第七章固体材料中的原子扩散
固体材料中的原子扩散机制扩散系数及影响因素解析
Diffusion couple Q (cal /mol ) D0 (cm2/s )
C in FCC iron 32900
0.23
C in BCC iron 20900
0.011
N in FCC iron
34600
0.0034
N in BCC iron
18300
0.0047
空位机制扩散
• 不同温度下存在不同的空位平衡浓度CV,借助空 位扩散的合金,温度越高越有利于扩散
(2)
Z为配位数,ν为振动频率
• 如果扩散原子在三维空间内跃迁,每跳跃一步的距离为dx,在推导菲
克第D一=定(1律/6时) ·,f·令(dx)2
(3)
• 将式2代入式3,得
D=(1/6)·(dx)2·Z·ν·exp(ΔS/R)·exp(-ΔE/RT)=
(4)
D为D间0·隙ex固p(溶-Δ体E/R中T溶)质原子的扩散系数,D0为扩散常数
7.2.3 空位机制扩散
• 空位总会存在,存在空位 • 使一个熵原增子加在空位旁边,它就可
能跳进空位中,这个原子原来 的位置变成空位,另外的邻近 原子占据新形成的空位,使空
• 位在继置续换运动式,固这溶就是体空中位机制
扩散
溶剂原子与溶质原子半径 相差不
大,很难进行间隙扩散, 主要依靠
原子和空位的交换位置进 行扩散
Energy
扩散需要能量-扩散激活能
Substitutional (Vacancy)
Qv
Q i Interstitial
Activation energy of diffusion
1.Qi<Qv, lower Q indicates easy diffusion • 2.diffusion couple • 3.diffusion data for selected materials (See Table)
固体材料中的原子扩散
原子扩散的模拟计算
06
方法
分子动力学模拟
通过模拟原子在固体 材料中的运动轨迹, 分析原子扩散行为。
可用于研究不同材料 和温度下的扩散行为。
考虑原子间的相互作 用力和温度对扩散的 影响。
蒙特卡洛模拟
基于概率统计方法模拟原子在 固体材料中的扩散过程。
考虑原子间的碰撞和能量交换, 模拟原子在固体材料中的随机 运动。
一。
扩散过程是自发的,由物质的浓 度梯度或热力学涨落所驱动。
原子扩散的分类
按扩散驱动力分类
浓度梯度扩散、应力梯度扩散、 温度梯度扩散等。
按扩散路径分类
表面扩散、体扩散、晶界扩散等。
按扩散机制分类
热激活扩散、间隙扩散、填充机制 扩散等。
原子扩散的物理机制
原子在固体晶格中的迁移
01
原子在固体晶格中的迁移需要克服晶格的势垒,通过晶格振动
传递能量,使原子从一个位置跃迁到另一个位置。
原子通过表面或晶界的迁移
02
原子可以通过表面或晶界的迁移,通过吸附、脱附或跳跃的方
式进行扩散。
间隙扩散和填充机制扩散
03
间隙扩散是指原子在固体的晶格间隙中迁移,填充机制扩散是
指原子通过填充到晶体结构中的空位或位错中进行迁移。
扩散机制
02
热激活扩散
01
02
材料类型与结构
材料类型和结构对原子扩散的影响主要体现在晶格类型、晶 格常数、晶体缺陷等方面。不同材料中原子扩散的难易程度 不同,这与其晶体结构和晶格振动模式有关。
一般来说,金属材料中的原子扩散比陶瓷材料更容易进行, 因为金属材料通常具有更加灵活的晶格结构和较少的晶体缺 陷。
晶体缺陷
晶体缺陷如空位、间隙原子、针显微技术(APT)
材料科学基础 第七章 扩散与固相反应
0
e
2
d
0
第二种情况
C ( x, t )
Q 2 Dt
exp(
x
2
)
4 Dt
第三节
一、扩散推动力
扩散机理和扩散系数
根据热力学,扩散过程的发生与否与系统中化学势有根 本的关系,物质从高化学势流向低化学势是一个普遍规 律,一切影响扩散的外场(电场、磁场、应力场等)都 可以统一于化学势梯度之中。 因此,扩散推动力的本质是化学势梯度,而且只有当化 学势梯度为零时系统扩散方可达到平衡;浓度梯度不是 质点定向扩散推动力的实质。
由热力学理论可知,在多组分的多相系统中任一组分i由α
相迁移到相中,迁移量为dni mol,系统的吉布斯自由能 的变化为: dG dn dn
i i i i
要使上述迁移过程自发进行,必须是 :
dG i dni i dni 0
因式中 dni>0,所以:
不稳定扩散根据边界条件分为两种情况:
一是扩散物质浓度(C0)在晶体表面保持不变; 二是一定量(Q)的物质由表面向晶体内部扩散。
c c0
c
x
x
第一种情况
C ( x, t ) C0 erfc(
erf ( ) 2
x 2 Dt
)
2
e
2
d ,
erfc( ) 1
a、金属离子空位型
造成这种非化学计量空位的原因往往是环境中氧分压升 高迫使部分Fe2+ 、Ni2+ 、Mn2+ 等二价过渡金属离子变成 三价金属离子,如:
2M
M
无机材料科学基础辅导4
第七章固体中的扩散【例7-1】什么叫扩散?在离子晶体中有几种可能的扩散机构?氧化物晶体中哪种扩散是主要的,为什么?【解】固体中的粒子(原子、离子或分子)由浓度高处迁移至浓度低处的现象称为扩散。
离子晶体中有五种可能的扩散机构:易位扩散、环形扩散、间隙扩散、准间隙扩散、空位扩散。
氧化物晶体中空位扩散是最主要的扩散,原因:空位扩散所需活化能最小。
【例7-2】试说明扩散系数的定义、物理意义及量纲。
【解】扩散系数:表征物质扩散本领大小的一个重要参量,是物质的一个多性指标。
物理意义:单位浓度梯度、单位时间内通过单位面积所扩散的物质的量。
量纲:L2T-1(cm2/秒)【例7-3】试分析具有肖特基缺陷的晶体中阴离子的扩散系数小于阳离子的扩散系数的原因。
【解】在晶体中,阴离子半径较大,还常作密堆积,形成结构骨架。
阳离子的半径较小,填充于空隙中。
则阳离子的肖氏缺陷(空位)的(形成能及)迁移能小于阴离子空位的(形成能及)迁移能。
由式中::缺陷形成能:缺陷迁移能因为Q增大所以D减小()Q阳<Q阴则D阳离子>D阴离子【例7-4】扩散系数与哪些因素有关?为什么?为什么可以认为浓度梯度大小基本上不影响D值,但浓度梯度大则扩散得快又如何解释?【解】影响扩散系数D的因素:(1)T增大,D增大;Q增大,D减小;(2)扩散物质的性质:扩散粒子性质与扩散介质性质间差异越大,D值越大。
扩散粒子半径越小,D值越大。
(3)扩散介质的结构:结构越致密,D越小。
(4)位错、晶界、表面:处于位错、晶界、表面处的质点,D较大。
D表面(10-7cm2/s)>D晶界(10-10 cm2/s)>D内部(10-14 cm2/s)(5)杂质(第三组元):第三组元与扩散介质形成化合物——对扩散离子产生附加键力,则D减小。
第三组元不与扩散介质形成化合物——使扩散介质晶格产生畸变,则D增大。
(6)粘度:r减小D增大式中:T—温度r—扩散粒子半径η—扩散介质系数η增大D减小即;扩散介质粘度越大,D越小。
第七章 基本动力学过程——扩散
C t
D
2C x 2
2C y 2
2C z 2
D 2C
7.15
(2)柱坐标系:当D与浓度无关,柱对称扩散时,有:
C t
D r
r
rC r
7.17
材料科学基础 22/54
第七章 基本动力学过程——扩散
(3)球坐标系
当球对称扩散,且浓度无关时
C t
D r2
r
r
✓ 式(7.1)不仅适用于扩散系统的任何位置,而且适用于扩 散过程的任一时刻,因为J、D等可以是常量,也可以是变 量
材料科学基础 16/54
第七章 基本动力学过程——扩散
(2)第一定律微观表达式: 设:任选的参考平面1、平面2上扩
散原子面密度分别n1和n2 ,原子在平衡
位置的振动周期为,则一个原子单位
Process
材料科学基础 24/54
第七章 基本动力学过程——扩散
一、扩散的一般推动力
扩根散据动广力泛学适方用程的式热建力立学在理大论量,扩扩散散质过点程作的无发规生则与布否朗将运 动与的体统系计中基化础学上位,有唯根象本地的描关述系了,扩物散质过从程高中化扩学散位质流点向所低遵化循 的基本规律。但它并没有明确地指出扩散的推动力是什么? 而学仅位仅是表一明普在遍扩规散律体。系因中此出表现征定扩向散宏推观动物力质的流应是是存化在学浓位度梯梯 度度条。件而下一,切大影量响扩扩散散质的点外无场规(则电布场朗、运磁动场的、必应然力结场果等,)是都浓
时间内离开相对平衡位置跃迁次数的平
均值,即跃迁频率,则:
1
材料科学基础 17/54
第七章 基本动力学过程——扩散
根据统计规律,质点向各个方向跃迁的几率是相等的:
华南师范大学材料科学与工程教程第七章 扩散与固态相变(一)
25/11/2018
1
概述
扩散现象:气体和液体中,例如在房间的某处打开一瓶 香水,慢慢在其他地方可以闻到香味,在清水中滴入一滴墨 水,在静止的状态下可以看到他慢慢的扩散。 扩散:由构成物质的微粒 ( 离子、原子、分子 ) 的热运动 而产生的物质迁移现象称为扩散。扩散的宏观表现是物质的 定向输送。
25/11/2018
34268s = 9.52hr
27
例2 一铁棒中碳的原始浓度为0.20%。现在1273K的温度下对 其进行渗碳处理,试确定在距表面0.01cm处碳浓度达到 0.24%所需的时间。已知在渗碳气氛中,铁棒的表面碳浓度 维持在0.40%;碳在铁中的扩散系数与温度的关系为
D (2 105 m 2 / s){exp[(142000 J / mol) / RT ]}
dC J D dx
25/11/2018 18
2) 扩散第二方程
解决问题的关键:搞清问题的起始条件和边界条件,并假定任一时 刻t溶质的浓度是按怎样的规律分布。 对不同的实际问题,可采用不同的浓度分布形式来处理,如正态分 布、误差分布、正弦分布、指数分布等。
解析解通常有高斯解、误差函数解和正弦解等
一维无限长棒中扩 散方程误差函数解:
25/11/2018 30
water
25/11/2018
adding dye
partial mixing
homogenization
time
2
说明
在固体材料中也存在扩散,并且它是固体中物 质传输的唯一方式。因为固体不能象气体或液体那
样通过流动来进行物质传输。即使在纯金属中也同
样发生扩散,用掺入放射性同位素可以证明。 扩散在材料的生产和使用中的物理过程有密切 关系,例如:凝固、偏析、均匀化退火、冷变形后 的回复和再结晶、固态相变、化学热处理、烧结、
第七章 固体中的扩散
换位扩散机制
直接换位机制和环形换位机制
(1)直接换位机制(interstitialcy mechanism), 即相邻两原子直接交换位臵。这会引起很大的点阵瞬时 畸变,需要克服很高的势垒,只能在一些非晶态合金中 出现。
原子直接换位示意
(2) 环形换位机制(crowdion configuration) 同一平面上的数个原子同时进行环形旋转式交换 位臵。这种机制具有较低的势垒,不过需要原子 之间有大量的合作运动,也不容易实现。
7-4 扩散系数
膜片两侧的氮浓度梯度为:
根据Fick第一定律
7.3.2 非稳态扩散和Fick第二定律
(1)非稳态扩散(non—steady state diffusion) : 各处的浓度和浓度梯度随时间发生变化的扩散过程 (∂C/∂t≠0,∂J/∂x≠0)。
大多数扩散过程是非稳态 扩散过程,某一点的浓度 是随时间而变化的,这类 过程可由Fick第一定律结合 质量守恒条件进行分析。
C C D t x x
在将D近似为常数时:
C 2C D 2 t x
(7.4)
它反映扩散物质的浓度、通量和时间、空间的关系。 这是Fick第二定律一维表达式。 对于三维方向的体扩散:
C C C C ( Dx ) ( Dy ) ( Dz ) t x x y y z z
(7.7) 误差函数解 适用条件:无限长棒和半无限长棒。 如:恒定扩散源的渗碳过程。
高斯解
把总量为M的扩散元素沉淀成非常薄的薄层, 夹在两个厚度为“无限”的全同试样之间进行扩散 近似取沉淀层的厚度为零,则方程的初始、 边界条件为:
t0
时,
x0 x0
C C 0
C 0
固体中的扩散
1扩散定律及其应用物质中的原子随时进行着热振动,温度越高,振动频率越快。
当某些原子具有足够高的能量时,便会离开原来的位置,跳向邻近的位置,这种由于物质中原子(或者其他微观粒子)的微观热运动所引起的宏观迁移现象称为扩散。
在气态和液态物质中,原子迁移可以通过对流和扩散两种方式进行,与扩散相比,对流要快得多。
然而,在固态物质中,扩散是原子迁移的唯一方式。
固态物质中的扩散与温度有很强的依赖关系,温度越高,原子扩散越快。
实验证实,物质在高温下的许多物理及化学过程均与扩散有关,因此研究物质中的扩散无论在理论上还是在应用上都具有重要意义。
物质中的原子在不同的情况下可以按不同的方式扩散,扩散速度可能存在明显的差异,可以分为以下几种类型。
①化学扩散和自扩散:扩散系统中存在浓度梯度的扩散称为化学扩散,没有浓度梯度的扩散称为自扩散,后者是指纯金属的自扩散。
②上坡扩散和下坡扩散:扩散系统中原子由浓度高处向浓度低处的扩散称为下坡扩散,由浓度低处向浓度高处的扩散称为上坡扩散。
③短路扩散:原子在晶格内部的扩散称为体扩散或称晶格扩散,沿晶体中缺陷进行的扩散称为短路扩散,后者主要包括表面扩散、晶界扩散、位错扩散等。
短路扩散比体扩散快得多。
④相变扩散:原子在扩散过程中由于固溶体过饱和而生成新相的扩散称为相变扩散或称反应扩散。
本章主要讨论扩散的宏观规律、微观机制和影响扩散的因素。
1.1扩散第一定律在纯金属中,原子的跳动是随机的,形成不了宏观的扩散流;在合金中,虽然单个原子的跳动也是随机的,但是在有浓度梯度的情况下,就会产生宏观的扩散流。
例如,具有严重晶内偏析的固溶体合金在高温扩散退火过程中,原子不断从高浓度向低浓度方向扩散,最终合金的浓度逐渐趋于均匀。
菲克(A.Fick)于1855年参考导热方程,通过实验确立了扩散物质量与其浓度梯度之间的宏观规律,即单位时间内通过垂直于扩散方向的单位截面积的物质量(扩散通量)与该物质在该面积处的浓度梯度成正比,数学表达式为(3.1)上式称为菲克第一定律或称扩散第一定律。
基本动力学过程-扩散
第7章基本动力学过程-扩散物质的迁移可通过对流和扩散两种方式进行。
在气体和液体中物质的迁移一般是通过对流和扩散来实现的。
但在固体中不发生对流,扩散是唯一的物质迁移方式,其原子或分子由于热运动不断地从一个位置迁移到另一个位置。
扩散是固体材料中的一个重要现象,诸如金属铸件的凝固及均匀化退火,冷变形金属的回复和再结晶,陶瓷或粉末冶金的烧结,材料的固态相变,高温蠕变,以及各种表面处理等等,都与扩散密切相关。
要深入地了解和控制这些过程,就必须先掌握有关扩散的基本规律。
研究扩散一般有两种方法:①表象理论一根据所测量的参数描述物质传输的速率和数量等;②原子理论一扩散过程中原子是如何迁移的。
本章主要讨论固体材料中扩散的一般规律、扩散的影响因素和扩散机制等内容。
固体材料涉及金属、陶瓷和高分子化合物三类;金属中的原子结合是以金属键方式;陶瓷中的原子结合主要是以离子键结合方式为主;而高分子化合物中的原子结合方式是共价键或氢键结合,并形成长链结构,这就导致了三种类型固体中原子或分子扩散的方式不同,描述它们各自运动方式的特征也是本章的主要目的之一。
7.1表象理论7.1.1菲克第一定律当固体中存在着成分差异时,原子将从浓度高处向浓度低处扩散。
如何描述原子的迁移速率,阿道夫·菲克(Adolf Fick)对此进行了研究,并在1855年就得出:扩散中原子的通量与质量浓度梯度成正比,即该方程称为菲克第一定律或扩散第一定律。
式中,J为扩散通量,表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量,其单位为kg/(m2s);D为扩散系数,其单位为m2/s;而r是扩散物质的质量浓度,其单位为kg/m3。
式中的负号表示物质的扩散方向与质量浓度梯度7.2扩散的热力学分析菲克第一定律描述了物质从高浓度向低浓度扩散的现象,扩散的结果导致浓度梯度的减小,使成份趋于均匀。
但实际上并非所有的扩散过程都是如此,物质也可能从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。
固体材料中的原子扩散机制扩散系数及影响因素解析
其它扩散系数测定方法
• 可以通过试样由一个平衡状态到另一个平 衡状态发生质量的变化或电导率变化的动
• 力化学学数扩据散来系确数定D反化映学在扩晶散体系中数存D在浓度梯度 时质点的扩散特征
• 其它各类扩散系数均可以由相应的实验方 法、数据与理论模型算出
7.2.6 影响扩散系数的因素
1.温度的影响
• 扩散系数强烈地依赖于温度,与温度的关系可用
7.2 扩散的微观机制
• 多晶体金属中扩散路径
• 提出各种机制来说明扩散的基本过程 • 1.表面扩散:扩散物质沿金属表面发生迁 • 移 2.晶界扩散:扩散物质沿晶界发生迁移 • 3.位错扩散:扩散物质沿位错线发生迁移 • 4.体扩散:扩散物质在晶粒点阵内部发生 迁 体移扩散是固态金属中最基本的扩散途径
7.2.4 其它扩散机制
• 其它还有环形换位机制和挤列(Crowdion) • 机环制形换位机制认为在同一平面上距离相等
的几个原子可以同时轮换位置来进行扩散 用此机制计算的扩散激活能比较接近实验
值,但是,该机制不能解释置换式固溶 体合金进行互扩散时出现的Kirken-Dall效 应,与Kirken-Dall实验结果不符
扩散系数
(12)
自扩散系数测定
• 要测定氧化物等材料中的非金属原子的自 扩散系数,可采用气氛法
• 将材料置于含有示踪原子的非金属原子气 氛中,加热扩散,由于气体数量远远大于 试样质量,示踪原子扩散时可以认为示踪 剂 踪在原C试子=样浓C0表度·[面 分1-的 布e浓 如rf(度 式x/√不 ((41变·3D。)·t于))]是扩散的(1示3)
晶体点阵中的各种扩散途径
扩散机制
• 均匀固溶体中三种最基本的扩散机制
1.交换机制 2.间隙机制 3.空位机制
材料科学基础-第七章_扩散
J D dC dx
扩散第一方程
式中:J-扩散通量(Diffusion Flux);
D-扩散系数(Diffusion Coefficient);
dC/dx-体积浓度梯度(Concentration Gradient);
“-”表示物质扩散方向与浓度梯度方向相反,即扩散从浓度高处
向
浓度低处进行。
提示:
菲克第一定律描述的是浓度仅随距离变化,而不随时间变化的扩散过 程,这种扩散即稳定态扩散。
解得:q D(2πlt) dC dln r
通过实验可求得q和碳含量沿筒壁的径 向分布,作出C-lnr曲线,即可求出D。
l
测定扩散系数的示意图
1000C时lnr与C的关系
第七章 扩散-§7.2 扩散定律
二、菲克第二定律(Fick’s Second Law)
扩散过程大多为非稳定态扩散,即各点的浓度不仅随距离变化,而且还 随时间变化。
第七章 固态金属中的扩散
Chapter 7 Diffusion in Metals and Alloys
主要内容:
概述 扩散定律 影响扩散的因素 扩散机制
第七章 扩散
扩散是物质中原子(或分子)的迁移现象,是物质传输的一种形式。 在一定温度下,物质内部能量较高的原子可以脱离周围原子的束缚,离开 其原来的平衡位置跃迁至一个新的位置,从而发生原子的迁移。大量的原子 迁移造成物质的宏观流动,即扩散。 在固体中,原子或分子的迁移只能靠扩散来进行。
2.7 0.999
第七章 扩散-§7.2 扩散定律
代入原式:
C C1 C2 C1 C2 2 xቤተ መጻሕፍቲ ባይዱ2 Dt eβ2 dβ C1 C2 C1 C2 erf( x )
2第七章 固体中的扩散(二)解析
厦大材料学院
2010-10-16 P.16
§7.5 晶态氧化物中的扩散
分为两种情况: 1、化学计量氧化物中的扩散 2、非化学计量氧化物中的扩散
7.5.2 离子晶体和共价晶体中的体积扩散 化学计量组成的氧化物中的缺陷: 某一种主要热缺陷:肖特基缺陷、弗仑克尔缺陷;引起的扩散是本征扩散。 由于杂质的固溶、杂质缺陷;引起的扩散是非本征扩散。 (非本征扩散:扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制)
△GM是原子从平衡状态转变到活化状态时的自由焓的变化
D 2P
2vo
exp(
GF 2RT
) exp(
GM RT
)
2vo
exp( (SF
/
2 R
SM
) ) exp[
(H F
/2 RT
H M
)]
D
D0
exp[
(H F
/2 RT
H M
)]
空位扩散活化能由空位形成热焓和空位迁移热焓两部分组成。
厦大材料学院
2010-10-16 P.15
间隙扩散的情况:
由于晶体中间隙原子浓度很小,可供间隙原子迁移的位置多得多, 可认为:易位的几率P=1 即:间隙原子迁移无需形成能,只需迁移能。
D
D0 exp[ (HF
/ 2 HM )] RT
D0
简化为
exp
HM RT
小结: 空位扩散活化能由空位形成热焓和空位迁移热焓两部分组成。 间隙扩散活化能由间隙原子迁移热焓构成。
获得大于△ε的能量的涨落几率可以写成指数形式e-△ε/KT。(就是它的物理意义) 扩散系数D应与此成正比。也应具有指数形式。
D与温度的关系可表示为: D D0 exp G / RT
材料扩散与迁移
且
C2
C1
C ,所以 x n`1 n2 (C1
C2 )
C 2
x
(7-11)
将(7-11)式代入(7-10)式:
J 2 P C
距离与时间有如下关系:
Rn t r
(7-9)
2018年9月
复旦大学材料科学系
23
7.3.3 扩散系数 (diffusion coefficient) 图7-4为晶体中两个相邻晶面1和晶面2、晶面间
距为α及其横截面为单位面积。 假定在1、2两个表面,溶质原子数的面密度分别
为n1和n2, 每个原子的跳跃频率Г相同,跳跃随机,但 沿各跳跃方向的几率P相等,则单位时间内沿晶面1-2 方向和沿晶面2-1方向扩散的面原子数分别为:
2018年9月
复旦大学材料科学系
17
3. 互扩散和Kirkendall 效应
在纯金属和置换式固溶体合金中,原子扩散是通 过空位机制进行的, 这涉及不同组元间的互扩散问题。
1947年,Kirkendall做了一个扩散退火试验。他 将一块黄铜(Cu70%/Zn30%)放在铜盒内,并用 钼丝包扎好,温度较低时钼丝不参与扩散。
2018年9月
复旦大学材料科学系
4
7.2.2 扩散定律-菲克定律
扩散是由热运动引起的物质传递现象。
如果固溶体存在单位长度的浓度梯度或化学位梯 度,即dC/dx > 0, 如图7-1所示,就发生使浓度梯度 趋于均匀的介质定向扩散流。
1855年,德国的菲克(A.Fick)对这种扩散现 象进行定量描述,建立了菲克第一定律和第二定律。
由于:
C C x x1 x x1dx
(7-2)
因此,J(x1)大于J(x1+dx), 如图7-2b。
第七章固体材料中的原子扩散
影响扩散系数的因素
•晶体结构
1.原子排列越紧密,晶体结构的致密度越高,激活能 较大,扩散系数较小。
2.晶体结构的对称性差的材料中,不同方向上扩散系 数的差别也大,常见金属材料的晶体结构较简单,各方 向的差别大多都不明显。
影响扩散系数的因素
•晶体缺陷
1.点缺陷: 主要影响扩散的空位
浓度 。
2.线缺陷:线缺陷主要形式是位错,
在含有浓度梯度的置换固溶体中,埋入一个惰性 标记,由于两组元扩散能力不相等,经过扩散后会引起 标记的移动。这个现象以后就成为柯肯达尔 (Kirkendall)效应。
代位扩散的方程(Darken方程)
描述置换固溶体中的扩散方程由Darken提出。
标记移动的速度
式中的D1、D2为组元的自扩散系数(自扩散系
扩散系数与温度之间的关系晶体中空位的浓度统称为置换扩散的激活能如果将一块钢和一块纯铁焊接在一起由于两种材料的碳含量不相同碳原子将从钢中向纯铁中不断扩散碳是溶解在铁晶格的间隙中形成的间隙固溶体这种迁移不会引起原来钢或纯铁基体中晶格数量和位置的变化这属于一种间隙扩散类型
第七章固体材料中的原子扩散
第一节 扩散 定律
第四节 影响扩散的因素
扩散过程引起的物质流量除了与浓度梯度(和化学位梯 度)有关外,另一个重要的因素就是扩散系数。
•温度
无论是间隙机制,还是空位机制,都遵循热激活规律, 温度提高,能超过能垒的几率越大,同时晶体的平衡空位浓度 也越高,这些都是提高扩散系数的原因。扩散系数与温度T 成 指数关系,在以下因素中这个影响最为明显。
半无限长棒扩散方程的误差函数解
解为:
定义函数: 一维半无限长棒中扩 散方程误差函数解Hale Waihona Puke 高斯误差函数高斯误差函数
7.2 固体材料中的原子扩散机制、扩散系数及影响因素
两原子交换机制
四原子环形换位 机制 空位机制
—
126.6 87.3 96.4 873
刘志勇 14949732@
380
96.4 57.8 96.4 48.1 19.3
380
221 146 193 927 898
间隙机制
5/12/2014
19
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
Q (cal /mol ) C in FCC iron 32900 C in BCC iron 20900 N in FCC 34600 iron N in BCC 18300 5/12/2014 刘志勇 14949732@ iron
Diffusion couple
D0 (cm2/s ) 0.23 0.011 0.0034 0.0047
12
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
空位机制扩散
• 不同温度下存在不同的空位平衡浓度CV,借助空 位扩散的合金,温度越高越有利于扩散 • 在220℃的铜,每1cm3中只有2×103个空位,而接 近熔点的铜(1000℃),每1cm3中就有5×1018个 • 空位平衡浓度 CV为 空位
•
溶剂原子与溶质原子半径 相差不 大,很难进行间隙扩散, 主要依靠 原子和空位的交换位置进 5/12/2014 刘志勇 14949732@ 行扩散
10
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
扩散需要能量-扩散激活能
Substitutional (Vacancy)
5/12/2014 刘志勇 14949732@ 4
材料科学基础 西安交大 石德珂 第七章 材料中的原子扩散
后退 下页
二、烧结
烧结过程如下:将压实的粉末加 热到高温,在初期,相互接触的 颗粒开始逐渐形成颈的连接(图 7-15)烧结初期主要是表面扩散, 后期主要是晶界扩散。烧结速率 主要取决于两个因素:①粉末原 材料的颗粒粗细;②原子的扩散 速率,这决定于温度。
后退 下页
后退
返回
下页
第五节 固态相变中的形核
后退 下页
说明
(1)可确定不同时间t和距界面厚度不同处x的浓度 C=f(x,t); (2)当距离界面x处的浓度为一不确定值时,则扩 散所需时间t将与层深x2成正比关系;
C1 C 2 (3)当x=0时, 0, C 即在扩散过程中界面 2
上的浓度恒定不变;
(4)如扩散偶之一不存在原子浓度时,C1=0,则:
二、Fick第二定律
质量平衡关系: (在微小体积中积存的物质) =(留入的物质量)J1(留出的物质量)J2
dJ J 2 J1 dx dx x dc dJ D dx dx x dx x
dc J 1 J 2 dt dx
C2 x C 1 erf 2 2 Dt
后退 下页
2.半无限长棒的扩散方程解
初始条件:t=0,C=C2 x=∞, 则C=C1 0 边界条件:t≥0, x =0, 则C=C2
后退 下页
C2 x
x 其解: C C1 (C1 C 2)erf 2 Dt
900℃时,Ni在 Fe中的扩散系数比 r Fe 中 扩散系数约大1400倍。 527 ℃时,N在 Fe中的扩散系数比 r Fe 中 扩散系数约大1500倍。
原因:
Fe bcc 致密度K小
(完整版)固体中的扩散
第七章固体中的扩散内容提要扩散是物质内质点运动的基本方式,当温度高于绝对零度时,任何物系内的质点都在作热运动.当物质内有梯度(化学位、浓度、应力梯度等)存在时,由于热运动而导致质点定向迁移即所谓的扩散。
因此,扩散是一种传质过程,宏观上表现出物质的定向迁移。
在气体和液体中,物质的传递方式除扩散外还可以通过对流等方式进行;在固体中,扩散往往是物质传递的唯一方式。
扩散的本质是质点的无规则运动.晶体中缺陷的产生与复合就是一种宏观上无质点定向迁移的无序扩散。
晶体结构的主要特征是其原子或离子的规则排列。
然而实际晶体中原子或离子的排列总是或多或少地偏离了严格的周期性。
在热起伏的过程中,晶体的某些原子或离子由于振动剧烈而脱离格点进入晶格中的间隙位置或晶体表面,同时在晶体内部留下空位。
显然,这些处于间隙位置上的原子或原格点上留下来的空位并不会永久固定下来,它们将可以从热涨落的过程中重新获取能量,在晶体结构中不断地改变位置而出现由一处向另一处的无规则迁移运动.在日常生活和生产过程中遇到的大气污染、液体渗漏、氧气罐泄漏等现象,则是有梯度存在情况下,气体在气体介质、液体在固体介质中以及气体在固体介质中的定向迁移即扩散过程.由此可见,扩散现象是普遍存在的。
晶体中原子或离子的扩散是固态传质和反应的基础。
无机材料制备和使用中很多重要的物理化学过程,如半导体的掺杂、固溶体的形成、金属材料的涂搪或与陶瓷和玻璃材料的封接、耐火材料的侵蚀等都与扩散密切相关,受到扩散过程的控制.通过扩散的研究可以对这些过程进行定量或半定量的计算以及理论分析。
无机材料的高温动力学过程——相变、固相反应、烧结等进行的速度与进程亦取决于扩散进行的快慢。
并且,无机材料的很多性质,如导电性、导热性等亦直接取决于微观带电粒子或载流子在外场——电场或温度场作用下的迁移行为。
因此,研究扩散现象及扩散动力学规律,不仅可以从理论上了解和分析固体的结构、原子的结合状态以及固态相变的机理;而且可以对无机材料制备、加工及应用中的许多动力学过程进行有效控制,具有重要的理论及实际意义.本章主要介绍固态扩散的宏观规律及其动力学、扩散的微观机构及扩散系数,通过宏观-微观-宏观的渐进循环,认识扩散现象及本质,总结出影响扩散的微观和宏观因素,最终达到对基本动力学过程——扩散的控制与有效利用.7。
7.2 固体材料中的原子扩散机制、扩散系数及影响因素解析
扩散机制
• 均匀固溶体中三种最基本的扩散机制
1.交换机制 2.间隙机制 3.空位机制
10/14/2018
刘志勇 14949732@
3
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
7.2.1 扩散的交换机制
原子的扩散通过相邻两原子直接交换 位置实现
10/14/2018 刘志勇 14949732@ 1
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
晶体点阵中的各种扩散途径来自10/14/2018刘志勇 14949732@
2
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
10/14/2018 刘志勇 14949732@ 9
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
7.2.3 空位机制扩散
• 空位总会存在,存在空位 • 使熵增加 一个原子在空位旁边,它就可
能跳进空位中,这个原子原来 的位置变成空位,另外的邻近 原子占据新形成的空位,使空 位继续运动,这就是空位机制 在置换式固溶体中 扩散
•
溶剂原子与溶质原子半径 相差不 大,很难进行间隙扩散, 主要依靠 原子和空位的交换位置进 10/14/2018 刘志勇 14949732@ 行扩散
10
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
扩散需要能量-扩散激活能
Substitutional (Vacancy)
吉 首 大 学 物 理 与 机 电 工 程 学 院 JiShou University
7.2
固体材料中的扩散
反应扩散的速率:①由原子在化合物层的扩散速度和②界面生成化合物层的反应速度决定 若①<②,则反应速度取决于①,化合物层厚度与实践成抛物线关系:X2=K´t X为化合物速度,t为时间,K´为常数 若①>②,则反应速度取决于②,化合物厚度呈线性生长规律:X=Kt 实际上,在反应的初始阶段,化合物层很薄,浓度梯度大,扩散通量大,这时扩散反应的 速度取决于化合物反应生成速度,表现为线性关系;随着化合物层厚度的增加,浓度梯度 的减小,表现为抛物线关系,两种关系相互依存. 离子晶体中的扩散,影响扩散的缺陷两个主要来源:本征点缺陷和参杂点缺陷 本征点缺陷包括肖脱基缺陷和弗兰克耳缺陷:形成过程中要保证任何局部区域电荷平衡 肖脱基缺陷:形成一个阳离子空位时,在其附近形成一个阴离子空位,这一对阴、阳离子 空位的复合体便是肖脱基缺陷. 弗兰克耳缺陷:当产生一个阳离子空位的时,可在附近形成一个间隙阳离子,这一对离子 空位和间隙离子的复合体便是弗兰克耳缺陷. 离子晶体中通常可以允许掺入一些置换型杂质,但其条件是要保持电中性.掺杂相似的阳 离子来代替基体的阳离子比较常见.如 当一个Ca2+置换NaCl晶体中的一个Na+时,如果相邻的 一个Na+是空位就能保持电中性,即一个Ca2+离子置换了两个Na+离子,但只占据其中一个 空位,导致形成了阳离子空位. 本征点缺陷引起的扩散与温度的关系类似于金属中的自扩散;由掺杂点缺陷引起的扩散 与温度的关系类似于金属中间隙溶质的扩散. 对于掺杂的离子晶体,低温时参杂点缺陷对扩散的作用更显著,随温度升高,本征点缺陷 浓度升高,掺杂点缺陷作用程度逐渐下降,即高温时本征点缺陷占优势,低温时掺杂点 缺陷占优势.
反应扩散:通过扩散而形成新相的现象,称为反应扩散. 以Fe-N相图为例:发生反应扩散,相区之间之间氮的浓度是突变的,不存在两相区,因为 该区域没有扩散驱动力,同理三元系的扩散层中没有三相区,可以有两相区.
第七章扩散连接原理
固相扩散连接过程
目前,人们认为扩散连接包括以下三个过程 :()塑性 变形使连接表面接触;()晶界迁移和孔洞消失;()界面和 孔洞消失过程。下面分别叙述各阶段的过程和机理。 ()塑性变形使连接表面接触
固相扩散连接时,材料表面通常是进行机械加工后 再进行研磨、抛光(包括化学抛光)和清洗,加工后材料表 面在微观上仍然是粗糙的、存在许多一μ的微观凹凸,且 表面还常常有氧化膜覆盖。将这样的固体表面相互接触, 在不施加任何压力的情况下,只会在凸出的顶峰处出现接 触,如图(。初始接触区面积的大小与材料性质、表面加 工状态以及其它许多因素有关。
但由于实际的材料表面不可能完全平整和清洁,因而 实际的扩散连接过程要比上述过程复杂得多。固体金属的 表面结构如图一所示,除在微观上表面呈凹凸不平外,最 外层表面还有~的气体吸附层,主要是水蒸气、氧、和。 在吸附层之下为 ~厚的氧化层,是由氧化物的水化物、 氢氧化物和碳酸盐等组成。在氧化层之下是 ~μ的变形层 。
扩散连接的定义及其特点
扩散连接是将两待连接工件紧压在一起,置于真空或 保护气氛中加热至母材熔点以下温度,对其施加压力使两 连接表面微观凸凹不平处产生微观塑性变形达到紧密接触 ,再经保温、原子相互扩散而形成牢固的冶金结合的一种 连接方法。
可见,扩散连接过程是在温度和压力的共同作用下完 成的,但连接压力不能引起试件的宏观塑性变形。
图一 几种材料扩散连接接头拉伸断口的微 观形貌
()钛 (℃ ); (}铁(℃ ); ()不锈钢钛 (℃ ,
); ()铝钛 (℃ )
()扩散、晶界迁移和孔洞消失 与第一阶段的变形机制相比,该阶段中扩散的作用
就要大得多。连接表面达到紧密接触后,由于变形引起的 晶格畸变、位错、空位等各种缺陷大量堆集,界面区的能 量显著增大,原子处于高度激活状态,扩散迁移十分迅速 ,很快就形成以金属键连接为主要形式的接头。由于扩散 的作用,可使大部分孔洞消失,也会产生连接界面的移动 。关于孔洞消失的机制阐述如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菲克第二定律 引出
如图所示设为单位面积A上 取dx的单元体,体积为Adx, 在dt的时间内通过截面1流入 的物质量为 而通过截面2流出的物质量 在dt时间内,单元体中的积有量为:
菲克第二定律 微分方程
在dt时间内单元体的浓度变化量
则需要的溶质量为
菲克第二定律 微分方程标准型
在一维状态下非稳态扩散的微分方程,即为 菲克第二定律的数学表达式,又称为扩散第二方 程。若扩散系数D为常数,方程可写成:
间隙扩散机制(2)
在面心立方(fcc)中延[100]方向间隙扩散:
其中A为常数,Z相邻的间隙数,ν 振动频 率。
间隙扩散中的几率P
间隙扩散机制(3)
扩散系数为 :
D0为与晶格结构和扩散方向有关的常数,Δ G为 一个原子的扩散激活能,工程中也常用Q表示 1mol的激活能。
扩散系数与温度之间的 关系
扩散方程的误差函数解应用例二
例二:上例中处理条件不变,把碳含量达到0.4%C处 到表面的距离作为渗层深度,推出渗层深度与处理时 间之间的关系,层深达到1.0mm则需多少时间? 解:因为处理条件不变
在温度相同时,扩散系数也相同,因此渗层深度与
处理时间之间的关系:
因为x2/x1= 2,所以t2/t1= 4,这时的时间为
4.单独依靠扩散从固体中析出另一新相,
新相的层深和时间的关系为:
而生长速度则为:
二元合金扩散不形成两相混合区
•原因说法一
1.在一定的温度下相律: f = c - p
2 .扩散过程进行中,系统没有达到平衡,f > 0 3 .C = 2
p < 2
即存在相数 p = 1
•原因说法二
扩散能够不断向内进行,是因为材料内存在连续 分布的化学位梯度,如果出现两相平衡,则此区域内的 化学位梯度为0,扩散就不能进行,这将与事实相矛盾。
反应扩散的实例
•渗氮过程
反应扩散的主要Biblioteka 征1.在一定的温度下,扩散过程进行中,成分从高到低 逐渐变化,但二元合金中不会形成两相混合区。
2.在单相区, 为常数,扩散过程进行,需存在浓 度梯度,物质从高处流向低处。
3.在一定的温度下,随着时间的增加,发生反应扩散 时,转折点的浓度不发生变化,而是新相的深度不断增 加。
空位扩散机制(2)
晶体中空位的浓度 : 扩散系数为 :
扩散系数与温度之间的 关系 统称为置换扩散的激活能
代位扩散基本现象
如果将一块钢和一块纯铁焊接在 一起,由于两种材料的碳含量不相同, 碳原子将从钢中向纯铁中不断扩散,碳 是溶解在铁晶格的间隙中形成的间隙固 溶体,这种迁移不会引起原来钢或纯铁 基体中晶格数量和位置的变化,这属于 一种间隙扩散类型。
菲克第一定律
菲克(A.Fick)在1855年总结出的,数学表达式为:
J为单位时间通过垂直于扩散方向的单位面积的扩 散物质的通量,单位是
为溶质原子的浓度梯度;
负号表示物质总是从浓度高处向浓度低的方向迁移; 比例常数D称为扩散系数,单位为
菲克第二定律 引言
菲克第一定律适用于稳态扩散,即在扩散的 过程中各处的浓度不因为扩散过程的发生而随 时间的变化而改变,也就是 dc/dt = 0。当物质分 布浓度随时间变化时,由于不同时间在不同位 置的浓度不相同,浓度是时间和位置的函数 C(x,t),扩散发生时不同位置的浓度梯度也不一 样,扩散物质的通量也不一样。在某一dt的时间 段,扩散通量是位置和时间的函数j(x,t)。
说明
在固体材料中也存在扩散,并且它是固 体中物质传输的唯一方式。因为固体不能象 气体或液体那样通过流动来进行物质传输。 即使在纯金属中也同样发生扩散,用参入放 射性同位素可以证明。扩散在材料的生产和 使用中的物理过程有密切关系,例如:凝固、 偏析、均匀化退火、冷变形后的回复和再结 晶、固态相变、化学热处理、烧结、氧化、 蠕变等等。
第四节 影响扩散的因素
扩散过程引起的物质流量除了与浓度梯度(和化学位梯 度)有关外,另一个重要的因素就是扩散系数。
•温度
无论是间隙机制,还是空位机制,都遵循热激活规律, 温度提高,能超过能垒的几率越大,同时晶体的平衡空位浓度 也越高,这些都是提高扩散系数的原因。扩散系数与温度T 成 指数关系,在以下因素中这个影响最为明显。
2.其他任何对粒子运动的力也都可能影响扩散,如电磁场对代
反应扩散的实例
•渗碳过程
反应扩散的实例
随时间的加长,在γ 相存在碳的浓度梯度,碳不断 向内扩散,在α -γ 相界面碳多余进入到α 相,平衡破 坏,部分的α 得到碳转变生成γ 相,因此在相界面两边 的成分依然为C2 和C1 不变,而是相界面向内迁移,即γ 相在不断生长。可见在二元合金的在一定温下进行扩散 过程中,不会出现两相区。当然二元合金的恒温扩散过 程中为什么不会出现两相区可以用相律来证明,但证明 过程不要求大家掌握,只要知道这个结论。值得指出的 是这表现在恒温扩散过程时,处理结束后冷却下来,材 料会遵照相图的规律发生相关的变化,所以并不代表到 室温时不存在两相区,但这个成分的突变会保留下来。
位错线附近的溶质原子的浓度高于平 均值;原子在位错中沿位错线的管道 扩散比晶体中的扩散快。
3.面缺陷 :本身所处于较高的能
力状态,相应扩散激活能也就较低
影响扩散系数的因素
•其他因素
1.弹性应力场 可以加速尺寸大的原子向拉应力大处扩散,同
样加速尺寸小的原子向压应力大处扩散,这种扩散可以松弛应力, 但也能把原来的弹性应变部分的转化为不可恢复的永久变形(塑 性变形),这种在应力作用下的扩散过程也是材料以蠕变方式发 生塑性变形的基本机制。
半无限长棒扩散方程的误差函数解
解为:
定义函数: 一维半无限长棒中扩 散方程误差函数解: 高斯误差函数
高斯误差函数
无限长棒中的扩散模型
实际意义:将溶质含量不同的两种材料焊接在一起,因 为浓度不同,在焊接处扩散进行后,溶质浓度随时间的 会发生相应的变化。
无限长棒扩散方程的误差函数解
解为:
利用高斯误差函数
一维无限长棒中扩 散方程误差函数解:
扩散方程的误差函数解应用例一
例一:有一20钢齿轮气体渗碳,炉温为927℃,炉气氛 使工件表面含碳量维持在0.9%C,这时碳在铁中的扩散 系数为D=1.28x10-11m2s-1,试计算为使距表面0.5mm处 含碳量达到0.4%C所需要的时间?
解:可以用半无限长棒的扩散来解 :
第七章固体材料中的原子扩散
第一节 扩散 定律
扩散现象:大家已经在气体和液体 中知道,例如在房间的某处打开一瓶香 水,慢慢在其他地方可以闻到香味,在 清水中滴入一滴墨水,在静止的状态下 可以看到他慢慢的扩散。 扩散:由构成物质的微粒(离子、原 子、分子)的热运动而产生的物质迁移 现象称为扩散。扩散的宏观表现是物质 的定向输送。
如果将一块铜和一块锌焊接在一起,这两种材料的 成分不同,铜要向锌中扩散,铜进入锌的晶格存在于 晶格节点,形成的是置换固溶体,锌也要向铜中扩散, 也存在于铜晶格节点,形成的是置换固溶体。这种扩 散方式称为代位扩散。
代位扩散基本现象
这种扩散与间隙扩散不 相同的是,一方面一种原子 进入另一种原子的晶格要另 一种原子扩散运动离开才能 达到节点位置; 另一方面,在晶体中两种原子的大小、性质不 相同,扩散迁移的速度也不一样,一种原子离开 的个数与另一种原子进入的个数不相等时就会形 成新的晶格(或部分晶格消失),因此代位扩散过 程中会引起某种材料晶格数量的变化。
原子热运动和扩散系数的关系
从微观分析表明,扩散系数与扩散方向相邻晶面的面 间距α 、原子的跃迁频率Γ 、跃迁几率P的关系。下面 对不同的机制进行具体分析。
间隙扩散机制
扩散机制:溶质原子存在
晶格的间隙中,如Fe中的C、 N、H等元素,扩散过程是间 隙原子从所处在的间隙,挤 过晶格原子的空隙,到达相 邻的另一个间隙。 溶质原子从一个间隙到另一个间隙的过程,在间隙中的 平衡位置的能量为G1,从晶格原子中挤过去,最高能量 达到G2,存在能垒Δ G=G2-G1,根据统计物理分析可知, 超出平均能量Δ G的原子几率为
数又称禀性扩散系数
N1、N2为组元的摩尔浓度(原子百分比)
代位扩散的方程(Darken方程)
扩散方程:
第三节 反应扩散
反应扩散的概念 反应扩散的实例 反应扩散的主要特征
反应扩散的概念
•反应扩散
在扩散中由于成分的变化,通过化学反应而伴随 着新相的形成(或称有相变发生)的扩散过程称为 “反应扩散”,也称为“相变扩散”。
三维情况,设在不同的方向扩散系数为相 等的常数,则扩散第二方程为:
半无限长棒中的扩散模型
实际意义:低碳钢的渗碳处理,材料的原始含碳量为C0, 热处理时外界条件保证其表面的碳含量始终维持在 CP(碳势),经过一段时间后,求材料的表面附近碳含量 的情况。
扩散方程的误差函数解
扩散方程的误差函数解
扩散方程的误差函数解
影响扩散系数的因素
•材料的成分
原子之间的结合键力越强,通常对应材料的熔点也越高,激活能 较大,扩散系数较小。材料的成分不同,即组成材料的元素和比 例不同,不同原子之间结合键能不一样,成分的变化也影响不同 类型结合键的相对数量,所以材料的成分变化带来的影响有:
1.结合键能不同,影响到激活能不同而影响扩散系数; 2.结合键能的不同,一种元素的数量(成分比例)可能改变自己 或其他元素的化学位,从而影响扩散的速度,甚至方向。 3.代位扩散(置换原子)通量决定于互扩散系数,互扩散系数本 身就是各组元成分的函数。
在含有浓度梯度的置换固溶体中,埋入一个惰性 标记,由于两组元扩散能力不相等,经过扩散后会引起 标记的移动。这个现象以后就成为柯肯达尔 (Kirkendall)效应。
代位扩散的方程(Darken方程)
描述置换固溶体中的扩散方程由Darken提出。