数字图像处理几何变换
《数字图像处理》课程教学大纲
《数字图像处理》课程教学大纲课程代码:ABJD0619课程中文名称:数字图像处理课程英文名称:Dig让a1ImageProcessing课程性质:选修课程学分数:3学分课程学时数:48学时(32理论课时+16实验学时)授课对象:电子信息工程本课程的前导课程:高等数学,概率论,线性代数,数字信号处理,信息论,程序设计等一、课程简介数字图像处理是一门新兴的跨学科的前沿高科技,在军事、工业、科研、医学等领域获得了广泛应用,是国内外高校和科研院所的研窕生教育中一个重要的研究方向。
通过本课程的学习,同学们将掌握数字图像处理的基本理论与方法,包括图像变换、图像增强、图像分割、图像恢复、图像识别、图像压缩编码、数字图像处理系统及应用等内容。
二、教学基本内容和要求(-)数字图像处理方法概述教学内容:数字图像处理的研究对象、基本应用、研究内容等,数字图像的基本概念、彩色图像的调色板等概念。
课程的重点、难点:重点:CDIB类与程序框架结构介绍。
难点:调色板的基本概念和应用。
教学要求:D了解本课程研究的对象、内容及其在培养软件编程高级人才中的地位、作用和任务;2)了解数字图像处理的应用;3)理解数字图像的基本概念、与设备相关的位图(DDB)、与设备无关的位图(D1B);4)理解调色板的基本概念和应用;5)了解CD1B类与程序框架结构介绍;6)掌握位图图像处理技术。
(二)图像的几何变换教学内容:图像的几何变换种类以及概念,几何变换的实现原理和实施方法课程的重点、难点:重点:镜像变换。
难点:旋转。
教学要求:1)理解图像的缩放、平移、镜像变换、转置、旋转。
(三)图像灰度变换教学内容:直方图的概念、灰度的点运算(包含灰度信息的线性变化、指数变换等)、直方图的均匀化和规定化课程的重点、难点:重点:灰度直方图。
难点:灰度分布均衡化。
教学要求:1)了解非O元素取1法、固定阈值法、双固定阈值法的图像灰度变换;2)掌握灰度的线性变换、窗口灰度变换处理、灰度拉伸、灰度直方图、灰度分布均衡化。
【精选】数字图像处理第3章
设定加权因子 ai 和 bi 的值,可以得到不同的变换。例如,当选定
a2 b1 切。
1 ,b2
0.1
,a1
a0
b0
0
,该情况是图像剪切的一种列剪
(a)原始图像
Digital Image Processing
(b)仿射变换后图像
3.1 图像的几何变换
◘透视变换 :
把物体的三维图像表示转变为二维表示的过程,称为透视 变换,也称为投影映射,其表达式为:
a2
b2
a1 b1
a0
b0
y
1
平移、比例缩放和旋转变换都是一种称为仿射变换的特殊情况。
仿射变换具有如下性质:
(1)仿射变换有6个自由度(对应变换中的6个系数),因此,仿射变换后 互相平行直线仍然为平行直线,三角形映射后仍是三角形。但却不能
保 证将四边形以上的多边形映射为等边数的多边形。
1D-DFT的矩阵表示 :
F (0)
F (1)
WN00 WN10
F (2)
WN20
F (N 1)
W
(N N
1)0
WN01 WN11 WN21
WN(N 1)1
W
0( N
N
1)
WN1(N 1)
第3章 图像变换
◆ 3.1 图像的几何变换 ◆ 3.2 图像的离散傅立叶变换 ◆ 3.3 图像变换的一般表示形式 ◆ 3.4 图像的离散余弦变换 ◆ 3.5 图像的离散沃尔什-哈达玛变换 ◆ 3.6 K-L变换 ◆ 3.7 本章小结
数字图像处理第五章
系统失真是有规律的、能预测的;非系统失真则是随 机的。
当对图像作定量分析时,就要对失真的图像先进行精 确的几何校正(即将存在几何失真的图像校正成无几何失 真的图像),以免影响定量分析的精度。
几何校正方法
图像几何校正的基本方法是先建立几何校正的数学模型; 其次利用已知条件确定模型参数;最后根据模型对图像进行 几何校正。通常分两步: ①图像空间坐标变换;首先建立图像像点坐标(行、列 号)和物方(或参考图)对应点坐标间的映射关系, 解求映射关系中的未知参数,然后根据映射关系对图 像各个像素坐标进行校正; ②确定各像素的灰度值(灰度内插)。
因此还有
f ( x , y ) f ( x, y) ( x , y )
二维线性位移不变系统 如果对二维函数施加运算T[· ] ,满足 ⑴ T f1 x, y f 2 x, y T f1 x, y T f 2 x, y ⑵ T af x, y aT f x, y
但实际获取的影像都有噪声,因而只能求F(u,v)的估 ˆ (u, v) 。 计值 F
N (u, v) ˆ F (u, v) F (u, v) H (u, v)
再作傅立叶逆变换得
1 j 2 ( ux vy) ˆ ( x, y) f ( x, y) f N ( u , v ) H ( u , v ) e dudv
采用线性位移不变系统模型的原由: 1)由于许多种退化都可以用线性位移不变模型来近似, 这样线性系统中的许多数学工具如线性代数,能用于 求解图像复原问题,从而使运算方法简捷和快速。 2)当退化不太严重时,一般用线性位移不变系统模型来 复原图像,在很多应用中有较好的复原结果,且计算 大为简化。 3)尽管实际非线性和位移可变的情况能更加准确而普遍 地反映图像复原问题的本质,但在数学上求解困难。 只有在要求很精确的情况下才用位移可变的模型去求 解,其求解也常以位移不变的解法为基础加以修改而 成。
数字图像处理 -习题2增强-噪声-几何变换-频域变换
第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。
2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。
3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。
4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
5. 数字图像处理包含很多方面的研究内容。
其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。
6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。
二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。
B、基于像素的图像增强方法是基于频域的图像增强方法的一种。
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。
D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。
3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。
②基于像素的图像增强方法是基于空域的图像增强方法的一种。
数字图像处理图像变换实验报告
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。
图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。
数字图像处理---图像的几何变换
数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。
数字图像的几何运算
数字图像的几何运算数字图像的几何运算是指对图像进行平移、旋转、缩放和翻转等几何变换操作的过程。
这些几何运算可以改变图像的位置、方向、大小和形状,是数字图像处理中常用的操作之一。
本文将介绍几何运算的原理和应用,并讨论其在图像处理领域的重要性和作用。
一、几何运算的原理数字图像是由像素组成的二维矩阵,每个像素代表图像的一个点,包含了图像的颜色和位置信息。
几何运算是基于像素的位置信息对图像进行变换和调整的方法,可以通过修改像素的坐标来实现图像的平移、旋转、缩放和翻转等操作。
1. 平移平移是指将图像沿着水平和垂直方向进行移动,使得图像的位置发生变化。
平移操作可以通过修改像素的坐标来实现,将每个像素的坐标按照设定的平移量进行移动,从而改变图像的位置。
平移操作可以用以下公式表示:R’(x, y) = R(x-dx, y-dy)R(x, y)代表原始图像的像素,R’(x, y)代表平移后的图像像素,dx和dy分别代表水平和垂直方向的平移量。
二、几何运算的应用几何运算在数字图像处理中具有重要的应用价值,能够实现图像的位置、方向、大小和形状的调整,为图像处理提供了丰富的操作手段。
以下是几何运算的一些常见应用:1. 图像校正对于拍摄时出现的倾斜、扭曲等问题,可以通过旋转操作对图像进行校正,使得图像恢复到正常的状态。
图像校正能够提高图像的质量和美观度,减少图像处理时的误差和影响。
2. 图像增强通过缩放操作对图像进行放大或缩小,可以改变图像的大小和细节,使得图像更加清晰和细致。
图像增强能够提高图像的清晰度和可视性,使得图像更加逼真和吸引人。
3. 图像合成通过平移操作将多个图像进行位置调整,可以实现多个图像的合成和叠加,融合不同图像的信息和特点,生成新的图像内容。
图像合成能够实现图像的复杂处理和创意设计,为图像处理提供了更多的可能性。
4. 图像镜像通过翻转操作对图像进行镜像处理,可以改变图像的对称性和形状,生成镜像对称的图像。
数字图像处理课件第6章图像的几何变换
x Hx H
y Hy H
第6章 图像的几何变换
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1
的平面上,如图6-2所示。如果将xOy平面内的三角形abc的 各顶点表示成齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H =1平面内的三角形a1b1c1的各顶点。
图6-2 齐次坐标的几何意义
第6章 图像的几何变换
齐次坐标在2D图像几何变换中的另一个应用是:如某 点S(60 000,40 000)在16位计算机上表示,由于大于32767 的最大坐标值,需要进行复杂的处理操作。但如果把S的坐 标形式变成(Hx, Hy, H)形式的齐次坐标,则情况就不同了。 在齐次坐标系中,设H=1/2,则S(60 000,40 000)的齐次坐 标为(x/2,y/2,1/2),那么所要表示的点变为(30 000, 20 000,1/2),此点显然在16位计算机上二进制数所能表示 的范围之内。
(图像上各点的新齐次坐标)
(图像上各点的原齐次坐标)
第6章 图像的几何变换 设变换矩阵T为
a b p
T c
d
q
l m s
则上述变换可以用公式表示为
=
T
Hx1' Hy1'
Hx2' Hy2'
Hxn' Hyn'
x1 x2 xn
T
y1
y2
yn
H H H 3n
1 1 1 3n
第6章 图像的几何变换
6.4 图像镜像
6.4.1 图像镜像变换 图像的镜像(Mirror)变换不改变图像的形状。 镜像变换分为两种:一种是水平镜像,另外一种是垂直镜
数字图像处理基础2
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
数字图像几何变换的分析与实现
目录摘要 (3)Abstract (5)第一章前言............................................................. - 1 -1.1数字图像概述..................................................... - 1 -1.1.1数字图像................................................... - 1 -1.1.2数字图像处理............................................... - 2 -1.2数字图像处理的特点及目的......................................... - 3 -1.2.1数字图像处理的特点......................................... - 3 -1.2.2数字图像处理的目的......................................... - 3 -1.3 数字图像几何变换介绍............................................ - 4 - 第二章图像几何变换的理论............................................... - 7 -2.1图像的数字化..................................................... - 7 -2.1.1采样....................................................... - 7 -2.1.2量化....................................................... - 8 -2.1.3采样与量化参数的选择....................................... - 9 -2.2数字图像类型..................................................... - 9 -2.2.1位图...................................................... - 10 -2.2.2位图的有关术语............................................ - 11 -2.3数字图像几何变换的原理.......................................... - 12 -2.3.1几何变换基础.............................................. - 12 -2.3.2图像缩放的原理............................................ - 15 -2.3.3图像旋转的原理............................................ - 17 -2.3.4图像剪取的原理............................................ - 18 -2.3.5插值的原理................................................ - 18 - 第三章图像几何变换的实现.............................................. - 21 -3.1实现图像的缩放.................................................. - 21 -3.1.1 imresize函数............................................. - 21 -3.1.2图象缩放实现结果.......................................... - 21 -3.2实现图像的旋转.................................................. - 25 -3.2.1 imrotate函数............................................. - 25 -3.2.2图象旋转实现结果.......................................... - 26 -3.3实现图像的剪取.................................................. - 28 -3.3.1 imcrop函数............................................... - 28 -3.3.2图象缩放实现结果.......................................... - 29 - 第四章结论和展望...................................................... - 33 - 参考文献............................................................... - 35 - 致谢................................................................... - 37 -数字图像几何变换的分析与实现摘要数字图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得探讨的一个重要课题。
数字图像的基本变换程序设计几何变换
摘要数字图像几何变换是计算机图像处理领域中的一个重要组成部分,也是值得探讨的一个重要课题在图像几何变换中主要包括图像的缩放、图像的旋转、图像的移动、图像的剪取等容。
文章主要探讨了数字图像的几何变换(包括图像的平移、图像的裁剪、图像的缩放、图像的旋转以及扭曲变换和镜像变换)理论,并在此基础上以MATLAB为工具,以最近邻插法、双线性插值法和双三次插值法三种常用数字图像差值算法为基础,实现了数字图像的一系列几何变换。
关键词:图像几何变换;缩放;旋转;扭曲变换;镜像变换1 引言 01.1 课程设计的目的 01.2 课程设计的任务 01.3 课程设计的要求与容 (1)2系统总体设计 (2)2.1 数字图像几何变换及原理 (2)2.2 设计方案 (6)3 系统设计与实现 (7)3.1 设计容 (7)3.2 系统模块流程图 (8)3.2.1 平移和裁剪变换 (8)3.2.2 扭曲变换 (8)3.2.3 镜像变换 (9)3.2.4 缩放和旋转变换 (9)3.3 Matlab程序实现代码 (10)3.3.1 平移和裁剪变换 (10)3.3.2 扭曲变换 (11)3.3.3 镜像变换 (11)3.3.4 缩放和旋转变换 (12)4 系统仿真与结果分析 (13)4.1 系统仿真 (13)4.2 结果分析 (20)5 结论 (21)6 参考文献 (22)近几年来,由于大规模集成电路技术和计算机技术的迅猛发展、离散数学理论的创立和完善,数字图像处理技术正逐渐成为其他科学技术领域中不可缺少的一项重要工具。
数字图像技术也从空间探索到微观研究、从军事领域到农业生产、从科学教育到娱乐游戏等越来越多的领域得到广泛应用。
无形之中成为了现代不可或缺的处理技术。
通过课程设计实现对其的认知度以及更深入的学习和运用它。
1.1 课程设计的目的数字图像处理课程设计作为独立的教学环节,是通信技术及相关专业的集中实践环节之一,是学习完《数字图像处理》课程后,进行的一次综合练习。
数字图像处理实验06图像的几何变换
一、数字图像处理实验实验六 图像的几何变换一、实验目的学习和掌握图像几何空间变换和灰度插值的基本方法,对图像进行相应的几何变换操作。
二、实验内容1.编程实现图像的比例缩放。
2. 编程实现图像任意角度的旋转变换。
3. 分别用MATLAB 函数提供的三种插值方法实现图像的缩放和旋转。
三、实验原理图像的几何变换可以看成是像素在图像内的移动过程,该移动过程可以改变图像中物体对象(像素)之间的空间关系。
完整的几何运算需要由两个算法来实现:空间变换算法和灰度插值算法。
空间变换主要用来保持图像中曲线的连续性和物体的连通性,一般都采用数学函数形式来描述输入、输出图像相应像素间的空间关系。
空间变换一般定义为)],(),,([),(),(y x b y x a f y x f y x g =′′= (6.1)其中,f 表示输入图像,g 表示输出图像,坐标),(y x ′′指的是空间变换后的坐标,要注意这时的坐标已经不是原来的坐标),(y x 了,),(y x a 和),(y x b 分别是图像的x 和y 坐标的空间变换函数。
灰度级插值主要是对空间变换后的像素赋予灰度值,使之恢复原位置处的灰度值,在几何运算中,灰度级插值是必不可少的组成部分。
因为图像一般用整数位置处的像素来定义。
而在几何变换中,),(y x g 的灰度值一般由处在非整数坐标上的),(y x f 的值来确定,即g 中的一个像素一般对应于f 中的几个像素之间的位置,反过来看也是一样,即f 中的一个像素往往被映射到g 中的几个像素之间的位置。
下面介绍图像几何变换常用的方法。
1. 图像的缩放假设图像x 轴方向缩放比例fx ,y 轴方向缩放比例是fy ,那么原图中点),(00y x 对应于新图中的点),(11y x 的转换矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1100000010011y x f f y x y x (6.2) 其逆运算如下: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1100010********y x f f y x y x (6.3) 即: ⎩⎨⎧+=+=]5.0[]5.0[1010y x f y y f x x (6.4) 中括号表示对表达式取整。
数字图像的几何运算
数字图像的几何运算数字图像的几何运算是图像处理中的一项重要技术,通过对原始图像进行一系列几何变换来改变图像的位置、姿态、大小、形状等方面,进而实现图像的增强、修复、配准、配对等应用。
数字图像的几何运算包括平移、旋转、缩放、翻转、仿射变换等多种运算,它们可以单独进行,也可以结合使用。
下面将介绍这些几何运算的原理和应用。
一、平移平移是将图像沿着指定的方向平移一定距离的操作,其公式为:x' = x + txy' = y + ty其中(x, y)为原始坐标,(x', y')为平移后的坐标,tx和ty分别表示在x和y方向上平移的像素数。
平移可以用来调整图像的位置,比如将图像居中、左右移动、上下移动等,对于某些需要对齐的图像,也可以通过平移使它们重合。
在实现时,可以通过对原始图像的每个像素进行平移,然后重新生成新图像的方式来实现。
二、旋转旋转是将图像绕一个点或一个轴线旋转一定角度的操作,其公式为:三、缩放缩放是将图像在水平、垂直或同时两个方向上缩小或放大的操作,其公式为:四、翻转在实现时,可以通过对原始图像的每个像素进行翻转,然后重新生成新图像的方式来实现。
翻转可以用来调整图像的朝向,比如将图像视角从左向右变为从右向左、将图像视角从上向下变为从下向上等。
在某些应用中,还常常需要同时对图像进行水平和垂直方向上的反转,以获取更加鲜明的效果。
五、仿射变换仿射变换是指将图像在平移、旋转、缩放和翻转的基础上进行进一步灵活变换的操作,其公式为:其中A、B、C、D、E、F分别为6个未知参数,需要根据实际情况进行确定。
仿射变换可以用来调整图像的形状和姿态,比如将图像从一个角度旋转至另一个角度或进行扭曲、变形等。
在实现时,可以通过对原始图像的每个像素进行仿射变换,然后重新生成新图像的方式来实现。
总结数字图像的几何运算是数字图像处理中的基础操作,它能够调整图像的位置、姿态、大小、形状等方面,为后续的图像处理提供重要支持。
简述图像几何变换的类型与方法
程序开始⎩简述图像几何变换的类型和方法数字图像处理,就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数, 三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等。
程序基本框架如下:图 图 图 图 图 像 像 像 像 像 的 的 的 的 的 平 移镜 像 转 置 缩 放旋 转1 图像的平移图像的平移是几何变换中最简单的变换之一。
1.1 理论基础图像平移就是将图像中所有的点都按照指定的平移量水平、垂直移动。
设(x0,y0)为原图像上的一点,图像水平平移量为 tx ,垂直平移量为 ty , 则平移后点(x0,y0)坐标将变为(x1,y1)。
显然(x0,y0)和(x1,y1)的关系如下:⎧ x 1 = ⎨y 1 = x 0 + txy 0 + ty1程序结束读写 BMP 图像用矩阵表示如下:⎡x1⎤⎡1 0 tx⎤⎡x0⎤⎢y1⎥=⎢0 1 ty⎥⎢y0⎥⎢⎥⎢⎥⎢⎥⎢⎣1⎥⎦⎢⎣001⎥⎦⎢⎣1⎥⎦对该矩阵求逆,可以得到逆变换:⎡x0⎤⎡1 0-tx⎤⎡x1⎤⎢y0⎥=⎢0 1-ty⎥⎢y1⎥即⎧x0 = x1 -tx⎢⎥⎢ ⎥⎢⎥⎨y0 = y1 -ty ⎢⎣1 ⎥⎦⎢⎣00 1⎥⎦⎢⎣1⎥⎦⎩这样,平移后的图像上的每一点都可以在原图像中找到对应的点。
例如,对于新图中的(0,0)像素,代入上面的方程组,可以求出对应原图中的像素(-tx,-ty)。
如果tx 或ty 大于0,则(- tx,- ty)不在原图中。
对于不在原图中的点,可以直接将它的像素值统一设置为0 或则255(对于灰度图就是黑色或白色)。
数字图像的几何运算
数字图像的几何运算数字图像的几何运算是数字图像处理中的重要环节,它主要涉及图像的平移、旋转、缩放和镜像等操作。
这些几何操作对于图像的变换和处理起着至关重要的作用,可以用于图像增强、图像拼接、图像对齐等各种应用中。
本文将重点介绍数字图像的几何运算方法及其应用。
1. 平移:平移是将图像沿着水平或垂直方向进行移动,其数学表示为:\[T(x, y) = (x + d_x, y + d_y)\]\(d_x\)和\(d_y\)分别表示水平和垂直方向的平移距离。
平移操作可以直接通过修改像素的坐标来实现,也可以通过插值的方法来实现更加精确的平移效果。
2. 旋转:旋转是将图像绕着某一点进行旋转,其数学表示为:\[R(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)\]\(\theta\)表示旋转角度。
旋转操作通常需要进行插值,以保证旋转后的图像质量。
3. 缩放:缩放是改变图像的尺寸,可以放大或者缩小图像,其数学表示为:\(s_x\)和\(s_y\)分别表示水平和垂直方向的缩放比例。
缩放操作通常需要进行插值,以保证图像的质量。
以上几种几何运算是数字图像处理中常用的基本操作,它们可以单独应用,也可以组合应用,以实现各种复杂的图像变换效果。
在实际应用中,这些几何运算通常需要搭配插值方法来保证图像质量,并且需要考虑到计算效率和存储空间的限制。
数字图像的几何运算在计算机视觉、图像处理、图像分析等领域有着广泛的应用。
下面将介绍几种典型的应用场景。
1. 图像配准:图像配准是将多幅图像进行对齐,以实现图像融合、图像融合等目的。
在图像配准中,通常需要进行平移、旋转和缩放等几何变换操作,以实现图像的对齐。
数字图像的几何运算是数字图像处理中的重要内容,它可以帮助我们实现各种图像处理任务,提高图像处理的效率和质量,拓展图像处理的应用领域。
希望本文对您有所帮助,谢谢阅读!。
数字图像处理中的常用变换
一、离散傅里叶变换1. 离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT 0DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。
DFT的应用十分广泛,女口:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。
2. 离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1. 离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。
传统的正交变换多是复变换,运算量大,不易实时处理。
随着数字图像处理技术的发展,出现了以离散余弦变换(DCT )为代表的一大类正弦型实变换,均具有快速算法。
目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。
由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言 及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。
对给定长度为N 的输入序列f(x),它的DCT 变换定义为:IT r-(2x+i )阳、F (u)C (u ) i .二“ f (x) cos V N "2N )式中:u =0,1, ............... ,N _1,式中的C(u)的满足:C (u)=其它其逆变换IDCT 为:由于DCT 的变换核是可分离的,为此,二维DCT 变换可通过两次一维变换由图知,该方法是先沿行(列)进行一维 DCT 变换计算,再沿列(行)进 行一次一维DCT 变换,共需做 M 次N 点的和N 次M 点的一维DCT 变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新图像中的空洞可以采用插值方法填充
插值方法有两种方式: 一、近邻插值法 二、均值插值法
一、近邻插值法
对于判断为空洞点的像素,用其同一 行(或列)中的相邻像素值来填充。
二、均值插值法
对于空洞的像素,用其相邻四个像素 的平均颜色来填充。
例题: 缩小6×6的图像,设k1=2/3, k2=3/4; 板书计算
原图像f(i, j)=f i j
新图像大小:k1M×k2N =4×5
f1f11f112f12f13f1f314f1f415f1f516f16
f2f12f122f22f23f2f324f2f425f2f526f26 采样间隔: Δi=3/2 f3f13f132f32f33f3f334f3f435f3f536f36 ,Δj=4/3
注意:i与j是原图像的像素坐标,i’与j’是平移后 的图像像素坐标。
4.1.1 图像的平移
将图像进行平移, 取Δi=1与Δj=2
板书计算
photoshop演示
画布没有扩大 画布扩大
平移后的图像内容没有变化。
但“画布”一定要扩大,否则就会丢失信息。
4.1.2 图像的镜像(翻转)
镜像分为水平镜像和垂直镜像 一、水平镜像(水平翻转)
f61 f63 f64 f65 f66
根据:g(i,j)=f(Δi×i, Δj×j) 对于:i=1,j=1 → g(1,1)=f (1×3/2, 1×4/3)=f 21 对于:i=2,j=1 → g(2,1)=f (2×3/2, 1×4/3)=f 31
……………………………
注意:不按比例 缩小会导致几何 畸变。
图像旋转时,为了避免信息的丢失,应当扩 大画布,并将旋转后的图像平移到新画布上。
图像的旋转例题
板书:计算像素(1,1) 的旋转新坐标
结论:按照图像旋转计算 公式获得的结果与想象中 的差异很大。
图像旋转之后,出现了两个问题:
1) 因为相邻像素之间只能有8个方向,而 旋转方向却是任意的,使得像素的排列不是 完全按照原有的相邻关系。
二、基于局部均值的的图像缩小方法
由于基于等间隔采样的方法无法反映未被采样的像素信息。为 此可采用基于局部均值的图像缩小方法,其实现步骤如下: (1) 计算新图像的大小,计算采样间隔Δi=1/k1,Δj=1/k2 (2) 对新图像的像素g(i, j),计算其在原图像中对应的子块f (i, j):
(3)根据下式求出缩小的图像:
例题:k1=0.7, k2=0.6 → Δi=1.4, Δj=1.7
新图像g(i, j)
f21 f23 f24 f25 f26
f4f14f142f42f43f4f344f4f445f4f546f46
f31 f33 f34 f35 f36
f5f15f152f52f53f5f354f5f455f5f556f56
f51 f53 f54 f55 f56
f6f16f162f62f63f6f364f6f465f6f566f66
以图像垂直中轴线为中心,交换图像的左右 两部部分。假设图像的大小为M×N,水平镜像 计算公式为:
其中,(i, j)为原图像某个像素的坐标,(i’, j’)为该像素在新图像中的坐标。
123 1
123 1
2
2
3
3
4.1.2 图像的镜像
二、垂直镜像(垂直翻转)
以图像水平中轴线为中心,交换图像 的上下两部分。设图像的大小为M×N,垂 直镜像的计算公式为:
(0,128,0) (255,0,0)
计算平均颜色
(102,204,254)
(89,109,127)
(0,102,254)
经过插值处理之后,图像效果就变得自然。
Photoshop演 示镜像与旋转
4.2 图像的形状变换
所谓图像的形状变换是指图像 的形状发生了变化,主要包括放大
、缩小、错切等。
4.2.1 图像的缩小
数字图像处理几何变换
第四章 图像的几何变换
数字图像的几何变换就是对图像进行 如下处理:改变图像的几何位置、几何形 状、几何尺寸等几何特征。
几何变换的特点是:改变图像像素的 空间位置,而不改变像素灰度值。
本章主要内容: 4.1 位置变换:图像的平移、镜像、旋转 4.2 形状变换:图像的缩放、错切 4.3 仿射变换:图像几何变换一般表示方法
其中,(i, j)为原图像某个像素的坐标,(i’, j’)为该像素在新图像中的坐标。
123
123
1
1
2Leabharlann 233photoshop演示
4.1.3 图像的旋转
图像的旋转:以图像中的某一点为原点,按 照顺时针或逆时针旋转一定的角度。图像逆 时针旋转的计算公式如下:
• 这个计算公式计算出的值为小数,而坐标值为正整数。 • 计算结果中的新坐标值可能超过原图像所在的空间范围。
4.1 图像的位置变换
图像的位置变换是指图像的尺寸和 形状不发生变化,只是将图像进行平 移,或者作镜像变换,或者进行旋转 。 图像的位置变换的一个应用实例: 目标配准。
4.1.1 图像的平移
目的:改变图像在画布上的位置。 方法:将图像的所有像素都按要求进行垂 直
或者水平移动。 设图像的任一像素坐标为( i, j ), 图像在画布 上沿行方向与列方向分别移动Δi与Δj。假设 平移后的像素坐标为(i’, j’)。则平移计算公 式为:
图像缩小有按比例缩小和不按比例缩小两种情况。 图像缩小之后,像素的个数减少,承载的信息量小 了,画布可相应缩小。 图像缩小方法有两种:(1)基于等间隔采样的缩 小方法;(2)基于局部均值的缩小方法。
(a) 按比例缩小
(b) 不按比例缩小
一、基于等间隔采样的图像缩小方法
原理:该方法通过对原图像的均匀采样,等间隔地 选取一部分像素,从而获得小尺寸图像的数据,并 且尽量保持原有图像特征不丢失。
6×6
3×3
算法描述:设原图像大小为M×N,缩小为 k1M×k2N,(k1<1,k2<1)。算法步骤如下: 1)设旧图像是f (i, j),i=1, 2,…,M, j=1,2, …, N. 新图像是g (i, j), i=1,2,…,k1M, j=1,2,…,k2N. 2)计算采样间隔Δi=1/k1,Δj=1/k2 3)g (i, j)=f (Δi×i, Δj×j)