理论力学 动量定理

合集下载

理论力学-动量定理

理论力学-动量定理
质点系的动量
注意到物理学中,质点系质心位矢 公式对时间的一阶导数: mi ri rC i m mi vi vC i m 式中,rC为质点系质心的位矢; vC为质心的速度;m为质点 系的总质量。据此,质点系的动量可改写为:
p mv C
动量定理与动量守恒
质点系的动量
p mv C
动量定理应用举例
例题2
解:1、选择包括外、 壳、定子、转子的电 动机作为研究对象。
m1g m2g
2、系统所受的外力: 定子所受重力m1g;
Fx
M Fy
转子所受重力m2g; 底座所受约束力 Fx、Fy、M。
动量定理应用举例
例题2
3、各刚体质心的加速度 aC1= aO1=0 ; aC2= aO2=eω2 (向心加速度) 4、应用质心运动定理
Fx m2e 2cos t
Fy m1g m2 g m2e 2sint
动量定理应用举例
5、关于计算结果的分析
例题2
Fx m2e 2cos t Fy m1g m2 g m2e 2sint
* 动约束力与轴承动反力
Fxd m2 e 2 cost
p2 p1 C1
这就是质点系动量守恒定律(theorem of the conservation of momentum of a system of particles)。 式中 C1 为常矢量,由运动的初始条件决定。
动量定理与动量守恒
质点系动量守恒定律
实际应用质点系的动量定理时,常采用投影式:
第10章 动量定理
几个有意义的实际问题
动量定理与动量守恒 质心运动定理 应用举例 结论与讨论 参考性例题

理论力学--动量定理

理论力学--动量定理

质心运动的思考与比较
F′
A F
B
两个相同的均质圆盘,放在光滑水平面上, 两个相同的均质圆盘,放在光滑水平面上,在圆盘的不 同位置上,各作用一水平力F 同位置上,各作用一水平力 和F′,使圆盘由静止开始运动 , ,设F = F′,试问哪个圆盘的质心运动得快? ,试问哪个圆盘的质心运动得快? (A).A盘质心运动得快 . 盘质心运动得快 (B).B盘质心运动得快 . 盘质心运动得快 (C).两盘质心的运动相同 . (D).无法判断 .
1 2 h = gt 2
r P
以接触工件时刻的锻锤为对象,由积分形式的动量定理: 以接触工件时刻的锻锤为对象,由积分形式的动量定理:
mv − mv0 = (P − F )t0
v 1 1 + 0 P = 1 + F = gt 0 t0 2h g
30° °
﹡ FN
P
Q
P ∗ v0 sin 30o − 0 = (FN − P −Q)t g
例:未固定偏心转子电机的分析 未固定偏心转子电机的分析 偏心转子
例:未固定偏心转子电机的分析 未固定偏心转子电机的分析 偏心转子
y1
ω
o2
y
r aO 2 = eω 2 ϕ o1 r m1 g FY
r x1 r aO1 m2 g
y1
r vO 2 o2
y
eω 2 ϕ o1 r m1 g FY
& r x m2 g
x1
x
外壳质心的速度, 轴正向: 其中 vO1 — 外壳质心的速度,沿 x 轴正向 vO2 — 转子质心的速度,且 转子质心的速度,
例:电机在水平方向的运动规律
(m v

第11章动量定理

第11章动量定理


i =1
n
Fi ( e ) dt = ∑ dI i( e )
i =1
n
dp =

n
i =1
d I i( e )
质点系动量的增量等于作用于质点系的外力元冲量的矢量和
d (∑ mi vi ) = ∑ Fi ( e ) dt
i =1 i =1
n
n
质点系动量定理的微分形式
n d p = ∑ Fi ( e ) dt i =1
应用动量定理解题的步骤
1)取研究对象 2)分析质点系所受的全部外力,包括主动力和约束反力; 3)运动分析,表达动量; 4)应用质点或质点系动量定理的微分形式和积分形式列出 运动和力关系 5)求解未知力。
例 : 一个网球质量为 0.125 kg, 飞来的初始速度为 v0 =2.5j-2 k m/s, 球拍施加变力为F=5t i N,作用时 间为 0.5s后,网球飞回,求飞出时的速度。 解: 1) 取网球为研究对象 2)受力分析 外力有重力mg , F 3)运动分析 网球初始动量: p 0 = 网球末动量: 4) 质点动量定理
p x = m2 v2 + m3 v3 cosθ = 2.707m3 v
py = −m1v1 + m3v3 sinθ = −3.293m3v
px ( p, i ) = arccos = −50.58 p py ( p, j ) = arccos = −140.58 p
3、动量分析 、
dri d p = ∑ mi vi = ∑ mi = ∑ mi ri dt dt
n
n

i =1
n
d (mi vi ) = ∑ Fi dt + ∑ Fi(i) dt

《理论力学》课件 第十一章

《理论力学》课件 第十一章

第十一章动量定理动量定理、动量矩定理和动能定理统称为动力学普遍定理.§11--1 动量与冲量1、动量的概念:产生的相互作用力⑴定义:质点的质量与速度的乘积称为质点的动量,-----记为mv。

质点的动量是矢量,它的方向与质点速度的方向一致。

kgms/单位)i p v 质点系的动量()i i i i c im r m r r m m ∑∑==∑质心公式:⑵、质点系内各质点动量的矢量和称为质点系的动量。

)idr p v dt ()i i dm r dt∑注意:质量m i是不变的如何进一步简化?参考重心、形心公式。

李禄昌()i i i i c im r m r r m m ∑∑==∑) p r r cm v =质点系的动量等于质心速度与其全部质量的乘积。

求质点系的动量问题转化为求刚体质心问题。

cωv C =0v Ccωcov C2.冲量的概念:tF IF I d d IF d 物体在力的作用下引起的运动变化,不仅与力的大小和方向有关,还与力作用时间的长短有关。

用力与作用时间的乘积来衡量力在这段时间内积累的作用。

冲量是矢量,方向与常力的方向一致。

冲量的单位是N.S 。

§11-2 动量定理—-确定动量与冲量的关系由牛顿第二定律:F v m )F v m d )称为质点动量定理的微分形式,即质点动量的增量v v ~ ⎰==-21d 12t t It F v m v m称为质点动量定理的积分形式,即在某一时间间隔⎰==-21d 12t t It F v m v m 2、质点系的动量定理(F (F外力:,内力:(F (F M FF F v tF F v i i d )(∑+)()(d d d e ie i It F p ∑=∑=)(d d e i F tp ∑=称为质点系动量定理的微分形式,即质点系动量的质点系动量对时间的导数等于作用于质点系的外力的矢量和(主矢)动力学与静力学联系。

)(112e ini Ip p =∑=-p p ~ 称为质点系动量定理的积分形式,即在某一时间)(d d e xx F tp ∑=)(d d e yy Ftp ∑=)(d d e z z F tp ∑=动量定理微分形式的投影式:动量定理积分形式的投影式:)(12e xx x Ip p ∑=-)(12e yy y Ip p ∑=-)(12e zz z Ip p ∑=-动量定理是矢量式,在应用时应取投影形式。

理论力学-动量定理讲解

理论力学-动量定理讲解
y B A ω O φ D x
(a)
第三章 动 量 定 理
例题 3-1
§3-1
动量与冲量
例 题3-1
已知: 曲柄OA长 l ,质量是 m1,并以角速度ω绕定轴 O 转动。
规尺BD长2l ,质量是 2m1 ,两滑块的质量都是 m2 。
解法一: 整个机构的动量等于曲柄OA、规尺BD、 滑块B 和D的动量的矢量和,即
动 力 学
动量定理
西北工业大学
支希哲 朱西平
第三章 动 量 定 理
侯美丽
动量定理
动 力 学
第 三 章
动 量 定 理
§3-1 动量与冲量
§3-2 动量定理和冲量定理 §3-3 质心运动定理
第三章 动 量 定 理
目录
第三章 动 量 定 理
几个实际问题
蹲在磅秤上的人站起来时磅秤指 示数会不会发生的变化
所以,系统的动量大小为
vA
A E D
C
p

p p
2 x
vE
φ
2 y
1 (5m1 4m2 )l 2
vD
x
方向余弦为为
p cos( p, x ) x , p
cos( p, y )
py p
第三章 动 量 定 理
§3-1
解法二:
动量与冲量
y vB B
例 题3-1
整个机构的动量等于曲柄OA、规尺BD、 滑块B 和D的动量的矢量和,即
动量与冲量
y vB B ω O
例 题3-1
因为规尺和两个滑块的公共质心在 点 A,它们的动量表示成 p´= pBD + pB + pD = 2(m1 + m2)vA 由于动量 KOA 的方向也是与 vA 的方向 一致,所以整个椭圆机构的动量方向

什么是理论力学中的动量定理?

什么是理论力学中的动量定理?

什么是理论力学中的动量定理?在我们探索理论力学的广阔领域时,动量定理是一个关键且基础的概念。

它就像是一把神奇的钥匙,能够帮助我们理解和解决许多力学问题。

那到底什么是动量定理呢?简单来说,动量定理描述了物体所受合外力的冲量等于物体动量的增量。

这听起来可能有点抽象,让我们来逐步拆解和理解。

首先,我们要明白什么是动量。

动量可以被看作是物体运动的“冲击力”或者“动力”的一种度量。

它等于物体的质量乘以其速度。

比如,一辆高速行驶的大货车和一辆缓慢行驶的小汽车,即使小汽车的速度相对较慢,但如果大货车的质量很大且速度也不低,那么大货车的动量可能会比小汽车大得多。

接下来,我们说说冲量。

冲量是力在时间上的积累。

想象一下,你持续对一个物体施加一个力,随着时间的推移,这个力的作用效果就会逐渐积累起来,这就是冲量。

冲量等于力乘以作用的时间。

那么,动量定理到底有什么用呢?它的作用可大了!假设一个足球运动员踢球。

在踢球的那一瞬间,球员的脚对球施加了一个很大的力,这个力作用的时间虽然很短,但产生了一个冲量。

这个冲量使得足球的动量发生了改变,也就是让足球获得了速度,飞了出去。

再比如,一辆行驶中的汽车突然刹车。

刹车系统对车轮施加了摩擦力,这个摩擦力在刹车的时间内产生了冲量,使得汽车的动量逐渐减小,最终停下来。

动量定理在实际生活和工程中有着广泛的应用。

在碰撞问题中,比如汽车的碰撞测试,我们可以通过动量定理来分析碰撞过程中车辆和乘客的受力情况,从而设计更安全的汽车结构和安全装置。

在航天领域,火箭的推进也是基于动量定理。

火箭燃料燃烧产生的高温高压气体向后高速喷出,这相当于给火箭一个向前的冲量,从而推动火箭不断前进。

在体育运动中,运动员的动作技巧和力量运用也与动量定理密切相关。

例如,拳击运动员通过快速出拳,在短时间内施加较大的力,以产生较大的冲量,从而给对手造成更大的打击。

为了更深入地理解动量定理,我们还需要注意一些要点。

首先,动量是一个矢量,它的方向与速度的方向相同。

第十二章动量定理_理论力学

第十二章动量定理_理论力学

第十二章动量定理1质系动量的计算质系的动量或式中m为整个质系的质量;对于刚体系常用计算质系的动量,式中vCi为第i个刚体质心的速度。

2.质系动量定理质系动量定理建立了质系动量对于时间的变化率与外力系的主矢量之间的关系,即★质系动量的变化只决定于外力的主矢量而与内力无关。

★质系动量守恒定律:当作用于质系的外力系的主矢量,质系动量守恒,即=常矢量。

或外力系的主矢量在某一轴上的投影为零,则质系的动量在此轴上的投影守恒,如,则常量。

3.质心运动定理质系的质量与质心加速度的乘积等于外力系的主矢量。

即对于刚体系可表示为式中aCi表示第i个刚体质心的加速度。

4.变质量质点运动微分方程5.应用质系动量定理一般可解决质系动力学的两类问题一类是已知质系的运动,这里指的是用动量及其变化率或质心的加速度所表示的运动,求作用在质系上外力系中的未知约束力。

另一类是已知作用于在质系上的外力系或外力系在某一坐标轴上的投影,求质系的动量变化率或质心的加速度。

动量定理、动量矩定理、动能定理从不同的角度建立了质点系的运动变化与其受力之间的关系,称为质系的普遍定理。

质系动量定理建立了质系动量的变化率与作用于质系上外力系的主矢量之间的关系。

质系动量定理和质心运动定理也是流体动力学及变质量质系动力学的理论基础。

§12-1质系动量定理如图12-1所示质系由个质点组成,第i个质点的质量为,速度为vi,作用于质点上的外力记为,内力记为。

牛顿第二定律可表示为其中,称为质点的动量。

对于整个系统,求上述个方程的矢量和,得更换求和及求导次序,得式中(12-1)为质系内各质点动量的主矢量,称为质系的动量。

为外力的主矢量,为内力的主矢量,根据牛顿第三定律,内力总是大小相等、方向相反,成对的出现在质系内部,所以,于是得(12-2)上式称为质系动量定理,即:质系动量p对时间t的变化率等于作用在质系上外力系的主矢量,而与内力系无关。

在应用动量定理时,应取矢量式(12-2)的投影形式,如动量定理的直角坐标投影式为(12-3)强调说明两点:1、质系动量的变化只决定于外力的主矢量。

理论力学第11章动量定理

理论力学第11章动量定理
动量定理关注物体的运动状态,而能量守恒定律关注物体的能量转化与守恒。在一些特定情况下,两个 定律是相关的。
总结和应用
动量定理是解释和分析物体运动的重要工具,可以应用于各个领域,帮助我们理解世界的运动规律。
理论力学第11章动量定理
动量定理是研究物体运动的基本定律之一。它包括动量的基本概念、动量守 恒定律、数学表达式、弹性碰撞和非弹性碰撞的动量定理、应用举例、与能 量守恒定律的关系等内容。
动量的概念
动量是描述物体运动状态的物理量,是质量和速度的乘积。它能够帮助我们理解物体如何受力而改变运 动状态。
动量守恒定律
动量定理的应用举例
1
汽车碰撞
动量定理可以帮助我们分析汽车碰撞的力学过程,对交通事故进行研究和安全设计提 供指导。
2
火箭发射
火箭发射过程中动量定理的运用可以帮助我们计算火箭的推力和速度变化,实现太空 探索。
3
球类运动
动量定理可以解释为什么球在击打或投掷时会有反冲,以及如何提高球的射击速度和 力量。
动量定理与能量守恒定律的关系
动量守恒定律指出,在一个封闭体系内,当没有外力作用时,系统的总动量保持不变。这个定律在研究 碰撞和爆炸等过程中非常重要。
动量定理的数学表达式
动量定理的数学表达式为力的作用时间等ቤተ መጻሕፍቲ ባይዱ物体动量变化的量。它可以帮助 我们计算力对物体的作用效果以及物体的运动状态。
弹性碰撞和非弹性碰撞的动量定理
弹性碰撞中,动量守恒定律成立,而非弹性碰撞中,动量守恒定律不完全成立。这两种碰撞过程中动量 定理的应用有所不同。

11 理论力学--动量定理

11 理论力学--动量定理

运动这过程中,在水平方向上,A上有两个冲量作用:
一个是B对它的撞击冲量,设其大小为I,一个是平面对
A块作用的动滑动摩擦力的冲量,其大小为FA t,其中:
FA fs FN A fs mA g
这两个冲量的方向都与运动方向相反,取 x 轴的水平指 向与运动方向相同,于是根据动量定理,有:
0 mAv0 I FA t
11 动量定理
对于质点系,可以逐个质点列出其动力学基本方 程,但是很难联立求解。
动量、动量矩和动能定理从不同的侧面揭示了质 点和质点系总体的运动变化与其受力之间的关系,可 用以求解质点系动力学问题。动量、动量矩和动能定 理统称为动力学普遍定理。本章将阐明及应用动量定 理。
11.1 动量与冲量 11.1.1 动量 物体运动的强弱,不仅与它的速度有关,而且
的乘积。质点系的动量为质点系内各质点动量的矢量
和。因此,可能存在质点的动量大于质点系的动量,
甚至质点系内的质点具有动量,而质点系的动量等于
零。 质点系的运动不仅与作用在质点系上的力与有关,
而且与质量的大小及其分布情况有关。
质心( Center of mass )就是对质点系质量分布特征
的一种描述,它时质点系的质量中心。设一质点系由
(1)
B 块动量变化为零,作用于 B 上水平方向的冲量也有两
个:一个是 A 对 B 撞击时作用的冲量;另一个是滑动摩
擦力的冲量,大小为 :FB t
FB fs FN B fs mB g
0 I FB t
(2)
联解式(1)与式(2)得:
v0

f s mA mB g t
mA
方向如图所示。
px m1 ew cosw t

理论力学-动量定理

理论力学-动量定理

教学目标知识目标:质点的动量,质点系的动量,常力的冲量,质点动量定理,冲凉定理,质点系动量定理,质点系动量守恒定理,质心运动定理,质心运动守恒定律,能力目标:理解掌握动量定理,动量守恒定律。

素质目标:沟通、协作能力;观察、信息收集能力;分析总结能力。

良好的职业道德和严谨的工作作风理论力学-动量定理〖理论学习〗11.1动量与冲量11.1.1动量质点的动量:质点的质量与速度的乘积,记为mv。

质点的动量是矢量,与质点速度的方向一致。

它是状态量,具有瞬时性。

在国际单位制中,动量的单位是kg·m/s。

质点系的动量:质点系中各质点动量的矢量和,即 (11-1)。

与计算重心位置公式相似,定义质点系的质量中心(简称质心)C的矢径为(11-2)。

质点系动量等于质点系质量与质心速度的乘积,其方向与质心速度的方向一致。

此式也可理解为,质点系动量等于把质点系全部质量集中在质心处的一个质点的动量。

如图11-1所示为几种常见的均质刚体和刚体系。

图11-111.1.2冲量冲量是用来衡量力在一段时间内的累积效应,它是一个过程量,外力的冲量可以使物体的移动状态发生变化。

如果作用力是常量,作用力与作用时间的乘积称常力的冲量。

I=Ft (11-4)冲量是矢量,方向与力的方向相同。

其量纲与动量的量纲相同,在国际单位制中的单位是N·s。

若力F是变量,力F在微小时间间隔dt内的冲量称为元冲量,即dI=Fdt (11-5)力系的总冲量等于力系主矢的冲量。

由于力系中各力的冲量仅与其力矢量有关,而与其作用点无关,所以力系的总冲量也只与力系的主矢有关。

11.2质点和质点系动量定理质点动量定理:质点动量对时间的导数等于作用在质点上的力。

质点动量定理的积分形式:在某一时间间隔内,质点动量的变化等于作用于质点的力在此段时间内的冲量。

即质点运动时,结束动量与初始动量之差等于作用在质点上的力在此时间间隔内的冲量,又常被称为质点的冲量定理。

理论力学@10动量定理

理论力学@10动量定理

第10章 动量定理主要内容10.1.1 质点系动量及冲量的计算质点的动量为v K m =质点系的动量为C i i m m v v K ∑=∑=式中m 为整个质点系的质量;对于刚体系常用i C i i m v k K ∑=∑=计算质点系的动量,式中v Ci 为第i 个刚体质心的速度。

常力的冲量t ⋅=F S力系的冲量⎰∑=∑=21d )(t t i i t t F S S或⎰⎰=∑=2121d )(d )(R t t t t i t t t t F F S10.1.2 质点系动量定理质点系动量定理建立了质点系动量对于时间的变化率与外力系的主矢量之间的关系,即)(d de i tF K ∑= (1)质点系动量的变化只决定于外力的主矢量而与内力无关。

(2)质点系动量守恒定律:当作用于质点系的外力系的主矢量0)(=∑e iF ,质点系动量守恒,即K =常矢量。

或外力系的主矢量在某一轴上的投影为零,则质点系的动量在此轴上的投影守恒,如0=∑x F ,则x K =常量。

10.1.3 质心运动定理质点系的质量与质心加速度的乘积等于外力系的主矢量。

即()())(d d d de i i i c m tM t F v v ∑=∑= 对于刚体系可表示为)(1Cie i ni m F a∑=∑=式中a Ci 表示第i 个刚体质心的加速度。

10.1.4 定常流体流经弯管时的动约束力定常流体流经弯管时,v C =常矢量,流出的质量与流入的质量相等。

若流体的流量为Q ,密度为ρ。

流体流经弯管时的附加动约束力为)(12Nv v F -=''Q ρ 式中v 2,v 1分别为出口处和入口处流体的速度矢量。

基本要求1. 能理解并熟练计算动量、冲量等基本物理量。

2. 会应用动量定理解决质点系动力学两类问题,特别是已知运动求未知约束力的情形。

当外力主矢量为零时,会应用动量守恒定理求运动的问题。

3. 会求解定常流体流经弯管时的附加动反力。

《理论力学》动量定理

《理论力学》动量定理
锤对工件的平均压力与反力N*大小相等,方向相反,与锤的重量 G=29.4 kN比较,是它的56倍,可见这个力是相当大的。
例5 滑块C的质量为m=19.6 kg ,在力P=866 N的作用下沿倾角为30o的导 杆AB运动。已知力P与导杆AB之间的夹角为45o,滑块与导杆的动摩擦系 数f=0.2 ,初瞬时滑块静止,求滑块的速度增大到v=2 m/s 所需的时间。
ve OC 1 0.21 0.2 m/s
vr R2 0.1 4 0.4 m/s
Rp
O
C
1
B 2
30
A
O
1
C ve va
B
30
vr A
于是
vC va vr sin 60
0.4
3 0.3464 m/s 2
所以
p mvC 20 0.3464 6.93 Ns 方向水平向右。
vC1

l
2

AB作平面运动 vC2 vA vC2 A
O
C1
mvC1
A
vC 2

l

l 2
2

2l
p m l m2l 5 ml
2
2
C2
mvC2
r=
B
方向水平向右。
11.1 动量与冲量
11.1.2 冲量
作用力与作用时间的乘积称为常力的冲量。
冲量是矢量,方向与力的方向一致。冲量的单位为N•s, 与动量的量纲相同。
t
mv mv0
F dt I
0
积分形式
在某一时间间隔内,质点动量的变化等于作用于质 点的力在此段时间内的冲量。
例4 锤的质量m=3000 kg,从高度h=1.5 m

理论力学1动量定理

理论力学1动量定理

3
实验验证
实验结果证明动量守恒原则得到了较好的验证,在物体碰撞的过程中,动量总是 守恒的。
动量定理在工程中的应用
运动平衡
动量定理可用于求解物体在特定的施力下达到稳定状态的运动状态。
轨道运动
动量定理也可用于描述轨道运动,帮助解决近地点制导问题。
动力学设计
动量定理是许多重要工程的基础,例如飞机的飞行、交通工具的运输、发电机设计等。
动量定理的数学表达
方程式
动量定理可以用数学方法表达为 FΔt = Δ(mv)。
牛顿第二定律
它与牛顿第二定律密切相关。动量定理是牛顿第二 定律的推论之一。
应用范围与实验验证
1
宏观世界
动量定理适用于我们观察到的绝大部分宏观物理过程,如汽车碰撞、运动的气体、 火箭发射等。
2
微观世界
动量定理在量子力学中也有重要作用,能够解释物质波对撞实验等现象。
在汽车碰撞过程中,动车的动量会被部分或全部转 移给另一辆汽车,引起严重损伤。
总结
1 基础理论
动量定理是力学的基石, 是理解物体运动的不可或 缺的理论。
2 实际应用
3 继续学习
动量定理在很多实际工程 问题中有着广泛的应用, 为我们的生活带来了便利。
通过学习动量定理,可以 了解物理学的基本规律, 为学习更高阶的力学理论 奠定坚实的基础。
动量定理与牛顿第二定律的关系
牛顿第二定律
第二定律描述了一个力的大小与物体运动加速度之 间的关系。
动量定理
动量定理描述的是物体在受到外力作用下的运动状 态。可以看做是牛顿第二定律的另一种表达赛
在台球比赛中,白球与其他球碰撞时,它的动量转 移到其他球上,产生连锁反应。
汽车碰撞

理论力学动量定理

理论力学动量定理
理论力学动量定理
本演示将介绍理论力学动量定理,包括定义、原理、公式、应用、优点和缺 点、限制条件以及应用案例。让我们一起来探索这个引人入胜的主题吧!
动量定理的定义
动量定理是物理学中的基本定律之一,它描述了一个物体的动量和施加在物 体上的力之间的关系。
Hale Waihona Puke 动量定理的原理动量定理的原理是根据牛顿第二定律得出的,即物体的加速度与施加在物体上的力成正比,与物体的质量成反 比。
动量定理的公式
动量定理的数学表示为:力的大小等于物体动量变化率的乘积。
动量定理在实际中的应用
动量定理在实际中有广泛的应用,例如在车辆碰撞测试、火箭发射和体育比 赛中的运动力学分析。
动量定理的优点和缺点
动量定理的优点是简单易懂,可以直观地解释物体的运动行为。然而,它的 缺点是在处理复杂系统时可能存在准确性和适用性的限制。
动量定理的限制条件
动量定理在应用时需要考虑一些限制条件,例如忽略空气阻力、忽略外力的 变化等。
动量定理的应用案例
一个应用动量定理的案例是火箭发射,通过控制燃料的喷射速度和方向,可以使火箭获得所需的动量并达到预 定轨道。

理论力学 第09章 动量定理

理论力学 第09章 动量定理

d(mv) = Fdt
t2 t1
— 动量定理微分形式 — 动量定理积分形式
mv2 − mv1 = ∫ Fdt = I
9.1 动量定理与动量守恒
2. 质点系的动量定理 对于质点 对于质点系
dp
d (mivi ) = Fi dt dpi d(mi vi ) ∑ dt = ∑ dt = ∑Fi i i i i e Fi = Fi + Fi
m- 刚体系统的总质量; vC- 系统质心的速度;
aCi- 第i个刚体质心的加速度; aC - 系统质心的加速度
9.2 质心运动定理
质心运动定理在直角坐标轴上投影为: 质心运动定理在直角坐标轴上投影为: 在直角坐标轴上投影为
maCx = F , maCy = F , maCz = F
e Rx e Ry
p x = m1v1 + m2 (v1 − vr sin θ ) = 0
m2 vr sin θ v板 = v1 = m1 + m2
9.1 动量定理与动量守恒
【解】 矩形板的加速度:
m2 vr sin θ v板 = v1 = m1 + m2
& dv1 m2 vrθ cos θ a1 = = dt m1 + m2
i
i
i
m
vC =
∑m v
i i
i
m
p = mvC
个刚体的质心 i 的i C
若质点系是由多个刚体组成,设第 速度为
v,则整个刚体系统的动量 Ci
p = ∑mvCi i
9.1 动量定理与动量守恒
9.1.2 冲量
作用力与作用时间的乘积称为常力的冲量,用 I 表示。 常力的冲量, 常力的冲量 即

理论力学第12动量定理

理论力学第12动量定理

( PaB ) 2 ( PaB )1 P PBb PAa Qt v2 Qt v1
由质点系动量定理;得
dP P lim Q(v 2 v1 ) W P1 P2 R dt t 0 t
即:动反力(总反力)
R (W P1 P2 ) Q(v2 v1 )
dp y dp x dp z e e FRx , FRy , FRez dt dt dt
建立了动量与外力主矢之间的关系,涉及力、速度和 时间的动力学问题。
结论与讨论
质点系动量守恒定理
dp FRe dt
e R e Rx
F =0
e R
e Ry
p = C1
e Rz
F 0,F 0, 或 F 0, 或 F 0
i 1 i 1
n
n
dt

m r dt
i 1
n
i i
根据质点系质心的位矢公式
z
m2
mn m1
C
mi ri mi ri rC m mi
mi
mvC mi vi
rC ri
o
y x
p mi vi mvC
O

vC
O
vC
C

C
椭圆规机构中,OC=AC=CB=l;滑块A和B的质量均为 m,曲
柄OC和连杆AB的质量忽略不计 ;曲柄以等角速度 绕O轴旋转。 图示位置时,角度 t 为任意值。
求:图示位置时,系统的总动量。
解:第一种方法:先计算各个质点的动
vA A
vC
AB
D
量,再求其矢量和。
p mAv A mB v B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos
2m1
l
cos
m2
2l
cos
5 2
m1
2m2
l
cos
p
p
2 x
p
2 y
1 2
5m1
4m2 l
cos
p,
x
px ,
cos
p,
y
py
p
p
§11-1 动量与冲量
例10-1
曲柄OA的动量 pOA m1vE
大小: pOA m1vE m1l 2
方向:与 vE 方向一致,垂直 于OA并顺着ω的方向
则得:
F
Fi
Fe
Fi 0
dp dt
Fe 质点系动量定理的微分形式
§10-2 动量定理
一、动量定理
dp
Fe
dt
即,质点系动量对时间的导数,等于作用于它上所有外力的矢
量和,这就是质点系动量定理的微分形式。常称为动量定理。
具体计算时,往往写成投影形式,即
dpx
dt
Fx e
dpy
两端对时间求导数,即得
mv Mvc
p
能得到什么结论?
p
mv
质点系的动量,等于质点系的总质量与质心速度的乘积。
投影到各坐标轴上有 px m vx Mvcx py m vy Mvcy
pz m vz Mvcz
§10-1 动量与冲量
2、质点系动量的简捷求法
p
mv
Mvc
可见,如质点系的动量主矢=0,只说明其质心静止不动,而质点 系内各质点可各自运动。
p2x p1x
t2 t1
Fx
e
dt
Ix
p2 y p1y
t2 t1
F
y
e
dt
Iy
p2z p1z
2、变力的冲量
t
I 0 Fdt
上式为一矢量积分,具体计算时,可投影于固定坐标 系上
t
t
t
I x 0 Fxdt I y 0 Fydt Iz 0 Fzdt
§10-2 动量定理
一、动量定理
因为质点系的动量为 p mv ,对该式两端求导数,

dp dt
d mv
dt
ma
F
分析右端,把作用于每个质点的力F分为内力F(i)和外力F(e),
质点系的动量是描述质点系随质心运动的一个物理量,它不能描 述质点系相对于质心的运动,这个问题将在动量矩定理讨论。
§10-1 动量与冲量
例10-1
例10-1:椭圆规尺BD的质量为2m1;曲柄OA的质量 为m1;滑块B和D的质量均为m2,已知: OA=BA=AD=l ;曲柄和尺的质心分别在其中点上;
曲柄绕O轴转动的角速度ω为常量,试求当曲柄OA与
分,可得
p2 p1
t2 Fedt
t1
I
即,质点系的动量在一段时间内的变化量,等于作用于质点系 的外力在同一段时间内的冲量的矢量和,这就是质点系动量定 理的积分形式。常称为质点系的冲量定理。
§10-2 动量定理
二、冲量定理
p2 p1
t2 Fedt
I
t1
具体计算时,往往写成投影形式,即
(2)质点系的动量
质点系内各质点的动量的矢量和称为该质点系
的动量。用 p 表示,即有
n
p mivi mv
i 1
§10-1 动量与冲量
一、动 量 1、动量的定义
p mv
(2)质点系动量的投影式 以px,py 和 pz 分别表示质点系的动量在固定直
角坐标轴x,y 和 z 上的投影,则有
第 十
§10-1 动量 与 冲量


§10-2 动 量 定 理



§10-3 质心运动定理
第十章 动量定理 几个实际问题
第十章 动量定理 几个实际问题
§10-1 动量与冲量
一、动 量
1、动量的定义
(1)质点的动量 单位 kg m / s
质点的质量 m 与速度 v 的乘积 mv 称为该质 点的动量。动量是矢量,方向与质点速度方向一致。
dt
Fy e
dpz dt
Fz e
即,质点系的动量在固定轴上的投影对时间的导数,等于 该质点系所有外力在同一轴上的投影的代数和。
§10-2 动量定理
一、动量定理 dp dt
Fe 质点系动量定理的微分形式
二、冲量定理
设在 t1 到 t2 过程中,质点系的动量由 p1 变为 p2,则对上式积
示,冲量是矢量,方向与力相同。 I Ft
2、变力的冲量
若力F是变力,可将力的作用时间 t 分成无数的微小时间 dt,在每个 dt 内,力 F 可视为不变。
元冲量——力F在微小时间段 dt 内的冲量称为力F 的元冲量。
变力 F 在 t1~t2 时间间隔内的冲量为:I
t2
Fdt
t1
§10-1 动量与冲量
px mv x py mv y pz mv z
例如:射出的子弹、船的靠岸
§10-1 动量与冲量
2、质点系动量的简捷求法
质点系的动量
p mv
§10-1 动量与冲量
2、质点系动量的简捷求法
质点系的质心C的矢径表达式为
mr
Mrc
rc
mr
M
m M
当质点系运动时,它的质心一般也是运动的,将上式
§10-1 动量与冲量
p
pBD
pB
pD
2m1
m2 vA
由于动量pOA的方向也与vA的 方向一致,所以整个椭圆机构
的动量方向与vA相同,而大小 等于 p pOA p
1 2
m1l
2m1
m2
l
1 2
5m1
4m2
l
例10-1
§10-1 动量与冲量
一、冲 量
1、常力的冲量
单位: N·s
常力与作用时间t的乘积 F·t 称为常力的冲量。并用I表
水平成角 时整个机构的动量。
§10-1 动量与冲量
例10-1
px m1vE sin 2m1 vA sin m2vD
m1
l 2
sin
2m1
l
sin
m2
2l
sin
5 2m12m2来自lsin§10-1 动量与冲量
例10-1
py m1vE cos 2m1 vA cos m2vB
m1
l 2
(1) 已知质点的运动,求作用于质点的力 (2)已知作用于质点的力,求质点的运动
动力学
第十章 动量定理
动量、动量矩和动能定理从不同的 侧面揭示了质点和质点系总体的运动变 化与其受力之间的关系,可用以求解质 点系动力学问题。
动量、动量矩和动能定理称为动力 学普遍定理。
本章将阐明及应用动量定理
第十章 动量定理
第九章 质点动力学的基本方程
课程回顾 1、牛顿三定律适用于惯性参考系
(1) 质点具有惯性,其质量是惯性的度量
(2)作用于质点的力与其所产生的加速度成比例
(3)作用力与反作用力等值、方向、共线,分别 作用于两物体上。
2、质点动力学的基本方程为
ma
F,应用
时取投影形式。
第九章 质点动力学的基本方程
课程回顾 3、质点动力学的两类基本问题
相关文档
最新文档