2021年中考数学单项式的次数和系数专题卷(附答案)
中考数学数与式专题训练50题(含答案)
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
贵州省贵阳市2021年中考数学试卷(含解析)
2021年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.6【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣3×2=﹣6.故选:A.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.【点评】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.(3分)2021年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.【点评】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.(3分)当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解答】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.【点评】本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.(3分)已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2bC.a+1<b+1 D.ma>mb【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.【点评】此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n =0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.【点评】本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分.11.(4分)化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.【点评】本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.(4分)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP 的面积.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【点评】本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2021年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为50,在表格中,m=22;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h,众数是 3.5h;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).【点评】本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2021第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【点评】本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B 在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,EF∥BC,∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【点评】本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.【点评】本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,∴.【点评】本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.(12分)2021年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)0 1 2 3 4 5 6 7 8 9 9~15 人数y(人)0 170 320 450 560 650 720 770 800 810 810 (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.【解答】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【点评】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是PQ=BO,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD 的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG =∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.【解答】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.【点评】本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
吉林省长春市2021年中考数学试题(含答案)
故答案为: .
【点睛】
本题考查圆的弧长公式,属于基础题,熟练掌握圆的弧长公式是解决本题的关键.
13.
【分析】
根据已知条件结合等腰直角三角形的性质先求出点B ,点 ,即可得出点 向右每次平移 个单位长度,而 为点B向右平移2个单位后的点,根据点平移规律即可得到答案
【详解】
如图过点B作 ,
为等腰直角三角形,斜边 在 轴上,
,
向右平移至 ,点B在 上,同理可得点 的坐标为
每次向右平移1个单位,即点 向右每次平移 个单位,
为点B向右平移2个单位后的点
点的坐标为
故答案为:
【点睛】
本题考查了等腰直角三角形的性质,以及坐标与图像变换—平移,在平面直角坐标系中,图形的平移与图像上某点的平移相同,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减.
A. B. C. D.
3.如图是一个几何体的三视图,这个几何体是( )
A.圆锥B.长方体C.球D.圆柱
4.关于x的一元二次方程 有两个不相等的实数根,则m的值可能是( )
A.8B.9C.10D.11
5.如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米, ,则缆车从A点到达B点,上升的高度(BC的长)为( )
(实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:
供水时间x(小时)
0
2
4
6
8
箭尺读数y(厘米)
6
18
30
42
54
(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.
云南省2021年中考数学试卷(含解析)
2021年云南省中考数学试卷解析版数学试题一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.(2021云南中考,1,4分)某地区2021年元旦的最高气温为9℃,最低气温为﹣2℃,那么该地区这天的最低气温比最高气温低()A.7℃B.﹣7℃C.11℃D.﹣11℃【考点】有理数的减法.【专题】实数;运算能力.【分析】根据题意,列出减法算式计算即可.【答案】解:9﹣(﹣2)=9+2=11(℃),故选C.【点评】本题考查了有理数的减法的应用,解题的关键是:减去一个数等于加上这个数的相反数.2.(2021云南中考,2,4分)如图,直线c与直线a、b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】由对顶角相等可得,∠3=∠1=55°,又a∥b,由两直线平行,同位角相等可得,∠2=∠3=55°.【答案】解:如图,∵∠1=55°,∠1和∠3是对顶角,∴∠3=∠1=55°,∵a∥b,∴∠2=∠3=55°.故选B.【点评】本题主要考查平行线的性质,对顶角相等等内容,题目比较简单,掌握相关定理可快速解答.3.(2021云南中考,3,4分)一个10边形的内角和等于()A.1800°B.1660°C.1440°D.1200°【考点】多边形内角与外角.【专题】多边形与平行四边形;推理能力.【分析】根据多边形的内角和等于(n﹣2)•180°即可得解.【答案】解:根据多边形内角和公式得,10边形的内角和等于:(10﹣2)×180°=8×180°=1440°,故选C.【点评】此题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.4.(2021云南中考,4,4分)在△ABC中,∠ABC=90°.若AC=100,sin A=35,则AB的长是()A.5003B.5035C.60 D.80【考点】锐角三角函数的定义.【专题】解直角三角形及其应用;运算能力.【分析】利用三角函数定义计算出BC的长,然后再利用勾股定理计算出AB 长即可.,【答案】解:∵AC=100,sin A=35∴BC=60,∴AB80,故选D.【点评】此题主要考查了锐角三角函数的定义,关键是掌握正弦定义.5.(2021云南中考,5,4分)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<1 B.a≤1C.a≤1且a≠0D.a<1且a≠0【考点】根的判别式.【专题】一元二次方程及应用;运算能力.【分析】由一元二次方程ax2+2x+1=0有两个不相等的实数根,即可得判别式△>0,a≠0,继而可求得a的范围.【答案】解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,∴a≠0,△=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1,故选D.【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.6.(2021云南中考,6,4分)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+l B.n2a n﹣1C.n n a n+1D.(n+1)2a n【考点】规律型:数字的变化类;单项式.【专题】规律型;推理能力.【分析】观察字母a 的系数、次数的规律即可写出第n 个单项式.【答案】解:∵第1个单项式a 2=12•a 1+1,第2个单项式4a 3=22•a 2+1,第3个单项式9a 4=32•a 3+1,第4个单项式16a 5=42•a 4+1,……∴第n (n 为正整数)个单项式为n 2a n +1,故选A .【点评】本题主要考查数字的变化规律,解题的关键是分别从系数、字母指数寻找其与序数间的规律.7.(2021云南中考,7,4分)如图,等边△ABC 的三个顶点都在⊙O 上,AD 是⊙O 的直径.若OA =3,则劣弧BD 的长是( )A .2πB .πC .32πD .2π【考点】等边三角形的性质;三角形的外接圆与外心.【专题】与圆有关的计算;应用意识.【分析】连接OB 、BD ,由等边△ABC ,可得∠D =∠C =60°,且OB =OD ,故△BOD 是等边三角形,∠BOD =60°,又半径OA =3,根据弧长公式即可得劣弧BD 的长.【答案】解:连接OB 、BD ,如图:∵等边△ABC ,∴∠C =60°,∵弧AB =弧AB ,∴∠D =∠C =60°,∵OB =OD ,∴△BOD 是等边三角形,∴∠BOD =60°,∵半径OA =3,∴劣弧BD 的长为603180π⨯=π, 故选B .【点评】本题考查等边三角形及圆的弧长,解题的关键是掌握弧长公式并能熟练应用.8.(2021云南中考,8,4分)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多【考点】扇形统计图;条形统计图.【专题】统计的应用;应用意识.【分析】由条形统计图可得生产四种型号的帐篷的数量,分别求出四种帐篷所需天数即可判断各选项.⨯=4(天),单独【答案】解:A项,单独生产B帐篷所需天数为2000030%1500⨯=1(天),生产C帐篷所需天数为2000015%3000∴单独生产B型帐篷的天数是单独生产C型帐篷天数的4倍,此选项错误;⨯=2(天),B项,单独生产A帐篷所需天数为2000045%4500∴单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍,此选项错误;⨯=2(天),C项,单独生产D帐篷所需天数为2000010%1000∴单独生产A型帐篷与单独生产D型帐篷的天数相等,此选项正确;D项,单由条形统计图可得每天单独生产A型帐篷的数量最多,此选项错误;故选C.【点评】本题考查扇形统计图、条形统计图的综合运用,解题关键在于结合两个统计图,找到总数与各部分的关系.二、填空题(本大题共6小题,每小题3分,共18分)9.(2021云南中考,9,3分)已知a,b+(b﹣2)2=0,则a﹣b=.【考点】非负数的性质:偶次方;非负数的性质:算术平方根.【专题】实数;运算能力.【分析】根据两个非负数的和是0,因而两个非负数同时是0,即可求解.+(b﹣2)2=00≥,(b﹣2)2≥0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,∴a﹣b=﹣1﹣2=﹣3.故填﹣3.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.10.(2021云南中考,10,3分)若反比例函数的图象经过点(1,﹣2),则该反比例函数的解析式(解析式也称表达式)为.【考点】反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;运算能力.,再把已知点的坐标代入可求出k值,即得到反比例函数【分析】先设y=kx的解析式.,【答案】解:设y=kx得k=﹣2,把点(1,﹣2)代入函数y=kx,则反比例函数的解析式为y=﹣2x.故填y=﹣2x【点评】主要考查了用待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.11.(2021云南中考,11,3分)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【考点】简单几何体的三视图;由三视图判断几何体.【专题】投影与视图;运算能力.【分析】由三视图得此几何体为:圆柱,并得到球的半径、圆柱的底面半径和高,由体积公式计算出几何体的体积.【答案】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故填3π.【点评】本题考查由三视图求体积,解题的关键是熟练掌握三视图的作图规则,由三视图还原出实物图的几何特征12.(2021云南中考,12,3分)如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点F .若BF =6,则BE 的长是 .【考点】三角形中位线定理;平行线分线段成比例.【专题】三角形;运算能力.【分析】由题意可知,DE 是△ABC 的中线,则DE ∥AB ,且DE =12AB ,可得DE EF AB BF=12,代入BF 的长,可求出EF 的长,进而求出BE 的长.【答案】解:如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,∴DE ∥AB ,且DE =12AB , ∴DE EF AB BF =12, ∵BF =6,∴EF =3.∴BE =BF +EF =9.故填9.【点评】本题主要考查三角形中位线,平行线分线段成比例等知识,熟练掌握相关知识是解题基础.13.(2021云南中考,13,3分)分解因式:x 3﹣4x = .【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【答案】解:x 3﹣4x ,=x (x 2﹣4),=x (x +2)(x ﹣2).故填x (x +2)(x ﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.(2021云南中考,14,3分)已知△ABC 的三个顶点都是同一个正方形的顶点,∠ABC 的平分线与线段AC 交于点D .若△ABC 的一条边长为6,则点D 到直线AB 的距离为 .【考点】角平分线的性质;正方形的性质.【专题】等腰三角形与直角三角形;矩形菱形正方形;应用意识.【分析】分两种情况:①当B为直角顶点时,过D作DH⊥AB于H,由△AHDBC,若AC=6,和△BHD是等腰直角三角形可得AH=DH=BH,故DH=12则DH即点D到直线AB若AB=BC=6,则点D到直线AB的距离为3;②当B不是直角顶点时,过D作DH⊥BC于H,由△CDH 是等腰直角三角,得AD=DH=CH,证明△ABD≌△HBD(AAS),有AB=BH,若AB=AC=6时,则此时点D到直线AB的距离为6;若BC=6,则此时点D到直线AB的距离为6﹣.【答案】解:①当B为直角顶点时,过D作DH⊥AB于H,如图:∵△ABC的三个顶点都是同一个正方形的顶点,∠ABC的平分线与线段AC 交于点D,∴△ABC是等腰直角三角形,∠ABD=∠ADH=45°,AD=CD=1AC,2∴△AHD和△BHD是等腰直角三角形,∴AH=DH=BH,BC,∴DH=12若AC=6,则BC=AC•cos45°=DH D到直线AB的若AB=BC=6,则DH=1BC=3,即点D到直线AB的距离为3;2②当B不是直角顶点时,过D作DH⊥BC于H,如图:∵△ABC 的三个顶点都是同一个正方形的顶点,∠ABC 的平分线与线段AC 交于点D ,∴△CDH 是等腰直角三角,AD =DH =CH , 在△ABD 和△HBD 中,ABD HBD A DBH BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△HBD (AAS), ∴AB =BH ,若AB =AC =6时,BH =6,BC=∴CH =BC ﹣BH =6,∴AD =6,即此时点D 到直线AB 的距离为6; 若BC =6,则AB =BC •cos45°=∴BH =∴CH =6﹣∴AD =6﹣D 到直线AB 的距离为6﹣综上所述,点D 到直线AB3或﹣6或6﹣.故填2或3或﹣6或6﹣【点评】本题考查正方形、等腰直角三角形性质及应用,涉及角平分线、勾股定理、解直角三角形等知识,解题的关键是理解题意,正确分类,画出图形.三、解答题(本大题共9小题,共70分)15.(2021云南中考,15,6分)计算:(﹣3)2+tan 452︒+1)0﹣2﹣1+23×(﹣6).【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 【专题】计算题;运算能力.【分析】先分别计算乘方,特殊角三角函数值,零指数幂,负整数指数幂,然后在按照有理数的混合运算顺序和法则进行计算. 【答案】解:原式=9+12+1﹣12﹣4 =6.【点评】本题考查有理数的混合运算,特殊角三角函数值,零指数幂及负整数指数幂,掌握运算顺序准确计算是解题关键.16.(2021云南中考,16,6分)如图,在四边形ABCD 中,AD =BC ,AC =BD ,AC 与BD 相交于点E .求证:∠DAC =∠CBD .【考点】全等三角形的判定与性质. 【专题】图形的全等;几何直观.【分析】证明△CDA ≌△DCB (SSS ),即可求解. 【答案】证明:在△DCA 和△DCB 中,AD BC AC BD DC CD =⎧⎪=⎨⎪=⎩, ∴△CDA ≌△DCB (SSS ), ∴∠DAC =∠CBD .【点评】本题考查的是全等三角形的判定与性质,在判定三角形全等时,关键是选择恰当的判定条件.17.(2021云南中考,17,8分)垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)样本容量平均分及格率优秀率最高分最低分100 83.59 95% 40% 100 52分数段50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100频数 5 7 18 30 40结合上述信息解答下列问题:①样本数据的中位数所在分数段为;②全校1565名学生,估计竞赛分数达到“优秀”的学生有人.【考点】总体、个体、样本、样本容量;抽样调查的可靠性;用样本估计总体;频数(率)分布表;加权平均数;中位数.【专题】统计的应用;应用意识.【分析】(1)根据抽样的代表性、普遍性和可操作性可知,方案三符合题意;(2)①根据样本的中位数,估计总体中位数所在的范围;②样本中“优秀”人数占调查人数的40,因此估计总体1565人的40%是“优秀”.100【答案】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本进行调查分析,是最符合题意的.故填:方案三;(2)①样本总数为:5+7+18+30+40=100(人),成绩从小到大排列后,处在中间位置的两个数都在80≤x<90,因此中位数在80≤x<90组中;②由题意得,1565×40=626(人),100故填:①80≤x<90;②626.【点评】本题考查抽样调查、中位数的意义,样本估计总体是统计中常用的方法.18.(2021云南中考,18,6分)“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五•一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A、B两种客房一天,供当天使用.下面是有关信息:请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金,【考点】分式方程的应用.【专题】应用题;运算能力.【分析】设每间B 客房租金为x 元,根据“用2000元租到A 客房数量与用1600元租到B 客房数量相同”列出方程并解答.【答案】解:设每间B 客房租金为x 元,则每间A 客房租金为(x +40)元,根据题意可得:2000160040x x=+, 解得:x =160,经检验:x =160是原分式方程的解,且符合实际, 160+40=200元,∴每间A 客房租金为200元,每间B 客房租金为160元.【点评】本题考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.19.(2021云南中考,19,7分)为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”.该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为x 1、x 2,1名男生,记为y 1;在八年级选出3名同学,其中1名女生,记为x 3,2名男生,分别记为y 2、y 3.现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;(2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P . 【考点】列表法与树状图法. 【专题】统计与概率;数据分析观念.【分析】(1)根据题意和题目中的数据,可以画出相应的树状图,并写出一共有多少种可能性;(2)根据(1)中的结果和树状图,可以得到选出的代表队中的两名同学恰好是一名男生和一名女生的概率P . 【答案】解:(1)树状图如下图所示:由上可得,出现的代表队一共有9种可能性;(2)由(1)可知,一共9种可能性,其中一男一女出现有5种,.故选出的代表队中的两名同学恰好是一名男生和一名女生的概率P=59【点评】本题考查列表法与树状图法,解答本题的关键是画出相应的树状图,求出相应的概率.20.(2021云南中考,20,8分)如图,四边形ABCD是矩形,E、F分别是线段AD、BC上的点,点O是EF与BD的交点.若将△BED沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB•AD=EF•BD的值.【考点】菱形的判定与性质;矩形的性质;翻折变换(折叠问题).【专题】矩形菱形正方形;推理能力.【分析】(1)证明△OBF≌△ODE,得到OF=OE即可得出结论.(2)由ED=2AE,AB•AD=可得出菱形BEDF的面积,进而可得出EF·BD 的值.【答案】解:(1)证明:矩形ABCD沿EF折叠,使B,D重合,∴OB=OD,EF⊥BD,∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∴∠ODE=∠OBF,在△OBF 和△ODE 中,OBF ODE OB ODBOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBF ≌△ODE (ASA ), ∴OE =OF , ∵OB =OD ,∴四边形BFDE 是平行四边形, ∵EF ⊥BD ,∴四边形BFDE 是菱形. (2)如图,∵AB •AD =∴S △ABD =12AB •AD =32∵ED =2AE , ∴ED =23AD , ∴S △BDE :S △ABD =2:3, ∴S △BDE =12∴菱形BEDF 的面积=12EF •BD =2S △BDE∴EF •BD =【点评】本题考查了翻折变换的性质、菱形的判定与性质、矩形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.21.(2021云南中考,21,8分)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成; 方案二:底薪加销售提成.如图中的射线l 1,射线l 2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y 1(单位:元)和y 2(单位:元)与其当月鲜花销售量x (单位:千克)(x ≥0)的函数关系.(1)分别求y 1、y 2与x 的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【考点】一元一次不等式组的应用;一次函数的应用.【专题】一元一次不等式(组)及应用;一次函数及其应用;应用意识. 【分析】(1)由待定系数法就可以求出解析式;(2)利用(1)中求出的两函数的解析式,把x =70代入求解即可. 【答案】解:(1)设y 1=k 1x , 根据题意得40k 1=120, 解得k 1=30, ∴y 1=30x (x ≥0); 设y 2=k 2x +b , 根据题意,得2800401200b k b =⎧⎨+=⎩,解得280010b k =⎧⎨=⎩, ∴y 2=10x +800(x ≥0); (2)当x =70时, y 1=30×70=2100>2000; y 2=10×70+800=1500<2000;∴这个公司采用了方案一给这名销售人员付3月份的工资.【点评】本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,设计方案的运用,解答时认真分析,弄清函数图象的意义是关键. 22.(2021云南中考,22,9分)如图,AB 是⊙O 的直径,点C 是⊙O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且∠DCA =∠ABC ,点E 在DC 的延长线上,且BE ⊥DC . (1)求证:DC 是⊙O 的切线; (2)若OA OD=23,BE =3,求DA 的长.【考点】圆周角定理;切线的判定与性质.【专题】与圆有关的位置关系;运算能力;推理能力.【分析】(1)连接OC ,由等腰三角形的性质得出∠OCB =∠OBC ,由圆周角定理得出∠ACB =90°,证出∠DCO =90°,则可得出结论;(2)设OA =OB =2x ,OD =3x ,证明△DCO ∽△DEB ,由相似三角形的性质得出35OC OD BE DB ==,求出OC 的长,则可求出答案. 【答案】(1)证明:连接OC ,∵OC =OB ,∴∠OCB =∠OBC , ∵∠ABC =∠DCA , ∴∠OCB =∠DCA , 又∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACO +∠OCB =90°, ∴∠DCA +∠ACO =90°, 即∠DCO =90°, ∴DC ⊥OC , ∵OC 是半径, ∴DC 是⊙O 的切线; (2)解:∵OA OD=23,且OA =OB , 设OA =OB =2x ,OD =3x , ∴DB =OD +OB =5x , ∴35OD DB =, 又∵BE ⊥DC ,DC ⊥OC , ∴OC ∥BE , ∴△DCO ∽△DEB , ∴35OC OD BE DB ==, ∵BE =3, ∴OC =95,∴2x =95,∴x =910,∴AD =OD ﹣OA =x =910, 即AD 的长为910. 【点评】本题考查了圆周角定理、平行线的性质、等腰三角形的性质、切线的判定、相似三角形的判定与性质等知识;熟练掌握切线的判定与相似三角形的判定和性质是解题的关键.23.(2021云南中考,23,12分)已知抛物线y =﹣2x 2+bx +c 经过点(0,﹣2),当x <﹣4时,y 随x 的增大而增大,当x >﹣4时,y 随x 的增大而减小.设r 是抛物线y =﹣2x 2+bx +c 与x 轴的交点(交点也称公共点)的横坐标,m =97539521601r r r r r r r +-++-+-. (1)求b 、c 的值;(2)求证:r 4﹣2r 2+1=60r 2;(3)以下结论:m <1,m =1,m >1,你认为哪个正确?请证明你认为正确的那个结论.【考点】二次函数的性质;二次函数图象上点的坐标特征;抛物线与x 轴的交点.【专题】数与式;二次函数图象及其性质;运算能力;应用意识.【分析】(1)当x <﹣4时,y 随x 的增大而增大,当x >﹣4时,y 随x 的增大而减小,可得对称轴为直线x =﹣4,且抛物线y =﹣2x 2+bx +c 经过点(0,﹣2),列出方程组即可得答案;(2)由r 是抛物线y =﹣2x 2﹣16x ﹣2与x 轴的交点的横坐标,可得r 2+8r +1=0,r 2+1=﹣8r ,两边平方得(r 2+1)2=(﹣8r )2,r 4+2r 2+1=64r 2,即可得结果r 4﹣2r 2+1=60r 2;(3)m >1正确,可用比差法证明,由(2)可得r 4﹣62r 2+1=0,即r 7﹣62r 5+r 3=0,而m ﹣1=97539521601r r r r r r r +-++-+-﹣1=95601r r r +-,再由r 2+8r +1=0,判断r <0,r 9+60r 5﹣1<0, 故95601r r r +->0,从而m >1. 【答案】(1)解:∵y =﹣2x 2+bx +c 经过点(0,﹣2),当x <﹣4时,y 随x 的增大而增大,当x >﹣4时,y 随x 的增大而减小,即对称轴为直线x =﹣4, ∴244c b =-⎧⎪⎨=-⎪⎩-,解得216c b =-⎧⎨=-⎩; (2)证明:由题意,抛物线的解析式为y =﹣2x 2﹣16x ﹣2,∵r 是抛物线y =﹣2x 2﹣16x ﹣2与x 轴的交点的横坐标,∴2r 2+16r +2=0,∴r 2+8r +1=0,∴r 2+1=﹣8r∴(r 2+1)2=(﹣8r )2,∴r 4+2r 2+1=64r 2,∴r 4﹣2r 2+1=60r 2;(3)m >1正确,理由如下:由(2)知:r 4﹣2r 2+1=60r 2;∴r 4﹣62r 2+1=0,∴r 7﹣62r 5+r 3=0,而m ﹣1=97539521601r r r r r r r +-++-+-﹣1=95601r r r +- 由(2)知:r 2+8r +1=0,∴8r =﹣r 2﹣1,∵﹣r 2﹣1<0,∴8r <0,即r <0,∴r 9+60r 5﹣1<0, ∴95601r r r +->0, 即m ﹣1>0,∴m >1.【点评】本题考查二次函数综合知识,涉及二次函数图象上的点坐标、对称轴、增减性、与x 轴交点坐标等知识,解题的关键是用比差法时,判断r 和r 9+60r 5﹣1的符号.。
2021年(广东省考卷)中考数学复习专题测试卷-----数与式 (含答案)
2021年(广东省考卷)中考数学复习专题测试卷-----数与式(满分120分)一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,属于无理数的是()A.1.414B.C.D.2.与2021相加和为零的数是()A.﹣2021B.C.0D.3.下列式子是最简二次根式的是()A.B.C.D.4.2020年新冠肺炎席卷全球.据经济日报3月8日报道,为支持发展中国家应对新冠肺炎疫情,中国向世卫组织捐款2000万美元.其中的2000万用科学记数法表示为()A.20×106B.2×107C.2×108D.0.2×1085.下列计算正确的是()A.a5⋅a2=a10B.2a+a=3a2C.(3a3)2=6a6D.(a2)3=a66.若代数式x2﹣16x+k2是完全平方式,则k等于()A.6B.64C.±64D.±87.有理数a、b在数轴上的对应点的位置如图所示,则化简|a﹣b|+a的结果正确的是()A.2a﹣b B.﹣b C.b D.2a+b8.如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣279.观察下面图形,从图1到图2可用式子表示为()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)210.如图,第1个图形中小黑点的个数为5个,第2个图形中小黑点的个数为9个,第3个图形中心点的个数为13个,…,按照这样的规律,第n个图形中小黑点的个数应该是()A.4n+1B.3n+2C.5n﹣1D.6n﹣2二.填空题(共7小题,满分28分,每小题4分)11.如果在实数范围内有意义,那么实数a的取值范围是.12.计算:20210+()﹣1=.13.分解因式:m2﹣21m=.14.已知3a﹣22和2a﹣3都是m的平方根,则m的值是.15.已知代数式m+2n=1,则代数式3m+6n+5的值为.16.按照如图所示的程序计算,如开始输入的m值为,则最后输出的结果是.17.若(x﹣3)(x2+px+q)的结果不含x2和x项,则p+q=.三.解答题(共8小题,满分62分)18.(6分)计算:()2+(4﹣π)0﹣|﹣3|+cos45°.19.(6分)计算:(3m3)2+m2•m4﹣2m8÷m2.20.(6分)化简:.21.(8分)先化简,再求值:(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y),其中+|y+2|=0.22.(8分)先化简,再求值:,其中.23.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.24.(10分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.25.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、1.414是有限小数,属于有理数,故本选项不合题意;B、是分数,属于有理数,故本选项不合题意;C、是无理数,故本选项符合题意;D、,是整数,属于有理数,故本选项不合题意;故选:C.2.【解答】解:﹣2021+2021=0.故选:A.3.【解答】解:=2,故A不符合题意;=2,故B不符合题意;不能再化简,故C符合题意;==,故D不符合题意.故选:C.4.【解答】解:2000万=20000000=2×107.故选:B.5.【解答】解:A、a5⋅a2=a7,故本选项不合题意;B、2a+a=3a,故本选项不合题意;C、(3a3)2=9a6,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.6.【解答】解:∵x2﹣16x+k2是一个完全平方式,∴x2﹣16x+k2=x2﹣16x+64,∴k=±8.故选:D.7.【解答】解:由图可知,a<0<b,∴|a﹣b|+a=b﹣a+a=b.故选:C.8.【解答】解:∵单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,∴单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,则a+3=1,2=b﹣1,解得a=﹣2,b=3,∴a b=(﹣2)3=﹣8,故选:B.9.【解答】解:图1:长方形的面积为:(a+b)(a﹣b),图2:剪掉边长为b的正方形的面积为:a2﹣b2,所以从图1到图2可用式子表示为:(a+b)(a﹣b)=a2﹣b2.故选:A.10.【解答】解:设第n(n为正整数)个图形中小黑点的个数为a n个.观察图形,可知:a1=5=4×1+1,a2=9=4×2+1,a3=13=4×3+1,…,∴a n=4n+1.故选:A.二.填空题(共7小题,满分28分,每小题4分)11.【解答】解:∵在实数范围内有意义,∴a﹣2≥0,解得a≥2.故答案为:a≥2.12.【解答】解:原式=1+2=3,故答案为:3.13.【解答】解:原式=m(m﹣21).故答案为:m(m﹣21).14.【解答】解:∵3a﹣22和2a﹣3都是m的平方根,∴3a﹣22+2a﹣3=0,解得a=5,∴3a﹣22=﹣7,2a﹣3=7,∴m的值为49.故答案为:49.15.【解答】解:∵m+2n=1,∴3m+6n+5=3(m+2n)+5=3×1+5=3+5=8.故答案为:8.16.【解答】解:∵当m=时,(m+1)(m﹣1)=m2﹣1=4<12;当m=4时,(m+1)(m﹣1)=m2﹣1=15>12.∴最后输出的结果为15.故答案为:15.17.【解答】解:原式=x3﹣3x2+px2﹣3px+qx﹣3q=x3+(p﹣3)x2+(q﹣3p)x﹣3q,根据题意,令p﹣3=0,q﹣3p=0,解得:p=3,q=9,∴p+q=12,故答案为:12.三.解答题(共8小题,满分62分)18.【解答】解:原式=3+1﹣3+×=3+1﹣3+1=2.19.【解答】解:原式=9m6+m6﹣2m6=8m6.20.【解答】解:原式=+×=+=.21.【解答】解:(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,∵+|y+2|=0,∴x﹣1=0且y+2=0,解得:x=1,y=﹣2,当x=1,y=﹣2时,原式=9×1×(﹣2)=﹣18.22.【解答】解:原式=(﹣)÷=•=•=,当a=+1时,原式==.23.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.24.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.25.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)令m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由(1)可知:a=m2+3n2,b=2mn∵b=4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.∴a=7或13.。
2021年中考数学试题及解析:云南曲靖-解析版
2021年云南省曲靖市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分)1、(2021•曲靖)计算﹣12的结果是()A、﹣1B、1C、﹣2D、2考点:有理数的乘方。
专题:计算题。
分析:﹣12表示1的二次方的相反数.解答:解:﹣12=﹣1.故选:A.点评:此题考查的知识点是有理数的乘方,关键要明确乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.2、(2021•曲靖)下列计算正确的是()A、a2+a2=a4B、a6÷a2=a3C、a•a2=a3D、(a2)3=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
专题:计算题。
分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2+a2=2a2,故本选项错误;B、a6÷a2=a4,故本选项错误;C、a•a2=a3,故本选项正确;D、(a2)3=a6,故本选项错误.故选C.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3、(2021•曲靖)用科学记数法表示的如下事实:地球绕太阳公转的速度是1.1×105千米/时;1纳米=1×10﹣9米;一天有8.64×104秒;一个氢原子的质量是1.67×10﹣27千克.仅从数的大小来说,其中最大的一个数是()A、1.1×105B、1×10﹣9C、8.64×104D、1.67×10﹣27考点:科学记数法—表示较大的数;科学记数法—表示较小的数。
专题:计算题。
分析:对各个数进行比较即可得出答案.解答:解:由已知得:1.1×105>8.64×104>1×10﹣9>1.67×10﹣27.故选A.点评:本题主要考查了有理数的大小比较,在解题时要根据题意把已知数进行比较是本题的关键.4、(2021•曲靖)方程2x﹣y=1和2x+y=7的公共解是()A、B、C、D、考点:解二元一次方程组。
专题02整式的运算(基础巩固练习) 解析版02
2021年中考数学专题02 整式的运算(基础巩固练习,共40个小题)一、选择题(共15小题):1.单项式﹣3ab的系数是()A.3 B.﹣3 C.3a D.﹣3a 【答案】B【解析】根据单项式系数的定义即可求解.解:单项式﹣3ab的系数是﹣3.故选:B.2.在式子ab3,﹣4x,−75abc,π,m−n2,0.81,1y,0中,单项式共有()A.5个B.6个C.7个D.8个【答案】B【解析】根据数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行分析即可.解:式子ab3,﹣4x,−75abc,π,0.81,0是单项式,共6个,故选:B.3.计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y2【答案】A【解析】利用完全平方公式计算得到结果,即可做出判断.解:(2x﹣y)2=4x2﹣4xy+y2,故选:A.4.若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5 B.1 C.﹣1 D.﹣5【答案】C【解析】已知两等式左右两边相加即可求出所求.解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.5.下列计算正确的是()A.a2•a3=a6B.(x+y)2=x2+y2C.(a5÷a2)2=a6D.(﹣3xy)2=9xy2【答案】C【解析】根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.解:A、a2•a3=a5,故选项错误;B、(x+y)2=x2+y2+2xy,故选项错误;C、(a5÷a2)2=a6,故选项正确;D、(﹣3xy)2=9x2y2,故选项错误;故选:C.6.下列运算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(﹣2a)3=﹣8a3D.a2+a2=a4【答案】C【解析】利用同底数幂的乘法、积的乘方的运算法则、合并同类项法则和完全平方公式分别化简求出答案即可判断.解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;C、(﹣2a)3=﹣8a3,原计算正确,故此选项符合题意;D、a2+a2=2a2,原计算错误,故此选项不符合题意.故选:C.7.下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab【答案】B【解析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.8.下列计算正确的是()A.3a+2b=5ab B.(﹣2a)2=﹣4a2C.(a+1)2=a2+2a+1 D.a3•a4=a12【答案】C【解析】根据完全平方公式,合并同类项、积的乘方、同底数幂的乘法的运算法则逐一计算可得.解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、(﹣2a )2=4a 2,原计算错误,故此选项不符合题意;C 、(a+1)2=a 2+2a+1,原计算正确,故此选项符合题意;D 、a 3•a 4=a 7,原计算错误,故此选项不符合题意;故选:C .9.下列计算正确的是( )A .x 2•x 3=x 6B .xy 2−14xy 2=34xy 2C .(x+y )2=x 2+y 2D .(2xy 2)2=4xy 4 【答案】B【解析】根据完全平方公式,同底数幂的乘法、合并同类项、积的乘方的运算法则分别进行计算后,可得到正确答案.解:A 、x 2•x 3=x 5,原计算错误,故此选项不符合题意;B 、xy 2−14xy 2=34xy 2,原计算正确,故此选项符合题意;C 、(x+y )2=x 2+2xy+y 2,原计算错误,故此选项不符合题意;D 、(2xy 2)2=4x 2y 4,原计算错误,故此选项不符合题意.故选:B .10.下列运算一定正确的是( )A .a 2+a 2=a 4B .a 2•a 4=a 8C .(a 2)4=a 8D .(a+b )2=a 2+b 2【答案】C【解析】根据合并同类项的法则,同底数幂的乘法法则,幂的乘方法则以及完全平方公式逐一计算判断即可.解:A、a2+a2=2a2,原计算错误,故此选项不合题意;B、a2•a4=a6,原计算错误,故此选项不合题意;C、(a2)4=a8,原计算正确,故此选项合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不合题意.故选:C.(9x﹣3)﹣2(x+1)的结果是()11.化简13A.2x﹣2 B.x+1 C.5x+3 D.x﹣3【答案】D【解析】原式去括号合并即可得到结果.解:原式=3x﹣1﹣2x﹣2=x﹣3,故选:D.12.(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2【答案】C【解析】直接利用平方差公式计算得出答案.解:(1+y)(1﹣y)=1﹣y2.故选:C.13.下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1 D.(﹣2ab)2=4a2b2【答案】D【解析】根据合并同类项法则、单项式乘以单项式、完全平方公式、幂的乘方和积的乘方分别求出每个式子的值,再进行判断即可.解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.14.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10 B.15 C.18 D.21【答案】B【解析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+…+n,据此可得第⑤个图案中黑色三角形的个数.解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.15.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18 B.19 C.20 D.21【答案】C【解析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.二、填空题(共15小题):16.计算:(a+1)2﹣a2=.【答案】2a+1【解析】原式利用完全平方公式化简,合并即可得到结果.解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+117.已知ab=a+b+1,则(a﹣1)(b﹣1)=.【答案】2【解析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.18.已知a m=3,a n=2,则a2m﹣n的值为.【答案】4.5【解析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m﹣n的值为多少即可.解:∵a m=3,∴a2m=32=9,∴a2m﹣n=a2ma n =92=4.5.故答案为:4.5.19.化简:(7a﹣5b)﹣(4a﹣3b)=.【答案】3a﹣2b【解析】先去括号,再合并同类项即可得.解:原式=7a﹣5b﹣4a+3b=3a﹣2b,故答案为:3a﹣2b.20.若a+b=1,则a2﹣b2+2b﹣2=.【答案】-1【解析】由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.21.已知a=7﹣3b,则代数式a2+6ab+9b2的值为.【答案】49【解析】先根据完全平方公式变形,再代入,即可求出答案.解:∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,故答案为:49.22.设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=.【答案】−34【解析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.解:法一:(x+y )2=x 2+2xy+y 2=1,(x ﹣y )2=x 2﹣2xy+y 2=4,两式相减得4xy =﹣3,解得xy =−34,则P =−34.法二:由题可得{x +y =1x −y =2, 解之得:{x =32y =−12, ∴P =xy =−34,故答案为:−34.23.若m −1m =3,则m 2+1m 2= .【答案】11【解析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案. 解:∵(m −1m )2=m 2﹣2+1m 2=9,∴m 2+1m 2=11,故答案为11.24.若2x =3,2y =5,则2x+y = .【答案】15【解析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x•2y,继而可求得答案.解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.25.已知m+n=12,m﹣n=2,则m2﹣n2=.【答案】24【解析】根据平方差公式解答即可.解:∵m+n=12,m﹣n=2,∴m2﹣n2=(m+n)(m﹣n)=2×12=24,故答案为:2426.若a−1a =√6,则a2+1a2值为.【答案】8【解析】根据分式的运算法则即可求出答案.解:∵a−1a=√6∴(a−1a)2=6∴a2﹣2+1a2=6∴a2+1a2=8故答案为:827.计算:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2=.【答案】﹣6b2﹣11c2+16bc+16【解析】把前两项整理成4与2b﹣3c的和与差的相乘的形式,利用平方差公式计算,(b﹣c)2利用完全平方公式计算,然后再利用合并同类项的法则计算即可.解:(2b﹣3c+4)(3c﹣2b+4)﹣2(b﹣c)2,=[(2b﹣3c)+4][﹣(2b﹣3c)+4]﹣2(b﹣c)2,=16﹣(2b﹣3c)2﹣2(b﹣c)2,=16﹣4b2+12bc﹣9c2﹣2b2+4bc﹣2c2,=﹣6b2﹣11c2+16bc+16.28.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.【答案】10【解析】直接利用完全平方公式将原式变形,进而求出答案.解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.29.若A=(2+1)(22+1)(24+1)(216+1)(232+1),则A的个位数字是.【答案】5【解析】将A进行化简,确定出个位数字即可.解:A=(2﹣1)(2+1)(22+1)(24+1)(216+1)(232+1)=(22﹣1)(22+1)(24+1)(216+1)(232+1)=(24﹣1)(24+1)(216+1)(232+1)=(216﹣1)(216+1)(232+1)=(232﹣1)(232+1)=264﹣1,∵21=2,22=4,23=8,24=16,∴个位上数字以2,4,8,6循环,∵64÷4=16,∴个位上数字为6,则A 个位数字为5,故答案为:530.已知m =154344,n =54340,那么2016m ﹣n = . 【答案】1【解析】根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积,然后化简从而得到m =n ,再根据任何非零数的零次幂等于1解答.解:∵m =154344=34⋅54344=54340, ∴m =n ,∴2016m ﹣n =20160=1.故答案为:1.三、解答题(共9小题):31.先化简,再求值:(x+1)2﹣x (x+1),其中x =2.【答案】3【解析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.32.化简:(a+b)2﹣b(2a+b).【答案】a2【解析】根据单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.进行求解即可.解:原式=a2+2ab+b2﹣2ab﹣b2=a2.33.化简:3(x2+2)﹣(x﹣1)2.【答案】2x2+2x+5【解析】原式利用完全平方公式化简,去括号合并即可得到结果.解:原式=3x2+6﹣(x2﹣2x+1)=3x2+6﹣x2+2x﹣1=2x2+2x+5.34.先化简,再求值:a(a+2b)﹣2b(a+b),其中a=√5,b=√3.【答案】-1【解析】根据整式的混合运算顺序进行化简,再代入值求解即可.解:原式=a2+2ab﹣2ab﹣2b2=a2﹣2b2当a=√5,b=√3时,原式=(√5)2﹣2×(√3)2=5﹣6=﹣1.35.已知x=3,将下面代数式先化简,再求值.(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1).【答案】9【解析】原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.解:(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1)=x2+1﹣2x+x2﹣4+x2﹣x﹣3x+3=3x2﹣6x将x=3代入,原式=27﹣18=9.36.先化简,再求值:5x2+4﹣(3x2+5x)﹣(2x2﹣6x+5).其中x=﹣3.【答案】-4【解析】原式去括号、合并同类项化简后,再把x的值代入计算可得.解:原式=5x2+4﹣3x2﹣5x﹣2x2+6x﹣5=(5﹣3﹣2)x2+(﹣5+6)x+4﹣5=x﹣1当x=﹣3时,原式=﹣3﹣1=﹣4.37.已知:|m﹣1|+√n+2=0,(1)求m,n的值;(2)先化简,再求值:m(m﹣3n)+(m+2n)2﹣4n2.【答案】(1)m=1,n=﹣2;(2)0.【解析】(1)根据非负数的和为0的性质进行解答便可;(2)根据整式乘法法则,完全平方公式计算,再合并同类项后,最后再代值计算.解:(1)根据非负数得:m﹣1=0且n+2=0,解得:m=1,n=﹣2,(2)原式=m2﹣3mn+m2+4mn+4n2﹣4n2=2m2+mn,当m=1,n=﹣2,原式=2×1+1×(﹣2)=0.38.计算:(1)π0+(1)﹣1﹣(√3)2;2(2)(x﹣1)(x+1)﹣x(x﹣1).【答案】(1)0;(2)-1.【解析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;)﹣1﹣(√3)2=1+2﹣3=0;解:(1)π0+(12(2)(x﹣1)(x+1)﹣x(x﹣1)=x2﹣1﹣x2+x=x﹣1;39.已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.【答案】(1)﹣a2+5ab+14;(2)3.【解析】(1)由题意确定出A即可;(2)利用非负数的性质求出a与b的值,代入计算即可求出值.解:(1)由题意得:A=2(﹣4a2+6ab+7)+(7a2﹣7ab)=﹣8a2+12ab+14+7a2﹣7ab=﹣a2+5ab+14;(2)∵|a+1|+(b﹣2)2=0,∴a=﹣1,b=2,则原式=﹣1﹣10+14=3.。
2021年贵州省遵义市数学中考真题含答案解析(含答案)
(3分)(2014•遵义)观察下列图形,是中心对称图形的是( ).B.C.D.4.(3分)(2014•遵义)如图 A.30°B.其中正确的是( ).B.C.D.平均数为:=9,a+b=2,ab=2,的值为( )32.B.C.D.∴==,BP==,∴=,∴=,EF=,,AC=BC=,将△﹣.C.﹣1D在△ABC′和△B,∴△ABC′≌△B,AC=BC=,AB==2,×=,D=×D=﹣点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角遵义)+=4 .=3+=4.4.遵义)计算:+的结果是 ﹣=﹣==﹣1.< .<.<.==10cm,=lR=×的面积公式为lR∴.∴,y=(a,)纵坐标也为,代入反比例函数的y=,即可求得a,)纵坐标也为,代入解析式得到纵坐标:,BF=﹣=,所以=2=,k=8遵义)计算:﹣解:原式=3﹣﹣﹣=2﹣.:,并把不等式组的解集在数轴上.:,山坡坡面上的比):,分i===tanEF=CE=10,CF=10米25+10)米25+10)米,35+10)米.35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是则小明获胜的概率为=,﹣=,∵<,类:×点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得在△ODF与△OBE∴△ODF≌△OBEDG==,∴=,即=,AD=2,a=.答:邮政车出发小时与自行车队首次相遇。
60=,∴邮政车从丙地出发的时间为:135=,(,13524+0.5=+0.5=,(,135,∴,,解得:,AD=时DC=AD=1,AC=2CD=2,BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由PC=DC=,,∴△DCE≌△FBE,AD=,DC=AD=1,AC=2CD=2,,BD==,,DF==2,CF=BD=,EF=DF=,PC=DC=,∴=,即=,EH=,的距离为.y=xy=xy=x∴,,y=x﹣x∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).的坐标为(﹣,0)或(﹣,0点坐标为(﹣,﹣)∴,∴,AF=,FQ=,﹣,﹣)﹣﹣﹣)y=x﹣x∴﹣=(﹣t)﹣(﹣t)﹣t=,或(﹣,﹣)。
海南省2021年中考数学真题试卷真题(word版,含答案与解析)
A.-5B. C. D.5
【答案】D
【解析】
【分析】根据相反数的定义解答即可.
【详解】解: 的相反数是5.
故选:D.
【点睛】本题考查了相反数的定义,属于应知应会题型,熟知概念是关键.
2.下列计算正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】根据合并同类项、同底数幂的乘法、幂的乘方逐项判断即可得.
三、解答题(本大题满分68分)
17.(1)计算: ;
(2)解不等式组 并把它的解集在数轴(如图)上表示出来.
18.为了庆祝中国共产党成立100周年,某校组织了党史知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元?
【详解】解: 反比例函数 中的 ,
在 内, 随 的增大而减小,
又 点 在反比例函数 的图象上,且 ,
,
故答案为: .
【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的增减性是解题关键.
15.如图, 的顶点 的坐标分别是 ,且 ,则顶点A的坐标是_____.
【答案】
【解析】
【分析】根据 的坐标求得 的长度, ,利用30度角所对的直角边等于斜边的一半,求得 的长度,即点 的横坐标,易得 轴,则 的纵坐标即 的纵坐标.
A. B. C. D.
二、填空题(本大题满分16分,每小题4分,其中第16小题每空2分)
13.分式方程 的解是____.
14.若点 在反比例函数 的图象上,则 ____ (填“>”“<”或“=”).
15.如图, 的顶点 的坐标分别是 ,且 ,则顶点A的坐标是_____.
山东省临沂市2021年中考数学真题卷(含答案与解析)
5.如图,在AB∥CD中,∠AEC=40°,CB平分∠DCE,则∠ABC的度数为( )
A.10°B.20°C.30°D.40°
【分析】由两直线平行,内错角相等得到∠ECD=40°,由角平分线的定义得到∠BCD=20°,最后根据两直线平行,内错角相等即可得解.
【解答】解:∵AB∥CD,∠AEC=40°,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°﹣90°﹣90°﹣70°=110°,
∴∠ADB= AOB=55°,
又∵圆内接四边形的对角互补,
∴∠ACB=180°﹣∠ADB=180°﹣5ห้องสมุดไป่ตู้°=125°.
故选:C.
12.某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为( )
A. B. C. D.
【分析】画树状图,共有12种等可能的结果,至少有一盒过期的结果有10种,再由概率公式求解即可.
【解答】解:把2盒不过期的牛奶记为A、B,2盒已过期的牛奶记为C、D,
画树状图如图:
共有12种等可能的结果,至少有一盒过期的结果有10种,
∴至少有一盒过期的概率为 = ,
故选:D.
11.如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为( )
3.计算2a3•5a3的结果是( )
A.10a6B.10a9C.7a3D.7a6
【分析】根据单项式乘单项式的法则进行计算即可.
【解答】解:2a3•5a3=10a3+3=10a6,
2021年辽宁省沈阳市中考数学试卷及答案
辽宁省沈阳市2021年中考数学试卷一、选择题〔以下各题的备选答案中,只有一个答案是正确的,每题3分,共24分〕A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.解答:解:196亿=19 600 000 000=1.96×1010.应选C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.A.圆柱体B.三棱锥C.球体D.圆锥体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.应选A.点评:此题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也表达了对空间想象能力.A.b3+b3=2b6B.〔﹣3pq〕2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b3考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项的法那么判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法那么判断C;根据同底数幂的除法判断D.解答:解:A、b3+b3=2b3,故本选项错误;B、〔﹣3pq〕2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;D、b9÷b3=b6,故本选项错误.应选C.点评:此题考查了合并同类项,积的乘方,单项式乘单项式,同底数幂的除法,熟练掌握运算性质与法那么是解题的关键.A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4 考点:估算无理数的大小分先估算出在2与3之间,再根据m=,即可得出m的取值范围.析:解答:解:∵2<3,m=,∴m的取值范围是1<m<2;应选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数局部,是一到根底题.A.买一张电影票,座位号是奇数B.射击运发动射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°考点:随机事件分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:A、买一张电影票,座位号是奇数,是随机事件;B、射击运发动射击一次,命中9环,是随机事件;C、明天会下雨,是随机事件;D、度量一个三角形的内角和,结果是360°,是不可能事件.应选D.点评:此题考查了不可能事件、随机事件的概念.用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A.B.C.D.考点:分式的加减法专题:计算题.分析:先通分,再根据同分母的分式相加减的法那么进行计算即可.解答:解:原式=﹣==.应选B.点评:此题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x﹣1的图象在第一三四象限,进而选出答案.解答:解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,应选:C.点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.A.B.C.D.考点:相似三角形的判定与性质分析:由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.解答:解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.应选B.点评:此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解答:解:3a2+6a+3,=3〔a2+2a+1〕,=3〔a+1〕2.故答案为:3〔a+1〕2.点评:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.考点:算术平均数.分析:根据求平均数的公式:,列出算式,即可求出x的值.解答:解:∵数据2,4,x,﹣1的平均数为3,∴〔2+4+x﹣1〕÷4=3,解得:x=7;故答案为:7.点评:此题考查了平均数的求法,属于根底题,熟记求算术平均数的公式是解决此题的关键.考点:关于原点对称的点的坐标.专题:数形结合.分析:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.解答:解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点〔﹣3,2〕关于原点对称的点的坐标是〔3,﹣2〕,故答案为〔3,﹣2〕.点评:此题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.考点:根的判别式.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:根据题意得:△=〔4a〕2﹣4a>0,即4a〔4a﹣1〕>0,解得:a>或a<0,那么a的范围是a>或a<0.故答案为:a>或a<0点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解此题的关键.考点:代数式求值分析:将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.解答:解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣〔2a+3b〕+4=﹣1+4=3.故答案为:3点评:此题考查了代数式求值,利用了整体代入的思想,是一道基此题型.考点:圆周角定理;勾股定理分析:首先连接AC,由圆的内接四边形的性质,可求得∠ADC=90°,根据直角所对的弦是直径,可证得AC是直径,然后由勾股定理求得答案.解答:解:连接AC,∵点A、B、C、D都在⊙O上,∠ABC=90°,∴∠ADC=180°﹣∠ABC=90°,∴AC是直径,∵AD=3,CD=2,∴AC==.故答案为:.点评:此题考查了圆周角定理、圆的内接四边形的性质以及勾股定理.此题比拟简单,注意掌握辅助线的作法,注意数形结合思想的应用.考点:规律型:数字的变化类专题:规律型.分观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的析:数的平方,然后写出即可.解答:解:∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+〔8×9〕2=〔8×9+1〕2,即82+92+722=732.故答案为:82+92+722=732.点评:此题是对数字变化规律的考查,仔细观察底数的关系是解题的关键,也是此题的难点.考点:等边三角形的性质;平行线之间的距离.专题:计算题.分析:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB的长,以及CG 与CE的长,进而由DB+BC+CE求出DE的长,由BC﹣BF﹣CG求出FG的长,求出等边三角形NFG与等边三角形MDE的高,即可确定出点P到BC的最小距离和最大距离.解答:解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG 与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,∴DB=FB==,CE=CQ==,∴DE=DB+BC+CE=++=,FG=BC﹣BF﹣CG=,∴NH=FG=1,MQ=DE=7,那么点P到BC的最小距离和最大距离分别是1,7.故答案为:1,7点评:此题考查了等边三角形的性质,以及平行线间的距离,作出相应的图形是解此题的关键.考实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值点:专题:计算题.分析:此题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法那么求得计算结果.解答:解:原式=﹣6×+1+2﹣2=2.点评:此题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.考点:条形统计图;扇形统计图.分析:〔1〕用A的人数与所占的百分比列式计算即可得解;〔2〕先求出C的人数,再求出百分比即可得到a的值,用C所占的百分比乘以360°计算即可得解;〔3〕根据计算补全统计图即可.解答:解:〔1〕20÷10%=200人;〔2〕C的人数为:200﹣20﹣46﹣64=70,所占的百分比为:×100%=35%,所以,a=35,所占的圆心角的度数为:35%×360°=126°;故答案为:〔1〕200;〔2〕35,126.〔3〕补全统计图如下图.点评:此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.考点:全等三角形的判定与性质;勾股定理.专题:证明题.分析:〔1〕先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角〞证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AF,从而得证;〔2〕根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.解答:〔1〕证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF〔ASA〕,∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AF,∴BF=2AE;〔2〕解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.点评:此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.考点:列表法与树状图法;概率公式分析:〔1〕由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,,直接利用概率公式求解即可求得答案;〔2〕首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.解答:解:〔1〕∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.∴从盒子中随机抽取一张卡片,卡片上的实数是3的概率是:;〔2〕画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况,∴两次好抽取的卡片上的实数之差为有理数的概率为:=.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:解直角三角形的应用分析:〔1〕过A作AP⊥GF于点P.在直角△PAG中利用三角函数求得GP的长,进而求得GF的长;〔2〕在直角△MNF中,利用勾股定理求得NF的长度,NF的长加上身高再加上竹竿长,与GF比拟大小即可.解答:解:〔1〕过A作AP⊥GF于点P.那么AP=BF=12,AB=PF=1.4,∠GAP=37°,在直角△PAG中,tan∠PAG=,∴GP=AP•tan37°≈12×0.75=9〔米〕,∴GF=9+1.4≈10.4〔米〕;〔2〕由题意可知MN=5,MF=3,∴在直角△MNF中,NF==4,∵10.4﹣5﹣1.65=3.75<4,∴能触到挂在树上的风筝.点评:此题考查了勾股定理,以及三角函数、正确求得GF的长度是关键.考点:切线的判定;扇形面积的计算.分析:〔1〕首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;〔2〕由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=S△AEF﹣S扇形ADF,即可求得答案.解答:〔1〕证明:过点A作AF⊥ON于点F,∵⊙A与OM相切与点B,∴AB⊥OM,∵OC平分∠MON,∴AF=AB=2,∴ON是⊙A的切线;〔2〕解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE=,∴AF=AF•tan60°=2,∴S阴影=S△AEF﹣S扇形ADF=AF•EF﹣×π×AF2=2﹣π.点评:此题考查了切线的判定与性质、扇形的面积以及三角函数的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.考点:二次函数的应用;一次函数的应用分析:〔1〕设函数的解析式为y=ax2,然后把点〔1,60〕代入解析式求得a的值,即可得出抛物线的表达式,根据图象可得自变量x的取值范围;〔2〕设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可;〔3〕先求出普通窗口的函数解析式,然后求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可.解答:解:〔1〕设函数的解析式为y=ax2,把点〔1,60〕代入解析式得:a=60,那么函数解析式为:y=60x2〔0≤x≤〕;〔2〕设需要开放x个普通售票窗口,由题意得,80x+60×5≥1450,解得:x≥14,∵x为整数,∴x=15,即至少需要开放15个普通售票窗口;〔3〕设普通售票的函数解析式为y=kx,把点〔1,80〕代入得:k=80,那么y=80x,∵10点是x=2,∴当x=2时,y=160,即上午10点普通窗口售票为160张,由〔1〕得,当x=时,y=135,∴图②中的一次函数过点〔,135〕,〔2,160〕,设一次函数的解析式为:y=mx+n,把点的坐标代入得:,解得:,那么一次函数的解析式为y=50x+60.点评:此题考查了二次函数及一次函数的应用,解答此题的关键是根据题意找出等量关系求出函数解析式,培养学生的读图能力以及把生活中的实际问题转化为数学问题来解决.考点:四边形综合题分析:〔1〕利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;〔2〕△AOE和△DOE是“友好三角形〞,即可得到E是AD的中点,那么可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC 的面积.即可求出△ABC的面积.②解答:〔1〕证明:∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.〔2〕解:∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE.∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD﹣2S△ABF=4×6﹣2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合局部的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC==2,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD与△ABC重合局部的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′DCB是平行四边形,∴BD=A′C=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.点评:此题考查了平行四边形性质和判定,三角形的面积,勾股定理的应用,解这个题的关键是能根据题意和所学的定理进行推理.题目比拟好,但是有一定的难度.考点:二次函数综合题.分析:〔1〕利用待定系数法求出抛物线的函数表达式;〔2〕由∠BDA=∠DAC,可知BD∥x轴,点B与点D纵坐标相同,解一元二次方程求出点D的坐标;〔3〕①由BE与OA平行且相等,可判定四边形OAEB为平行四边形;②点M在点B的左右两侧均有可能,需要分类讨论.综合利用相似三角形的性质、等腰三角形的性质和勾股定理,求出线段BM的长度.解答:解:〔1〕将A〔,0〕、B〔1,〕代入抛物线解析式y=x2+bx+c,得:,解得:.∴y=x2x+.〔2〕当∠BDA=∠DAC时,BD∥x轴.∵B〔1,〕,当y=时,=x2x+,解得:x=1或x=4,∴D〔4,〕.〔3〕①四边形OAEB是平行四边形.理由如下:抛物线的对称轴是x=,∴BE=﹣1=.∵A〔,0〕,∴OA=BE=.又∵BE∥OA,∴四边形OAEB是平行四边形.②∵O〔0,0〕,B〔1,〕,F为OB的中点,∴F〔,〕.过点F作FN⊥直线BD于点N,那么FN=﹣=,BN=1﹣=.在Rt△BNF中,由勾股定理得:BF==.∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,∴∠FBM=2∠BMF.〔I〕当点M位于点B右侧时.在直线BD上点B左侧取一点G,使BG=BF=,连接FG,那么GN=BG﹣BN=1,在Rt△FNG中,由勾股定理得:FG==.∵BG=BF,∴∠BGF=∠BFG.又∵∠FBM=∠BGF+∠BFG=2∠BMF,∴∠BFG=∠BMF,又∵∠MGF=∠MGF,∴△GFB∽△GMF,∴,即,∴BM=;〔II〕当点M位于点B左侧时.设BD与y轴交于点K,连接FK,那么FK为Rt△KOB斜边上的中线,∴KF=OB=FB=,∴∠FKB=∠FBM=2∠BMF,又∵∠FKB=∠BMF+∠MFK,∴∠BMF=∠MFK,∴MK=KF=,∴BM=MK+BK=+1=.综上所述,线段BM的长为或.点评:此题是中考压轴题,考查了二次函数的图象与性质、待定系数法、解方程、相似三角形、等腰三角形、平行四边形、勾股定理等知识点.难点在于第〔3〕②问,满足条件的点M可能有两种情形,需要分类讨论,分别计算,防止漏解.。
2021年四川省绵阳市中考数学真题及答案
2021年四川省绵阳市中考数学真题及答案一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求。
1.整式﹣3xy2的系数是()A.﹣3B.3C.﹣3x D.3x2.计算×的结果是()A.6B.6C.6D.63.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.如图,圆锥的左视图是边长为2的等边三角形,则此圆锥的高是()A.2B.3C.D.5.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是()A.1B.C.D.26.近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件7.下列数中,在与之间的是()A.3B.4C.5D.68.某同学连续7天测得体温(单位:℃)分别是36.5、36.3、36.7、36.5、36.7、37.1、37.1,关于这一组数据,下列说法正确的是()A.众数是36.3B.中位数是36.6C.方差是0.08D.方差是0.099.如图,在等腰直角△ABC 中,∠ACB =90°,M 、N 分别为BC 、AC 上的点,∠CNM =50°,P 为MN 上的点,且PC =MN ,∠BPC =117°,则∠ABP =()A.22°B.23°C.25°D.27°10.如图,在平面直角坐标系中,AB ∥DC ,AC ⊥BC ,CD =AD =5,AC =6,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A.11.4B.11.6C.12.4D.12.611.关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b ﹣9ac 的最大值是()A.1B.C.D.212.如图,在△ACD 中,AD =6,BC =5,AC 2=AB (AB +BC ),且△DAB ∽△DCA ,若AD =3AP ,点Q 是线段AB 上的动点,则PQ 的最小值是()A.B.C.D.二、填空题:本大题共6个小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)如图,直线a∥b,若∠1=28°,则∠2=.14.(4分)据统计,截止2021年3月,中国共产党党员人数超过9100万.数字91000000用科学记数法表示为.15.(4分)若x﹣y=,xy=﹣,则x2﹣y2=.16.(4分)端午节是中国传统节日,人们有吃粽子的习俗.某商场从6月12日起开始打折促销,肉粽六折,白粽七折,打折前购买4盒肉粽和5盒白粽需350元,打折后购买5盒肉粽和10盒白粽需360元.轩轩同学想在今天中考结束后,为敬老院送肉粽和白粽各5盒,则他6月13日购买的花费比在打折前购买节省元.17.(4分)如图,在菱形ABCD中,∠A=60°,G为AD中点,点E在BC延长线上,F、H 分别为CE、GE中点,∠EHF=∠DGE,CF=,则AB=.18.(4分)在直角△ABC中,∠C=90°,+=,∠C的角平分线交AB于点D,且CD=2,斜边AB的值是.三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤. 19.(16分)(1)计算:2cos45°+|﹣|﹣20210﹣;(2)先化简,再求值:﹣﹣,其中x=1.12,y=0.68.20.(12分)为庆祝中国共产党建党100周年,某校开展了党史知识竞赛.某年级随机选出一个班的初赛成绩进行统计,得到统计图表,已知在扇形统计图中D段对应扇形圆心角为72°.分段成绩范围频数频率A90~100a mB80~8920bC70~79c0.3D70分以下10n注:90~100表示成绩x满足:90≤x≤100,下同.(1)在统计表中,a=,b=,c=;(2)若该年级参加初赛的学生共有2000人,根据以上统计数据估计该年级成绩在90分及以上的学生人数;(3)若统计表A段的男生比女生少1人,从A段中任选2人参加复赛,用列举法求恰好选到1名男生和1名女生的概率.21.(12分)某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400件,乙种工艺品不少于680件.该厂家现准备购买A、B两类原木共150根用于工艺品制作,其中,1根A类原木可制作甲种工艺品4件和乙种工艺品2件,1根B类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A、B两类原木各多少根时获得利润最大,最大利润是多少?22.(12分)如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M 逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.23.(12分)如图,在平面直角坐标系xOy中,直角△ABC的顶点A,B在函数y=(k>0,x>0)图象上,AC∥x轴,线段AB的垂直平分线交CB于点M,交AC的延长线于点E,点A纵坐标为2,点B横坐标为1,CE=1.(1)求点C和点E的坐标及k的值;(2)连接BE,求△MBE的面积.24.(12分)如图,四边形ABCD是⊙O的内接矩形,过点A的切线与CD的延长线交于点M,连接OM与AD交于点E,AD>1,CD=1.(1)求证:△DBC∽△AMD;(2)设AD=x,求△COM的面积(用x的式子表示);(3)若∠AOE=∠COD,求OE的长.25.(14分)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.2021年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求。
吉林省2021年中考数学真题试卷(解析版)
【分析】(1)根据2016﹣2020年快递业务量统计图可得答案;
(2)根据中位数的意义,将2016﹣2020年快递业务量增长速度从小到大排列找出中间位置的一个数即可;
(3)利用业务量的增长速度率估计2021年的业务量即可.
【详解】解:(1)由2016﹣2020年快递业务量统计图可知,2020年的快递业务量最多是833.6亿件,
(2)如图②中,此时底 ,高 ,因此四边形 即为所求.
【点睛】本题考查了等腰三角形的性质和平行四边形的性质,解题的关键掌握等腰三角形和平行四边形的基本性质.
20.2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.
2016﹣2017年快递业务量增长速度统计表
【答案】
【解析】
【分析】根据判别式 求解即可.
【详解】解:∵一元二次方程 有两个相等 实数根,
∴ ,
解得 .
故答案为: .
【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
∴半径 长度 ,
即 .
故答案为: .
【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.
12.如图,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 ,连接 ,若将 绕点 顺时针旋转 ,得到 ,则点 的坐标为__________.
【答案】
【解析】
【分析】根据旋转的性质可求得 和 的长度,进而可求得点 的坐标.
【详解】解:设港珠澳大桥隧道长度为 ,桥梁长度为 .
2021年上海市中考数学试卷(2021年初中毕业生学业考试数学试卷附答案解析)
2021年初中毕业生学业考试数学试卷上海中考数学一、选择题(本大题共6题.每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,有理数是()A.12B.13C.14D.152.下列单项式中,23a b的同类项是()32A.a b23B.3a b2C.a b3D.ab3.将函数2y a bx c(a0)x的图像向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变B.y随x的变化情况不变 D.与y轴的交点不变4.商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包5.如图,已知AB a,AD b,E为AB中点,则1a b2=()A.ECB.CEC.EDD.DE6.如图长方形ABCD中,AB=4,AD=3,圆B半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是()A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】728.已知6f (x)x ,那么f (3) . 9.已知x 43,则x= .10.不等式2x-12<0的解集是 .11.70°的余角是 °.12. 若一元二次方程22-3x+c=0x 无解,则c 的取值范围为 .13. 已知数据1、1、2、3、5、8、13、21、34,从这些数据中选取一个数据,得到偶数的概率为 .14. 已知函数y kx 的图像经过二、四象限,且不经过(-1,1),请写出一个符合条件的函数解析式 .15. 某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,挣得 元.16如图所示,已知在梯形ABCD 中,AD ∥BC ,ABD BCD 1=2S S △△,则BOC BCD=S S △△ . 17.六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为 .18.定义:平面上一点到图形的最短距离为d,如图,OP=2,正方形ABCD 的边长为2,O 为正方形中心,当正方形ABCD绕O 旋转时,d 的取值范围是 .三、解答题(本大题共7题,满分78分)19.计算:112+|12|892---16. 解方程组:22x y 340y x -21.如图,已知在△ABD 中,AC ⊥BD ,BC=8,CD=4,4cos ABC 5,BF 为AD 边上的中线. (1)求AC 的长;(2)求tan ∠FBD 的值.22. 现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月的生产情况如下图.(1) 求3月份生产了多少部手机?(2) 5G 手机速度很快,比4G 下载速度每秒多95MB,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.23.已知:在圆O 内,弦AD 与弦BC 相交于点G,AD=CB ,M 、N 分别是CB 和AD 的中点,联结MN 、OG.(1)证明:OG ⊥MN;(2)联结AB 、AM 、BN ,若BN ∥OG ,证明:四边形ABNM 为矩形。
2021年山东省临沂市数学中考真题含答案解析
2021年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•临沂)的绝对值是( ) A .B .C .2D .﹣2 2.(3分)(2015•临沂)如图,直线a ∥b,∠1=60°,∠2=40°,则∠3等于( )A .40°B .60°C .80°D .100° 3.(3分)(2015•临沂)下列计算正确的是( ) A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 4 4.(3分)(2015•临沂)某市6月某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29则这组数据的众数和中位数分别是( ) A .29,29B .26,26C .26,29D .29,32 5.(3分)(2015•临沂)如图所示,该几何体的主视图是( )A .B .C .D .6.(3分)(2015•临沂)不等式组的解集,在数轴上表示正确的是( )A .B .C .D .7.(3分)(2015•临沂)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( ) A.B.C.D.18.(3分)(2015•临沂)如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于( ) A.50°B.80°C.100°D.130°9.(3分)(2015•临沂)多项式mx2﹣m与多项式x2﹣2x+1的公因式是( ) A.x﹣1B.x+1C.x2﹣1D.(x﹣1)210.(3分)(2015•临沂)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于小时速度v(单位:千米/小时)的函数关系式是( ) A.t=20v B.t=C.t=D.t=11.(3分)(2015•临沂)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( ) A.2015x2015B.4029x2014C.4029x2015D.4031x201512.(3分)(2015•临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( ) A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE13.(3分)(2015•临沂)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( ) A.向左平移1个单位,再向上平移2个单位 B.向左平移1个单位,再向下平移2个单位 C.向右平移1个单位,再向上平移2个单位 D.向右平移1个单位,再向下平移2个单位14.(3分)(2015•临沂)在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是( ) A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2015•临沂)比较大小:2 (填“<”、“=”、“>”).16.(3分)(2015•临沂)计算:﹣= .17.(3分)(2015•临沂)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是 .18.(3分)(2015•临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则= .19.(3分)(2015•临沂)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有 (填上所有正确答案的序号)①y=2x。
河南师大附中2021年中考数学复习专题:数与式4《整式》测试卷(答案及解析)
2021中考复习专题:数与式4《整式》测试卷练习卷(答案及解析)一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. 3a2−a2=3B. (a+b)2=a2+b2C. (−3ab2)2=−6a2b4D. a⋅a−1=1(a≠0)2.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)23.下列运算正确的是()A. a8÷a4=a2B. (a2)2=a4C. a2⋅a3=a6D. a2+a2=2a44.如图,从边长为(a+4)cm的大正方形纸片中剪去一个边长为(a+1)cm的小正方形(a>0),剩余部分沿虚线剪开,拼成一个矩形(不重盘无縫隙),则矩形的面积为()A. a(2a+5)cm2B. 3(2a+5)cm2C. 3(2a+1)cm2D. a(2a+1)cm25.在式子1x ,2x+5y,0,−2a,−3x2y3,x+13中,单项式的个数是()A. 5个B. 4个C. 3个D. 2个6.如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个长方形的两边长(x>y),观察图案及以下关系式:①x−y=n;②xy=m2−n22;③x2−y2=mn;④x2+y2=m2+n22.其中正确的关系式有()A. ①②B. ①③C. ①③④D. ①②③④7.下列关于多项式ab−a2b−1的说法中,正确的是()A. 该多项式的次数是2B. 该多项式是三次三项式C. 该多项式的常数项是1D. 该多项式的二次项系数是−18.已知x2−8x+a可以写成一个完全平方式,则a可为()A. 4B. 8C. 16D. −169.某同学在做计算2A+B时,误将“2A+B”看成“2A−B”,求得的结果是9x2−2x+7,已知B=x2+3x+2,则2A+B的正确答案为()A. 11x2+4x+11B. 17x2−7x+12C. 15x2−13x+20D. 19x2−x+1210.若x2+5y2−4(xy−y−1)=0且(2x+m)(x+1)的展开式中不含x的一次项,则代数式(x−y)m的值是()A. −2B. 2C. 14D. −14二、填空题(本大题共4小题,共12.0分)11.把多项式x3−7x2y+y3−4xy2+1按x的升幂排列为______.12.若−x m y4与112x3y n是同类项,则(m−n)9=______.13.若2m=a,32n=b,则210n−3m=________.14.若(2x−3)(5−x)=ax2+bx+c,则a+b+c=________.三、计算题(本大题共3小题,共18.0分)15.先化简,再求值:(a2+8ab)−2(a2+4ab−b),其中a=−2,b=1.16.计算:(1−122)(1−132)(1−142)…(1−120052)(1−120062).17.解方程:3xx−2+42−x=1.四、解答题(本大题共5小题,共40.0分)18.阅读理解:把分母中的根号化去叫做分母有理化,例如:√5=√5√5⋅√5=2√55;√2−1=√2+1)(√2−1)(√2+1)=√2+1(√2)2−12=√2+1.等运算都是分母有理化,根据上述材料,(1)化简:√5−√2;√2+1√3+√2√4+√3+⋯√10+√9.19.已知2x+3⋅3x+3=36x−2,求x的值.20.已知:A=2x2+3xy−2x−1,B=−x2+xy−1(1)求3A+6B的值;(2)若3A+6B的值与x的值无关,求y的值。
2021年上海市数学中考试题(含答案)
2021年上海中考数学试题一、选择题:(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )。
。
.。
..2数据5,7,5,8,6,13,5的中位数是( ).5。
.6。
.7 。
.8.3.不等式组的解集是( ).。
.。
.。
..4.在下列各式中,的有理化因式( )。
.5在下列图形中,为中心对称图形的是( ).等腰梯形。
.平行四边形。
.正五边形。
.等腰三角形.6如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( ).外离。
.相切。
.相交。
.内含.二、填空题:(本大题共12题,每题4分,满分48分)7.计算.8.因式分解 .A 2xyB 33+x yC 3x yD 3xy A B C D 2<62>0x x ⎧⎨⎩--A >3x -B <3x -C >2x D <2x A B C D A B C D A B C D 112-==xy x -9.已知正比例函数,点在函数上,则随的增大而 (增大或减小).10的根是 .11.如果关于的一元二次方程(是常数)没有实根,那么的取值范围是 .12.将抛物线向下平移2个单位,所得抛物线的表达式是 .13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表1的信息,可测得测试分数在80~90分数段的学生有 名.分数段60—7070—8080—9090—100频率0.20.250.2515.如图,已知梯形,∥,,如果,,那么 (用,表示).16.在△中,点、分别在、上,,如果,△的面积为4,四边形的面积为5,那么的长为 .()=0y kx k ≠()2,3-y x x 26+=0x x c -c c 2=+y x x ABCD AD BC =2BC AD =AD a =AB b =AC a bABC D E AB AC =ADE B ∠∠=2AE ADE BCDE AB17.我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为 .18.如图,在△中,,,,点在上,将△沿直线翻折后,将点落在点处,如果,那么线段的长为 .三、解答题:(本大题共7题,满分78分)19.(本题满分10分).20.(本题满分10分)解方程:.21.(本题满分10分,第(1)小题满分4分.第(2)小题满分6分)如图在△中,∠,是边的中点,⊥,垂足为点.己知,.(1)求线段的长。
2021年陕西省中考数学试卷(副卷)(附答案详解)
2021年陕西省中考数学试卷(副卷)1.计算:5+(−7)=()A. 2B. −2C. 12D. −122.下列各选项中,两个三角形成轴对称的是()A. B.C. D.3.计算:−12a2b⋅(ab)−1=()A. 12a B. 12a3b2 C. −12a D. −12a3b24.如图,直线l1//l2,线l1、l2被直线l3所截,若∠1=54°,则∠2的大小为()A. 36°B. 46°C. 126°D. 136°5.如图,△ABC的中线BE、CF交于点O,连接EF,则OFFC的值为()A. 12B. 13C. 23D. 146.在平面直角坐标系中,将直线y=−2x向上平移3个单位,平移后的直线经过点(−1,m),则m的值为()A. −1B. 1C. −5D. 57.如图,在矩形ABCD中,AB=4,BC=6,O是矩形的对称中心,点E、F分别在边AD、BC上,连接OE、OF,若AE=BF=2,则OE+OF的值为()A. 2√2B. 5√2C. √5D. 2√58.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m,则该水流距水平面的最大高度AD的长度为()A. 9mB. 10mC. 11mD. 12m9.−27的立方根是______.10.七边形一共有______条对角线.11.我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图所示的“弦图”,是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形.直角三角形的斜边长为13,一条直角边长为12,则小正方形ABCD的面积的大小为______.12.若点A(a,3)、B(5a,b)在同一个反比例函数的图象上,则b的值为______.13.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为______.14.计算:|√7−3|−2√3×√21.15.求不等式−35x+1>−2的正整数解.16.化简:(2a−1a2−a −aa−1)÷a2−1a.17.如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、C的距离相等.(尺规作图,保留作图痕迹,不写作法)18.如图,∠A=∠BCD,CA=CD,点E在BC上,且DE//AB,求证:AB=EC.19.一家超市中,杏的售价为11元/kg,桃的售价为10元/kg,小菲在这家超市买了杏和桃共5kg,共花费52元,求小菲这次买的杏、桃各多少千克.20.现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为______;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.21.小宸想利用测量知识测算湖中小山的高度.他站在湖边看台上,清晰地看到小山倒映在平静的湖水中,如图所示,他在点O处测得小山顶端的仰角为45°,小山顶端A 在水中倒影A′的俯角为60°.已知:点O到湖面的距离OD=3m,OD⊥DB,AB⊥DB,A、B、A′三点共线,A′B=AB,求小山的高度AB.(光线的折射忽略不计;结果保留根号)22.为弘扬中华传统文化,草根一中准备开展“传统手工技艺”学习实践活动.校学生会在全校范围内随机地对本校一些学生进行了“我最想学习的传统手工技艺”问卷调查(问卷共设有五个选项:“A——剪纸”、“B——木版画雕刻”、“C——陶艺创作”、“D——皮影制作”、“E——其他手工技艺”,参加问卷调查的这些学生,每人都只选了其中的一个选项),将所有的调查结果绘制成如下两幅不完整的统计图:请你根据以上信息,回答下列问题:(1)补全上面的条形统计图;(2)本次问卷的这五个选项中,众数是______;(3)该校共有3600名学生,请你估计该校学生“最想学习的传统手工技艺”为“A——剪纸”的人数.23.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(ℎ)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.24.如图,DP是⊙O的切线,D为切点,弦AB//DP,连接BO并延长,与⊙O交于点C,与DP交于点E,连接AC并延长,与DP交于点F,连接OD.(1)求证:AF//OD;(2)若OD=5,AB=8,求线段EF的长.25.已知抛物线y=x2+bx+c与x轴交于点A(−5,0)和点B,与y轴交于点C(0,5),它的对称轴为直线l.(1)求该抛物线的表达式及点B的坐标;(2)若点P(m,2)在l上,点P′与点P过关于x轴对称.在该抛物线上,是否存在点D、E、F,使四边形P′DEF与四边形P′BPA位似,且位似中心是P′?若存在,求点D、E、F的坐标;若不存在,请说明理由.26.问题提出:(1)如图1,在四边形ABCD中,AB=AD=3,∠BCD=∠BAD=90°,AC=4.求BC+CD的值.问题解决:(2)有一个直径为30cm的圆形配件⊙O,如图2所示.现需在该配件上切割出一个四边形孔洞OABC,要求∠O=∠B=60°,OA=OC,并使切割出的四边形孔洞OABC 的面积尽可能小,试问,是否存在符合要求的面积最小的四边形OABC?若不存在,请求出四边形OABC面积的最小值,及此时OA的长;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:原式=−(7−5)=−2,故选:B.根据有理数加法运算法则进行计算.本题考查有理数的加法运算,掌握有理数加法运算法则(同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值相等时,和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加仍得这个数)是解题关键.2.【答案】A【解析】解:各选项中,两个三角形成轴对称的是选项A.故选:A.根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;进行解答即可.此题考查了轴对称图形的定义,确定轴对称图形的关键是寻找对称轴,图形两部分对折后可完全重合.3.【答案】Ca2b⋅a−1b−1【解析】解:原式=−12a2⋅a−1⋅b⋅b−1=−12a2−1b1−1=−12a.=−12故选:C.先算乘方,再利用乘法的交换律,把底数相同的相乘.本题考查了单项式乘单项式,掌握同底数幂的乘法法则、零指数幂的意义是解决本题的关键.4.【答案】C【解析】解:如图.∵l1//l2,∴∠1=∠3=54°.∴∠2=180°−∠3=180°−54°=126°.故选:C.如图,根据平行线的性质,由l1//l2,得∠1=∠3=54°,那么∠2=180°−∠3=126°.本题主要考查平行线的性质,根据平行线的性质得到∠1=∠3=54°是解决本题的关键.5.【答案】B【解析】解:∵中线BE、CF交于点O,∴EF为△ABC的中位线,∴EF//BC,EF=12BC,∴△OEF∽△OBC,∴OFOC =EFBC=12,∴OFFC =13.故选:B.先根据三角形中位线的性质得到EF//BC,EF=12BC,则可判断△OEF∽△OBC,利用相似比得到OFOC =12,然后根据比例的性质得到OFFC的值.本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.6.【答案】D【解析】解:将直线y=−2x向上平移3个单位,得到直线线y=−2x+3,把点(−1,m)代入,得m=−2×(−1)+3=5.故选:D.先根据平移规律求出直线y=−2x向上平移3个单位的直线解析式,再把点(−1,m)代入,即可求出m的值.本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,正确求出平移后的直线解析式是解题的关键.7.【答案】D【解析】解:如图,连接,AC,BD.过点O作OM⊥AD于点M交BC于点N.∵四边形ABCD是矩形,∴OA=OD=OB,∵OM⊥AD,∴AM=DM=3,∴OM=1AB=2,2∵AE=2,∴EM=AM−AE=1,∴OE=√EM2+OM2=√12+22=√5,同法可得OF=√5,∴OE+OF=2√5,故选:D.如图,连接,AC,BD.过点O作OM⊥AD于点M交BC于点N.利用勾股定理,求出OE,可得结论.本题考查中心对称,矩形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.【答案】A【解析】解:根据题意,设抛物线解析式为y=a(x−2)2+k,将点C(0,8)、B(8,0)代入,得:{4a+k=836a+k=0,解得{a=−14k=9,∴抛物线解析式为y=−14(x−2)2+9,所以当x=2时,y=9,即AD=9m,故选:A.设抛物线解析式为y=a(x−2)2+k,将点C(0,8)、B(8,0)代入求出a、k的值即可.本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式.9.【答案】−3【解析】解:∵(−3)3=−27,∴√−273=−3故答案为:−3.根据立方根的定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.10.【答案】14【解析】解:七边形的对角线总共有:7(7−3)2=14条.故答案为:14.可根据多边形的对角线与边的关系求解.考查了多边形的对角线的条数,n边形的对角线条数=n(n−3).211.【答案】49【解析】解:根据勾股定理,得AF=√EF2−AE2=√132−122=5.所以AF=12−5=7.所以正方形ABCD的面积为:7×7=49.故答案是:49.首先利用勾股定理求得另一直角边的长度,然后结合图形求得小正方形的边长,易得小正方形的面积.本题主要考查了勾股定理的应用,解题的关键是利用勾股定理求得直角三角形的另一直角边的长度.12.【答案】35【解析】解:∵点A(a,3)、B(5a,b)在同一个反比例函数的图象上,∴3a=5ab,,解得b=35.故答案为:35根据反比例函数的解析式可知xy=k,然后根据题意即可求得m的值.本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数中xy=k.13.【答案】6√3【解析】解:如图,当点F与C重合时,△EFP的边长最长,周长也最长,∵∠ACB=90°,∠PFE=60°,∴∠PCA=30°,∵∠A=60°,∴∠APC=90°,△ABC中,AC=12AB=4,△ACP中,AP=12AC=2,∴PC=√AC2−AP2=√42−22=2√3,∴周长为2√3×3=6√3.故答案为:6√3.当点F与C重合时,△EFP的边长最长,周长也最长,根据30°角所对的直角边是斜边的一半可得AC=4,AP=2,再由勾股定理可得答案.本题考查含30°角的直角三角形的性质,运用勾股定理是解题关键.14.【答案】解:原式=3−√7−2×3√7=3−√7−6√7=3−7√7.【解析】直接利用绝对值的性质以及二次根式的乘法运算法则分别化简,进而合并得出答案.此题主要考查了绝对值的性质以及二次根式的乘法运算,正确化简二次根式是解题关键.15.【答案】解:去分母得:−3x+5>−10,移项合并得:−3x>−15,解得:x<5,则不等式的正整数解为1,2,3,4.【解析】不等式去分母,移项合并,把x系数化为1,求出解集,确定出正整数解即可.此题考查了一元一次不等式的整数解,熟练掌握不等式的解法是解本题的关键.16.【答案】解:原式=[2a−1a(a−1)−a2a(a−1)]÷(a+1)(a−1)a=2a−1−a2a(a−1)⋅a(a+1)(a−1)=−(a−1)2a(a−1)⋅a(a+1)(a−1)=−1a+1.【解析】先将小括号内的式子进行通分计算,然后再算括号外面的.本题考查分式的混合运算,理解分式混合运算的运算顺序和计算法则,掌握通分和约分的技巧是解题关键.17.【答案】解:如图,点P即为所求.【解析】作线段BC的垂直平分线MN交AB于点P,点P即为所求.本题考查作图−复杂作图,线段的垂直平分线的性质等知识,解题的关键是学会利用线段的垂直平分线的性质解决问题.18.【答案】证明:∵DE//AB,∴∠DEC=∠ABC,在△ABC和△CED中,{∠A=∠ECD∠ABC=∠DEC CA=CD,∴△ABC≌△CED(AAS),∴AB=EC.【解析】由平行线的性质得出∠DEC=∠ABC,证明△ABC≌△CED(AAS),由全等三角形的性质得出结论AB=EC.本题考查了平行线的性质,全等三角形的判定与性质,证明△ABC≌△CED是解题的关键.19.【答案】解:设小菲这次买的杏、桃分别为x 千克、y 千克,由题意得{x +y =511x +10y =52, 解得{x =2y =3, 答:小菲这次买杏2千克、买桃3千克.【解析】问题中有两个需要求出的量,它们的和为5kg ,它们的钱数和为52元,而根据杏和桃的单价可分别表示出买杏和桃各用多少钱,于是可列出方程组.此题考查二元一次方程组的应用,解题的关键是找出两个不同的相等关系,正确地列出方程组.20.【答案】23【解析】解:(1)将A 袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为23,故答案为:23; (2)画树状图如下:共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种, ∴摸出的这两个小球标记的数字之和为7的概率为39=13.(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式求解即可.本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:过点O作OE⊥AB于点E,则BE=OD=3m,设AE=x m,则AB=(x+3)m,A′E=(x+6)m,∵∠AOE=45°,∴OE=AE=x m,∵∠A′OE=60°,=√3,∴tan60°=A′EOE=√3,即x+6x解得x=3+3√3,∴AB=3+3√3+3=(6+3√3)m.【解析】过点O作OE⊥AB于E,设AE=x m,则AB=(x+3)m,A′E=(x+6)m,由=√3即可得出x的值,进而得出∠AOE=45°,可知OE=AE=xm,再由tan60°=A′EOE结论.本题考查的是解直角三角形的应用−仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.22.【答案】“C——陶艺创作”【解析】解:(1)参加问卷调查的学生人数为:90÷30%=300(人),则“D——皮影制作”的人数为:300−66−54−90−15=75(人),补全条形统计图如下:(2)本次问卷的这五个选项中,众数是“C——陶艺创作”,故答案为:“C——陶艺创作”;(3)估计该校学生“最想学习的传统手工技艺”为“A——剪纸”的人数为:3600×66300=792(人).(1)由“C——陶艺创作”的人数除以所占百分比求出参加问卷调查的学生人数,即可解决问题;(2)由众数的定义求解即可;(3)由该校共有的学生人数乘以“A——剪纸”的人数所占的比例即可.本题考查了条形统计图、扇形统计图、用样本估计总体以及众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23.【答案】解:(1)设货车B 距甲地的距离y 与时间x 的关系式为y =kx +b , 根据题意得:{k +b =05k +b =240, 解得{k =60b =−60, ∴货车B 距甲地的距离y 与时间x 的关系式为y =60x −60(1≤x ≤5);(2)当x =3时,y =60×3−60=120,故货车A 的速度为:(240−120)÷3=40(km/ℎ),货车A 到达甲地所需时间为:240÷40=6(小时),6−5=1(小时),答:货车B 到乙地后,货车A 还需1小时到达甲地.【解析】(1)设货车B 距甲地的距离y 与时间x 的关系式为y =kx +b ,把(1,0),(5,240)代入求解即可;(2)把x=3代入(1)的结论求出货车B行驶2小时时的路程,进而求出货车A的速度,然后根据“时间=路程÷速度”列式计算即可.本题考查的是用一次函数解决实际问题,掌握待定系数法求函数关系式是解答本题的关键.24.【答案】(1)证明:延长DO交AB于点H,∵DP是⊙O的切线,∴OD⊥DP,∵AB//DP,∴HD⊥AB,∵BC为⊙O的直径,∴∠BAC=90°,∴AF//OD;(2)∵OH⊥AB,AB=8,∴BH=AH=4,∴OH=√OB2−BH2=√52−42=3,∵BH//ED,∴△BOH∽△EOD,∴BHED =OHOD,即4ED=35,解得:ED=203,∵∠BAC=90°,DH⊥AB,DH⊥DP,∴四边形AFDH为矩形,∴DF=AH=4,∴EF=ED−DF=203−4=83.【解析】(1)延长DO交AB于点H,根据切线的性质得到OD⊥DP,根据圆周角定理得到∠BAC=90°,根据平行线的判定定理证明结论;(2)根据垂径定理求出AH、BH,根据勾股定理求出OH,根据相似三角形的性质计算即可.本题考查的是切线性质、相似三角形的判定和性质、矩形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.25.【答案】解:(1)∵A(−5,0)、C(0,5)在抛物线y =x 2+bx +c 上, ∴{0=25−5b +c 5=c,解得{b =6c =5, ∴抛物线的表达式为y =x 2+6x +5,令y =0得x =−1或x =−5,∴B(−1,0);(2)存在,理由如下:延长AP′交抛物线于D ,延长BP′交抛物线于F ,对称轴交抛物线于E ,如图:由y =x 2+6x +5=(x +3)2−4知:E(−3,−4),抛物线对称轴为直线x =−3, ∵点P(m,2)在对称轴直线l 上,∴P(−3,2),∵点P′与点P 关于x 轴对称,∴P′(−3,−2),∴PP′=4,P′E =2,由A(−5,0),P′(−3,−2)可得直线AP′为y =−x −5,解{y =−x −5y =x 2+6x +5得{x =−5y =0或{x =−2y =−3, ∴D(−2,−3),∴AP′=√(−5+3)2+(0+2)2=2√2,P′D =√(−3+2)2+(−2+3)2=√2, 由B(−1,0)、P′(−3,−2)可得直线BP′为y =x +1,解{y =x +1y =x 2+6x +5得{x =−1y =0或{x =−4y =−3, ∴F(−4,−3),∴BP′=√(−1+3)2+(0+2)2=2√2,P′F =√(−3+4)2+(−2+3)2=√2, ∴PP′P′E =AP′P′D =BP′P′F =2,由位似图形定义知,四边形P′FED 与四边形P′BPA 位似,且位似中心是P′, ∴抛物线上存在D(−2,−3),E(−3,−4),F(−4,−3),使四边形P′FED 与四边形P′BPA 位似,且位似中心是P′.【解析】(1用待定系数法可得抛物线的表达式为y =x 2+6x +5,令y =0即可得B(−1,0);(2)延长AP′交抛物线于D ,延长BP′交抛物线于F ,对称轴交抛物线于E ,由y =x 2+6x +5=(x +3)2−4知:E(−3,−4),抛物线对称轴为直线x =−3,故P(−3,2),P′(−3,−2),即得PP′=4,P′E =2,由A(−5,0),P′(−3,−2)可得直线AP′为y =−x −5,解{y =−x −5y =x 2+6x +5得D(−2,−3),故A P′=2√2,P′D =√2,同理可得BP′=2√2,P′F =√2,即有PP′P′E =AP′P′D =BP′P′F =2,故四边形P′FED 与四边形P′BPA 位似,且位似中心是P′. 本题考查二次函数综合应用,涉及待定系数法及位似四边形,解题的关键是掌握位似图形的定义,作出图形.26.【答案】解:(1)如图1,∵∠BCD =∠BAD =90°,AD =AB , ∴∠B +∠ADC =180°,∴可以将△ABC 绕A 点逆时针旋转90°得△ADE ,∴∠ADE =∠B ,AE =AC ,∠CAE =90°,∴∠ADE +∠ADC =180°,∴C 、D 、E 在同一条直线上,∴CD +DE =CE =√2AC =4√2;(2)如图2,连接OB,∵∠AOC=90°,OA=OC,∴将△AOB绕A点顺时针旋转60°至△COE,连接BE,∴∠BOE=60°,OE=OB,∴△BOE是等边三角形,∴BE=OB=30,∠BEO=60°,∠CBE=∠ABO=∠CEO,∴∠CBE+∠CEB=60°,∴∠BCE=120°,∵S四边形OABC=S△AOB+S△BCO=S△COE+S△BCO=S△BOE−S△BCE=225√3−S△BCE,∴要使四边形OABC的面积最小,就要使△BCE的面积最大,作正△BEF,作它的外接圆⊙I,作直径FC′,当C与C′重合时,S△BCE最大,S△BCE最大=12×30×(20√3−15√3)=75√3,∴S四边形OABC最小=150√3.【解析】(1)将△ABC绕A点逆时针旋转90°得△ADE,证明C、D、E在同一条直线上,由△ACE是等腰直角三角形得出结果;(2)类比(1)的方法,将△AOB绕A点顺时针旋转60°至△COE,连接BE,分析得:S四边形OABC=S△AOB+S△BCO=S△COE+S△BCO=S△BOE−S△BCE=225√3−S△BCE,故使△BCE的面积最大,因BE=30,∠BCE=120°,故作作正△BEF,作它的外接圆⊙I,进而求得其最大值.本题考查了用旋转构造图形,利用三角形全等和等腰(等边)三角形的性质和知识,解决问题的关键是作辅助线和利用“定弦对定角”等模型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学单项式的次数和系数专题卷(附答案)
一、单选题
1.单项式的系数是()
A. 5
B.
C. 2
D.
二、填空题
2.单项式的次数是________.
3.是________次单项式.
4.单项式的次数________.
三、解答题
5.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求的值.
6.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求的值
7.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同.求:的值.
8.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n 的值.
9.符合下列条件的单项式有几个? 请你一一写出来.
①系数为;②所含字母为m,n;③次数为5.
四、综合题
10.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式- x2y4的次数为c.
(1)a=________,b=________,c=________.
(2)请你画出数轴,并把点A,B,C表示在数轴上;
(3)请你通过计算说明线段AB与AC之间的数量关系.
11.字母a,b,c,d所表示的数如下表:
字母表示的数的平方根的相反数单项式的系数
(1)直接写出上表中各字母所表示的数
(2)计算(1)中最大数与最小数的差。
答案
一、单选题
1. B
二、填空题
2. 5
3. 3
4.3
三、解答题
5. 由多项式是六次四项式,
则m+1+2=6,m=3,
由单项式的次数与这个多项式的次数相同,
则2n+2=6,n=2,当m=3,n=2时,=13.
6. 解:因为多项式是六次四项式,
所以这个多项式里最高的项为,所以,
因为单项式的次数与多项式的次数相同,
所以单项式的次数为,所以,所以.
7. 解:∵多项式是六次四项式,∴2+m+1=6,解得:m=3.
又∵单项式4.5x2n y5﹣m的次数也为6,∴2n+5﹣m=6,解得:n=2,
故可得:m2+n2= 32+22=13.
8. ∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.
9. 解:由题意可得:符合条件的单项式有:m4n,m3n2,m2n3,mn4.
四、综合题
10. (1)﹣4;1;6(2)解:如图所示,
,点A,B,C即为所求.
(3)解:AB=b-a=1-(-4)=5,AC=c-a=6-(-4)=10. ∵10÷5=2,∴AC=2AB.
11. (1)解:a为的平方根,∴,b为的相反数,∴
c= = =
a是单项式的系数,则
(2)解:故最大的是,最小的是则最大与最小的两个数的差为:。