七年级数学第四章复习测试题

合集下载

七年级人教版数学第四单元测试题

七年级人教版数学第四单元测试题

七年级人教版数学第四单元测试题一、选择题(每题3分,共30分)1. 下列方程组中,是二元一次方程组的是()A. x + y = 5 x^2 + y^2 = 13B. x - 2y = 1 xy = 2C. x = 2 x - 3y = 1D. (1)/(x)+(1)/(y)=2 x - y = 1解析:- 二元一次方程组是指方程组中每个方程含有两个未知数,并且含有未知数的项的次数都是1的方程组。

- 选项A中,x^2 + y^2 = 13中未知数的次数是2,不是二元一次方程组。

- 选项B中,xy = 2中未知数的次数是2,不是二元一次方程组。

- 选项C中,符合二元一次方程组的定义,有两个未知数x和y,且方程中含未知数的项次数都是1。

- 选项D中,(1)/(x)+(1)/(y)=2是分式方程,不是二元一次方程组。

答案:C。

2. 方程2x - 3y = 5,x+(3)/(y)=6,3x - y+2z = 0,x^2 + y = 6中是二元一次方程的有()个。

A. 1.B. 2.C. 3.D. 4.解析:- 二元一次方程是含有两个未知数,并且含有未知数的项的次数都是1的整式方程。

- 方程2x - 3y = 5是二元一次方程。

- 方程x+(3)/(y)=6是分式方程,不是二元一次方程。

- 方程3x - y+2z = 0有三个未知数x、y、z,不是二元一次方程。

- 方程x^2 + y = 6中x的次数是2,不是二元一次方程。

答案:A。

3. 已知x = 2 y = 1是方程2x+ay = 5的解,则a的值为()A. 1.B. -1.C. 2.D. -2.解析:- 把x = 2,y = 1代入方程2x+ay = 5得:- 2×2 + a×1=5- 4 + a = 5- a=5 - 4 = 1答案:A。

4. 用代入法解方程组y = 1 - x x - 2y = 4时,代入正确的是()A. x - 2 - x = 4B. x - 2 - 2x = 4C. x - 2 + 2x = 4D. x - 2+x = 4解析:- 把y = 1 - x代入x - 2y = 4,得:- x-2(1 - x)=4- 展开括号得x - 2 + 2x = 4答案:C。

人教版七年级上册数学第四章测试题

人教版七年级上册数学第四章测试题

A B C D人教版七年级数学测试卷(考试题)第四章几何知识初步测试题选择题:(30分)1.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是()A.垂线段最短 B.两点确定一条直线C.两点之间,直线最短 D.两点之间,线段最短2.点C在线段AB上,下列条件中不能确定....点C是线段AB中点的是A、 AC =BCB、 AC +BC= ABC、 AB =2ACD、 BC =AB3.下列图形中,是棱锥展开图的是4.如果一个角的补角是120°,那么这个角的余角是()(A)30°(B)40°(C)50°(D)60°5、下列四个角最有可能与70°角互补的是()6圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线211 24AA·····BCD EBACDO1237、将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱。

A. 3;B. 5;C. 7;D. 9;8、已知点C是直线AB上一点,AB=6cm,BC=2cm,那么AC的长是()A. 2cm;B. 4cm;C. 8cm;D. 4cm或 8cm;9、如图,点C为线段AB上一点, AC︰CB=3︰2,D、E两点分别为AC、AB的中点,若线段DE=2cm,则AB 的长为()A.8 cmB.12 cmC.14 cmD. 10 cm10、如图,将一副三角尺按不同位置摆放,摆放方式中∠与∠互余的是()填空题:(24分)11、若一个多边形内角和等于12600,则该多边形边数是。

12、如图是正方体的展开图,则原正方体相对两个面上的数字之和得最小值的是。

13、如图,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有条线段,条射线。

14、如图,点C是线段AB上一点,D、E分别是线段AC,BC的中点,若AB=10cm,AD=2cm,则CE= .15、一个锐角是38°,则它的余角是。

北师大版七年级上册数学第四章复习测试题

北师大版七年级上册数学第四章复习测试题
第四章基本平面图形检测题参考答案
一、选择题
1.C解析:射线OA与射线AB不是同一条射线,因为端点不同.
2.D解析:因为两点之间线段最短,从A地到B地,最短路线是A-F-E-B,故选D.
3.C解析:∵AC+BC=AB,∴AC的中点与BC的中点间的距离= AB=5cm,故选C.
4.C 解析:由题意,得n条直线之间交点的个数最多为
A. n cmB. cmC.5ncmD.25 cm
2.如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()
A. B. C. D.
3.有三张正面分别写有数字1,2,﹣3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是( )
B.BC=BD-CD= AD-CD,故本选项正确;
D.BC=AC-AB=AC-BD,故本选项正确.只有C选项是错误的.
7.C解析:①直线BA和直线AB是同一条直线,正确;
②射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;
③由“两点之间线段最短”知,AB+BD>AD,故此说法正确;
∵∠3与∠AOD互补,
∴∠AOD=180°-∠3=137°.
∵OE平分∠AOD,Байду номын сангаас
∴∠2= ∠AOD=68.5°.
24.解:∵∠AOB是直角,∠AOC=30°,
∴∠AOB+∠AOC=90°+30°=120°.
∵OM是∠BOC的平分线,ON是∠AOC的平分线,
∴∠MOC= ∠BOC=60°,∠NOC= ∠AOC=15°.

苏科版七年级上册数学第四章《一元一次方程》复习卷及答案

苏科版七年级上册数学第四章《一元一次方程》复习卷及答案

第四章《一元一次方程》复习卷(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列结论不能由a+b=0得到的是( )A.a2=-a b B.a=b C.a =0,b =0 D.a2=b22.若代数式x+4的值是2,则x等于( )A.2 B.-2 C.6 D.-6 3.若关于x的方程2 x-a-5=0的解是x=-2,则a的值为( ) A.1 B.-1 C.9 D.-94.在解方程12x--233x+=1时,去分母正确的是( )A.3(x-1)-2(2+3x)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2+3x)=6 D.3(x-1)-2(2x+3)=65.小明在做解方程作业时,不小心将方程中的一个常数污染了,看不清楚,被污染的方程是2y-12=12y-怎么办呢? 小明想了一想,便翻看书后答案,此方程的解是y=-53,于是很快就补好了这个常数,你能补出这个常数吗? 它应是( )A.4 B.3 C.2 D.16.小明在日历的某月上圈出五个数,呈十字框形,若它们的和是55,则中间的数是( )A.9 B.10 C.11 D.127.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍.小郑今年的年龄是( )A.7岁B.8岁C.9岁D.10岁8.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元.”小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买的面包个数是( )A.38 B.39 C.40 D.41二、填空题(每题2分,共20分)9.若3x-5=0,则5x-3= .10.当m= 时,方程2x+m=x+l的解为x=-4.11.若4x2m-1 y n与-13xy2是同类项,则m+n= .12.当y= 时,代数式2(3y+4)的值比5 (2y-7) 的值大3.13.在如图所示的运算程序中,若输出的数y=7,则输入的数x= .14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,那么正好送完.设敬老院有x位老人,依题意可列方程为.15.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.16.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,则每立方米收费2元;若用水超过20 m3,则超过部分每立方米加收1元.若小明家5月份交水费64元,则他家该月用水m3.17.图1是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.18.某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m,则需更换新型节能灯盏.三、解答题(共64分)19.(本题8分) 解下列方程:(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.(本题5分) 设a:b,c,d为有理数,现规定一种新的运算:a bc d=ad-b c,求满足等式13221xx+=1的x的值.21.(本题5分) 当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2 ?22.(本题5分) 如果代数式34a+的值比237a-的值多1,求a-2的值.23.(本题5分) 若关于x的方程23kx a+=2+6x bk-无论k为何值,方程的解总是x=1,求a,b的值.24.(本题6分) 把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?25.(本题8分) 某一天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40 kg 到菜市场去卖.黄瓜和土豆这一天的批发价和零售价(单位:元/kg)如下表所示:(1) 他当天购进了黄瓜和土豆各多少千克?(2) 如果黄瓜和土豆全部卖完,他能赚多少钱?26.(本题8分) 李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15 min,如果他骑自行车的平均速度是每分钟250 m,推车步行的平均速度是每分钟80 m,他家离学校的路程是2900 m,求他推车步行的时间.27.(本题12分) 某景区内的环形路是边长为800 m的正方形ABCD,如图1和图2所示.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车逆时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1号车、2号车在左半环线离出口A的路程y1,y2 (m),并求出当两车相距的路程是400 m时t的值;(2) 求当t 为何值时,1号车第三次恰好经过景点C ,并直接写出这一段时间内它与2号车相遇过的次数.[发现] 如图2,游客甲在BC 上的一点K (不与点B ,C 重合) 处候车,准备乘车到出口A . 设CK =x m .情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)参考答案一、选择题1.C 2.B 3.D 4.D 5.B 6.C 7.A 8.B二、填空题9.16310.5 11.3 12.10 13.27或28 14.2x +16=3x 15.20 16.28 17.1000 18.71三、解答题19.(1) x =4 (2) x =-2 (3) x =2919(4) x =2 20.由题意得2x -13x +×2=1,则x =-10 21.方程5m +3x =1+x 的解是x =152m -,方程2x +m =3m 的解是x =m .由题意可知152m --m =2,解得m =-37,即当m =-37时,关于x 的方程5m +3x =1+x 的解比关于x 的方程2x +m =3m 的解大222.由题意得34a +-237a -=1,解得a =5,则a -2的值为3 23.方程两边同时乘以6得4kx +2a =12+x -bk ,即(4k -1) x +2a +bk -12=0 ①.因为无论k 为何值时,它的解总是1,所以把x =1代入①,得4k -1+2a +bk -12=k (4+b )-13+2a =0,所以4+b =0,-13+2a =0,即b =-4,a =13224.设这个班有x 名学生,根据题意得3x +20=4x -25,解得x =45.答:这个班共有45名学生25.(1) 设购进黄瓜x kg ,则购进土豆(40-x ) kg ,根据题意得2.4x +3(40-x )=114,解得x =10,则40-x =30.答:他购进黄瓜10 kg ,购进土豆30 kg (2) 他能赚10×(4-2.4)+30×(5-3)=76 (元)26.设他推车步行了x min ,依题意得80x +250(15-x )=2900,解得x =5.答:他推车步行了5 min27.(1) y 1=200t (0≤t ≤8) y 2=1600-200t (0≤t ≤8) 当两车相距路程为400 m 时,应分两种情况:①当未相遇前,两车相距路程为400 m ,则有200t +200t +400=2×800,解得t =3.即当t =3时,两车相距的路程为400 m. ②当相遇之后,两车相距路程为400 m ,则有200t +200t =2×800+400,解得t =5.即当t =5时,两车相距的路程为400 m 综上所得,当t =3或5时,两车相距的路程为400 m (2) 当1号车第三次恰好经过景点C 时,它已经从A 点开始绕正方形2圈半,则可知2×800×4+800×2=200t ,解得t =40.即t =40时,1号车第三次恰好经过景点C ,且这段时间内它与2号车相遇了5次.[发现]情况一:若他刚好错过2号车,便搭乘即将到来的1号车时,从开始等车到到达出口A ,所用时间为 (16002200x -+1600200x +) min ,即(16-200x ) min ;情况二:若他刚好错过1号车,便搭乘即将到来的2号车时,从开始等车到到达出口A ,所用时间为 (16002200x ++1600200x -) min .即(16+200x ) min 因为16-200x <16+200x ( x >0),所以情况二用时较多。

人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】

人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】

人教版七年级数学上册第四章测试卷及答案解析【含详细知识点】第四章测试卷一、选择题(项)1.下列说法正确的是( ) A .两点确定一条直线B .两条射线组成的图形叫作角C .两点之间直线最短D .若AB =BC ,则点B 为AC 的中点2.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A .3cmB .6cmC .9cmD .12cm第2题图 第3题图3.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( )A .140°B .135°C .120°D .40°4.如图是一个正方体纸巾盒,它的平面展开图是( )5.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A .30°B .45°C .55°D .60°6.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为8cm.若PB比AP长3cm,则这条绳子的原长为()A.10cm B.26cmC.10cm或22cm D.19cm或22cm二、填空题(本大题共6小题,每小题3分,共18分)7.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因__________________________.第7题图第8题图8.如图所示的图形中,柱体为__________(请填写你认为正确物体的序号).9.如图,已知线段AB=16cm,点M在AB上,AM∶BM=1∶3,P,Q分别为AM,AB的中点,则PQ的长为________.第9题图第11题图10.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有________种不同的票价,需准备________种车票.11.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________.12.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC的度数为________.三、(本大题共5小题,每小题6分,共30分)13.下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.14.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.15.观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.16.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.17.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3,求线段CD,AB的长;(2)试说明:AD+AB=2AC.四、(本大题共3小题,每小题8分,共24分)18.已知∠α=76°,∠β=41°31′,求: (1)∠β的余角;(2)∠α的2倍与∠β的12的差.19.已知线段AB =20cm ,M 是线段AB 的中点,C 是线段AB 延长线上的点,AC :BC =3:1,点D 是线段BA 延长线上的点,AD =AB .求:(1)线段BC 的长; (2)线段DC 的长; (3)线段MD 的长.20.如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.五、(本大题共2小题,每小题9分,共18分)21.如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.22.如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).六、(本大题共12分)23.定义:从一个角的顶点出发,把这个角分成1∶2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC=2∠AOC,则OC是∠AOB 的一条三分线.(1)已知:如图①,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC的度数;(2)已知:∠AOB=90°,如图②,若OC,OD是∠AOB的两条三分线.①求∠COD的度数;②现以O为中心,将∠COD顺时针旋转n°得到∠C′OD′,当OA恰好是∠C′OD′的三分线时,求n的值.参考答案与解析1.A2.D3.A4.B5.B6.C7.两点之间,线段最短8.①②③⑥9.6cm10.102011. 20°12.15°或30°或60°解析:①如图①,当OC平分∠AOB时,∠AOC=12∠AOB=15°;②如图②,当OA平分∠BOC时,∠AOC=∠AOB=30°;③如图③,当OB平分∠AOC时,∠AOC=2∠AOB=60°.故答案为15°或30°或60°.13.解:如图所示.(6分)14.解:如图所示.(6分)15.解:图略.(6分)16.解:∵∠2=2∠1,∴∠1=12∠2.(1分)∵∠3=3∠2,∴∠1+∠2+∠3=12∠2+∠2+3∠2=180°,解得∠2=40°,(4分)∴∠3=3∠2=120°,∴∠DOE =∠3=120°.(6分)17.解:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(3分)(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(6分)18.解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(3分)(2)∵∠α=76°,∠β=41°31′,∴2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.(8分)19.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(2分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20+20+10=50(cm).(5分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20+10=30(cm).(8分)20.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠DCE =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠DCE ,∴∠DCE =180°-∠ACB =40°.(5分)(3)∠ACB +∠DCE =180°.(6分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE =180°-∠DCE ,∴∠ACB +∠DCE =180°.(8分)21.解:(1)2 2(2分)(2)∵点C ,D 分别是AO ,BO 的中点,CO =3cm ,DO =2cm ,∴AO =2CO =6cm ,BO =2DO =4cm ,∴AB =AO +BO =6+4=10(cm).(5分)(3)仍然成立,如图:理由如下:∵点C ,D 分别是AO ,BO 的中点,∴CO =12AO ,DO =12BO ,(7分)∴CD=CO -DO =12AO -12BO =12(AO -BO )=12AB =12×10=5(cm).(9分)22.解:(1)图略.(3分)(2)∠BAC =90°-80°+90°-20°=80°.(6分) (3)约2.3cm ,即实际距离约23海里.(9分)23.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC =13∠AOB=13×60°=20°.(3分) (2)①∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠BOC =∠AOD =13∠AOB=13×90°=30°,∴∠COD =∠AOB -∠BOC -∠AOD =90°-30°-30°=30°.(6分) ②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时,如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°;(9分)当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时,如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°.综上所述,n =40或50.(12分)第四章走进图形世界知识点详细梳理1、几何图形:现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

人教版 七年级数学 第4章 几何图形初步 复习题(含答案)

人教版 七年级数学 第4章 几何图形初步 复习题(含答案)

人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。

数学第四章七年级上册试卷

数学第四章七年级上册试卷

一、选择题(每题3分,共30分)1. 下列选项中,不是有理数的是()A. -3B. 0C. $\sqrt{2}$D. $\frac{5}{2}$2. 下列各数中,有最大值的是()A. -1.2B. -1.5C. -1.8D. -1.93. 在数轴上,-3与3两点之间的距离是()A. 3B. 6C. 9D. 124. 下列数中,正负相反的是()A. 0.3B. -0.5C. 0.5D. 0.15. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. -a > -bD. a - b < 06. 下列运算正确的是()A. (-3) + (-2) = 5B. (-3) × (-2) = -6C. (-3) ÷ (-2) = -1.5D. (-3) × (-2) = 67. 下列数中,绝对值最小的是()A. 2B. -3C. 1D. 08. 下列数中,是整数的是()A. 0.5B. -2.3C. 3D. -4.69. 若a、b是相反数,则a + b等于()A. 0B. 1C. -1D. a10. 下列数中,是偶数的是()A. 0.2B. 0.6C. 0.8D. 1.4二、填空题(每题5分,共20分)11. -3的相反数是__________。

12. 0.5的绝对值是__________。

13. 下列数中,负数有__________个。

14. 下列数中,正数有__________个。

15. 下列数中,整数有__________个。

三、解答题(每题10分,共30分)16. 计算下列各数:(1)$\frac{5}{3} + \frac{2}{9}$(2)-3 - (-2)(3)$\sqrt{25} - \sqrt{16}$(4)$\frac{7}{8} \times (-\frac{3}{4})$ 17. 判断下列各数是否为有理数:(1)$\sqrt{2}$(2)-0.3(3)0.2(4)$\frac{5}{2}$18. 解下列不等式:(1)3x - 2 > 4(2)-2x + 5 ≤ 7(3)$\frac{1}{2}x - 1 < 0$四、应用题(15分)19. 小明和小红进行跑步比赛,小明的速度是每分钟跑300米,小红的速度是每分钟跑400米。

2024-2025学年人教版七年级数学上册+(2)第四章+整式的加减复习题

2024-2025学年人教版七年级数学上册+(2)第四章+整式的加减复习题

第四章整式的加减复习题复习巩固1. 下列整式中哪些是单项式? 哪些是多项式? 是单项式的指出系数和次数,是多项式的指出项和次数:−12a2b,m4n27,x2+y2−1,x,3x2−y+3xy2+x4−1,32t3,2x−y.2. 写出一个单项式,使它与多项式m+2n²的和为单项式.3. 计算:(1)x²y−3x²y;(2)−32a2bc+12a2bc;(3)14mn−13mn+2;(4)5x⁴+3x²y−8−3x²y−x⁴−2;(5)7ab−3a²b²+7+8ab²+2a²b²−3−5ab.4. 计算:(1)(4a³b−10b³)+(−3a²b²+10b³);(2)(4x²y−5xy²)−(3x²y−4xy²);(3)3(2a²+4b)+3(−5a²−2b);(4)3(x²−2xy)−4(2x²−xy+1);(5)5a²−(a²+(5a²−2a)−2(a²−3a)];(6)3x2−[5x−(12x−3)+2x2].5. 先化简,再求值:(1)5x²+4−3x²−5x−2x²−5+6x,其中x=--3;(2)2(a2b+12ab2)−3(a2b−1)−2ab2−1,其中a=-2, b=2.综合运用6. (1) 列式表示比a 的5倍大4的数与比a 的2倍小3的数,并计算这两个数的和;(2) 列式表示比b的7 倍小3的数与比b 的6 倍大5的数,并计算这两个数的差.7. 某轮船先顺水航行3h,后逆水航行1.5h,已知轮船在静水中的速度是a km/h,水流速度是b km/h,轮船共航行了多少千米?8. 如图,边长相等的小正方形组成一组有规律的图案,其中部分小正方形涂有颜色. 按照这样的规律,第4个图案中有多少个涂色的小正方形? 第n个图案呢?拓广探索9. 用代数式表示十位上的数字是a 、个位上的数字是b 的两位数,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得数与原数的和. 这个和能被11整除吗?10. 把(a+b)和(x+y)各看成一个整体,对下列各式进行化简: (1) 4(a+b)+2(a+b)--(a+b);(2)3(x +y )²−7(x +y )+8(x +y )²+6(x +y ). 1.解: 单项式 -12a²b m4n²7x 32t³ 系数 -1/2 171 32 次数 3613多项式 x²+y²-1 3x²-y+3xy²+x ⁴-1 2x -y 项 x²,y²,-1 3x²,-y,3xy²,x ⁴,-1 2x,-y 次数2412.-m.(答案不唯一)3.解:(1)-2x²y;(2)-a²bc; (3)−112mn +2;(4)4x ⁴-10;(5)8ab²-a²b²+2ab+4.4.解:( (1)(4a³b −10b³)+(−3a²b²+10b³) =4a³b −10b³−3a²b²+10b³ =4a³b −3a²b².(2)(4x²y −5xy²)−(3x²y −4xy²) =4x²y −5xy²−3x²y +4xy²=x²y−xy².(3)3(2a²+4b)+3(−5a²−2b)=6a²+12b−15a²−6b=−9a²+6b,(4)3(x²−2xy)−4(2x²−xy+1)=3x²−6xy−8x²+4xy−4=−5x²−2xy−4.(5)5a²−[a²+(5a²−2a)−2(a²−3a)]=5a²−(a²+5a²−2a−2a²+6a)=5a²−a²−5a²+2a+2a²−6a=a²−4a.x−3)+2x2](6)3x2−[5x−(12x+3+2x2)=3x2−(5x−12x−3−2x2=3x2−5x+12x−3.=x2−925.解:( (1)5x²+4−3x²−5x−2x²−5+6x=(5−3−2)x²+(−5+6)x−1=x-1.当x=-3时,原式= - 3-1 = - 4.ab2)−3(a2b−1)−2ab2−1(2)2(a2b+12=2a²b+ab²−3a²b+3−2ab²−1=−a²b−ab²+2.当a=-2,b =2时,原式:=−(−2)²×2−(−2)×2²+2= - 4×2-(-2)×4+2 = - 8-(-8)+2=--8+8+2 = 2.6.解:(1)比a的5倍大4的数可表示为5a+4,比a的2倍小3的数可表示为2a-3,它们的和为(5a+4)+(2a-3)=5a+4+2a-3 = 7a+1.(2)比b的7倍小3的数可表示为7b-3,比b的6倍大5的数可表示为6b+5,它们的差为(7b-3)-(6b+5)=7b-3-6b-5 = b-8.7.解:轮船顺水航行3(a+b) km,轮船逆水航行1.5(a-b) km,轮船一共航行3(a+b)+1.5(a-b)=3a+3b+1.5a-1.5b=(4.5a+1.5b)( km),即轮船共航行(4.5a+1.5b) km.8.解:第4个图案中涂色的小正方形有5+3×4 = 17(个).第n个图案中涂色的小正方形有5+4(n-1)=(4n+1)(个).9.解:原数是10a+b,交换位置后所得两位数是10b+a,所以所得数与原数的和为(10b+a)+(10a+b)= 11(a+b).所以这个数能被11整除.10.解:(1)4(a+b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).(2)3(x+y)²−7(x+y)+8(x+y)²+6(x+y) =(3+8)(x+y)²+(-7+6)(x+y)=11(x+y)²−(x+y).。

七年级上册数学人教版第四章试卷(3篇)

七年级上册数学人教版第四章试卷(3篇)

第1篇一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()。

A. -3B. -2C. 0D. 12. 如果 |a| = 5,那么 a 的值可以是()。

A. 5B. -5C. 5 或 -5D. 03. 下列各数中,正数有()。

A. 2,-3,-4B. -2,-3,-4C. 2,-3,-4,0D. 2,-3,-4,54. 在数轴上,表示 -2 的点应该在()。

A. 原点的左边B. 原点的右边C. 原点上D. 无法确定5. 下列各组数中,互为相反数的是()。

A. 3 和 5B. -3 和 5C. 3 和 -5D. 0 和 56. 如果 |a| = 3,那么 a^2 的值是()。

A. 3B. 6C. 9D. 127. 在数轴上,点 A 表示 -4,点 B 表示 2,那么点 A 和点 B 之间的距离是()。

A. 6B. 8C. 10D. 128. 如果 |a| = |b|,那么 a 和 b 的关系是()。

A. a = bB. a = -bC. a 和 b 不确定D. a 和 b 相等或互为相反数9. 下列各数中,正有理数有()。

A. 1/2,-1/3,-2/5B. 1/2,1/3,-2/5C. 1/2,-1/3,2/5D. 1/2,1/3,2/5,-1/510. 在数轴上,表示 -1 的点应该在()。

A. 原点的左边B. 原点的右边C. 原点上D. 无法确定二、填空题(每题3分,共30分)1. 绝对值符号 | | 里的数叫做______。

2. 一个正数的绝对值是它本身,一个负数的绝对值是它的______。

3. 0 的绝对值是______。

4. 如果 |a| = 5,那么 a 的值可以是______。

5. 在数轴上,表示 3 的点应该在______。

6. 互为相反数的两个数的和是______。

7. 在数轴上,点 A 表示 -2,点 B 表示 5,那么点 A 和点 B 之间的距离是______。

人教版七年级数学下学期第四章测试题

人教版七年级数学下学期第四章测试题

人教版七年级数学下学期第四章测试题班级 姓名 学号一、填空题1、游戏的公平性是指双方获胜的概率 。

2、一般地,就事件发生的可能性而言,可将事件分为 、 和 。

3、有一组卡片,制作的颜色,大小相同,分别标有0~10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ;(3)P (抽到的数是2的倍数)= ; (4)P (抽到的数大于10)= ;4、学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若500名学生中没有穿校服的学生为25名,则任意叫出一名学生,没穿校服的概率为 ;穿校服的概率为 。

5、轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大小相同的36个小正方形,其中6个红色,30个黑色,那么投中红色小正方形的概率为 。

6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率是 ;是女生的概率是 。

7、一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则P (抽到红球) P (抽到白球)(填“>”或“<”)。

8、小明和爸爸进行射击比赛,他们每人都射击10次。

小明击中靶心的概率为0.6,则他击不中靶心的次数为 ;爸爸击中靶心8次,则他击不中靶心的概率为 。

二、选择题1、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的概率是( )A 、21 B 、31 C 、41 D 、61 2、某电视综艺节目接到热线电话3000个。

现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为( ) A 、 B 、 C 、 D 、0 3、下列各事件中,发生概率为0的是( )A 、掷一枚骰子,出现6点朝上B 、太阳从东方升起C 、若干年后,地球会发生大爆炸D 、全学校共有1500人,从中任意抽出两人,他们的生日完全不同 4、转动下列各转盘,指针指向红色区域的概率最大的是( )5、小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率为( )A 、0B 、83C 、73D 、无法确定6、一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( )A 、51B 、80%C 、2420D 、1三、观察与思考3、用自己的语言解释下列问题:(1)一种彩票的中奖率为10001,你买1000张,一定中奖吗?(2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?4、某广场一角如图所示,其中每一块地砖面积相同,几位小朋友在广场上喂鸽子,他们在这一角的每块方砖上都放有相同的食物,则鸽子落在中间一层的红 黄A 红 白B黄红白 C黑黄红白D白 红红 白红白概率是多少呢?四、操作与解释1、请将下列事件发生的可能性标在图中的大致位置上。

七年级数学上册第四章单元测试题及答案

七年级数学上册第四章单元测试题及答案

第四章《平面图形及其位置关系》检测时间:__________ 姓名:__________ 成绩:__________一、选择题 (每小题4分,共32分)1、按下列线段长度,可以确定点A、B、C不在同一条直线上的是( )A、AB=8㎝,BC=19㎝,AC=27㎝;B、AB=10㎝,BC=9㎝,AC=18㎝C、AB=11㎝,BC=21㎝,AC=10㎝;D、AB=30㎝,BC=12㎝,AC=18㎝2、下列推理中,错误的是( )A、在m、n、p三个量中,如果m=n, n=p,那么m=p.B.在∠A、∠B、∠C、∠D四个角中,如果∠A=∠B,∠C=∠D,∠A=∠D,那么∠B=∠C;C.a、b、c是同一平面内的三条直线,如果a∥b,b∥c,那么a∥c;D.a、b、c是同一平面内的三条直线,如果a丄b,b丄c,那么a丄c;3、垂直是指一位置特殊的( )A、直线B、直角C、线段D、射线4.如图,四条表示方向的射线中,表示北偏东60°的是( )5、一个人从A点出发向北偏东60°的方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC的度数是( )A、75°B、105°C、45°D、135°6、同一平面内互不重合的三条直线的公共点的个数是( )A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个7、已知四边形ABCD中,∠A+∠B=180°,则下列结论中正确的是( )A、AB∥CDB、∠B+∠C=180°C、∠B=∠CD、∠C+∠D=180°8、直线a外有一定点A,A到a的距离是5㎝,P是直线a上的任意一点,则( )A 、AP>5㎝;B 、AP ≥5㎝;C 、AP=5㎝;D 、AP<5㎝9、 下列说法中正确的是( )A 、8时45分,时针与分针的夹角是30°B 、6时30分,时针与分针重合C 、3时30分,时针与分针的夹角是90°D 、3时整,时针与分针的夹角是30°10、下列说法正确的是( )A 、过一点能作已知直线的一条平行线;B 、过一点能作已知直线的一条垂线C 、射线AB 的端点是A 和B ;D 、点可以用一个大写字母表示,也可用小写字母表示二.填空题(本大题共 6小题,每小题 5分,共 30分)11、用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子_____________________,原因是__________________;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是12、如图1,AB 的长为m ,OC 的长为n ,MN 分别是AB ,BC 的中点,则MN=_____13、如图2,用“>”、“<”或“=”连接下列各式,并说明理由.AB +BC_____AC , AC +BC_____AB , BC_____AB +AC ,理由是__________14、计算:48°39′+67°41′=_________;90°-78°19′40″=___________ 21°17′×5=_______; 176°52′÷3=_________(精确到分)15、如图3中,∠AOB=180°,∠AOC=90°,∠DOE=90°,则图中相等的角有_对,分别为_______________;两个角的和为90°的角有_____对;两个角的和为180°的角有________对.16、面上两条直线的位置关系只有两种,即__________和_________________17、平面面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.18、面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.三、解答下列各题19、要注意“几何语言”的学习,如图甲,称作“点A 在直线l 外”,请在图乙标上字母,用“几何语言”说出该图的意义(7分)20、 如图,已知∠AOB ,画图并回答:(9分)甲 A · l⑴画∠AOB 的平分线OP ;⑵在OP 上任取两点C 、D ,过C 、D 分别画OA 、OB 的垂线,交OA 于E ,F ,交OB 于G 、H , ⑶量出CE ,CG ,DF ,DH的长,由此可得到的结论是什么?⑷过C 作MC ∥OB 交OA 于M21、如图,用量角器量出图中∠1,∠2,∠3的度数,猜一猜它们之间有何关系?(8分)22、如图所示,OA 丄OB ,OC 丄OD ,OE 为∠BOD 的平分线,∠BOE=17°18′,求∠AOC 的度数(8分)23、如图所示,A 、B 、C 、D 、E 五个城市,它们之间原有道路相通,现在打算在C 、 E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?(11分)AO B24、在桌面上放了一个正方体的盒子,一只蚂蚁在顶点A 处,它要爬到顶点B 处,你能帮助蚂蚁设计一条最短的爬行路线吗?第四单元《平面图形及其位置关系》参 考 答 案一、选择题1、B 2.D 3.A 4.B 5,C 6.C 7.D 8.B 9.D 10.B二、填空题11.旋转 过一点可以作无数条直线 两点确定一条直线12. )(21n m 13、> > < ,两点之间线段最短14、⑴116°20′ ⑵11°40′20″;⑶106°25′;⑷58°57′15、3 ∠AOC=∠BOC , ∠BOC=∠DOE ,∠DOE=∠AOC 4, 316、相交 平行 17、12 18、10 0三.解答题19、20.略 21.∠1=∠2+∠3 22、145°24′23、连结CD 和AD ,BD 的交点处架立交桥 2座24、取BB ′的中点M ,连结CM ,MA ′,由图中正方体部分展开图及两点之间线段最短知。

人教版七年级数学上册第四章测试卷2套含答案

人教版七年级数学上册第四章测试卷2套含答案

第四章检测卷一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.如图所示的几何体,从正面看所得的平面图形是()3.下列说法中,正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是() A.144°B.164°C.154°D.150°5.如图,下列说法中,错误的是()A.图①的方位角是南偏西20°B.图②的方位角是西偏北60°C.图③的方位角是北偏东45°D.图④的方位角是南偏西45°6.已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,则下列说法中,正确的是() A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.钟表在8:25时,时针与分针夹角的度数是()A.101.5 B.102.5 C.120 D.1259.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD =DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是__________________.12.一个角的余角比这个角的补角的一半小40°,则这个角为________.13.三条直线两两相交,最少有________个交点,最多有________个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了______________(从点、线、面的角度作答).15.两根木条,一根长60 cm,另一根长100 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是________cm.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.19.如图,两个三角尺的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是________度.20.用棱长是1 cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是________cm2.三、解答题(21、22题每题8分,23、24题每题10分,其余每题12分,共60分)21.计算:(1)32°45′48″+21°25′14″;(2)11°23′36″×3.22.如图,有A,B,C,D四点,请根据下列语句作图并填空:(1)作直线AD,并过点B作一条直线与直线AD相交于点O,且使点C在直线BO外;(2)作线段AB,并延长线段AB到E,使B为AE的中点;(3)作射线CA和射线CD,量出∠ACD的度数为________,并作∠ACD的平分线CG;(4)C,D两点间的距离为________厘米,作线段CD的中点M,并作射线AM. 23.如图,点C是线段AB上一点,线段AC=8,BC=20,点N为AC的中点,点M是线段CB上一点,且CM:BM=1:4,求线段MN的长.24.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.25.用正方形硬纸板做三棱柱盒子(如图①),每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图②所示的两种方法裁剪(裁剪后边角料不再利用).方法A:剪6个侧面;方法B:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用方法A,其余用方法B.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?26.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C 2.A 3.A 4.C 5.B 6.D 7.B 8.B 9.D10.B 点拨:以B ,C ,D ,E 为端点的线段有BC ,BD ,BE ,CE ,CD ,ED共6条,故①正确;图中互补的角就是分别以C ,D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE =100°,∠CAD =40°,可以求出∠BAC +∠CAE +∠BAE +∠BAD +∠DAE +∠DAC =100°+100°+100°+40°=340°,故③错误;当点F 在线段CD 上时,点F 到点B ,C ,D ,E 的距离之和最小,为FB +FE +FD +FC =2+3+3+3=11,当点F 和点E 重合时,点F 到点B ,C ,D ,E 的距离之和最大,为FB +FE +FD +FC =8+0+3+6=17,故④错误.故选B. 二、11.两点确定一条直线 12.80° 13.1;314.点动成线;线动成面 15.80或20 16.155° 17.100°12′ 18.21;42 19.135 20.30三、21.解:(1)32°45′48″+21°25′14″=53°70′62″=54°11′2″.(2)11°23′36″×3=33°69′108″=34°10′48″. 22.略23.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4.因为点M 是线段CB 上一点,且CM :BM =1:4, 所以CM =15BC =15×20=4. 所以MN =MC +CN =4+4=8. 即线段MN 的长为8.24.解:(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.25.解:(1)因为裁剪时x张用方法A,所以(19-x)张用方法B,所以侧面的个数为6x+4(19-x)=2x+76(个),底面的个数为5(19-x)=95-5x(个).(2)由题意,得2(2x+76)=3(95-5x),解得x=7.所以盒子的个数为2×7+763=30(个).故若裁剪出的侧面和底面恰好全部用完,能做30个盒子.26.解:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=1 2α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12(α+β)-12β=12α.第四章达标测试卷一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是()2.下列作图语句错误..的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm3.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间,直线最短D.若AB=BC,则点B为AC的中点4.下列立体图形中,都是柱体的为()5.如图,表示∠1的其他方法中,不正确...的是()A.∠ACB B.∠C C.∠BCA D.∠ACD(第5题) (第6题)6.如图所示的物体从上面看到的形状是()7.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的度数为()(第7题) A.69°B.111°C.141°D.159°8.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm9.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是() A.144°B.164°C.154°D.150°(第9题)(第10题)10.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7 B.6 C.5 D.4二、填空题(每题3分,共24分)11.用“度、分、秒”来表示:8.31度=________度________分________秒.12.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =______________.13.如图,图中线段有________条,射线有________条.(第13题)(第14题)(第17题)(第18题)14.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOC的度数是________.15.将线段AB延长至点C,使BC=13AB;延长BC至点D,使CD=13BC;延长CD至点E,使DE=13CD.若CE=8 cm,则AB=________ cm.16.钟表在8:25时,时针与分针的夹角是________度.17.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=________.18.如图是由一些小正方体所搭立体图形分别从正面、左面、上面看到的图形,若在所搭立体图形的基础上(不改变原立体图形中小正方体的位置),继续添加相同的小正方体,以搭成一个大正方体,至少还需要________个小正方体.三、解答题(19,20题每题8分,21题12分,22题10分,其余每题14分,共66分)19.如图,已知线段a,b,画一条线段,使它等于3a-b(用直尺和圆规画图,不要求写画法).(第19题)20.一个角的余角比它的补角的13还少20°,求这个角的度数.21.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.(第21题)22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB .若AB =24 cm ,求线段CE 的长.(第22题)23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°.(第23题)(1)求∠AOB 的度数.(2)①求∠DOC 和∠AOE 的度数;②判断∠DOE 与∠AOB 是否互补,并说明理由.24.已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.(第24题)答案一、1.D 2.B 3.A 4.C 5.B 6.D7.C 8.C 9.C 10.C二、11.8;18;36 12.11 cm 或5 cm13.6;6 14.84° 15.54 16.102.517.180° 18.54三、19.解:如图,AE =3a -b .(第19题)20.解:设这个角的度数为x .依题意,得90°-x +20°=13(180°-x ),解得x =75°.答:这个角的度数为75°.21.解:如图所示.(第21题)22.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm).所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm),所以CE =DE -CD =14.4-4=10.4(cm).23.解:(1)∠AOB =∠BOC +∠AOC =60°+58°=118°.(2)①因为OD平分∠BOC,OE平分∠AOC,所以∠DOC=∠BOD=12∠BOC=12×60°=30°,∠AOE=∠COE=12∠AOC=12×58°=29°.②∠DOE与∠AOB不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°.故∠DOE与∠AOB不互补.24.解:(1)68°;2n°;∠BOE=2∠COF(2)仍然成立.理由如下:设∠COF=n°,则∠EOF=90°-n°.所以∠AOE=2∠EOF=180°-2n°.所以∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.(3)存在.由(2)可知,∠BOE=2∠COF=2×65°=130°.因为OF平分∠AOE,所以∠AOF=∠EOF=90°-65°=25°.当2∠BOD+∠AOF=12(∠BOE-∠BOD)时,有2∠BOD+25°=12(130°-∠BOD).所以∠BOD=16°.。

七年级上册数学第四章专项试卷及答案人教版

七年级上册数学第四章专项试卷及答案人教版

七年级上册数学第四章专项试卷及答案人教版
一、选择题
1.下列说法中正确的是
A.两点之间,直线最短
B. 画出A,B两点的距离
C. 连接点A与点B的线段,叫A,B两点的距离
D. 两点的距离是一个数,不是指线段本身
【答案】D
解:应为两点之间线段最短,故本选项错误;
B.画出的应是两点间的图形,而不是距离,故本选项错误;
C.应为连接两点间的线段的长度叫两点的距离,故本选项错误;
D.两点之间的距离是一个数,不是指线段本身,故本选项正确.故选D.
2.对于直线AB,线段CD,射线EF ,其中能相交的是下图中的
A. B. C. D.
【答案】B
解:A、直线AB与线段CD不能相交,故本选项错误;
B、直线AB与射线EF能够相交,故本选项正确;
C、射线EF与线段CD不能相交,故本选项错误;
D、直线AB与射线EF不能相交,故本选项错误.
故选B.
3.如图所示的四个图中,能用,,三种方法表示同一个角的是
A. B. C. D.
【答案】D
解:图中的不能用表示,故本选项错误;
B.图中的和不能用表示,故本选项错误;。

七年级数学上册第四章测试题及有答案[最终版]

七年级数学上册第四章测试题及有答案[最终版]

七年级数学上册第四章测试题及有答案[最终版]第一篇:七年级数学上册第四章测试题及有答案[最终版]1.下面去括号错误的是(CX)TA.Xa-(b+c)=a-b-cTB.Xa+(b-c)=a+b-cTC.X3(a-b)=3a-bTD.X-(a-2b)=-a+2b2.-4x+313x-2等于(BX)TA.X-3x+6TB.X-3x-6TC.X-5x-6TD.X-5x+63.下列运算中,正确的是(DX)TA.X-2(a-b)=-2a-bTB.X-2(a-b)=-2a+bTC.X-2(a-b)=-2a-2bTD.X-2(a-b)=-2a+2b4.a-b+c的相反数是(CX)TA.X-a-b+cTB.Xa-b-cTC.Xb-a-cTD.Xa+b-c5.化简:(2x2+x-3)-3(x2-x+1)=-x2+4x-6.6.填空:(1)x2-y2+2y-1=x2-(y2-2y+1);(2)a-3b-4c=a-(3b+4c);(3)(5x2+6x-7)+[-4x2-(4x-8)]=x2+2x+1;(4)(x3-4x2y+11xy2-y3)+(7x2y-16xy2+y3)=x3+3x2y-5xy2.7.去括号,并合并同类项:(1)-2n-(3n-1);(2)a-(5a-3b)+(2b-a);(3)-3(2s-5)+6s;(4)1-(2a-1)-(3a+3).【解】(1)原式=-2n-3n+1=-5n+1.(2)原式=a-5a+3b+2b-a=-5a+5b.(3)原式=-6s+15+6s=15.(4)原式=1-2a+1-3a-3=-5a-1.(第8题)8.有理数a,b,c在数轴上的对应点如图所示,化简|a-b|-|a+c|-|b-c|.【解】由图可知:a3x2-(2x2-x+1)+2(-3+x-x2),其中x=-3.【解】原式=3x2+2x2+x-1+(-6)+2x-2x2=-x2+3x-7.当x=-3时,原式=-(-3)2+3×(-3)-7=-25.(第10题)10.如图,面积分别为25和9的两个正方形叠合在一起,所形成的两个阴影部分的面积分别为a,b(a>b),则代数式(a+5b)-412a+b 的值是多少?【解】设叠合部分的面积为x.则a=25-x,b=9-x.∴(a+5b)-412a+b=a+5b-2a-4b=b-a=(9-x)-(25-x)=9-x-25+x=-16.11.已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6.试说明不论x,y,z取何值,A+B+C都是常数.【解】∵A+B+C=(x3-2y3+3x2y+xy2-3xy+4)+(y3-x3-4x2y-3xy-3xy2+3)+(y3+x2y+2xy2+6xy-6)=1,∴不论x,y,z取何值,A+B+C都等于常数1.12.不改变a-(3b-5c)的值.把括号前的“-”号改成“+”号应为(CX)TA.Xa+(3b+5c)TB.Xa+(3b-5c)TC.Xa+(-3b+5c)TD.Xa+(-3b-5c)13.当a为整数时,多项式2a5-3a3-3a+7与多项式3a3-7a-2-2a5的和一定是(CX)TA.X3的倍数TB.X偶数TC.X5的倍数TD.X以上均不对【解】(2a5-3a3-3a+7)+(3a3-7a-2-2a5)=2a5-3a3-3a+7+3a3-7a-2-2a5=-10a+5=-5(2a-1),故选TCX.14.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面:-x2+3xy-12y2--12x2+4xy-12y2=-12x2,污点处即墨迹弄污的部分,那么被墨迹遮住的一项应是(AX)TA.X-xyTB.X+xyTC.X-7xyTD.X+7xy【解】-x2+3xy-12y2--12x2+4xy-12y2=-x2+3xy-12y2+12x2-4xy+12y2=-12x2-xy,故选TAX.15.若m,n互为倒数,则mn2-(n-1)的值为__1__.【解】∵m,n互为倒数,∴mn=1.∴mn2-(n-1)=1n-(n-1)=n-n+1=1.16.比2x2-3x+7少4x2-1的多项式是-2x2-3x+8.【解】(2x2-3x+7)-(4x2-1)=2x2-3x+7-4x2+1=-2x2-3x+8.17.化简关于m的代数式(2m2+m)-[km2-(3m2-m+1)],并求使该代数式的值为常数的k的值.【解】原式=2m2+m-[km2-3m2+m-1]=2m2+m-km2+3m2-m+1=(5-k)m2+1.要使该代数式的值为常数,则5-k=0,∴k=5.18.某同学做一道代数题:当x=-1时,求代数式10x9+9x8+8x7+…+3x2+2x+1的值.该同学由于将式中某一项前的“+”看成了“-”,求得代数式的值为7,那么这位同学看错了几次项前的符号?【解】当x=-1时,第1,2;3,4;5,6;7,8;9,10项的和均为-1,∴结果应为-5.又∵看错符号后的代数式的值为7,∴看错的项应为+6x5.∴该同学看错了五次项前面的符号.19.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共需315元;若购买甲4件、乙10件、丙1件共需420元.问:购买甲、乙、丙各1件共需多少元?【解】设甲、乙、丙的单价分别是x,y,z元,由题意,得3x+7y+z=315,4x+10y+z=420,∴x+y+z=3(3x+7y+z)-2(4x+10y+z)=3×315-2×420=105(元).答:购买甲、乙、丙各1件共需105元.第二篇:七年级数学上册第一单元测试题及答案七年级数学上册第一单元测试题(附答案)一、仔细选一选(30分)1.0是()A.正有理数 B.负有理数 C.整数 D.负整数2.中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()A.计数 B.测量 C.标号或排序 D.以上都不是3.下列说法不正确的是()A.0既不是正数,也不是负数 B.0的绝对值是0C.一个有理数不是整数就是分数 D.1是绝对值最小的数4.在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有()个A.2 B.3 C.4 D.55.一个数的相反数是3,那么这个数是()A.3 B.-3 C. D.6.下列式子正确的是()A.2>0>-4>-1 B.-4>-1>2>0 C.-4-147.一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-18.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或-19.大于-2.2的最小整数是()A.-2 B.-3 C.-1 D.010.学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在()A.在家B.在学校C.在书店D.不在上述地方二、认真填一填(本题共30分)11.若上升15米记作+15米,则-8米表示。

七年级数学上册《第四章 几何图形初步》单元检测题含答案(人教版)

七年级数学上册《第四章 几何图形初步》单元检测题含答案(人教版)

七年级数学上册《第四章几何图形初步》单元检测题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若∠A=34°,则∠A的余角的度数为()A.146°B.54°C.56°D.66°2.4点10分时,时针与分针所夹的小于平角的角为( )A.55°B.65°C.70°D.以上度数都不对3.下列说法正确的是()A.连结两点的线段叫做两点的距离B.线段的中点到线段两个端点的距离相等C.到线段两个端点距离相等的点叫做线段的中点D.AB=BC,则点B是线段AC的中点4.如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是()A.5 B.2.5 C.5或2.5 D.5或15.如图,O是直线AB上的一点∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中∠COE 的大小是()A.30°B.45°C.60°D.75°6.如图是交通禁止驶入标志,组成这个标志的几何图形有()A.圆、长方形B.圆、线段C.球、长方形D.球、线段7.一个正方体的表面展开图如图所示,上面标有“志高远,行千里”六个字,将其围成正方体后,与汉字“远”相对的面上的汉字是()A.志B.高C.千D.里8.如图,直线AB与直线CD交于点O.OE、OC分别是∠AOC与∠BOE的角平分线,则∠AOD为()A.45°B.50°C.55°D.60°二、填空题9.计算:50∘−15∘30′=.10.已知点A,B,C在同一直线上,AB=4cm,AC=3cm,则B,C两点之间的距离是 cm.11.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC= .12.如图,B、C为线段AD上的两点,若线段AD的长度为a,线段BC的长度为b,则图中所有线段的长度之和为.13.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α是度.三、作图题14.试用等腰三角板和一个30°,60°的三角板画出15°,135°的角.15.如图,已知∠AOB,点P是OB边上的一点.在∠AOB的内部求作∠BPC=∠AOB.要求:尺规作图,不写作法,保留作图痕迹.16.如图,已知∠α∠β .求作:∠AOB,使∠AOB=∠α−∠β .(尺规作图,保留作图痕迹,不写作法)17.如图,已知平面上三点A,B,C,请按要求完成:⑴画射线AC,直线BC;⑵连接AB,并用圆规..在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹).四、解答题18.如图,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°,求∠AOB.19.指出下列句子的错误,并加以改正:(1)如图1,在线段AB的延长线上取一点C;(2)如图2,延长直线AB,使它与直线CD相交于点P;(3)如图3,延长射线OA,使它和线段BC相交于点D.20.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,求∠DOE的度数.21.如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.22.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D在线段CB上”改为“点D在线段CB的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD的长度.参考答案1.C2.B3.B4.D5.C6.A7.B8.D9.34°30′10.1或711.15°或30°或60°12.3a+b13.12014.45°-30°=15°;90°+45°=135°.15.解:如图∠BPC即为所求作的角.16.解:作∠AOC= ∠α,然后在∠AOC内部作∠BOC= ∠β,即可得到∠AOB=∠α−∠β,如下图所示,∠AOB即为所求.17.解:如图所示18.解:设∠AOE=x°,则∠BOE=2∠AOE=2x°所以∠AOB=∠BOE+∠AOE=3x°∵OF平分∠AOB∴∠AOF=12∠AOB=1.5x°∵∠EOF=20°∴1.5x﹣x=20解得:x=40∴∠AOB=3x°=120°.19.(1)如图1,应为:在线段BA的延长线上取一点C;(2)如图2,应为:直线AB与直线CD相交于点P;(3)如图3,反向延长射线OA,使它和线段BC相交于点D.20.解:∵射线OD和射线OE分别平分∠AOC和∠BOC∴∠COD= 12∠AOC,∠COE= 12∠BOC∴∠DOE=∠COD+∠COE= 12(∠AOC+∠BOC)∵点A,O,B在同一条直线上∴∠AOC+∠BOC=180°∴∠DOE= 12×180°=90°21.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“3x”与“2”是相对面,“3y”与“4”是相对面,∵正方体相对两个面上的式子的值相等,∴3x=2,3y=4,(1)27x=(3x)3=23=8;(2)32x﹣y=32x÷3y=(3x)2÷3y=22÷4=4÷4=1.22.(1)解:∵BD=1.5厘米,AD=6.5厘米∴AB=BD+AD=8(厘米)∵点C是线段AB的中点AB=4(厘米)∴BC= 12∴CD=BC-BD=2.5(厘米)(2)解:当点D在线段CB的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米∴AB=AD-BD=5(厘米)∵点C是线段AB的中点∴BC= 1AB=2.5(厘米)2∴CD=BC+BD=4(厘米)。

初一数学第四章测试题

初一数学第四章测试题

初一数学第四章测试题一、选择题(每题2分,共10分)1. 下列哪个选项是正确的等式?A. $2^3 = 5 \times 6$B. $3 \times 4 + 2 = 14$C. $5 \times 7 = 35$D. $4^2 + 6^2 = 52$2. 若 $a = 3$,$b = 5$,则表达式 $2a + 3b$ 的值是多少?A. 16B. 17C. 18D. 193. 计算 $3.14 \times 15$ 的结果,最接近的选项是:A. 45.0B. 46.0C. 47.0D. 48.04. 一个长方形的长是12厘米,宽是8厘米,那么它的面积是多少平方厘米?A. 96B. 64C. 100D. 1205. 以下哪个分数是最简分数?A. $\frac{4}{8}$B. $\frac{5}{10}$C. $\frac{7}{9}$D. $\frac{6}{6}$二、填空题(每题2分,共10分)6. 若 $x + 3 = 10$,则 $x = ______$。

7. 一个三角形的三个角分别是 $60^\circ$、$60^\circ$ 和$60^\circ$,这个三角形是 ______ 三角形。

8. 一个圆的直径是14厘米,那么它的半径是 ______ 厘米。

9. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。

10. 一个班级有40名学生,其中女生占$\frac{2}{5}$,那么男生的人数是 ______。

三、解答题(每题10分,共30分)11. 甲、乙两人同时从A地出发,骑自行车前往B地。

甲的速度是每小时15公里,乙的速度是每小时12公里。

如果B地距离A地60公里,问甲、乙两人谁先到达B地?他们分别用了多少时间?12. 一个水果店一天卖出苹果和橙子共200公斤。

如果每公斤苹果卖5元,每公斤橙子卖4元,当天苹果和橙子的总收入是960元。

请问这个水果店一天卖出了多少公斤的苹果和橙子?13. 一块长方形的土地,长是24米,宽是12米。

人教版七年级上册数学第四章测试卷

人教版七年级上册数学第四章测试卷

人教版七年级上册数学第四章测试卷一、选择题(每题3分,共30分)1. 下列各图中,能正确表示数轴的是()A.B.C.D.2. 在数轴上,原点及原点右边的点表示的数是()A. 正数。

B. 负数。

C. 非正数。

D. 非负数。

3. 与 -3互为相反数的是()A. 3.B. - (1)/(3)C. (1)/(3)D. -3.4. 一个数的绝对值是5,则这个数是()A. 5.C. ±5.D. (1)/(5)5. 下列式子中,正确的是()A. - 5 = - 5.B. - - 5 = 5.C. - ( - 5) = - 5.D. - ( - 5) = 5.6. 计算:( - 2)+( - 3)的结果是()A. 1.B. -1.C. 5.D. -5.7. 计算:3 - ( - 2)的结果是()A. 1.B. -1.C. 5.D. -5.8. 计算:( - 2)×( - 3)的结果是()A. 6.C. 5.D. -5.9. 计算:-6÷2的结果是()A. 3.B. -3.C. (1)/(3)D. -(1)/(3)10. 下列运算正确的是()A. 2×(-3)=6B. ( - 2)×3 = 6C. ( - 2)×( - 3)=6D. ( - 2)×0 = - 2二、填空题(每题3分,共18分)11. 在数轴上,点A表示 - 3,从点A出发,沿数轴移动4个单位长度到达点B,则点B表示的数是_____。

12. 绝对值小于3的整数有_____个。

13. 比较大小:-(2)/(3)_____-(3)/(4)(填“>”“<”或“=”)。

14. 某天的最高气温为6℃,最低气温为 - 2℃,则这天的温差是_____℃。

15. 若a = - 2,b = 3,则a + b=_____。

16. 若| x| = 4,y = 3,且x < y,则x=_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第四章复习测试题
一、精心选一选(每小题2分,共30分)
1、下列说法正确的是()
A、直线AB和直线BA是两条直线
B、射线AB和射线BA是两条射线
C、线段AB和线段BA是两条线段
D、直线AB和直线a不能是同一条直线
2、下列图中角的表示方法正确的个数有()
A、1个
B、2个
C、3个
D、4个
3、下面图形经过折叠可以围成一个棱柱的是()
4、经过同一平面内任意三点中的两点共可以画出()
A、一条直线
B、两条直线
C、一条或三条直线
D、三条直线
5、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20.25 o,则()
A、∠A>∠B>∠C
B、∠B>∠A>∠C
C、∠A>∠C >∠B
D、∠C >∠A >∠B
6、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()
7、如左图所示的正方体沿某些棱展开后,能得到的图形是(

8、下列语句正确的是()
A、钝角与锐角的差不可能是钝角;
B、两个锐角的和不可能是锐角;
C、钝角的补角一定是锐角;
D、∠α和∠β互补(∠α>∠β),则∠α是钝角或直角。

9、在时刻8:30,时钟上的时针和分针的夹角是为()
A、85 °
B、75°
C、70°
D、60°
10、如果∠α=26°,那么∠α余角的补角等于()
A、20°
B、70 °
C、110 °
D、116°
11、如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为()
A、互余
B、互补
C、相等
D、不能确定。

12、如图下列说法错误的是()
A、OA方向是北偏东40°
B、OB方向是北偏西15 °
C、OC方向是南偏西30°
D、OD方向是东南方向。

13、下列说法中错误的有( )
(1)线段有两个端点,直线有一个端点
(2)角的大小与我们画出的角的两边的长短无关
(3)线段上有无数个点
(4)同角或等角的补角相等
(5)两个锐角的和一定大于直角
A.1个 B.2个 C.3个 D.4个
14、如图∠AOD-∠AOC=()
A、∠ADC
B、∠BOC
C、∠BOD
D、∠COD
(14题图)(12题图)
15、如图把一个圆绕虚线旋转一周,得到的几何体是( )
A B C D
西东
A
B
1
二、细心填一填(每空2分,共30分)
16. 将下列几何体分类,柱体有:,锥体有(填序号)。

17、∠1和∠2互补,且∠2+∠3=180°,则∠1=_______,理由是。

18、时针指示6点15分,它的时针和分针所成的锐角度数是_______·
19、已知:∠AOB=40°,OC是∠AOB的平分线,则∠AOC的余角度数是_______·
20、已知线段AB,在BA的延长线上取一点C,使CA=3AB,则CB=_______AB.
21、如图4所示,射线OA表示的方向是_______,射线OB表示的方向是_______·
22、如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC = ;
23、如图所示,小于平角的角有个;
24、如图,从学校A到书店B最近的路线是号路线,其中的道
理用数学知识解释应是;
25、48 o 15′36〞的余角是,补角是;
三、耐心做一做(7分+4分+6分+5分+5分+13分,共40分)
26、如图,平面上有四个点A、B、C、D,根据下列语句画图(7分)
(1)画直线AB; (2)作射线BC; (3)画线段CD;
(4)连接AD,并将其反向延长至E,使DE=2AD;
(5)找到一点F,使点F到A、B、C、D四点距离和最短。

27、一个角的补角加上10o等于这个角的余角的3倍,求这个角。

(4分)28、如图,∠AOB是直角,OD平分∠BOC,OE平分∠
AOC,
求∠EOD的度数。

(6分)
29、如图,已知∠AOB=90o,∠AOC是60o,OD平分∠BOC,OE平分∠AOC。

求∠DOE。

(5分)
30、如图、线段AB=14cm,C是AB上一点,且AC=9cm,O是AB的中点,求线段OC的长度。

(5分)
31、如图,有五条射线与一条直线分别交于A、B、C、D、E五点。

(1)请用字母表示以O为端点的所有射线。

(3分)
(2)请用字母表示出以A为端点的所有线段。

(3分)
(3)如果B是线段AC的中点,D是线段CE的中点,
AC=4,CE=6,求线段BD的长。

(4分)
(4)请用字母表示出以OC为边的所有的角。

(3分)
A
B
O
40°
75°


图 4
B
A
A B
O
C D E
2。

相关文档
最新文档