流体质点的轨迹和加速度,并以拉哥朗日变数表示质点的速度和加速度。

5. 设流场为:ky u =,)(t x k v λ-=,0=w ,其中k 和λ 均为常数。

试求:t=0 时经过点M(a ,b ,c)的流线及t=0时经过M(a ,b ,c)处的流体质点的轨迹,最后考虑0=λ时的情形。

6. 考虑下述速度分量定义的二维流动: Cv Bt A u =+= 其中A 、B 、C 为常数。

试证流线为直线,质点的轨迹为抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lim
S 0
L
a dr S a dr S
定义矢量a的旋度矢量rota在n方向的投影为(微分形式的斯托克斯公式):
rot a lim
n S 0
L
1.6 矢量的环量、旋度、斯托克斯定理
证明上述极限存在。设矢量a的三个分量具有连续一级偏导数,利用斯托克斯 公式,有:

L
a dr
an a n ax cos(n, x) a y cos(n, y) az cos(n, z )
为a在法线方向的投影,定义矢量a通过面积元dS的通量为andS,则沿曲面S积 分,可得矢量a通过S面的通量:

dS dSn
S
an dS
定义面积矢量dS是大小为dS、方向为法线正方向的量,则通量表达式可表示为如 下形式:
S1 S


S1
an dS an dS
S
应该指出,该性质仅在特定的区域内成立,在此区域内,任一球面形曲面不 超出此区域而缩成一点。
1.6 矢量的环量、旋度、斯托克斯定理
给定一矢量场a,在场内任取一曲线L,作线积分:
a dr (a dx a dy a dz)
L L x y z
1.2 场的几何表示
例子:TTU模型屋盖的平均风压系数分布等值线图。
1.2 场的几何表示
现在研究矢量场的几何表示。包括方向和大小,更为复杂。 矢量的大小是一个标量,可以采用等位面的形式表示。 矢量的方向可采用矢量线来表示。矢量线的定义:线上每一点的切线方向与 该点矢量方向重合。 作出同一时刻通过场内任意一点M的矢量线(绘图表示)。 下面研究矢量线的方程。设dr是矢量线的切向元素,根据矢量线的定义,有:
V
1.5 无源场及其性质
若diva=0,则该矢量场称为无源场或管式场。具有如下性质: 1、无源矢量a经过矢量管任一横截面上的通量保持同一数值。 • 如图所示,给定一矢量管,任取该矢量管的两横截面∑及∑1,两横截面之间 的矢量管侧面为∑’,对和三个封闭曲面围成的体积,有:

S
an dS divadV
grad
i j k x y x
1.3 梯度(标量场不均匀性的量度)
总结起来,梯度的主要特性如下: 梯度gradφ描写了场内任一点M领域内函数φ的变化状况,它是标量场不均匀 性的量度。 梯度gradφ的方向与等位面的法线重合,且指向φ增长的方向,大小是n方向上 的方向导数∂φ/∂n。 梯度矢量gradφ在任一方向s上的投影等于该方向的方向导数。 梯度gradφ的方向,即等位面的法线方向,是函数φ变化最快的方向。 梯度grad φ在直角坐标系中的表达式为:
过M点作等位面: 过M点取法线方向n。n指向φ增长的方向,在 n上取无限邻近的M1点,过M1点做等位面:
过M点作任意方向s,和等位面φ=C1,交与M’点,有:
1.3 梯度(标量场不均匀性的量度)
也就是说:任意方向s上的方向导数,可以通过∂φ/∂n,及s与n之间夹角余弦来 表示。 沿法线方向的方向导数(大小为∂φ/∂n,方向为n)的矢量称为标量函数φ的梯度。
ay ax az ay ax az ( )cos(n, x) ( )cos(n, y) ( )cos(n, z) L a dr S z z x x y y Q
其中Q是S面上的一点。则a的沿n方向的旋度可表示为:
a y ax ax az az a y rotna ( ) cos( n, x) ( ) cos( n, y) ( ) cos( n, z) y z z x x y rot xa cos(n, x) rot y a cos( n, y) rot z a cos( n, z)
过M有无穷多个方向,每个方向都有对应的方向导数。但各个方向的方向导 数都不是相互独立的。 研究表明:只要知道过M点的等位面法线方向n上的方向导数∂φ/∂n,其它方 向s的方向导数均可表示出来。
cos( n, s ) s n
对上式进行证明。
1.3 梯度(标量场不均匀性的量度)
本课程几个部分
• • • • • • 1、场论与张量 2、流体力学基本概念 3、基本方程的推导 4、理想不可压缩流体 5、粘性不可压缩流体(层流、湍流、边界层) 6、CFD数值模拟(有限体积法)
场论和张量
李寿英 湖南大学风工程试验研究中心 二零壹肆年
一、场 论
1.1 场的定义与分类
如果空间中某个区域内定义标量函数或矢量函数,则称定义此空间区域内的 函数为场。 标量场和矢量场:
1.4 矢量的通量、散度、奥高定理
若曲面为封闭曲面,采用积分号上加一小圆圈方法表示矢量a通过S面的通量:

S
an dS
取任意M点,以体积V包之,V的界面为S,作矢量a通过S的通量,然后除以体 积V,令体积V无限收缩于M点,得极限:
V 0
lim
S
an dS V
S
若此极限存在,定义其为矢量a的散度(奥高公式的微分形式):
1.2 场的几何表示
采用几何方法来表示场有助与直观理解问题。 首先研究标量场。若每一时刻场的几何表示都已知,则整个场为已知(若为定 常场?)。取任意固定时刻t0,令:
(r , t0 ) 0 const
则称与之对应的曲面为等位面,在等位面上φ值都相等。取不同的φ0值,等到 不同的等位面。 根据疏密程度可以判断标量函数的变化状况:等位面靠的近的地方函数变化 快、靠得远的地方函数变化慢。 函数值的改变主要在等位面的法线方向发生,沿切线方向移动时,函数值不 变。 气象学中的等压线,等温线。结构风工程中也常采用等压线表示风压分布规 律。
grad
n n
梯度描述了M点领域内标量函数的变化状况,是标量场不均匀性的量度。任 意s方向的方向导数可表述为:
grad cos(n, s ) s 0 grad s
因此,s方向的方向导数等于梯度矢量在s方向的投影。梯度也可以理解为变 化最快的方向导数! 在直角坐标系中,梯度可分别投影与x、y、z三个方向:

L
(ax dx a y dy az dz )
a y ax az a y ax az ( ) cos(n, x) ( ) cos(n, y) ( ) cos(n, z ) dS S z z x x y y
利用中值公式,有:
a dr 0
写成直角坐分量形式,则得到矢量线的微分方程:
dx dy dz ax ( x, y, z, t ) a y ( x, y, z, t ) a z ( x, y, z, t )
t为时间参数。 在场内任取一非矢量线的封闭曲线C,通过C上的每一点作矢量线,则这些矢 量线所包围的区域称为矢量管。 下面研究任一时刻场内每一点领域内的函数变化状况。
1.3 梯度(标量场不均匀性的量度)
在某一时刻t=t0研究标量场φ(r, t0)。在场内任取一点M,过 M点作曲线s,有下列极限:
MM 0
lim
( M ) ( M )
MM
上式表征标量函数φ 在M点上沿曲线s方向的函数变化,以偏导数表示,称为 方向导数:
( M ) ( M ) lim s MM 0 MM
grad
梯度的两个定理: 定理1: 定理2:
i j k x y x
利用两个性质,可以通过全微分和线积分求函数φ的梯度或研究梯度性质。
1.4 矢量的通量、散度、 奥高定理
下面来介绍矢量场不均匀性的表述。 取一曲面S,在S面上取一面积元素dS,在dS上任取一点M,作S面的法线。若 曲面封闭,则取外法线为正方向;若不封闭,则可任取正方向。n为S面上法 线方向的单位矢量,a表M点上的矢量函数的值,则:
dS cos(n, x) dydz dS cos(n, y) dzdx dS cos(n, z) dxdy
S

S
an dS a ndS a dS
S S S
ax cos(n, x) a y cos( n, y) az cos( n, z) dS ( ax dydz a y dzdx az dxdy)
为矢量a沿曲线L的环量。若曲线L为封闭曲线,则在积分符号中加小圆圈:

L
a dr

L
(ax dx ay dy az dz)
设M是场内一点,在M点附近取无限小封闭回线L,取定某一方向为L的正方 向,设张于L上的曲面S,S的法线方向n0(由右手螺旋系统确定)。作矢量a沿曲 线L的环量并除以曲面面积S,令L向M点收缩,使曲面矢量S=Sn0,大小趋于 零,方向趋于某固定方向n。于是有如下极限:
diva lim
V 0
an dS V
矢量a的散度是对单位体积而言,矢量a 通过体积元V的界面S的通量。是一个 标量。下面研究散度在直角坐标系中的具体表达式。 设矢量函数a的三个分量ax、ay、az具有连续的一阶偏导数,利用奥高定理:
1.4 矢量的通量、散度、奥高定理

S
an dS ax cos(n, x) a y cos(n, y ) az cos(n, z )dS
1.5 无源场及其性质
3、无源矢量a经过张于一已知周线L的所有曲面S上的通量均相同,亦即此通 量只依赖于周线L而与所张曲面S的形状无关。 • 设S和S1是任意两个张于周线L上的曲面,S和S1组成一封闭曲面设此封闭曲 面所包围的体积为V,应用奥高定理,

V
divadV an dS an dS 0
参考书
1、流体力学,吴望一编著,北京大学出版社 2、计算流体力学入门,John D. Anderson, JR.著,姚朝晖,周强编译,清华大学出版社 3、An introduction to computational Fluid Dynamics,Versteeg and Malalasekera著,世界图 书出版社 4、流体力学泵与风机,蔡增基,龙天渝主编,中国建筑工业出版社 5、空气动力学,吴子牛主编,清华大学出版社和Springer 6、粘性流体力学,章梓雄,董曾南编著,清华大学出版社 7、流体动力学,朗道和栗弗席兹著,李植译。
相关文档
最新文档