舟山市中考数学试卷

合集下载

2023年浙江省舟山市中考数学综合测试试卷附解析

2023年浙江省舟山市中考数学综合测试试卷附解析

2023年浙江省舟山市中考数学综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知二次函数=y ax 2c bx ++(a ≠0)的图象如图所示,有下列5个结论:①0abc >,②c a b +<,③0c b 2a 4>++,④b 3c 2<,⑤)(b am mb a +≥+,其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个2.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A .北偏西52°B .南偏东52°C .西偏北52°D .北偏西38°3. 当锐角∠A>300 时,cosA 的值( )A .小于12B . 大于12C . 小于32D . 大于324.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是( )A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .2∶1∶2∶15.已知△ABC 在直角坐标系中的位置如图所示,若△A ′B ′ C ′与△ABC 关于y 轴对称,则点A 的对称点A ′的坐标为( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)6.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元7.若(12)x y -+是2244xy x y m ---的一个因式,则m 的值为( )A .4B .1C .1-D .0 二、填空题8.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.9.反比例函数k y x =,当自变量x 的值从 1增加到 3 时,函数值减少了 4,则函数的解析式为 .10.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).11.将某样本数据分析整理后分成6组,且组距为5,画频数分布折线图时,从左到右第三组的组中值为20.5,则分布两端虚设组组中值为 和 .12.根据下列数轴上所表示的x 的解集,在下面的横线上分别填出满足解的特殊解:(1) 自然数x 的值 ;(2)小于零的最大整数x 的值 ; (3)正整数x 的值 . 13.如图所示,在等腰三角形ABC 中,12cm AB AC ==,30ABC =∠,那么底边上的高AD = cm .14.已知x=1,y=2是二元一次方程mx-3y=2的解,则m=________.15.Rt △ABC 中,∠C =Rt ∠,∠A =30°,AB 的中垂线交AB 于D ,交AC 于E ,若△ADE 的面积是8,EC =3,BC =4,则△ABC 的面积为 .16.在括号前面填上“+”或“-”号,使等式成立:(1)22)()(y x x y -=-;(2))2)(1()2)(1(--=--x x x x .17.计算:a 3·a 2 = ;a 3 ÷a 2 = __;(-3ab 2 )2 = __.18.如图,AM ∥DN ,直线l 与AM ,DN 分别交于点B ,C 在线段BC 上有一点P ,直线l 绕点P 旋转.请你写出变化过程中直线l 与AD ,AM ,DN 围成的图形的名称.(至少写出三个).19.一个三角形最多有 个钝角,最多有 个直角.20. 计算1422-÷⨯的结果为 . 三、解答题21.如图,△ABC 中,∠C=90°,0 是 AB 上的点,以 0为圆心,OB 为半径的圆与 AB 相交于点 E ,与 AC 相切于点 D ,已知 AD=2,AE= 1,求 BC.22.已知关于x 的一元二次方程21(1)420m m xx ++++=.(1)求实数m 的值;(2)求此方程的解.23.在A 市北方250 km 处有B 市,在A 市北偏东30°方向100 km 处有C 市,在A 市西北方向的l00 km 处有D 市,以A 市为原点,东西方向的直线为x 轴,南北方向为y 轴,并取50 km 为1个单位长度,画出直角坐标系和各城市,并求各城市的坐标.根据气象台预报,今年17号台风中心位置处在(8,6),并以20 km /h 的速度自东向西移动,台风影响范围半径为200 km ,问经过12 h 后,上述城市哪些已受到台风的影响?E D C B A24.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2:表2时间分组/时0.5~20.5 20.5~40.5 40.5~60.5 60.5~80.5 80.5~100.5 人数 20 25 30 15 lO(1)抽取样本的容量是 ;(2)样本的中位数所在时间段的范围是 ;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?25.已知:如图,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)222DE AE AD =+.26.如图所示,在△ABC 中,∠B=∠C ,AD 是△BAC 的平分线,点E 、F 分别是AB 、AC 的中点,问DE 、DF 的长度有什么关系?27.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.如:8=32-12,16=52-32,24=72-52,因此8,16,24这三个数都是奇特数.(1)32和2008这两个数是奇特数吗?为什么?(2)设两个连续奇数的2n-1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?(3)两个连续偶数的平方差(取正数)是奇特数吗?为什么?28.根据条件作图:(1)任意画一个Rt△ABC,使∠C=90°;(2)画∠CAB的平分线交对边于D;(3)画出点D到Rt△ABC的斜边的垂线段DE.29.往返于A、B两地的客车,半途停靠三个站,问:(1)有多少种不同的票价?(2)要准备多少种车票?30.检验括号中的数是否为方程的解:(1)5m-3=7(m=3,m=2)(2)4y+3=6y-7(y=4,y=5)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.D5.D6.A7.C二、填空题8.-19.610.yx0.185.5,40.512.(1)0,l;(2)-1;(3)1,213.614.815.2216.(1)+,(2)+17.a5 , a, 9a2b418.三角形,梯形,平行四边形等19.1,120.-16三、解答题21.连结OD.∵圆 0切 AC 于点D,∴∠ODA=90°,设⊙O的半径为 r,则222()AD OD AE EO+=+,则r= 1.5,且OD AOBC AB=, 2.4BC=.22.(1)1=m;(2)121x x==-.(1)1=m;(2)121x x==-.图略 A(0,0),B(0,5),C(1,D(,B 市会受到影响,A 、C 、D 三市不会受影响24.(1)100;(2)40.5~60.5小时;(3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.25.证明:(1) ∵ DCE ACB ∠=∠∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠∵ EC DC AC BC ==,∴ △BCD ≌△ACE(2)∵ BC AC ACB =︒=∠,90,∴ ︒=∠=∠45BAC B∵ △BCD ≌△ACE∴ ︒=∠=∠45CAE B∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE ∴ 222DE AE AD =+ 26.DE=DF ,理由略27.(1),327922=-200850150322=-.(2)是,∵n n n 8)12()12(22=--+,∴这两个连续奇数构造的奇特数是8的倍数.(3)不是.设两个连续偶数为m 2和22-m ,则48)22()2(22-=--m m m 不是8的倍数,所以两个连续偶数的平方差(取正数)不是奇特数. 28.略29.(1)10种 (2)20种30.(1)m=2是方程的解,m=3不是 (2)y=5 是方程的解,y=4不是。

浙江省舟山市中考数学试卷及答案.doc

浙江省舟山市中考数学试卷及答案.doc

浙江省舟山市中考数学试卷一、选择题(本题有12小题,每小题4分,共48分,其中只有一个选项是正确的,不选、多选、错选均不给分)1.下列各数中是正整数的是().A.1 B.-2 C.0.3 D .22.如图,长方体的面有().A.4个 B.5个 C.6个 D.7个3.要使根式3x-有意义,则字母x的取值范围是()A.x≠3 B.x≤3 C.x>3 D.x≥34.下列计算正确的是().A.(ab)2=ab2B.a2·a3=a4C.a5+a5=2a5D.(a2)3=a65.已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为().A.15πcm2B.cm2C.12πcm2D.30πcm26.如图,已知A、B、C是⊙O上的三点,若∠ACB=44°,则∠AOB的度数为().A.44° B.46° C.68° D.88°7.已知反比例函数的图象经过点(-2,1),则反比例函数的表达式为()A.y=-2xB.y=2xC.y=-12xD.y=12x8.用换元法解方程21xx--21xx-+2=0,如果设y=21xx-,那么原方程可化为().A.y2-y+2=0 B.y2+y-2=0C.y2-2y+1=0 D.y2+2y-1=09.二次函数y=x2+10x-5的最小值为().A.-35 B.-30 C.-5 D.0.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连结的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O于A、B两点,PC切⊙O于点C,则点P到⊙O 的距离是().A.线段PO的长度 B.线段PA的长度C.线段PB的长度 D.线段PC的长度11.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为().A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定12.假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法().A.7 B.8 C.9 D.10二、填空题(本大题为选做题,在8小题中做对6小题即得满分30分,•多做答错不扣分)13.分解因式:x2-4=_______.14.已知2,则代数式a2-1的值为________.15.如图,一扇窗户打开后,用窗钩BC可将其固定,•这里所运用的几何原理是________.16.小宁想知道校园内一棵大树的高度(如图),他测得CB的长度为10米,∠ACB=•50°,请你帮他算出树高AB约为________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50•°≈1.2)17.请写出一个图象不经过...第二象限的一次函数解析式_______.18.已知正六边形的外接圆的半径是a,则正六边形的周长是________.19.日常生活中,“老人”是一个模糊概念,•有人想用“老人系数”来表示一个人的老年人的年龄x(岁)x≤60 60<x<80 x≥80x- 1该人的“老人系数” 0 6020按照这样的规定,一个年龄为70岁的人,他的“老人系数”为________.刚中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;•②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟,以上各道工序,除④外,一次只能进行一道工序,小刚要将面条煮好,最少用________分钟.三、解答题(共7题,第21题~23题每题8分,第24题10分,第25、26题每题12分,•第27题14分,共72分)π)021.(本题8分)计算:8+|-2|-(3-22.(本题8分)学习了统计知识后,•班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,•请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数.(2)求该班共有多少名学生.(3)在图1中,将表示“乘车”的部分补充完整.23.(本题8分)设x 1、x 2是关于x 的方程x 2-(m-1)x-m=0(m ≠0)的两个根,且满足11x+21x =-23,求m 的值. 24.(本题10分)如果正方形网格中的每一个小正方形边长都是1,则每个小格的顶点叫做格点. (1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为35、22. (2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形,•使这个三角形的面积为6(要求至少画出3个).(3)在图3中,△MNP 的顶点M 、N 在格点上,P 在小正方形的边上,•问这个三角形的面积相当于多少个小方格的面积?在你解出答案后,说说你的解题方法.25.(本题12分)近阶段国际石油价格猛涨,中国也受其影响,为了降低运行成本,•部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.假设一辆出租车日平均行程为300千米.(1)使用汽油的出租车,假设每升汽油能行驶12千米.当前的汽油价格为4.6•元/升,当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式.(2)使用液化气的出租车,假设每千克液化气能行驶15~16千米,•当前的液化气价格为4.95元/千克,当行驶时间为t天时,所耗的液化气费用为w元,试求w•的取值范围(用t表示).(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)、(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益(用字谈谈感想).26.(本题12分)如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP•是什么四边形?并证明你的结论;(3)连结CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.27.(本题14分)如图1,在直角坐标系中,点A的坐标为(1,0),•以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)随着点C位置的变化,点E的位置是否会发生变化,若没有变化,求出点E•的坐标;若有变化,请说明理由.(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.参考答案一、选择题(本题有12小题,每小题4分,共48分)1.A 2.C 3.D 4.C 5.A 6.D 7.A 8.D 9.B 10.B 11.C 12.B 二、填空题(本大题为选做题,在8小题中做对6小题即得满分30分,•多做答错不扣分) 13.(X+2)(x-2) 14.1 15.三角形具有稳定性 16.12 17.k>0,b≤0即可•18.6a 19.0.5(填12不扣分)2三、解答题(共7题,第21~23题每题8分,第24题10分,第25、26题每题12分,•第27题14分,共72分)21.解:8+|-2|-(3-π)0=22+2-1=22+122.解:(1)(1-50%)×360°=108°(2)0%=40(人)(3)画图正确23.解:∵△=(m+1)2≥0.∴对于任意实数m,方程恒有两个实数根x1、x2.又∵x1+x2=m-1,x1x2=-m,且m≠0,∴11x+21x=-23,∴1212x xx x+=-23,∴1mm--=-23,3m-3=2m∴m=324.25.解:(1)p=300×4.612t,即p=115t(2)300×4.9516t≤w≤300×4.9516t,即148516t≤w≤99t(3)115t-99t≤8000t≤500答:最多500天能收回改装设备的成本.26.解:(1)x=-42aa=-2,∴抛物线的对称轴是直线x=-2设点A的坐标为(x,0),12x-+=-2,∴x=-3,A的坐标(-3,0)(2)四边形ABCP是平行四边形∵CP=2,AB=2,∴CP=AB又∵CP∥AB∴四边形ABCP是平行四边形(3)通过△ADE ∽△CDP 得出DE :PD=1:2 或通过△ADE ∽△ACO 得出AD :AC=1:3通过△ADE ∽△PAE 得出方程12=3t·t或通过△APD ∽△ACP 得出方程t 2+1=13解得将B (-1,0)代入抛物线y=a x 2+4ax+t ,得t=3a ,a=3抛物线的解析式为y=3x 2+327.解:(1)两个三角形全等∵△AOB 、△CBD 都是等边三角形 ∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC 即∠OBC=∠ABD ∵OB=AB ,BC=BD △OBC ≌△ABD(2)点E 位置不变 ∵△OBC ≌△ABD ∴∠BAD=∠BOC=60°∠OAE=180°-60°-60°=60°在Rt △EOA 中,EO=OA ·tan60°或∠AEO=30°,得AE=2,∴∴点E 的坐标为(0)(3)∵AC=m,AF=n,由相交弦定理知1·m=n·AG,即AG=m n又∵OC是直径,∴OE是圆的切线,O E2=EG·EF 在Rt△EOA中,31+3)2=(2-mn)(2+n)即2n2+n-2m-mn=0解得m=222n nn++.。

2022年浙江省舟山市中考数学精选真题试卷附解析

2022年浙江省舟山市中考数学精选真题试卷附解析

2022年浙江省舟山市中考数学精选真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已如果半径为R 的两个等圆⊙O 1和⊙O 2交于A 、B 两点,⊙O 1 经过⊙O 2的圆心,那么AB 的长是( )A B CD .2.已知方程220ax bx c ++-=的两根是-3、-1,则抛物线2y ax bx c =++必过点( ) A .(-3,0),(-1,0) B .(-3,-2),(-1,-2) C .(-3,2) ,(-1,2) D .不能确定3.下列函数是反比例函数的是( ) D .A .y kx =-B .(0)xy kk=≠C .y =D .y =4.直线2y x =-+和直线2y x =-的交点 P 的坐标是( ) A . P (2, 0)B . P (-2,0)C . P (0,2)D . P (0, -2)5.下列判断正确的是( ) A .若0m <,则57m m < B .若x 为有理数,则2257x x <- C .若x 为有理数,则250x +> D .若57m m -<,则0m < 6.231()2a b -的结果正确的是( ) A .4214a bB .6318a bC .6318a b -D .5318a b -7.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号132xy =+. 字母 a bcdef g hijklm序号 1 2345678910111213字母nopqrstuvwxyz序号 14 151617181920212223242526按上述规定,将明码“love ”译成密码是( )A .gawqB .shxcC .sdriD .love9.下列方程中,是二元一次方程的是( ) A .5=+y xB .132=+y xC .3=xyD .21=+y x10.如图,小贩设计了一个转盘游戏,2元钱玩一次,学生自由转动转盘,待停后指针指向的物品即为学生所获物品,那么学生转到什么物品的可能性最大( ) A .铅笔盒 B .橡皮C .圆珠笔D .胶带纸11.小珍用 12. 4 元恰好买了单价为 0.8 元和1. 2 元两种贺卡共 12 张,则其中单价为0. 8元的贺卡有( ) A .5 张B .7 张C .6 张D . 4 张12.下列叙述中正确的个数是( )①三角形的中线、角平分线都是射线;②三角形的中线、角平分线都在三角形内部;③三角形的中线就是过一边中点的线段;④三角形三条角平分线交于一点. A .0个 B .1个C .2个D .3个13.如图,直线AB 、CD 相交于点 O ,OE 平分∠AOD ,若∠BOC=80°,则∠AOE 的度数是( ) A .40°B . 50°C . 80°D .100°二、填空题14. 如图,ABCD 是矩形,AB= 12 厘米,BC=16 厘米,⊙O 1、⊙O 2分 别 为△ABC 、△ADC 的内切圆,E 、F 为切点,则 EF 的长是 厘米.15.某函数具有下列两条性质:(1)图象关于原点O 成中心对称:(2)当x>0时,函数值y 随自变量x 的增大而减小,请举一例(用解析式表示): . y =1x(答案不唯一) 16.如图,□ABCD 的周长为20,对角线AC 的长为5,则ABC △的周长为 . 17. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0) 18.()()103410210⨯÷-⨯= .19.如图, 已知△ABE ≌△ACD ,B 和C ,D 和E 是对应顶点, 如果∠B=46°,BE=5,∠AEB=66°,那么CD= ,∠DAC= .20.在一个布袋中,里面放着一些已经搅匀了的小球,其中有 2 个白球、3 个红球,这些小球除颜色不同外,其余均完全相同. 从中随机地取出 1 球,得到的是白球是 事件,得到的是黄球是 事件,得到的是白球或红球是 事件 ( 填“必然”、“不可能”或“随机) 21.如图,几何体有m 个面,n 个顶点,l 条棱,则m n l +-= .22.要使32a +的结果是一个有理数,a 只能是 ;要使32a 是有理数,a 可以是 .三、解答题23.如图,△ABC 中,∠A=30°,∠B=45°,CD 为高,以直线 AB 为轴旋转一周得一几何体,则以 AC 为母线的圆锥的侧面积与以 BC 为母线的圆锥的侧面积之比是多少?24.已知:如图,在□ABCD 中,以A 为圆心,AB 为半径作圆交AD 、BC 于F 、G ,延长 BA 交⊙A 于E .求证:⌒EF =⌒FG .25.如图,DB ∥AC ,且DB=21AC ,E 是AC 的中点,求证:BC=DE .26.如图①,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,直线AN ,MC 交于点E ,直线CN ,MB 交于点F .(1)求证:AN=BM ;(2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图②中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).27.A 、B 两地相距36千米.甲从A 地出发步行到B 地,乙从B 地出发步行到A 地.两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍,求两人的速度.28.在第26届国际奥林匹克运动会上,获得金牌前七名的国家的奖牌情况如下:国家金牌银牌铜牌美国443225俄罗斯262116德国201827中国162212法国15715意大利131012澳大利亚9923(1)统计员通过什么方法得到表中的数据?(2)你从这些数据中获得了关于比赛的哪些信息和结论?29.下图是某省近年来全省港口吞吐量的统计图.(1)根据统计图中的数据制作折线统计图;(2)从上面条形统计图和你绘制的折线统计图中,你可以得到哪些信息?30.计算:(135799100)(24698100)++++++-+++++.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.A5.C6.C7.D8.B9.A10.D11.A12.C13.A二、填空题14.415.16.1517.18.-2×10719.5,68°20.随机,不可能,必然21.222.-0三、解答题23.24.连结 AG,∵AB、AG是半径,∴AB=AG,∴∠2=∠3 ,∵□ABCD,∴.AD∥BC,∴∠1 = ∠2,∠3 =∠4 ,∴∠1 = ∠4 ,∴⌒EF =⌒FG.25.∵DB=21AC ,E 是AC 的中点,∴DB=EC .∵DB ∥AC ,∴四边形DBCE 是平行四边形, ∴BC=DE26.(1)证△CAN ≌△MCB ;(2)证△ECN ≌△FCB ;(3)(1)的结论成立,(2)的结论不成立27.设甲的速度为x 千米每小时,乙的速度为y 千米每小时. 根据题意得:⎩⎨⎧-=-=+)636(26363644y x y x ,解得:⎩⎨⎧==54y x .28.(1)统计员通过观察或调查得到表中的数据 (2)例:金牌最多的国家为美国,奖牌数最多的国家为美国,按金牌数的排序前三名依次为美国、俄罗斯、德国29.略30.51。

舟山中考数学试题及答案

舟山中考数学试题及答案

二00九年浙江省初中毕业生学业考试(舟山卷)数 学 试 题 卷考生须知:1.本卷共三大题,24小题.全卷满分为120分,考试时间为120分钟.2.将试卷Ⅰ的答案做在答题卡上,将试卷Ⅱ的答案做在答题卷的相应位置上,做在试题卷上无效.3.请用钢笔或圆珠笔将姓名、准考证号分别填写在答题卡和答题卷的相应位置上. 温馨提示:用心思考,细心答题,相信你一定会有出色的表现!试 卷 Ⅰ请用铅笔将答题卡上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,将答题卡上相应的位置涂黑.不选、多选、错选均不给分) 1. 计算:-2+3 = A .5 B .-5 C .1 D .-12. 外切两圆的圆心距是7,其中一圆的半径是4A .11B .7C .4D .3 3. 二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 4. 为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是A .14 B .4 C D5. 据统计,2008年在国际金融危机的强烈冲击下,我国国内生产总值约30 067 000 000 000元,仍比上年增长9.0%.30 067 000 000 000元用科学记数法表示为 A .30 067×109元 B .300.67×1011元 C .3.006 7×1013元 D .0.300 67×1014元6. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 2 7. 某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天(分)某班46名同学一周平均每天体育活动时间频数分布直方图 (第7题)体育活动时间的中位数和众数依次是A .40分,40 分B .50分,40分C .50分,50 分D .40分,50分8. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A与点D 重合,折痕为EF ,则△DEF 的周长为A .9.5B .10.5C .11D .15.59. 如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为A .12 B .13C .23D .14 10. 如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图 形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+试 卷 Ⅱ请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷上. 二、填空题(本大题有6小题,每小题4分,共24分) 11.计算:01)= ▲ . 12. 化简:2111x x x x -+=++ ▲ . 13. 如图,AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 ▲ .14. “家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 ▲ 元钱.15. 陈老师要为他家的长方形餐厅(如图)选择一张餐桌,并且想按如下要求摆放:餐桌一侧靠墙,靠墙对面的桌边留出宽度不小于80cm 的通道,另两边各留出宽度不小于60cm 的通道.那么在下面四张餐桌中,其大小规格符合要求的餐桌编号是 ▲ (把符合要求的编号都写上).(第13题)ED C BA(第8题)C BDA E F CB A (第9题)桌面是边长为80cm的正方形桌面是长、宽分别为100cm和64cm的长方形桌面是半径为45cm的圆桌面的中间是边长为60cm的正方形,两头均为半圆(第15题)16. 如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 ▲ .三、解答题(本大题有8小题,共66分,请务必写出解答过程) 17.(本题6分)给出三个整式a 2,b 2和2ab .(1) 当a =3,b =4时,求a 2+b 2+2ab 的值;(2) 在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.18.(本题6分)解不等式组 231,1(1).2x x x -<⎧⎪⎨-⎪⎩≥19.(本题6分)如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .B AC BD P Q (第19题)20.(本题8分)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.21.(本题8分)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格; (2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3) 在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?主视图俯视图左视图 (第20题)22.(本题10分)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1)在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?(2)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(3)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天..传染后共有9人患了甲型H1N1流感,每天..传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?16 17 18 19 20 21日本2009年5月16日至5月21日甲型H1N1流感疫情数据统计图人数(人)(第22题)23.(本题10分)如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是,∠B2的度数是;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3 C3,…,B n C n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).图①B C2(第23题)图②nB-2图③24. (本题12分)如图,已知点A(-4,8)和点B(2,n)在抛物线2=上.y ax(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线2=,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,y ax0)和点D(-4,0)是x轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.Array(第24题)浙江省2009年初中毕业生学业考试(舟山卷)数学试题参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11. 1 12. 1 13. 90° 14. 372.87 15. ①②③④ 16. 1x y x=+三、解答题(共66分) 17.(本题6分)解:(1) 当a =3,b =4时, a 2+b 2+2ab =2()a b +=49.……3分(2) 答案不唯一,式子写对给1分,因式分解正确给2分.例如, 若选a 2,b 2,则a 2-b 2=(a +b )(a -b ). ……3分 若选a 2,2ab ,则a 2±2ab =a (a ±2b ). ……3分18.(本题6分)解:不等式231x -<的解是 x <2,……2分 不等式1(1)2x x -≥的解是 x ≥-1,……2分 ∴ 不等式组的解是 -1≤x <2 .……2分19.(本题6分)证明:(1) ∵ 四边形ABCD 是矩形,∴ ∠ABC =∠BCD =90°. ……1分∵ △PBC 和△QCD 是等边三角形,∴ ∠PBC =∠PCB =∠QCD =60°, ∴ ∠PBA =∠ABC -∠PBC =30°, ……1分∠PCD = ∠BCD -∠PCB =30°.∴ ∠PCQ =∠QCD -∠PCD =30°.∴ ∠PBA =∠PCQ =30°. ……1分(2) ∵ AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,……1分∴ △P AB ≌△PQC , ……1分 ∴ P A =PQ . ……1分 20.(本题8分)解:该几何体的形状是直四棱柱(答直棱柱,四棱柱,棱柱也给3分).……3分 由三视图知,棱柱底面菱形的对角线长分别为4cm ,3cm .……1分A CB D PQ∴ 菱形的边长为52cm , ……2分 棱柱的侧面积=52×8×4=80(cm 2).……2分21.(本题8分)解:(1) 函数解析式为12000y x=. ……2分(2) 2 104-(30+40+48+50+60+80+96+100)=1 600,即8天试销后,余下的海产品还有1 600千克. ……1分当x =150时,12000150y ==80. ……1分 1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出. ……1分 (3) 1 600-80×15=400,400÷2=200,即如果正好用2天售完,那么每天需要售出200千克. ……1分 当y =200时,12000200x ==60. 所以新确定的价格最高不超过60元/千克才能完成销售任务. ……1分 22.(本题10分)解:(1) 18日新增甲型H1N1流感病例最多,增加了75人;……3分(2) 平均每天新增加267452.65-=人,……2分 继续按这个平均数增加,到5月26日可达52.6×5+267=530人; ……1分 (3) 设每天传染中平均一个人传染了x 个人,则 1(1)9x x x +++=,2(1)9x +=,解得2=x (x = -4舍去). ……2分 再经过5天的传染后,这个地区患甲型H1N1流感的人数为 (1+2)7=2 187(或1+2+6+18+54+162+486+1 458=2 187),即一共将会有2 187人患甲型H1N1流感. ……2分 23.(本题10分) 解:(1) 22.5°,67.5° ……3分(2) ∵ 圆周被6等分,∴ 11B C =12C C =23C C =360°÷6=60°.……1分∵ 直径AD ⊥B 1C 1,∴ 1AC =1211B C =30°,∴ ∠B 1m=121AC =15°.……1分 ∠B 2m=122AC =12×(30°+60°)=45°, ……1分 ∠B 3m=123AC =12×(30°+60°+60°)=75°.……1分(3) 11360360[(1)]2222n B n n n ︒︒∠=⨯+-⨯(9045)n n -︒=.(或3604590908n B n n︒︒∠=︒-=︒-) ……3分24.(本题12分)解:(1) 将点A (-4,8)的坐标代入2y ax =,解得12a =. ……1分将点B (2,n )的坐标代入212y x =,求得点B 的坐标为(2,2), 则点B 关于x 轴对称点P 的坐标为(2,-2). ……1分 直线AP 的解析式是5433y x =-+.……1分 令y =0,得45x =.即所求点Q 的坐标是(45,0). ……1分 (2)① 解法1:CQ =︱-2-45︱=145,……1分故将抛物线212y x =向左平移145个单位时,A ′C +CB ′最短, ……2分此时抛物线的函数解析式为2114()25y x =+.……1分解法2:设将抛物线212y x =向左平移m 个单位,则平移后A ′,B ′的坐标分别为A ′(-4-m ,8)和B ′(2-m ,2),点A ′关于x 轴对称点的坐标为A ′′(-4-m ,-8).直线A ′′B ′的解析式为554333y x m =+-.……1分要使A ′C +CB ′最短,点C 应在直线A ′′B ′上,……1分 将点C (-2,0)代入直线A ′′B ′的解析式,解得145m =.……1分故将抛物线212y x =向左平移145个单位时A ′C +CB ′最短,此时抛物线的函数解析式为2114()25y x =+.……1分(第24题(1))② 左右平移抛物线212y x =,因为线段A ′B ′和CD 的长是定值,所以要使四边形A ′B ′CD 的周长最短,只要使A ′D +CB ′最短; ……1分第一种情况:如果将抛物线向右平移,显然有A ′D +CB ′>AD +CB ,因此不存在某个位置,使四边形A ′B ′CD 的周长最短.……1分第二种情况:设抛物线向左平移了b 个单位,则点A ′和点B ′的坐标分别为A ′(-4-b ,8)和B ′(2-b ,2).因为CD =2,因此将点B ′向左平移2个单位得B ′′(-b ,2),要使A ′D +CB ′最短,只要使A ′D +DB ′′最短. ……1分 点A ′关于x 轴对称点的坐标为A ′′(-4-b ,-8),直线A ′′B ′′的解析式为55222y x b =++.要使A ′D +DB ′′最短,点D 应在直线A ′′B ′′上,将点D (-4,0)代入直线A ′′B ′′的解析式,解得165b =. 故将抛物线向左平移时,存在某个位置,使四边形A ′B ′CD 的周长最短,此时抛物线的函数解析式为2116()25y x =+.……1分。

浙江省舟山市数学中考卷

浙江省舟山市数学中考卷

浙江省舟山市数学中考卷一、选择题(每题4分,共40分)1. 下列选项中,有理数的是()。

A. √1B. 3.14C. √2D. √32. 已知|x|=5,则x的值为()。

A. 5B. 5C. ±5D. 03. 下列运算中,正确的是()。

A. a^2 • a^3 = a^5B. (a^2)^3 = a^6C. a^3 ÷ a^2 = a^4D. (a + b)^2 = a^2 + b^24. 下列关于圆的说法,正确的是()。

A. 圆的半径是直径的一半B. 圆的直径等于圆的周长C. 圆的面积等于半径的平方D. 圆的周长等于半径的两倍π5. 已知一组数据的方差为9,那么这组数据的标准差是()。

A. 3B. 6C. 9D. 816. 下列关于平行线的说法,错误的是()。

A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线平行,其任意一对对应角相等7. 已知三角形ABC中,AB=AC,那么三角形ABC是()。

A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形8. 下列关于函数的说法,正确的是()。

A. 一次函数的图像是一条直线B. 二次函数的图像是一个圆C. 反比例函数的图像是一条直线D. 正比例函数的图像是一个圆9. 已知a,b为实数,且a≠b,那么关于x的方程ax^2 + bx +1 = 0的根的情况是()。

A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定10. 下列关于概率的说法,正确的是()。

A. 概率值大于1B. 概率值小于0C. 概率值等于0D. 概率值在0和1之间二、填空题(每题4分,共40分)11. 已知|a|=3,那么a的值为______。

12. 若2x 5 = 7,则x的值为______。

13. 一次函数y = 3x + 1的图像与y轴的交点坐标为______。

14. 已知三角形ABC的三边长分别为3、4、5,那么三角形ABC的面积是______。

2022年浙江省舟山市中考数学试卷附解析

2022年浙江省舟山市中考数学试卷附解析

2022年浙江省舟山市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图是某一个多面体的表面展开图, 那么这个多面体是()A.四棱柱 B.四棱锥 C.三棱柱 D.三棱锥2.若与四边形各边都相切的圆叫做四边形的内切圆,则下面图形中一定有内切圆的是()A.平行四边形B.矩形C.菱形D.等腰梯形3.计算:tan245°-1=.()4.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的()A.平均数B.最大值C.众数D.频率分布5.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a6.已知,有一条直的宽纸带,按图所示折叠,则∠α等于()A. 50°B.60°C. 75°D. 85°7.当2x=-时,分式11x+的值为()A.1 B.-1 C.2 D.-28.下列用词中,与“一定发生”意思一致的是()A.可能发生B.相当可能发生C.有可能发生D.必然发生9.两个完全相同的长方体的长、宽、高分别为 3、2、1,把它们叠放在一起组成一个新的长方体. 在组成的这些新长方体中、表面积的最小值为()A.42 B.38 C.20 D.3210.下午 17 时,时钟上的分针与时针之间的夹角为()A.100°B.120°C.135°D.150°11.已知∠α= 35°,则∠α的余角是( )A . 55°B .45°C .145°D .135°12. 如图,用火柴棒按如图的方式搭三角形,搭一个三角形需 3根火柴棒,如图甲;搭两个三角形需 5根火柴棒,如图乙;搭三个三角形需 7根火柴棒,如图丙. 那么按此规律搭下去,搭10 个三角形需要多少根火柴棒( )A .21B .30C .111D .119二、填空题13.如图,⊙O 的圆心坐标为(04),,若⊙O 的半径为3,则直线y x =与⊙O 的位置关系是 . 14.直线l 与半径为r 的⊙O 相交,且点0到直线l 的距离为 3,则 r 的取值范围是 .15.□ABCD 的周长为l8cm ,对角线AC ,BD 相交于点O ,△AOB 的周长比△COB 的周长大2 cm ,则AB= ,PC= .16.不等式3x-9≤0的解集是 .17.卫星绕地球运动的速度是37.910⨯米/秒那么卫星绕地球运行2210⨯秒走过的路程是 米.18.夏雪同学每次数学测试的成绩都是优,则在这次中考中他的数学成绩 (填“可能”或“不可能”或“必然”)是优秀.19.把一个 化成几个 的的形式,这种变形叫做把这个多项式分解因式.20.有一个密码系统,其原理由下面的框图所示: 输入x → x+6 → 输出 输出为10时,则输入的x=________.三、解答题21.如图,在半径为27m 的圆形广场中央点 0的上空安装一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面△SAB 的顶角为 120°,求光源离地面的垂直高度 SO.22.如图①,四边形ABCD是等腰梯形,AB∥DC,由4个这样的等腰梯形可以拼出图②所示的平行四边形.(1)求四边形ABCD的四个内角的度数;(2)试探究四边形ABCD的四条边之间存在的等量关系,并说明理由;(3)请用两种不同的方法,在图③和图④的梯形ABCD内画一条直线,将梯形ABCD分成面积相等的两部分(只要所画的直线位置不同,便视为两种不同的方法);(4)现有图①中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请画出大致示意图.23.如图所示是某班学生一次数学考试成绩的统计图,其中纵轴表示学生数,横轴表示分数,观察图形并填空.(1)全班共有学生人;(2)若该班学生此次数学考试成绩组中值不低于70分的组为合格,则合格率为;(3)如果组中值为90的一组成绩为优良,那么该班学生此次数学考试成绩的优良率为;(4)该班此次考试的平均成绩大概是.24.如图,以点 B 为顶点,射线 BC 为一边,作∠EBC,使得∠EBC= ∠A,这时 EB 与 AD 一定平行吗?为什么?25.某商场计划拨款 9 万元从厂家购进 50 台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台 1500 元,乙种每台 2100 元,丙种每台2500 元.(1)若商场同时购进其中两种不同型号的电视机 50 台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150 元,销售一台乙种电视机可获利200 元,销售一台丙种电视机可获利250 元,在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择(1)中的哪种进货方案?26.如图,一个长方体,(1)用符号表示出与棱A1B1平行的棱;(2)用符号表示出过棱AB的端点且垂直于AB的棱;(3)棱DD1与棱BC没有交点,它们平行吗?27.制作适当的统计图表示下列数据:(1)1 年份195219621970198019902005国内生产总值(亿6791149.32252.74517.818547.9189404元)动物鸡鹅鸭鸽子天数(天)2130301628.2008年5月12日,四川省汶川发生8.0级强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表;表中捐款2元和 5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.29.解下列方程:(1)3(1)2x x-=;(2)123xx--=.30.(1)被除数是334-,除数比被除数大112,商是多少?(2)被除数是113-的倒数,除数是23-,商是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.4.D5.A6.C7.B8.D9.D10.D11.A12.A二、填空题13.相交14.3r>15.5.5 cm,3.5 cm16.x≤317.61.5810⨯18.可能19.多项式,整式,乘积20.4三、解答题21.由已知得:SA=SB,∠ASB= 120°,∴∠A=∠B=30°,∵SO⊥AB,∴tanSOAOA=,∴3tan27933SO OA A==⨯= m答:光源离地面的垂直高度为 9m.22.(1)60°,60°,l20°,l20°;(2)AB=2AD=2DC=2BC;(3)DP+AQ=PC+QB(4)答案不唯一23.(1)40;(2)85%;(3)40%;(4)70分24.EB ∥CD ,根据同位角相等,两直线平行25.(1)该商场共有两种进货方案,方案一:购甲种型号电视机 25 台,乙种型号电视机 25 台;方案二:购甲种型号电视机 35 台,丙种型号电视机 15 台;(2)为使销售利润最多,应选择(1)中的方案二进26.(1)AB ∥DC ∥D 1C 1∥A 1B 1 (2)AA 1⊥AB ,DA ⊥AB ,CB ⊥AB ,BB 1⊥AB (3)不平行. 27.(1)可选用折线统计图(图略) (2)可选用条形统计图(图略)28.捐2元的有4人,捐5元的有38人.理由如下:设捐款2元的有x 人,则捐款5元的有(5567x ---)人.根据题意,得1625(5567)107274x x ⨯++---+⨯=,解得4x =,∴556738x ---=(人)29.(1) 3x =;(2) 2.5x =30. (1)53 (2)98。

2022年浙江省舟山市中考数学测试试题附解析

2022年浙江省舟山市中考数学测试试题附解析

2022年浙江省舟山市中考数学测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A .61 B .31 C .21 D .322.下面说法正确的是( )A .弦相等,则弦心距相等B .弧长相等的弧所对的弦相等C .垂直于弦的直线必平分弦D .圆的两条平行弦所夹的弧长相等 3.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( ) A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分D .垂直且边CD 被AE 平分4.将方程()n m x x x =-=--22032化为的形式,指出n m ,分别是( )A .31和B .31和-C .41和D .41和- 5. 满足不等式组210107m m +≥⎧⎨->⎩的整数m 的值有( ) A .1 个B .2 个C .3 个D .4 个 6.一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是( ) A .圆锥B .立方体C .圆柱D .直六棱柱 7.如图,直线a ∥b ,∠1=x °,∠2=y °,∠3=z °,那么下列代数式的值为180的是( )A .x+y+zB .x —y+zC .y-x+zD .x+y-z8. 已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±9.下列说法:①任何一个二元一次方程组都可以用代入消元法求解;②21x y =⎧⎨=-⎩是方程23x y +=的解,也是方程37x y -=的解; ③方程组73x y x y +=⎧⎨-=⎩ 的解是3423x y +=的解,反之,方程3423x y +=的解也是方程组73x y x y +=⎧⎨-=⎩ 的解.其中正确的个数是( )A .0 个B .1 个C .2 个D .3 个10.如图所示,△ABC 和△A ′B ′C ′关于直线l 对称,那么下列结论中正确的有( ) ①△ABC ≌△A ′B ′C ′;②∠BAC=∠A ′B ′C ′;③l 垂直平分CC ′;④直线BC 和B ′C ′的交点不一定在l 上.A .4个B .3个C .2个D .1个11.相传有个人不讲究说话艺术常引起误会.一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的四个人也都告辞走了,聪明的你能知道开始来了几位客人吗? ( )A .15B .16C .18D .24二、填空题12.如图,⊙O 的圆心坐标为(04),,若⊙O 的半径为3,则直线y x =与⊙O 的位置关系是 .13.如图,一束光线照在坡度为1:3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是 度.14.如图,某处位于北纬 36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为 30°30′',因此,在规划建设楼高为20m 的小区时,两楼间的距离最小为 m ,才能保证不挡光. (结果保留四个有效数字)15.如图所示的三个圆是同心圆,那么图中阴影部分的面积为 . 16.如果菱形的周长为24 cm ,一条较短的对角线长是6 cm ,那么两相邻内角分别为 、 .17.用计算器探索:已知按一定规律的一组数:1,12,13,…119,120.如果从中选出若干个数,使它们的和大于3,那么至少要选 个数.18.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知一束鲜花的价格是 元.19.在括号前面添上“+”或“-”号,或在括号内填空:(1)x y -= (y x -);(2)2()x y -= 2()y x -(3)x y --= (x y +);(4)(3)(5)x x --= (3)(5)x x --(5)2816x x -+-= - ( );(6)3()a b -= 3()b a -20.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AC 于D ,则△ABC 斜边上的高是 ,AB 边上的高是 ,△ADB 的BD 边上的高是 .21.水星与太阳的距离约为5.79×102 km ,则这个数为 km .22.平方得64的数是 ;立方得64的数是 .23. 关于x 的方程22220x ax a b ++-=的根为 .三、解答题24.如图,杭州某公园入口处原有三级台阶,每级台阶高为 20 cm ,深为 30 cm .为方便残疾人士,现拟将台阶改为斜坡,设台阶的起点为 A,斜坡的起点为 C.现将斜坡的坡角∠BCA 设为 12°,求 AC 的长度. (精确到1cm)25.如图.在四边形ABCD中,∠1=∠2,∠3=∠4,且∠C=∠D=120°,求∠AOB的度数.26.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积;(2)△ABC的周长;(3)点C到AB边的距离.BCA27.如图,写出将腰长为2的等腰直角三角形A08先向右平移1个单位长度,再向下平移2个单位长度后各顶点的坐标.28.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6.求旗杆高度的平均数,中位数,众数各是多少?29.如图,BD 平分∠ABC,且∠1 = ∠D,请判断AD 与 BC 的位置关系,并说明理由.30.由l6个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图①、图②).请你用两种不同的方法分别在图①、图②中再将两个空白的小正方形涂黑.使它成为轴对称图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.C5.C6.B7.D8.C9.C10.B11.D二、填空题12.相交13.3014.33.9515.4π16.60°,l20°17.518.1519.(1)-;(2)+;(3)-;(4)+;(5)2816x x-+;(6)-20.BD,BC,AD21.5790000022.8±,423.a b-+或a b--三、解答题24.过B点作 BD⊥CA,垂足为 D点,由已知得 BD= 20×3 =60 cm,AD=30×2=60 cm,60tan tan12oBDBCDCD CD∠===,∴CD= 282 cm,AC= 282- 60 = 222 (cm)答:AC 的长度为 222 cm.25.60°26.(1)27,(2)13105++,(3)13137 27.A ′(1,O),B ′(3,-2),O ′(1,-2) 28.平均数:22.12 m ,中位数:20.0 m ,众数:20.0 m 29.AD ∥BC ,理由略30.图略。

2023年浙江省舟山市中考数学测评考试试题附解析

2023年浙江省舟山市中考数学测评考试试题附解析

2023年浙江省舟山市中考数学测评考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离、与y轴相切B.与x轴、y轴都相离C.与x轴相切、与y轴相离D.与x轴、y轴都相切2.中国象棋红方棋子按兵种不同分布如下:1 个帅,5 个兵,“士、相、马、车、炮”各 2 个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是()A.116B.516C.38D.583.如图,以正方形 ABCD各边为直径在正方形内画半圆,计算所围成的图形(阴影部分)的面积,正确的方法是()A.三个半圆的面积减去正方形的面积B.四个半圆的面积减去正方形的面积C.正方形的面积减去两个半圆的面积D.正方形的面积减去三个半圆的面积4.下列说法错误的是()A.不等式39x-<的解集是3x>-B.不等式5x>的整数解有无数个C.不等式132x<的正整数解只有一个D.—40 是不等式28x<-的一个解5.如图所示的长方体的三视图是()A.三个正方形B.三个一样大的长方形C.三个大小不_样的长方形但其中可能有两个大小一样D.两个正方形和一个长方形6.已知12506x y-+=,用含x的代数式表示y应有()A .6(25)x y =+B .6(25)x y =-C .11(5)26y x =+ D .11(5)26y x =-+ 7.某城市一年漏掉的水相当于建一个自来水厂,据不完全统计,全市至少有5610⨯个水龙头,5210⨯个抽水马漏水. 如果一个关不紧的水龙头一个月漏a (m 3)水,一个抽水马桶一个月漏掉b (m 3)水,那么一个月造成的水流失量至少是( ) A .( 62a b +) m 3B .56210a b +⨯ m 3 C .5[(62)10]a b +⨯ m 3 D .5[8()10]a b +⨯m 38.以下各题中运算正确的是( ) A .2266)23)(32(y x y x y x -=+- B .46923232))((a a a a a a a +-=-- C .2222512531009)2.03.0(y xy x y x ++=-- D .ca bc ab c b a c b a ---++=--2222)(9.如果三角形的一个外角是锐角,那么这个三角形是( ) A .锐角三角形B .钝角三角形C .直角三角形D .以上三种都可能二、填空题10.圆柱的左视图是 ,俯视图是 .11.如图,PA 切半圆O 于A 点,如果∠P =35°,那么∠AOP =____°. 12.如图,△ABC 和△DEF 是位似三角形,且AC= 2DF ,那么 OE :OB= .13.已知点P (a ,m )和Q (b ,m )是抛物线3422-+=x x y 上的两个不同点,则a +b = .14.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字). 15.26x ++ =2(3)x +.16.如图,小李准备建造一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料布遮盖,不计墙的厚度,那么阳光透过的最大面积为 m 2.17.在多项式241x 中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是 (只写出一个即可).18.根据条件“x的 2倍与-9 的差等于x的15与 6 的和”列出方程.19.关于x 的方程 3x-c=0 的解是 2-c,则c= .三、解答题20.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.21.将A B C D,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A B,都在甲组的概率是多少?22.如图所示的两个矩形是否相似?并说明理由.23.如图,已知线段 AB,试以线段 AB 为弦,在 AB 的上方画弧,使所画的弧分别是劣弧、优弧和半圆,并指出这三种不同情况时,圆心与线段的位置关系.24.如图,在△ABC中,∠B=90°,AB=4cm,BC=10cm,点P从点B出发,沿BC边以lcm/s 的速度向点C移动,问:经过多少时问后,点P到点A的距离的平方比点P到点B的距离的8倍大lcm?25.已知:如图,□ABCD各角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形.26.如图,已知∠α=∠β=60°,求:(1)∠α的同位角∠1的度数;(2) ∠α的同旁内角∠2的度数.27.如图所示,在方格纸中,有两个形状、大小完全相同的图形,请指出如何运用轴对称、平移、旋转这三种运动,将一个图形重合到另一个图形上.28.解方程:(1)13432x x-=+ (2)5x-2(x-1)=14(3)2211632x x x-+--=+(4)0.5110.20.3x x+-=29.填写下表,并观察代数式的值随 n 的变化而变化的情况:下(1)值?(2)当n为何值时,两个代数式的值相等?30.小明买了6个梨的总质量是0.95 kg,那么平均每个梨的质量约为多少(精确到0.01 kg)?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.C5.C6.B7.C8.C9.B二、填空题10.矩形,圆11.5512.1:2.13.-214.0.1815.916.10017.答案不唯一,例如4x ,4x -等18.12(9)65x x --=+19. 32三、解答题 20.解:(1)P (抽到奇数)=34. (2)解法一:列表所以组成的两位数恰好是13的概率为21126P ==. 解法二:树状图 开始1 123 1 2 3 1 2 3 1 1 3 1 1 2 所以组成的两位数是13的概率为21126P ==. 21.解:所有可能出现的结果如下:甲组乙组结果 AB CD(AB CD ,) AC BD (AC BD ,) AD BC (AD BC ,) BC AD (DC AD ,) BD AC (BD AC ,) CDAB(CD AB ,)总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12; (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 22.相似,因为小矩形与大钜形的对应角相等,对应边成比例,相似比为35.23.如图中虚线所示,当圆心在线段上时所画的弧是半圆;当圆心与弧在线段同侧时所画的弧是优弧;当圆心与弧在线段异侧时所画的弧是劣弧.24.3 s 或 5 s25.略26.(1)60°;(2)120°27.把△ABC 先绕点A 逆时针旋转90°,再向上平移2个单位,然后以D 点所在的竖格子线为对称轴进行轴对称变换28.(1)145x=;(2)x=4 ;(3)94x=-;(4)1310x=29.(1)逐渐变小,0 (2)6 30.0.16 kg。

2023年浙江省舟山市中考数学试卷原卷附解析

2023年浙江省舟山市中考数学试卷原卷附解析

2023年浙江省舟山市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 下列各种现象中不属于中心投影现象是( )A .民间艺人表演的皮影戏B .在日常教学过程中教师所采用投影仪的图象展示C .人们周末去电影院所欣赏的精彩电影D .在皎洁的月光下低头看到的树影2. 某种小麦播种1 粒发芽的概率约为 95%,1 株麦芽长成麦苗的概率为 90%,一块试 验地的麦苗数为 8550000 株,若该麦种的千粒质量为35 g ,则播种这块试验地需麦种约( )A .2.9 kgB .3.5 kgC .29kgD .350kg 3.232x x -+ =2(___)x -( )4.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t 表示时间,s 表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是( )A .35minB .45minC .50minD .60min5.在△ABC 中,AB = BC ,∠A =80°, 则∠B 的度数是( )A .100°B .80°C . 20D . 80°或 20°6.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )A .14B .16C .12D .347.把分式x x y+(0x ≠,0y ≠)中的分子,分母的x ,y 同时扩大 2倍.那么分式的值( ) A .扩大2倍 B . 缩小2倍 C . 改变原来的值 D . 不改变8.a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数可以表示为( )A .abB .10a b +C .100a b +D .a b +9.已知样本数据:21,23,25,27,28,25,24,30,29,24,22,24,26,26,29,26,28,25,27,23.在列频率分布表时,若取组距为2,则落在24.5~26.5这组的频率是()A.O.3 B.0.4 C.0.5 D.0.6二、填空题10.两个等圆⊙O1和⊙O2相交于 A.B两点,⊙O1经过点02, 则∠ O1AB 的度教是.11.如图,△ABC为⊙O的内接三角形,AB是直径,∠A=20°,则∠B= 度.12.在四边形ABCD中.给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果…,那么…”的形式,写出一个你认为正确的命题 . 13.如图,锐角△ABC中,∠BOC=140°,两条高BD、CE交于点0,则∠A= .解答题14.如图是由 8块相同的等腰直角三角形黑白瓷砖拼成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留某块瓷砖上,则停留在黑色瓷砖上的概率为 .15.已知(x-3)2+│2x-3y+7│=0,则x=________,y=_________.3,13 316.近似数0.0300精确到位,含有个有效数字,l.20万精确到位,有效数字是.三、解答题17.如图,AB 是⊙O的直径,弦CD⊥AB,点 E是AD上一点,若∠BCD= 35°,求∠AEC 的度数.18.如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.19.已知:E 是AB 、CD 外一点,∠D=∠B+∠E ,求证:AB ∥CD .20.根据四边形的不稳定性,如图,长方形ABCD 变形为四边形A ′BCD ′.(1)四边形A ′BCD ′是平行四边形吗?请说明理由;(2)我们可知变形过程中周长不变,而面积改变了,若四边形A ′BCD ′的面积是长方形ABCD 的面积的一半,求∠ABA ′的度数.E CD B A O21.在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S(次/分)是这个人年龄n(岁)的一次函数.(1)根据以上信息,求在正常情况下,S关于n的函数解析式;(2)若一位66岁的老人在跑步时,医生在途中给他测得l0秒心跳为25次,问:他是否有危险?为什么?22.如图,图中标出了星海中学的位置.图中每个小正方形的边长均代表50 m,晓婷家、林威家、慧儿家的位置是:晓婷家:出校门向东走l50m,再向北走200m.林威家:出校门向西走200m,再向北走350m,最后向东走50m.慧儿家:出校门向南走l00m.再向东走300m,最后向南走75m.(1)请在图中标出晓婷家、林威家、慧儿家的位置;(2)以晓婷家所在位置为原点,建立平面直角坐标系.并在图中标明星海中学、林威家、慧儿家的坐标.23.从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00.乙生产零件的尺寸:10.00,9.97,10.03,10.00.(1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?24. 若2131||()0234x x y -++=-+,求代教式322131x y -+-的值.25. 三块牧场的草一样密一样多,面积分别为133公顷,10 公顷和24 公顷,第一块 12 头牛可吃4个星期,第二块 21 头牛可吃 9个星期,第三块可供多少头牛吃18个星期?26.书桌上放着 7 本教科书,其中语文、数学、英语课本上、下册各一册,政治课本一本, 求下列各事件的概率:(1)从中任意抽取1本,是英语课本;(2)从中任意抽取2本,是教学课本上、下册各一册;(3)从中任意抽取2本,是数学、或语文、或英语课本上、下册各一册.27.如图是某次跳远测验中某同学跳远情况示意图.该名同学的成绩该如何测量,请你画图示意.28.在数轴上画出表示实数2-的点. 29.计算:(1)24 (2)(3)79 -+-(2)5 (51)(27)7 ++-(3) (-13)+(+5)+(-2)(4)7 | 3.125|(5)8 --+-30.如图所示,要测量湖中小岛E距岸边A和D的距离.作法如下:(1)任作线段AB.取串点0;(2)连结D0并延长使D0=C0;(3)连结BC;(4)用仪器测量E,O在一条线上,并交CB 于点F.要测量AE,DE,只需测量BF,CF即可,为什么?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.9 16,344.C5.C6.A7.D8.C9.A二、填空题10.30°11.7012.略13.40°14. 1215. 16.万分;三;百;1,2,0三、解答题17. ∵∠BCD=35°, ⌒BD = 2×35°=70°,∵AB 是⊙O 的直径,弦 CD ⊥AB ,∴⌒BC =⌒BD =70° ∴⌒AC =⌒ACB -⌒BC =180°- 70°=110°,∴∠AEC=12×110°=55°. 18.证明:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=. 2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=. 四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形19.利用∠BFD=∠B +∠E ,∠D=∠B+∠E 得∠D =∠BFD .20.(1)由A ′B=D ′C ,A ′D ′=BC ,可证四边形A ′BCD ′是平行四边形;(2)过A ′作A ′P ⊥BC 于P ,∠ABA ′=60°21. (1)21743S n =-+;(2)有危险 22.如图:23.(1)10.00x =甲mm ,10.00x =乙mm ;(2)200002S =甲.mm 2 ,2000045S =乙.mm 2,甲做得较好24. 225. 36 头26.(1)27;(2)121;(3)1727. 略28.略29.(1)46563- (2)2237(3)-10 (4)-9 30.略。

浙江省舟山市中考数学试卷(解析版)

浙江省舟山市中考数学试卷(解析版)

浙江省舟山市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选多选、错选,均不得分)1.(3分)(2014年浙江舟山)﹣3的绝对值是()A.﹣3 B. 3 C. D.考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014年浙江舟山)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A. 6 B.7 C.8 D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.(3分)(2014年浙江舟山)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A. 3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.解答:解:384 400 000=3.844×108.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014年浙江舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.5.(3分)(2014年浙江舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D.8考点:垂径定理;勾股定理.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,故选D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.6.(3分)(2014年浙江舟山)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6 D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.(3分)(2014年浙江舟山)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC 的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.(3分)(2014年浙江舟山)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5 B. 2 C. 2.5 D. 3考点:圆锥的计算.分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(3分)(2014年浙江舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A.2cm B.2cm C.4cm D. 4cm考点:翻折变换(折叠问题).分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.(3分)(2014年浙江舟山)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D. 2或﹣或考点:二次函数的最值.专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2014年浙江舟山)方程x2﹣3x=0的根为0或3 .考点:解一元二次方程-因式分解法.分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.(4分)(2014年浙江舟山)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.13.(4分)(2014年浙江舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.考点:列表法与树状图法.分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.14.(4分)(2014年浙江舟山)如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.(4分)(2014年浙江舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题.分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.16.(4分)(2014年浙江舟山)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.专题:推理填空题.分析:(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.(4)利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.(5)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.解答:解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.(3)当AD=2时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴=.∵FC=EF,∴FH=FD.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=BD.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠FAB=30°.∴FB=AB=4.∴DB=4.∴AD=AB﹣DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×4=16.∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.故答案为:①、③、⑤.点评:本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度.三、解答题(本题有8小题,第17~19题每小题6分,第20,21题每小题6分,第22,23题每小题6分,第24题12分,共66分)17.(6分)(2014年浙江舟山)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014年浙江舟山)解方程:=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x﹣1)﹣4=x2﹣1,去括号得:x2﹣x﹣4=x2﹣1,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.19.(6分)(2014年浙江舟山)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:选项频数频率A m 0.15B 60 pC n 0.4D 48 0.2(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)用D选项的频数除以D选项的频率即可求出被调查的学生人数;(2)用被调查的学生人数乘以A选项的和C频率求出m和n,用B选项的频数除以被调查的学生人数求出p,再画图即可;(3)用该校的总人数乘以该校全体学生中选择B选项频率即可.解答:解:(1)这次被调查的学生有48÷0.2=240(人);(2)m=240×0.15=36,n=240×0.4=96,p==0.25,画图如下:(3)若该校有1600名学生,则该校全体学生中选择B选项的有1600×0.25=400(人).点评:此题考查了条形统计图和频数、频率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20.(8分)(2014年浙江舟山)已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFED为菱形,理由:∵△DOE≌△BOF,∴BF=DE,又∵BF∥DE,∴四边形EBFD是平行四边形,∵BO=DO,∠EOD=90°,∴EB=DE,∴四边形BFED为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.21.(8分)(2014年浙江舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.(10分)(2014年浙江舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.23.(10分)(2014年浙江舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.考点:四边形综合题.分析:(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.24.(12分)(2014年浙江舟山)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.考点:二次函数综合题.专题:综合题.分析:(1)首先可得点A的坐标为(m,m2),再由m的值,确定点B的坐标,继而可得点E的坐标及BE、OE的长度,易得△ABE∽△CBO,利用对应边成比例求出CO,根据轴对称的性质得出DO,继而可求解S的值;(2)分两种情况讨论,(I)当0<m<2时,将BE•DO转化为AE•BO,求解;(II)当m >2时,由(I)的解法,可得S关于m的函数解析式;(3)①首先可确定点A的坐标,根据===k,可得S△ADF=k•S△BDF•S△AEF=k•S△BEF,从而可得===k,代入即可得出k的值;②可得===k,因为点A的坐标为(m,m2),S=m,代入可得k与m的关系.解答:解:(1)∵点A在二次函数y=x2的图象上,AE⊥y轴于点E且AE=m,∴点A的坐标为(m,m2),当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,∴△ABE∽△CBO,∴==,∴CO=2,∵点D和点C关于y轴对称,∴DO=CO=2,∴S=BE•DO=×1×2=;(2)(I)当0<m<2时(如图1),∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴=,即BE•DO=AE•BO=2m.∴S=BE•DO=×2m=m;(II)当m>2时(如图2),同(I)解法得:S=BE•DO=AE•OB=m,由(I)(II)得,S关于m的函数解析式为S=m(m>0且m≠2).(3)①如图3,连接AD,∵△BED的面积为,∴S=m=,∴点A的坐标为(,),∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∴k===;②k与m之间的数量关系为k=m2,如图4,连接AD,∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∵点A的坐标为(m,m2),S=m,∴k===m2(m>2).点评:本题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答本题的关键是熟练数形结合思想及转化思想的运用,难度较大.。

(中考精品)浙江省舟山市中考数学真题(解析版)

(中考精品)浙江省舟山市中考数学真题(解析版)

数学卷Ⅰ(选择题)一、选择题(本题有10小题,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. 若收入3元记为+3,则支出2元记为()A. 1B. -1C. 2D. -2 【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.2. 如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【答案】B【解析】【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.3. 根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为( )A. 82.5110⨯B. 72.5110⨯C. 725.110⨯D. 90.25110⨯【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=82.5110⨯.故选:A【点睛】本题考查用科学记数法表示较大数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键. 4. 用尺规作一个角的角平分线,下列作法中错误的是( )A. B.C. D.【答案】D【解析】【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∴OAB OCB ≅ ,∴AOB COB ∠=∠,∴OB 平分AOC ∠.的故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∴OBC OAD ≅ ,∴OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∴AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∴AEC BED ≅△△,∴AE BE =,∵,EAO EBO OA OB ∠=∠=,∴AOE BOE ∠=∠,∴OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∴CD OB ∥,COD CDO =∠∠,∴DOB CDO ∠=∠,∴COD DOB ∠=∠,∴OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∴AOB CBO ≅ ,∴,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.5. 的值在( )A. 4和5之间B. 3和4之间C. 2和3之间D. 1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.<<∴23<<故选:C .【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 8【答案】C【解析】 【分析】根据EF AC ∥,GF AB ∥,可得四边形AEFG 是平行四边形,从而得到FG =AE ,AG =EF ,再由EF AC ∥,可得∠BFE =∠C ,从而得到∠B =∠BFE ,进而得到BE =EF ,再根据四边形AEFG 的周长是2(AE +EF ),即可求解.【详解】解∶∵EF AC ∥,GF AB ∥,∴四边形AEFG 是平行四边形,∴FG =AE ,AG =EF ,∵EF AC ∥,∴∠BFE =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF ,∴四边形AEFG 的周长是2(AE +EF )=2(AE +BE )=2AB =2×8=16.故选:C【点睛】本题主要考查了平行四边形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,等腰三角形的性质是解题的关键.7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >.B. A B x x >且22B A S S <.C. A B x x <且22A B S S >D. A B x x <且22B A S S <. 【答案】B【解析】 【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B .【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.8. 上学期某班的学生都是双人同桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( )A. 445x y x y +=⎧⎪⎨=⎪⎩B. 454x y x y +=⎧⎪⎨=⎪⎩C. 445x y x y -=⎧⎪⎨=⎪⎩D.454x y x y -=⎧⎪⎨=⎪⎩ 【答案】A【解析】【分析】设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意,列出方程组,即可求解.【详解】解:设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意得:445x y x y +=⎧⎪⎨=⎪⎩. 故选:A【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.9. 如图,在Rt ABC 和Rt BDE 中,90ABC BDE ∠=∠=︒,点A 在边DE 的中点上,若AB BC =,2DB DE ==,连结CE ,则CE 的长为( )C. 4【答案】D【解析】 【分析】过点E 作EF ⊥BC ,交CB 延长线于点F ,过点A 作AG ⊥BE 于点G ,根据等腰直角三角形的性质可得BE =,∠BED =45°,进而得到AB BC ==,EG AG AE ===,BG =,再证得△BEF ∽△ABG,可得BF EF ==,然后根据勾股定理,即可求解. 【详解】解:如图,过点E 作EF ⊥BC ,交CB 延长线于点F ,过点A 作AG ⊥BE 于点G ,在Rt BDE 中,∠BDE =90°,2DB DE ==,∴BE ==BED =45°,∵点A 在边DE 的中点上,∴AD =AE =1,∴AB ==,∴AB BC ==,∵∠BED =45°,∴△AEG 是等腰直角三角形,∴EG AG AE ===,∴BG = ∵∠ABC =∠F =90°,∴EF ∥AB ,∴∠BEF =∠ABG ,∴△BEF ∽△ABG , ∴BE BF EF AB AG BG====,解得:BF EF ==∴CF =,∴CE ==故选:D【点睛】本题主要考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理是解题的关键.10. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A. 52 B. 2 C. 32 D. 1【答案】B【解析】分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+ ∴2239(3)3(24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k =-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B . 【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.卷Ⅱ(非选择题)二、填空题(本题有6小题)11. 分解因式:2m m +=___________.【答案】(1)m m +【解析】【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式技巧正确计算是解题关键. 12. 正八边形的一个内角的度数是____ 度.【的【答案】135【解析】【分析】根据多边形内角和定理:(n ﹣2)•180°(n≥3且n 为正整数)求出内角和,然后再计算一个内角的度数即可.【详解】正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为: 1080°÷8=135°,故答案为135.13. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____. 【答案】25 【解析】【分析】直接根据概率公式求解.【详解】解:∵盒子中装有3个红球,2个黑球,共有5个球, ∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.14. 如图,在直角坐标系中,ABC 的顶点C 与原点O 重合,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k =_____.【答案】32【解析】【分析】根据AB BC =求出A 点坐标,再代入k y x=即可.【详解】∵点B 的坐标为(4,3)∴5OB ==∵AB BC =,点C 与原点O 重合,∴5AB BC BO ===∵AB 与y 轴平行,∴A 点坐标为(4,8)∵A 在k y x =上 ∴84k =,解得32k = 故答案为:32.【点睛】此题主要考查了反比例函数图象上点的坐标性质;得出A 点坐标是解题关键. 15. 某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).【答案】k n【解析】 【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB ⋅=⋅ 解得k x n= 故答案为:k n . 【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.16. 如图,在廓形AOB 中,点C ,D 在 AB 上,将 CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 E F 的度数为_______;折痕CD 的长为_______.【答案】 ①. 60°##60度②.【解析】【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可. 【详解】作O 关于CD 的对称点M ,则ON =MN 连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将 CD沿弦CD 折叠 ∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB ∴90MEO MFO ∠=∠=︒ ∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即 E F 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF = ∴MEO MFO ≅ (HL )∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ====∴CD =故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三、解答题(本题有8小题)17. (101)--. (2)解不等式:841x x +<-. 【答案】(1)1;(2)3x > 【解析】【分析】(1)根据零指数幂、立方根进行运算即可;(2)根据移项、合并同类项、系数化为1,进行解不等式即可. 【详解】(1)原式21=-1=. (2)移项得:418x x -<--, 合并同类项得:39x -<-, 系数化为得: 3x >.【点睛】此题考查了零指数幂、立方根、解不等式等知识,熟练掌握运算法则是解题的关键.18. 小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =,求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【答案】赞成小洁的说法,补充AB CB =,见解析 【解析】【分析】赞成小洁的说法,补充:AB CB =,由四边相等的四边形是菱形即可判断. 【详解】赞成小洁的说法,补充:AB CB =. 证明: AC BD ⊥,OB OD =,∴AB AD =,CB CD =.又∵AB CB =. ∴AB AD CB CD ===, ∴四边形ABCD 是菱形.【点睛】本题考查菱形的判定以及线段垂直平分线的性质,熟练掌握菱形的判定是解题的关键.19. 观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++ (2)见解析 【解析】【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++. (2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. 【小问1详解】解:∵第一个式子()1111123621221=+=+++, 第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++, ……∴第(n +1)个式子1111(1)n n n n =+++; 【小问2详解】解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边, ∴1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.20. 6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象. ②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少? (2)数学思考:请结合函数图象,写出该函数的两条性质或结论. (3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x << 【解析】【分析】(1)①根据表格数据在函数图像上描点连线即可; ②根据函数图像估计即可;(2)从增减性、最值等方面说明即可;(3)根据图像找到y =260时所有的x 值,再结合图像判断即可. 【小问1详解】 ①②观察函数图象: 当4x =时,200y =;当y 的值最大时,21x =;21x =. 【小问2详解】 答案不唯一.①当27x ……时,y 随x 的增大而增大; ②当14x =时,y 有最小值80. 【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,【点睛】本题考查函数图像的画法、从函数图像获取信息,准确的画出函数图像是解题的关键.21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长. (2)求点A ,B 之间的距离. 【答案】(1)3.4cm(2)22.2cm 【解析】【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得DF EF =,20DCF ECF ∠=∠=︒,再利用锐角三角函数,即可求解;(2)连结AB .设纸飞机机尾的横截面的对称轴为直线l ,可得对称轴l 经过点C .从而得到四边形DGCE 是矩形,进而得到DE =CG ,然后过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,可得1202GDC CEH DCE ∠=∠=∠=︒,从而得到2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,再利用锐角三角函数,即可求解.【小问1详解】解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠. ∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=, ∴2 3.4cm DE DF ==. 【小问2详解】解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形, ∴对称轴l 经过点C . ∴AB l ⊥,DE l ⊥, ∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H , ∵DG ⊥AB ,HE ⊥AB , ∴∠EDG =∠DGH =∠EHG =90°, ∴四边形DGCE 矩形, ∴DE =HG , ∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=, ∴22.2cm AB BH AG DE =++=.【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名是中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下: 调查问卷(部分)1.你每周参加家庭劳动时间大约是_________h ,如果你每周参加家庭劳动时间不足2h ,请回答第2个问题;2.影响你每周参加家庭劳动的主要原因是_________(单选). A .没时间B .家长不舍得C .不喜欢D .其它中小学生每周参加家庭劳动时间x (h )分为5组:第一组(00.5x <…),第二组(0.51x <…),第三组(1 1.5x <…),第四组(1.52x <…),第五组(2x …).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组? (2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h ,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议. 【答案】(1)第二组(2)175人(3)该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量 【解析】【分析】(1)根据中位数的定义求解即可;(2)根据扇形统计图求出C 所占的比例再计算即可; (3)根据统计图反应的问题回答即可. 【小问1详解】1200人的中位数是按从小到大排列后第600和601位的平均数,而前两组总人数为308+295=603∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在第二组; 【小问2详解】由扇形统计图得选择“不喜欢”的人数所占比例为143.2%30.6%8.7%17.5%---- 而扇形统计图只统计不足两小时的人数,总人数为1200-200=1000 ∴选择“不喜欢”的人数为100017.5%175⨯=(人) 【小问3详解】答案不唯一、言之有理即可.例如:该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量;③学校开设劳动拓展课程:等等.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23. 已知抛物线1L :2(1)4y a x =+-(0a ≠)经过点(1,0)A . (1)求抛物1L 的函数表达式.(2)将抛物线1L 向上平移m (0m >)个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移n (0n >)个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.【答案】(1)2()4y x =+-(2)4m =(3)3n > 【解析】【分析】(1)根据待定系数法即可求解. (2)根据平移的性质即可求解.(3)根据平移的性质对称轴为直线1x n =-,10a =>,开口向上,进而得到点P 在点Q 的左侧,分两种情况讨论:①当P ,Q 同在对称轴左侧时,②当P ,Q 在对称轴异侧时,③当P ,Q 同在对称轴右侧时即可求解. 【小问1详解】解:将(1,0)A 代入得:20(11)4a =+-, 解得:1a =,∴抛物线1L 的函数表达式:2()4y x =+-. 【小问2详解】∵将抛物线1L 向上平移m 个单位得到抛物线2L ,∴抛物线2L 的函数表达式:2(1)4y x m =+-+. ∴顶点(1,4)m --+,∴它关于O 的对称点为(1,4)m -, 将(1,4)m -代入抛物线1L 得:40m -=, ∴4m =. 【小问3详解】把1L 向右平移n 个单位,得3L :2(1)4y x n =+--,对称轴为直线1x n =-,10a =>,开口向上,∵点(8,)P t s -,(4,)Q t r -, 由6t >得:824t t -<<-, ∴点P 在点Q 的左侧,①当P ,Q 同在对称轴左侧时,14n t ->-,即3n t >-,∵6t >,∴3n >,②当P ,Q 在对称轴异侧时, ∵s r >,∴1(8)4(1)n t t n --->---, 解得:3n >,③当P ,Q 同在对称轴右侧时,都有s r <(舍去), 综上所述:3n >.【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象平移变换,熟练掌握待定系数法及平移的性质结,巧妙运用分类讨论思想是解题的关键.24. 如图1.在正方形ABCD 中,点F ,H 分别在边AD ,AB 上,连结AC ,FH 交于点E ,已知CF CH =.(1)线段AC 与FH 垂直吗?请说明理由.(2)如图2,过点A ,H ,F 的圆交CF 于点P ,连结PH 交AC 于点K .求证:KH AK CH AC=. (3)如图3,在(2)的条件下,当点K 是线段AC 的中点时,求CP PF 的值. 【答案】(1)AC FH ⊥,见解析(2)见解析(3)32CP PF = 【解析】【分析】(1)证明Rt Rt CDF CBH △△≌(HL ),得到DCF BCH ∠=∠,进一步得到FCA HCA ∠=∠,由△CFH 是等腰三角形,结论得证;(2)过点K 作KG AB ⊥于点G .先证△AKG ∽△ACB ,得AK KG AC CB=,证△KHG ∽CHB 可得KH KG CH CB=,结论得证; (3)过点K 作KG AB ⊥点G .求得12GH BH =,设GH a =,2BH a =,则KG =AG =GB =3a ,则CH CF =,勾股定理得FH =,EH =,由FPH HEC △∽△得PF FH EH CH=,得PF =,CP =,即可得到答案. 【小问1详解】证明:∵四边形ABCD 是正方形,∴CD CB =,90D B ∠=∠=︒,又∵CF CH =,∴Rt Rt CDF CBH △△≌(HL ),∴DCF BCH ∠=∠.又∵45DCA BCA ∠=∠=︒,∴FCA HCA ∠=∠.∵CF CH =∴△CFH 是等腰三角形,∴AC FH ⊥.【小问2详解】证明:如图1,过点K 作KG AB ⊥于点G .∵CB AB ⊥,∴KG CB ∥.∴AKG ACB △∽△, ∴AK KG AC CB=. ∵PHA DFC ∠=∠,DFC CHB ∠=∠,∴KHG CHB ∠=∠.∴KHG CHB △∽△, ∴KH KG CH CB=, ∴AK KH AC CH =. 小问3详解】解:如图2,过点K 作KG AB ⊥点G .∵点K 为AC 中点:由(2)得12KH AK CH AC ==, ∴12GH KH BH CH ==, 设GH a =,2BH a =,则3KG AG GB a ===,∴6CB AB a ==,4AH a =,∴CH CF =,∵AF AH =,【∴FH =,EH =,∵180FPH FAH ∠+∠=︒,∴90FPH CEH ∠=︒=∠,又∵CHE PFH ∠=∠,∴FPH HEC △∽△, ∴PF FH EH CH=.∴PF =,∴CP CF PF =-=, ∴32CP PF =. 【点睛】此题考查正方形的性质、相似三角形的判定和性质、勾股定理、直角三角形全等的判定定理等知识,熟练掌握相似三角形的判定和性质是解题的关键。

2022年浙江省舟山市中考数学试卷含答案详解

2022年浙江省舟山市中考数学试卷含答案详解

2022年浙江省舟山市中考数学试卷及答案解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)若收入3元记为3+,则支出2元记为()A.1B.1-C.2D.2-2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.3.(3分)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.825.110⨯D.90.25110⨯⨯C.72.5110⨯B.72.51104.(3分)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.5.(36的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间6.(3分)如图,在ABCAB AC==.点E,F,G分别在边AB,BC,AC上,∆中,8GF AB,则四边形AEFG的周长是()//EF AC,//A .32B .24C .16D .87.(3分)A ,B 两名射击运动员进行了相同次数的射击.下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A .AB x x >且22A B S S >B .A B x x >且22A B S S <C .A B x x <且22A B S S > D .A B x x <且22A B S S <8.(3分)上学期某班的学生都是双人桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( ) A .445x y x y +=⎧⎪⎨=⎪⎩B .454x yx y +=⎧⎪⎨=⎪⎩C .445x yx y -=⎧⎪⎨=⎪⎩D .454x yx y -=⎧⎪⎨=⎪⎩9.(3分)如图,在Rt ABC ∆和Rt BDE ∆中,90ABC BDE ∠=∠=︒,点A 在边DE 的中点上,若AB BC =,2DB DE ==,连结CE ,则CE 的长为( )A 14B 15C .4D 1710.(3分)已知点(,)A a b ,(4,)B c 在直线3(y kx k =+为常数,0)k ≠上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .1二、填空题(本题有6小题,每题4分,共24分) 11.(4分)分解因式:2m m += .12.(4分)正八边形一个内角的度数为 .13.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 .14.(4分)如图,在直角坐标系中,ABC ∆的顶点C 与原点O 重合,点A 在反比例函数(0,0)ky k x x=>>的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k = .15.(4分)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为()k N .若铁笼固定不动,移动弹簧秤使BP 扩大到原来的(1)n n >倍,且钢梁保持水平,则弹簧秤读数为 ()N (用含n ,k 的代数式表示).16.(4分)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为 ,折痕CD 的长为 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:038(31)--. (2)解不等式:841x x +<-.18.(6分)小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =.求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流. 小惠:证明:AC BD ⊥,OB OD =,AC ∴垂直平分BD .AB AD ∴=,CB CD =,∴四边形ABCD 是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19.(6分)观察下面的等式:111236=+,1113412=+,1114520=+,⋯⋯ (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数). (2)请运用分式的有关知识,推理说明这个结论是正确的.20.(8分)6月13日,某港口的湖水高度()y cm 和时间()x h 的部分数据及函数图象如下: ()x h ⋯ 11 12 13 14 15 16 17 18 ⋯ ()y cm⋯18913710380101133202260⋯(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象. ②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少? (2)数学思考:请结合函数图象,写出该函数的两条性质或结论. (3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知10⊥,BE CE==,AD CD⊥,CD CE cmAD BE cm==,5DCE∠=︒.40(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin200.34︒≈,︒≈,sin400.64︒≈,cos200.94︒≈,tan200.36︒≈︒≈,tan400.84)cos400.7722.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D .其它中小学生每周参加家庭劳动时间()x h 分为5组:第一组(00.5)x <,第二组(0.51)x <,第三组(1 1.5)x <,第四组(1.52)x <,第五组(2)x . 根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组? (2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h .请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议. 23.(10分)已知抛物线21:(1)4(0)L y a x a =+-≠经过点(1,0)A . (1)求抛物线1L 的函数表达式.(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.24.(12分)如图1,在正方形ABCD 中,点F ,H 分别在边AD ,AB 上,连结AC ,FH 交于点E ,已知CF CH =.(1)线段AC 与FH 垂直吗?请说明理由.(2)如图2,过点A ,H ,F 的圆交CF 于点P ,连结PH 交AC 于点K .求证:KH AK CH AC=.(3)如图3,在(2)的条件下,当点K是线段AC的中点时,求CP PF的值.2022年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)若收入3元记为3+,则支出2元记为()A.1B.1-C.2D.2-【分析】根据正负数的意义可得收入为正,支出为负解答即可.【解答】解:若收入3元记为3-,+,则支出2元记为2故选:D.2.(3分)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看底层是三个正方形,上层左边是一个正方形.故选:B.3.(3分)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.8⨯D.90.25110⨯25.110⨯C.72.5110⨯B.72.5110【分析】科学记数法的表示形式为10na<,n为整数.确定n的值a⨯的形式,其中1||10时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正整数;当原数的绝对值1<时,n是负整数.【解答】解:8=⨯.251000000 2.5110故选:A.4.(3分)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.【分析】根据各个选项中的作图,可以判断哪个选项符合题意.【解答】解:由图可知,选项A、B、C中的线都可以作为角平分线;选项D中的图作出的是平行四边形,不能保证角中间的线是角平分线,故选:D.5.(3分)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【分析】根据无理数的估算分析解题.【解答】解:469<<,<<,∴469∴<<,263故选:C.6.(3分)如图,在ABC==.点E,F,G分别在边AB,BC,AC上,∆中,8AB ACEF AC,//GF AB,则四边形AEFG的周长是()//A.32B.24C.16D.8【分析】根据//∠=∠,GF AB,可以得到四边形AEFG是平行四边形,B GFC EF AC,//==和等量代换,即可求得四边形AEFG的周长.AB ACC EFB∠=∠,再根据8【解答】解://GF AB,EF AC,//∴四边形AEFG 是平行四边形,B GFC ∠=∠,C EFB ∠=∠,AB AC =, B C ∴∠=∠,B EFB ∴∠=∠,GFC C ∠=∠,EB EF ∴=,FG GC =,四边形AEFG 的周长是AE EF FG AG +++,∴四边形AEFG 的周长是AE EB GC AG AB AC +++=+,8AB AC ==,∴四边形AEFG 的周长是8816AG AC +=+=,故选:C .7.(3分)A ,B 两名射击运动员进行了相同次数的射击.下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A .AB x x >且22A B S S >B .A B x x >且22A B S S <C .A B x x <且22A B S S > D .A B x x <且22A B S S <【分析】根据平均数及方差的意义直接求解即可.【解答】解:A ,B 两名射击运动员进行了相同次数的射击,当A 的平均数大于B ,且方差比B 小时,能说明A 成绩较好且更稳定. 故选:B .8.(3分)上学期某班的学生都是双人桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( ) A .445x y x y +=⎧⎪⎨=⎪⎩B .454x yx y +=⎧⎪⎨=⎪⎩C .445x yx y -=⎧⎪⎨=⎪⎩D .454x yx y -=⎧⎪⎨=⎪⎩【分析】根据14男生与女生同桌,这些女生占全班女生的15,可以得到1145x y =,根据本学期该班新转入4个男生后,男女生刚好一样多,可得4x y +=,从而可以列出相应的方程组,本题得以解决.【解答】解:由题意可得, 41145x yx y +=⎧⎪⎨=⎪⎩, 故选:A .9.(3分)如图,在Rt ABC ∆和Rt BDE ∆中,90ABC BDE ∠=∠=︒,点A 在边DE 的中点上,若AB BC =,2DB DE ==,连结CE ,则CE 的长为( )A 14B 15C .4D 17【分析】根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB 和BC 的长,根据等面积法可以求得EG 的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可. 【解答】解:作EF CB ⊥交CB 的延长线于点F ,作EG BA ⊥交BA 的延长线于点G ,2DB DE ==,90BDE ∠=︒,点A 是DE 的中点,22222222BE BD DE ∴=+=+1DA EA ==, 2222215AB BD AD ∴=+=+=, AB BC =, 5BC ∴=,22AE BD AB EG⋅⋅=, ∴1252EG⨯⋅=, 解得25EG =, EG BG ⊥,EF BF ⊥,90ABF ∠=︒,∴四边形EFBG 是矩形,255EG BF ∴==, 22BE =,255BF =, 22222565(22)()55EF BE BF ∴=-=-=,2575555CF BF BC =+=+=, 90EFC ∠=︒, 22226575()()1755EC EF CF ∴=+=+=, 故选:D .10.(3分)已知点(,)A a b ,(4,)B c 在直线3(y kx k =+为常数,0)k ≠上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .1【分析】由点(,)A a b ,(4,)B c 在直线3y kx =+上,可得343ak b k c +=⎧⎨+=⎩①②,即得2239(3)3()24ab a ak ka a k a k k =+=+=+-,根据ab 的最大值为9,得14k =-,即可求出2c =. 【解答】解:点(,)A a b ,(4,)B c 在直线3y kx =+上,∴343ak b k c +=⎧⎨+=⎩①②,由①可得:2239(3)3()24ab a ak ka a k a k k=+=+=+-, ab 的最大值为9, 0k ∴<,994k-=, 解得14k =-,把14k =-代入②得:14()34c ⨯-+=,2c ∴=,故选:B .二、填空题(本题有6小题,每题4分,共24分) 11.(4分)分解因式:2m m += (1)m m + .【分析】根据多项式的特征选择提取公因式法进行因式分解. 【解答】解:2(1)m m m m +=+. 故答案为:(1)m m +.12.(4分)正八边形一个内角的度数为 135︒ .【分析】首先根据多边形内角和定理:(2)180(3n n -⋅︒,且n 为正整数)求出内角和,然后再计算一个内角的度数.【解答】解:正八边形的内角和为:(82)1801080-⨯︒=︒, 每一个内角的度数为110801358⨯︒=︒.故答案为:135︒.13.(4分)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是 25. 【分析】直接根据概率公式可求解.【解答】解:盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25. 14.(4分)如图,在直角坐标系中,ABC ∆的顶点C 与原点O 重合,点A 在反比例函数(0,0)ky k x x=>>的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k = 32 .【分析】由点B 的坐标为(4,3)求出5BC =,又AB BC =,AB 与y 轴平行,可得(4,8)A ,用待定系数法即得答案.【解答】解:点B 的坐标为(4,3),(0,0)C ,22435BC ∴=+=, 5AB BC ∴==,AB 与y 轴平行,(4,8)A ∴,把(4,8)A 代入ky x=得: 84k =, 解得32k =, 故答案为:32.15.(4分)某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为()k N .若铁笼固定不动,移动弹簧秤使BP 扩大到原来的(1)n n >倍,且钢梁保持水平,则弹簧秤读数为 kn()N (用含n ,k 的代数式表示).【分析】根据“动力⨯动力臂=阻力⨯阻力臂”分别列式,从而代入计算.【解答】解:如图,设装有大象的铁笼重力为a N ,将弹簧秤移动到B '的位置时,弹簧秤的度数为k ',由题意可得BP k PA a ⋅=⋅,B P k PA a '⋅'=⋅, BP k B P k ∴⋅='⋅',又B P nBP '=, BP k BP k kk B P nBP n⋅⋅∴'===', 故答案为:kn. 16.(4分)如图,在扇形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为 60︒ ,折痕CD 的长为 .【分析】设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,可得OO CD '⊥,CH DH =,6O C OA '==,根据切线的性质开证明60EOF ∠=︒,则可得EF 的度数;然后根据垂径定理和勾股定理即可解决问题.【解答】解:如图,设翻折后的弧的圆心为O ',连接O E ',O F ',OO ',O C ',OO '交CD 于点H ,OO CD ∴'⊥,CH DH =,6O C OA '==,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . 90O EO O FO ∴∠'=∠'=︒, 120AOB ∠=︒, 60EO F ∴∠'=︒,则EF 的度数为60︒; 120AOB ∠=︒, 60O OF ∴∠'=︒,O F OB '⊥,6O E O F O C '='='=,sin 60O F OO '∴'===︒O H ∴'=CH ∴=2CD CH ∴==.故答案为:60︒,三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(6分)(101). (2)解不等式:841x x +<-.【分析】(1)根据立方根和零指数幂可以解答本题; (2)根据解一元一次不等式的方法可以解答本题. 【解答】解:(101)21=- 1=;(2)841x x +<-移项及合并同类项,得:39x -<-, 系数化为1,得:3x >.18.(6分)小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =.求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流. 小惠:证明:AC BD ⊥,OB OD =,AC ∴垂直平分BD .AB AD ∴=,CB CD =,∴四边形ABCD 是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【分析】根据“对角线互相垂直的平行四边形是菱形”进行分析推理. 【解答】解:赞成小洁的说法,补充条件:OA OC =,证明如下: OA OC =,OB OD =,∴四边形ABCD 是平行四边形,又AC BD ⊥,∴平行四边形ABCD 是菱形.19.(6分)观察下面的等式:111236=+,1113412=+,1114520=+,⋯⋯ (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数). (2)请运用分式的有关知识,推理说明这个结论是正确的. 【分析】(1)观察已知等式,可得规律,用含n 的等式表达即可; (2)先通分,计算同分母分式相加,再约分,即可得到(1)中的等式. 【解答】解:(1)观察规律可得:1111(1)n n n n =+++; (2)111(1)n n n +++ 1(1)(1)n n n n n =+++ 1(1)n n n +=+1n=,∴1111(1)n n n n=+++.20.(8分)6月13日,某港口的湖水高度()y cm和时间()x h的部分数据及函数图象如下:()x h⋯1112131415161718⋯()y cm⋯18913710380101133202260⋯(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x=时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【分析】(1)①先描点,然后画出函数图象;②利用数形结合思想分析求解;(2)结合函数图象增减性及最值进行分析说明;(3)结合函数图象确定关键点,从而求得取值范围.【解答】解:(1)①如图:②通过观察函数图象,当4x =时,200y =,当y 值最大时,21x =; (2)该函数的两条性质如下(答案不唯一): ①当27x 时,y 随x 的增大而增大; ②当14x =时,y 有最小值为80;(3)由图象,当260y =时,5x =或10x =或18x =或23x =,∴当510x <<或1823x <<时,260y >,即当510x <<或1823x <<时,货轮进出此港口.21.(8分)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知10AD BE cm ==,5CD CE cm ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(1)连结DE ,求线段DE 的长. (2)求点A ,B 之间的距离.(结果精确到0.1cm .参考数据:sin200.34︒≈,cos200.94︒≈,tan200.36︒≈,sin400.64︒≈,cos400.77︒≈,tan 400.84)︒≈【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得20DCF ∠=︒,利用锐角三角函数即可解决问题;(2)根据横截面是一个轴对称图形,延长CF 交AD 、BE 延长线于点G ,连接AB ,所以//DE AB ,根据直角三角形两个锐角互余可得20A GDE ∠=∠=︒,然后利用锐角三角函数即可解决问题.【解答】解:(1)如图,过点C 作CF DE ⊥于点F ,5CD CE cm ==,40DCE ∠=︒. 20DCF ∴∠=︒,sin 2050.34 1.7()DF CD cm ∴=⋅︒≈⨯≈, 2 3.4DE DF cm ∴=≈,∴线段DE 的长约为3.4cm ;(2)横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB , //DE AB ∴, A GDE ∴∠=∠, AD CD ⊥,BE CE ⊥, 90GDF FDC ∴∠+∠=︒, 90DCF FDC ∠+∠=︒, 20GDF DCF ∴∠=∠=︒, 20A ∴∠=︒, 1.71.8()cos200.94DF DG cm ∴=≈≈︒,10 1.811.8()AG AD DG cm ∴=+=+=, 2cos20211.80.9422.2()AB AG cm ∴=⋅︒≈⨯⨯≈.∴点A ,B 之间的距离22.2cm .22.(10分)某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:调查问卷(部分)1.你每周参加家庭劳动时间大约是______h.如果你每周参加家庭劳动时间不足2h,请回答第2个问题:2.影响你每周参加家庭劳动的主要原因是______(单选).A.没时间B.家长不舍得C.不喜欢D.其它中小学生每周参加家庭劳动时间()x h分为5组:第一组(00.5)x<,x<,第二组(0.51)第三组(1 1.5)x<,第四组(1.52)x.x<,第五组(2)根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?(2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h.请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.【分析】(1)由中位数的定义即可得出结论;(2)用1200乘“不喜欢”所占百分比即可;(3)根据中位数解答即可.【解答】解:(1)由统计图可知,抽取的这1200名学生每周参加家庭劳动时间的中位数为第600个和第601个数据的平均数,故中位数落在第二组;(2)(1200200)(18.7%43.2%30.6%)175-⨯---=(人),答:在本次被调查的中小学生中,选择“不喜欢”的人数为175人;(3)由统计图可知,该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一).23.(10分)已知抛物线21:(1)4(0)L y a x a =+-≠经过点(1,0)A . (1)求抛物线1L 的函数表达式.(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.【分析】(1)把(1,0)A 代入2(1)4y a x =+-即可解得抛物线1L 的函数表达式为223y x x =+-;(2)将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,顶点为(1,4)m --+,关于原点的对称点为(1,4)m -,代入223y x x =+-可解得m 的值为4;(3)把抛物线1L 向右平移(0)n n >个单位得抛物线3L 为2(1)4y x n =-+-,根据点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,当6t >时,s r >,可得22[(9)4][(3)4]0t n t n ------->,即可解得n 的取值范围是3n >. 【解答】解:(1)把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=, 解得1a =,22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-; (2)抛物线21:(1)4L y x =+-的顶点为(1,4)--,将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+, 而(1,4)m --+关于原点的对称点为(1,4)m -, 把(1,4)m -代入223y x x =+-得: 212134m +⨯-=-,解得4m =, 答:m 的值为4;(3)把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+-,点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,22(81)4(9)4s t n t n ∴=--+-=---, 22(41)4(3)4r t n t n =--+-=---, 当6t >时,s r >, 0s r ∴->,22[(9)4][(3)4]0t n t n ∴------->, 整理变形得:22(9)(3)0t n t n ----->, (93)(93)0t n t n t n t n --+-----++>, (62)(122)0n t -->, 6t >, 1220t ∴-<, 620n ∴-<,解得3n >,n ∴的取值范围是3n >.24.(12分)如图1,在正方形ABCD 中,点F ,H 分别在边AD ,AB 上,连结AC ,FH 交于点E ,已知CF CH =.(1)线段AC 与FH 垂直吗?请说明理由.(2)如图2,过点A ,H ,F 的圆交CF 于点P ,连结PH 交AC 于点K .求证:KH AK CH AC=.(3)如图3,在(2)的条件下,当点K 是线段AC 的中点时,求CPPF的值.【分析】(1)通过证明Rt DCF Rt BCH ∆≅∆,结合正方形和等腰三角形的性质进行推理证明; (2)过点K 作KM AH ⊥,交AH 于点M ,通过证明KMH CBH ∆∆∽,//KM BC ,从而利用相似三角形的性质分析推理;(3)设圆的半径为r ,FHP α∠=,在(2)的条件下,根据线段中点的概念结合解直角三角形求得cos CP CK α=⋅,2sin PF r α=⋅,从而进行分析计算. 【解答】(1)解:线段AC 与FH 垂直,理由如下:在正方形ABCD 中,CD CB =,90D B ∠=∠=︒,45DCA BCA ∠=∠=︒, 在Rt DCF ∆和Rt BCH ∆中 CD CBCF CH =⎧⎨=⎩, Rt DCF Rt BCH(HL)∴∆≅∆, DCF BCH ∴∠=∠, FCA HCA ∴∠=∠,又CF CH =, AC FH ∴⊥;(2)证明:90DAB ∠=︒,FH ∴为圆的直径,90FPH ∴∠=︒,又CF CH =,AC FH ⊥,∴点E 为FH 的中点,CFD KHA ∴∠=∠,又Rt DCF Rt BCH ∆≅∆,CFD CHB ∴∠=∠, KHA CHB ∴∠=∠,过点K 作KM AH ⊥,交AH 于点M ,90KMH B ∴∠=∠=︒,KMH CBH ∴∆∆∽,//KM BC ,∴KH KM CH BC =,KM AKBC AC =, ∴KH AKCH AC=. (3)K 为AC 中点,∴12KH AK CH AC ==, 设MH a =,则2BH a =,3KM AM a ==, 6AB CB a ∴==,4AH a =,在Rt BCH ∆中,22(6)(2)210CH CF a a a ==+=, 在Rt AFH ∆中,22(4)(4)42FH a a a +, 22EH a ∴=,180EPH FAH ∠+∠=︒, 90EPH CEH ∴∠=∠=︒,又CHE PFH ∠=∠, FPH HEC ∴∆∆∽,∴PF FHEH CH=, 410PF ∴=, 610CP CF PF ∴=-=,∴32CF PF =。

2022年浙江省舟山市中考数学试卷A卷附解析

2022年浙江省舟山市中考数学试卷A卷附解析

2022年浙江省舟山市中考数学试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=2x的图像上的三个点,0>y1>y2>y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x3>x1>x2C.x1>x2>x3D.x1>x3>x22.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°3.有下列四个命题:①对顶角相等;②内错角相等;③有两边和其中一边的对角对应相等的两个三角形全等;④如果两条直线都垂直于第三条直线,那么这两条直线平行.其中真命题有()A.1个B.2个C.2个D.4个4.如图所示,AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD的度数等于()A.110°B.70°C.55°D.35°5.如图,已知直线AB∥CD,∠C=72°,且BE=EF,则∠E等于()A. 18°B.36°C.54°D. 72°6.如图所示,∠l和∠2是()A.同位角B.同旁内角C.内错角D.以上结论都不对7.下列计算27a 8÷31a 3÷9a 2的顺序不正确的是( )A .(27÷31÷9)a 8-3-2B .(27a 8÷31a 3)÷9a 2C .27a 8÷(31a 3÷9a 2)D .(27a 8÷9a 2)÷31a 38.如图,OF 是∠BOE 的平分线,OC ⊥OE ,OD ⊥OF ,那么,图中与∠AOF 互补的角有( ) A .1个B .2个C .3个D . 4个9.下列说法中,正确的是( ) A .a -是负数B .a 一定是非负数C .不论a 是什么数,都有11a a⋅=D .7a一定是分数 10.下列运算结果为负值的是( ) A .(-7)×(-4)B .(-6)+(-5)C . 82-⨯-D .O ×(-2)×811.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为5:1,则要使这块石头滚动,至少要将杠杆的A 端向下压( ) A .100cm B .60cmC .50cmD .10cm12.两圆有多种位置关系,如图中不存在的位置关系是________.13.计算:cos45°= ,sin60°×cos30°= .14.在中国地理地图册上,连结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之· C BA二间的距离如图所示.飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为 千米.15.一次函数21y x =-+的图象,经过抛物线21(0)y x mx m =++≠的顶点,则 m= . 16.仔细观察下列图形,并按规律在横线上画出适当的图形: 17.计算:2591-= ,22158+±= . 18.将两块直角三角板的直角顶点重合(如图),若∠AOD = 110°,则∠COB= .三、解答题19.如图,△ABC 中,D 、E 分别为 BC 、AC 上的点,BD= 2DC ,AE= 2EC ,AD 与BE 相交于点 M ,求AM :MD 的值.20.在一块长方形镜面玻璃的四周镇上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2:1,已知镜面玻璃的价格是每平方米 12 元,边框的价格是每米3元,另外,制作这面镜子还需加工费 45 元,设制作这面镜子的总费用是 y 元,镜子的宽度是x 米,求:(1)y 与x 的函数关系式;(2)如果制作宽为 1 米的镜子,需花多少钱?21.由五个边长为1的正方形纸片拼成的图形如图所示,要把它剪成三块,拼接成一个正方形,请画出裁剪线和拼成的正方形.AA22.如图所示,已知平行四边形ABCD中,E是CD边的中点,连结BE并延长与AD的延长线交于点F.求证:BC=DF.23.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y,请写出y与n(表示第n个图形)的关系式;(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.24.如图,用同样大小的四个等边三角形,可以拼成一个轴对称图形,你能再拼出一种轴对称图形吗?25.如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形.(要求:尺规作图,保留作图痕迹,不写作法和证明)26.如图所示,其中的图案是小树的一半,以树干为对称轴画出小树的另一半.27.分解因式: (1)2216ax ay -; (2)222x xy y -+-; (3)2221a ab b -+-; (4)2()10()25x y x y +-++ .28.小敏有红色、白色、黄色三件上衣,又有米色、白色的两条裤子.如果她最喜欢的搭配是白色上衣配米色裤子,那么黑暗中,她随机拿出一件上衣和一条裤子,正是她最喜欢搭配的颜色.请你用列表或画树状图,求出这样的巧合发生的概率是多少?BA红白 黄米(红,白(红,米(白,白(白,米(黄,或29.从2005年9月起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注。

浙江省舟山市2022年中考数学试卷(解析版)

浙江省舟山市2022年中考数学试卷(解析版)

2022年浙江省舟山市中考数学试卷一、选择题〔此题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选多项选择、错选,均不得分〕1.〔3分〕﹣3的绝对值是〔〕A.﹣3 B.3C.D.考点:绝对值.菁优网版权所有专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.应选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.〔3分〕〔2022年浙江舟山〕一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是〔〕A.6 B.7C.8D.9考点:中位数.菁优网版权所有分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,那么中位数为:8.应选C.点评:此题考查了中位数的知识:将一组数据按照从小到大〔或从大到小〕的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.3.〔3分〕〔2022年浙江舟山〕2013年12月15日,我国“玉兔号〞月球车顺利抵达月球外表,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为〔〕A.3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.解答:解:384 400 000=3.844×108.应选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.〔3分〕〔2022年浙江舟山〕小红同学将自己5月份的各项消费情况制作成扇形统计图〔如图〕,从图中可看出〔〕A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.菁优网版权所有分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,应选项正确;B、不能确定各项的消费金额,应选项错误;C、不能看出消费的总金额,应选项错误;D、不能看出增减情况,应选项错误.应选A.点评:此题考查了扇形统计图的知识,扇形统计图能清楚的反响各局部所占的百分比,难度较小.5.〔3分〕〔2022年浙江舟山〕如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,那么AB的长为〔〕A.2 B.4C.6D.8考点:垂径定理;勾股定理.菁优网版权所有分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,应选D.点评:此题考查了勾股定理以及垂径定理,是根底知识要熟练掌握.6.〔3分〕〔2022年浙江舟山〕以下运算正确的选项是〔〕A.2a2+a=3a3B.〔﹣a〕2÷a=a C.〔﹣a〕3•a2=﹣a6D.〔2a2〕3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.菁优网版权所有专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法那么计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法那么计算得到结果,即可做出判断.解答:解:A、原式不能合并,应选项错误;B、原式=a2÷a=a,应选项正确;C、原式=﹣a3•a2=﹣a5,应选项错误;D、原式=8a6,应选项错误.应选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法那么是解此题的关键.7.〔3分〕〔2022年浙江舟山〕如图,将△ABC沿BC方向平移2cm得到△DEF,假设△ABC 的周长为16cm,那么四边形ABFD的周长为〔〕A.16cm B.18cm C.20cm D.22cm考点:平移的性质.菁优网版权所有分析:根据平移的根本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.应选C.点评:此题考查平移的根本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.〔3分〕〔2022年浙江舟山〕一个圆锥的侧面展开图是半径为6的半圆,那么这个圆锥的底面半径为〔〕A.1.5 B.2C.2.5 D.3考点:圆锥的计算.菁优网版权所有分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,那么得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.应选D.点评:此题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:〔1〕圆锥的母线长等于侧面展开图的扇形半径;〔2〕圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.〔3分〕〔2022年浙江舟山〕如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,假设HG 延长线恰好经过点D,那么CD的长为〔〕A.2cm B.2cm C.4cm D.4cm考点:翻折变换〔折叠问题〕.菁优网版权所有分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG〔SAS〕,∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.应选B.点评:此题考查了翻折变换、三角形的中位线定理,解答此题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.〔3分〕〔2022年浙江舟山,10,3分〕当﹣2≤x≤1时,二次函数y=﹣〔x﹣m〕2+m2+1有最大值4,那么实数m的值为〔〕A.﹣B.或C.2或D.2或﹣或考点:二次函数的最值.菁优网版权所有专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣〔﹣2﹣m〕2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=〔舍去〕;③当m>1时,x=1时,二次函数有最大值,此时,﹣〔1﹣m〕2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.应选C.点评:此题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题〔此题有6小题,每题4分,共24分〕11.〔4分〕〔2022年浙江舟山,11,4分〕方程x2﹣3x=0的根为0或3.考点:解一元二次方程-因式分解法.菁优网版权所有分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x〔x﹣3〕=0,解得,x1=0,x2=3.点评:此题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.〔4分〕〔2022年浙江舟山,12,4分〕如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,那么树高BC为7tanα米〔用含α的代数式表示〕.考点:解直角三角形的应用-仰角俯角问题.菁优网版权所有分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα〔米〕.故答案为:7tanα.点评:此题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.考点:列表法与树状图法.菁优网版权所有分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.14.〔4分〕〔2022年浙江舟山,14,4分〕如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,那么线段BD的长为6.考点:旋转的性质;相似三角形的判定与性质.菁优网版权所有分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.〔4分〕〔2022年浙江舟山,15,4分〕过点〔﹣1,7〕的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.那么在线段AB上,横、纵坐标都是整数的点的坐标是〔1,4〕,〔3,1〕.考点:两条直线相交或平行问题.菁优网版权所有分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点〔﹣1,7〕即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点〔﹣1,7〕的一条直线与直线平行,设直线AB为y=﹣x+b;把〔﹣1,7〕代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是〔1,4〕,〔3,1〕.故答案为〔1,4〕,〔3,1〕.点评:此题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是此题的关键.16.〔4分〕〔2022年浙江舟山,16,4分〕如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.以下结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④假设点F恰好落在上,那么AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.菁优网版权所有专题:推理填空题.分析:〔1〕由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.〔2〕根据“点到直线之间,垂线段最短〞可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.〔3〕连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一〞可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.〔4〕利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.〔5〕首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.解答:解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF〞正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短〞可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2〞错误.〔3〕当AD=2时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切〞正确.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴=.∵FC=EF,∴FH=FD.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=BD.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠AFB=90°.∴∠F AB=30°.∴FB=AB=4.∴DB=4.∴AD=AB﹣DB=4.∴结论“AD=2〞错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影局部.∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×4=16.∴EF扫过的面积为16.∴结论“EF扫过的面积为16〞正确.故答案为:①、③、⑤.点评:此题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度.三、解答题〔此题有8小题,第17~19题每题6分,第20,21题每题6分,第22,23题每题6分,第24题12分,共66分〕17.〔6分〕〔2022年浙江舟山,17,3分〕〔1〕计算:+〔〕﹣2﹣4cos45°;答案:解:〔1〕原式=2+4﹣4×=2+4﹣2=4〔2022年浙江舟山,17,3分〕〔2〕化简:〔x+2〕2﹣x〔x﹣3〕答案:解:〔2〕原式=x2+4x+4﹣x2+3x=7x+4.考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值.菁优网版权所有专题:计算题.分析:〔1〕原式第一项化为最简二次根式,第二项利用负指数幂法那么计算,第三项利用特殊角的三角函数值计算即可得到结果;〔2〕原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法那么计算即可得到结果.解答:解:〔1〕原式=2+4﹣4×=2+4﹣2=4;〔2〕原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法那么是解此题的关键.18.〔6分〕〔2022年浙江舟山,18,6分〕解方程:=1.考点:解分式方程.菁优网版权所有专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x〔x﹣1〕﹣4=x2﹣1,去括号得:x2﹣x﹣4=x2﹣1,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.19.〔6分〕〔2022年浙江舟山,19,6分〕某校为了了解学生孝敬父母的情况〔选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它〕,在全校范围内随机抽取了假设干名学生进行调查,得到如图表〔局部信息未给出〕:根据以上信息解答以下问题:学生孝敬父母情况统计表:选项频数频率A m0.15B60 pC n0.4D48 0.2〔1〕这次被调查的学生有多少人?〔2〕求表中m,n,p的值,并补全条形统计图.〔3〕该校有1600名学生,估计该校全体学生中选择B选项的有多少人?考点:条形统计图;用样本估计总体;频数〔率〕分布表.菁优网版权所有分析:〔1〕用D选项的频数除以D选项的频率即可求出被调查的学生人数;〔2〕用被调查的学生人数乘以A选项的和C频率求出m和n,用B选项的频数除以被调查的学生人数求出p,再画图即可;〔3〕用该校的总人数乘以该校全体学生中选择B选项频率即可.解答:解:〔1〕这次被调查的学生有48÷0.2=240〔人〕;〔2〕m=240×0.15=36,n=240×0.4=96,p==0.25,画图如下:〔3〕假设该校有1600名学生,那么该校全体学生中选择B选项的有1600×0.25=400〔人〕.点评:此题考查了条形统计图和频数、频率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个工程的数据.20.〔8分〕〔2022年浙江舟山,20,8分〕:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.〔1〕求证:△DOE≌△BOF.〔2〕当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.菁优网版权所有分析:〔1〕利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF 〔ASA〕;〔2〕首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:〔1〕证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF〔ASA〕;〔2〕解:当∠DOE=90°时,四边形BFED为菱形,理由:∵△DOE≌△BOF,∴BF=DE,又∵BF∥DE,∴四边形EBFD是平行四边形,∵BO=DO,∠EOD=90°,∴EB=DE,∴四边形BFED为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.21.〔8分〕〔2022年浙江舟山,21,8分〕某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.〔1〕求每辆A型车和B型车的售价各为多少元.〔2〕甲公司拟向该店购置A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.那么有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.菁优网版权所有分析:〔1〕每辆A型车和B型车的售价分别是x万元、y万元.那么等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;〔2〕设购置A型车a辆,那么购置B型车〔6﹣a〕辆,那么根据“购置A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元〞得到不等式组.解答:解:〔1〕每辆A型车和B型车的售价分别是x万元、y万元.那么,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;〔2〕设购置A型车a辆,那么购置B型车〔6﹣a〕辆,那么依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购置2辆A型车和4辆B型车;方案二:购置3辆A型车和3辆B型车.点评:此题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.〔10分〕〔2022年浙江舟山,22,10分〕实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后〔包括1.5小时〕y与x可近似地用反比例函数y=〔k>0〕刻画〔如下图〕.〔1〕根据上述数学模型计算:①喝酒后几时血液中的酒精含量到达最大值?最大值为多少?②当x=5时,y=45,求k的值.〔2〕按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.菁优网版权所有分析:〔1〕①利用y=﹣200x2+400x=﹣200〔x﹣1〕2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;〔2〕求出x=11时,y的值,进而得出能否驾车去上班.解答:解:〔1〕①y=﹣200x2+400x=﹣200〔x﹣1〕2+200,∴喝酒后1时血液中的酒精含量到达最大值,最大值为200〔毫克/百毫升〕;②∵当x=5时,y=45,y=〔k>0〕,∴k=xy=45×5=225;〔2〕不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,那么y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.23.〔10分〕〔2022年浙江舟山,23,10分〕类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形〞.〔1〕:如图1,四边形ABCD是“等对角四边形〞,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.〔2〕在探究“等对角四边形〞性质时:①小红画了一个“等对角四边形〞ABCD〔如图2〕,其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜测:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等〞.你认为她的猜测正确吗?假设正确,请证明;假设不正确,请举出反例.〔3〕:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC 的长.考点:四边形综合题.菁优网版权所有分析:〔1〕利用“等对角四边形〞这个概念来计算.〔2〕①利用等边对等角和等角对等边来证明;②举例画图;〔3〕〔Ⅰ〕当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;〔Ⅱ〕当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:〔1〕如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;〔2〕①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,〔3〕〔Ⅰ〕如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2〔Ⅱ〕如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:此题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形〞这个概念.24.〔12分〕〔2022年浙江舟山,24,12分〕如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为〔0,2〕,直线AB交x 轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.〔1〕当m=时,求S的值.〔2〕求S关于m〔m≠2〕的函数解析式.〔3〕①假设S=时,求的值;②当m>2时,设=k,猜测k与m的数量关系并证明.考点:二次函数综合题.菁优网版权所有专题:综合题.分析:〔1〕首先可得点A的坐标为〔m,m2〕,再由m的值,确定点B的坐标,继而可得点E的坐标及BE、OE的长度,易得△ABE∽△CBO,利用对应边成比例求出CO,根据轴对称的性质得出DO,继而可求解S的值;〔2〕分两种情况讨论,〔I〕当0<m<2时,将BE•DO转化为AE•BO,求解;〔II〕当m>2时,由〔I〕的解法,可得S关于m的函数解析式;〔3〕①首先可确定点A的坐标,根据===k,可得S△ADF=k•S△BDF•S△AEF=k•S△BEF,从而可得===k,代入即可得出k的值;②可得===k,因为点A的坐标为〔m,m2〕,S=m,代入可得k与m的关系.解答:解:〔1〕∵点A在二次函数y=x2的图象上,AE⊥y轴于点E且AE=m,∴点A的坐标为〔m,m2〕,当m=时,点A的坐标为〔,1〕,∵点B的坐标为〔0,2〕,∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,∴△ABE∽△CBO,∴==,∴CO=2,∵点D和点C关于y轴对称,∴DO=CO=2,∴S=BE•DO=×1×2=;〔2〕〔I〕当0<m<2时〔如图1〕,∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴=,即BE•DO=AE•BO=2m.∴S=BE•DO=×2m=m;〔II〕当m>2时〔如图2〕,同〔I〕解法得:S=BE•DO=AE•OB=m,由〔I〕〔II〕得,S关于m的函数解析式为S=m〔m>0且m≠2〕.〔3〕①如图3,连接AD,∵△BED的面积为,∴S=m=,∴点A的坐标为〔,〕,∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∴k===;②k与m之间的数量关系为k=m2,如图4,连接AD,∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∵点A的坐标为〔m,m2〕,S=m,∴k===m2〔m>2〕.点评:此题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答此题的关键是熟练数形结合思想及转化思想的运用,难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

舟山市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)在0,-2,1,-3这四个数中,绝对值最小的是()
A . -3
B . 1
C . -2
D . 0
2. (2分) (2017七下·昭通期末) 下列命题正确的是()
A . 若a>b,b<c,则a>c
B . 若a>b,则ac>bc
C . 若a>b,则ac2>bc2
D . 若ac2>bc2 ,则a>b
3. (2分)下列因式分解正确的是()
A . x3﹣x=x(x2﹣1)
B . x2+3x+2=x(x+3)+2
C . x2﹣y2=(x﹣y)2
D . x2+2x+1=(x+1)2
4. (2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是
A .
B .
C .
D .
5. (2分)如图,在一次函数y=-x+3的图像上取点P,作PA⊥x轴,垂足为A;作PB⊥y轴,垂足为B;且矩形OAPB的面积为2,则这样的点P共有().
A . 4个
B . 3个
C . 2个
D . 1个
6. (2分)下列平面图形,既是中心对称图形,又是轴对称图形的是()
A . 等腰三角形
B . 正五边形
C . 平行四边形
D . 矩形
7. (2分)(2017·雁塔模拟) 如图,G是正方形形ABCD的边BC上一点,DE、BF分别垂直AG于点E、F,则图中与△ABF相似的三角形有()
A . 1个
B . 2个
C . 3个
D . 4个
8. (2分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()
A . 众数是98
B . 平均数是90
C . 中位数是91
D . 方差是56
9. (2分) (2016九上·仙游期末) 抛物线的顶点坐标为()
A .
B .
C .
D .
10. (2分)(2019·永康模拟) 已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x =1,其图象的一部分如图所示,下列说法中①abc<0;②2a+b=0;③当﹣1<x<3时,y>0;④2c﹣3b<0.正确的结论有()
A . ①②
B . ②③④
C . ①③
D . ①②④
二、填空题 (共8题;共8分)
11. (1分)在1~1000这1000个自然数中,立方根为有理数的个数为________
12. (1分)在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示________.
13. (1分)函数y=的自变量的取值范围是________ .
14. (1分) (2017七下·汶上期末) 根据图中各点的位置,在数轴上A,B,C,D四个点中,其中表示的数与4﹣的结果最接近的点是________.
15. (1分) (2020七下·江阴月考) 如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=80°,则∠2的度数为________.
16. (1分) (2019八下·忻城期中) 如图,在△ABC中,∠ACB=90°,∠A=30°,D是AB的中点,BC=3,则CD=________.
17. (1分)如图,AB为⊙O的直径,半径OA的垂直平分线交⊙O于点C,D,P为优弧AC上一点,则∠APC=________°.
18. (1分)如图,AB是圆O的直径,OB=3,BC是圆 O的弦,∠ABC的平分线交圆 O于点 D,连接OD,若∠BAC=20°,弧AD的长等于________.
三、解答题 (共10题;共89分)
19. (5分) (2016七上·昌邑期末) 已知A= ,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.
20. (10分)解下列不等式(组),并在数轴上表示解集:
(1)≥ ﹣1;
(2).
21. (5分)已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.
22. (5分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)列表或画树状图表示所有取牌的可能性;
(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?
23. (9分) (2019八下·温州期中) 某校为了解八年级学生的视力情况,随机抽样调查了部分八年级学生的视力,以下是根据调査结果绘制的统计表与统计图的一部分.根据以上信息,解答下列问题:
分组视力人数
A 3.95≤x≤4.252
B 4.25<x≤4.55a
C 4.55<x≤4.8520
D 4.85<x≤5.15b
E 5.15<x≤5.453
(1)统计表中,a=________,b=________;
(2)视力在4.85<x≤5.15范围内的学生数占被调查学生数的百分比是________;
(3)本次调查中,视力的中位数落在________组;
(4)若该校八年级共有400名学生,则视力超过4.85的学生约有多少人?
24. (5分)(2020·黄冈模拟) 如图所示,某施工队要测量隧道长度,米,,施工队站在点D处看向B,测得仰角,再由D走到处测量,米,测得仰角为,求隧道长.(,,).
25. (15分) (2018九上·花都期中) 为满足市场需求,某超市在八月十五“中秋节”来临前夕,购进一种品牌的月饼,每盒进价40元,根据以往的销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)写出每天的销售量盒与每盒月饼上涨元之间的函数关系式.
(2)当每盒售价定为多少元时,当天的销售利润元最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定,这种月饼每盒的利润不得高于进价的,那么超市每天获得最大
利润是多少?
26. (10分)(2019·襄阳) 如图,点是的内心,的延长线和的外接圆圆相交于点,过作直线 .
(1)求证:是圆的切线;
(2)若,,求优弧的长.
27. (15分) (2020八下·来宾期末) 在菱形ABCD中,∠B=60°,点E在射线BC上运动,点F在射线CD上,∠EAF=60°。

(1)当点E在线段BC上时(如图①),猜想线段AB与EC,CF之间的数量关系,并证明你的结论;
(2)当点E在线段BC的延长线上时(如图②),线段AB与EC,CF之间的数量关系又如何,写出你的结论,并加以证明;
(3)连接DE,当∠ADE为直角,且AB=4时(如图③),求AF的长。

28. (10分)为鼓励居民节约用电,某市试行每户每月阶段电价加收费制,具体执行方案如表:
每户每月用电数(度)阶段阶段电价(元/度)
小于等于2000.55
大于200小于300的部分0.65
大于等于300小于400的部分0.8
大于等于400的部分1
例如:一户居民七月份用电400度,则需缴电费200×0.55+100×0.65+100×0.85=260(元).
(1)若小莹家六月份用电360度,则需缴电费多少元?
(2)已知小悦家五、六月份共用电540度,其中六月份用电量大于五月份用电量,共缴电费317元,问小悦家五、六月份各用电多少度?
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共10题;共89分)
19-1、
20-1、20-2、21-1、
22-1、23-1、23-2、23-3、
23-4、24-1、
25-1、25-2、25-3、
26-1、
26-2、
27-1、
27-2、
27-3、28-1、
28-2、。

相关文档
最新文档