(整理)中科院大学固体表面物理化学笔记——Jeveels.
中科院—中科大《物理化学》考研笔记
中科院—中科大《物理化学》考研笔记2004年中科院—中科大《物理化学》考研笔记2004年中科院—中科大《物理化学》考研笔记第一章热力学第一定律二、热力学平衡n 如果体系中各状态函数均不随时间而变化,我们称体系处于热力学平衡状态。
严格意义上的热力学平衡状态应当同时具备三个平衡:2. 机械平衡:n 体系的各部分之间没有不平衡力的存在,即体系各处压力相同。
§2、热力学第一定律n 对于宏观体系而言,能量守恒原理即热力学第一定律。
n 热力学第一定律的表述方法很多,但都是说明一个问题¾ 能量守恒。
例如:一种表述为:n “第一类永动机不可能存在的”n 不供给能量而可连续不断产生能量的机器叫第一类永动机。
一、热和功热和功产生的条件:n 与体系所进行的状态变化过程相联系,没有状态的变化过程就没有热和功的产生。
符号表示:n 功W:体系对环境作功为正值,反之为负值。
n 热Q:体系吸热Q为正值,反之Q为负值。
二、热力学第一定律的数学表达式DU = Q-W (封闭体系)如果体系状态只发生一无限小量的变化,则上式可写为:dU = dQ-dW (封闭体系)例1:设有一电热丝浸于水中,通以电流,如果按下列几种情况作为体系,试问DU、Q、W的正、负号或零。
(a)以电热丝为体系;(b)以电热丝和水为体系;(c)以电热丝、水、电源和绝热层为体系;(d)以电热丝、电源为体系。
解答: DU Q W(a) + --(b) + --(c) 0 0 0(d)-- 0三、膨胀功(体积功):Wen 功的概念通常以环境作为参照系来理解,微量体积功dWe可用P外×dV表示: dWe = P外×dV 式中P外为环境加在体系上的外压,即环境压力P环。
n 不同过程膨胀功:u (1)向真空膨胀We = P外×DV = 0u (2)体系在恒定外压的情况下膨胀We = P外× DVu (3)在整个膨胀过程中,始终保持外压P外比体系压力P小一个无限小的量 dP此时,P外= P-dP,体系的体积功:W e =∫V1V2 P外·dV =∫V1V2 (P-dP)dV= ∫V1V2 P dV此处略去二级无限小量dP·dV,数学上是合理的;即可用体系压力P代替P外。
固体表面化学Chapter4全解
固体表面:固体不易改变形状,因而倾向于
(i) 形成具有低的表面张力的结构,如密堆积结构。 (ii) 对于具有高的表面张力的结构常易被低的表面张力的物 质所覆盖。
2014 Solid Surface Chemistry Xiamen University
9
具有高表面张力的表面易被低表面张力的 物质所覆盖
α σ β Gibbs模型 Dividing Surface
Γi = niσ/A
A为表面积,Γi被称为组分i的表面超量或组分i在表面的吸附。 Dividing Surface的选择原则: Gibbs选择主要组分1的表面超量=0的面为分隔表面 Γ1 = 0
2014 Solid Surface Chemistry Xiamen University
如果表面与均匀的内部具有相同的热力学状态,则: E=NEº ,即Eσ=0
2014 Solid Surface Chemistry Xiamen University
3
同样对其他各种热力学函数均可定义表面超量
熵 S=NSº +ASσ Gibbs自由能 G=NGº +AGσ Helmholz自由能 F=NFº +AFσ 焓 H=NHº +AHσ
图中显示:金属易覆盖一层氧化物;氧化物易被水覆盖; 水又易被有机物层所覆盖。
2014 Solid Surface Chemistry Xiamen University
10
4.3 多组分体系的表面热力学
1. 表面超量和Gibbs模型
考虑一个包含二个均匀体相(如固 相和气相,或固相与液相)和一个表面 相的体系。通常表面相有一定的区域 或厚度,在该区域内物质的量不同于 两个体相。 为简化起见,Gibbs提出了 一个模型,定义一个分隔表面 (Dividing Surface), 假定一直到 该分隔表面,二体相均保持为 均匀,该表面相厚度为0。
固体物理与半导体知识点归纳整理
E C导带底的能量N C导带的有效状态密度n0导带的电子浓度n i本征载流子浓度E.本征费米能级E n F电子准费米能级E V导带底的能量N V价带的有效状态密度p0价带的电子浓度E g=E C—E V禁带宽度E费米能级E p F空穴准费米能级N D施主浓度n D施主能级上的电子浓度E D施主能级n+D电离施主浓度N A受主浓度P A受主能级上的空穴浓度word格式-可编辑-感谢下载支持固体物理与半导体物理符号定义:半导体基本概念:满带:整个能带中所有能态都被电子填满。
空带:整个能带中完全没有电子填充;如有电子由于某种原因进入空带,也具有导电性,所以空带也称导带。
导带:整个能带中只有部分能态被电子填充。
价带:由价电子能级分裂而成的能带;绝缘体、半导体的价带是满带。
禁带:能带之间的能量间隙,没有允许的电子能态。
1、什么是布拉菲格子?答:如果晶体由一种原子组成,且基元中仅包含一个原子,则形成的晶格叫做布拉菲格子。
2、布拉菲格子与晶体结构之间的关系?答:布拉菲格子+基元=晶体结构。
3、什么是复式格子?复式格子是怎么构成?答:复式格子是基元含有两个或两个以上原子的晶格(可是同类、异类);复式格子由两个或多个相同的布拉菲格子以确定的方位套购而成。
4、厡胞和晶胞是怎样选取的?它们各自有什么特点?答:厡胞选取方法:体积最小的周期性(以基矢为棱边围成)的平行六面体,选取方法不唯一,但它们体积相等,都是最小的重复单元。
特点:(1)只考虑周期性,体积最小的重复单元;(2)格点在顶角上,内部和面上没有格word格式-可编辑-感谢下载支持点;(3)每个原胞只含一个格点。
⑷体积:o=a.(a x a);(5)原胞反映了晶格的周期性,123各原胞中等价点的物理量相同。
晶胞选取方法:考虑到晶格的重复性,而且还要考虑晶体的对称性,选取晶格重复单元。
特点:(1)既考虑了周期性又考虑了对称性所选取的重复单元。
(体积不一定最小);(2)体心或面心上可能有格点;(3)包含格点不止一个;(4)基矢用a,b,3表示。
3 固体表面物理化学(中航大)ly
μi---组分i 的化学势; ni --- 组分i 的化学成分。
固体表面能(表面张力)的测定
固体表面能的测量
将固体熔化,测定液态表面张力与温度的关系,作图外推到凝固点以 下来估算固体的表面张力。
液体表面张力的测量
F = 2 l
理论计算
产生单位新表面时所需要的能量 = 外界对体系所做的表面功
产生两个新表面所需做的表面功(W) ,等于键能()与断 裂键的数量的乘积:
作用于可移动线上的表面张力 F = * l
可移动线处于力学平衡: 2F = F
2l = F =F
2l
单位: N/m
液体的表面张力(surface tension)
表面张力的测量
产生新的表面积所做的表面功
dW = F *dx = *2dA
= F *dx = F
2dA 2l
固体的表面能
•表面分子受到被拉入体相的作用力,从而形成表 面张力。
•表面张力与气-液界面相切,作用于界面的边界线 上,使表面有自动收缩到最小的趋势(液滴趋向 于呈球形),并使表面层显示出一些独特性质, 如表面吸附、毛细现象等。
液体的表面张力(surface tension)
表面张力的测量
Soup film on an adjustable frame
= G
A ni,T ,P
•表面能也称为表面自由能或表面张力; •表面张力通常只针对液体。
表面自由能的热力学推导
对于一个多组分的材料系统,吉布斯自由能的改变:
dG = −SdT + Vdp + idni
G=G(T, p, ni)
i
在建立新表面时,邻近原子将丢失,键被切断,因此,
表面物理课程笔记
表面物理第一章:引言第二章:表面原子结构第三章:低能电子衍射LEED与反射高能电子衍射RHEED第四章:扫描探针显微镜SPM第五章:表面电子态第六章:俄歇电子能谱AES第七章:X射线光电子能谱XPS第八章:紫外光电子能谱UPS●第一章:引言1.均匀块体与外部真空(其实未必是真空)之间的,固体的最外几个原子层组成的过渡层叫做表面。
2.表面包括2-~10层原子,几nm。
3.表面与块体的不同:不同组成、不同原子结构、不同电子性质等。
4.表面积体积比D:尺度越小表面影响越大。
5. microwrold:10-4~10-6mnanoworld:10-7~10-9m6.表面弛豫:纵向原子层重组表面重构:横向原子重组。
7.表面键的不同导致体能带能隙中的表局域电子态。
8.表面物理研究对象:表面形貌、表面组分、表面原子结构、表面电子结构。
表面吸附与去吸附、表面振动。
9.表面原子结构主要研究手段:电子衍射、STM。
非直接:LEED、RHEED、PES 直接:TEM(透射电子显微镜)、STM、AFM。
10.表面组分主要研究对象:确保表面洁净、表面偏析、表面吸附等。
表面组分主要研究手段:AES、XPS。
低浓度样品可用二次离子质谱SIMS。
11.表面电子态包括本征的(悬键)与非本征的(表面缺陷等)。
表面电子态影响表面吸附。
化学反应等。
在半导体异质结中决定费米能级钉扎、裁剪肖特基势垒并影响异质结面的带结构。
12.表面吸附:物理吸附(弱键)、化学吸附(强键)TPD(程序升温脱附法)可用来研究表面吸附与去吸附。
UPS可用来研究表面吸附,确定是联合吸附还是游离吸附。
13.14.从外至内:俄歇电子、二次电子、X射线荧光。
15.电子平均自由程:非弹性碰撞前行走的距离,取决于电子动能。
平均自由程在50~100eV范围最小,高能低能两端都增大(非弹性散射主要是电子与固体中电子作用而非电声作用。
高能端速度大,与固体中电子碰撞时间短,非弹性碰撞几率小,自由程大。
固体物理学基础晶体的表面与界面物理
固体物理学基础晶体的表面与界面物理晶体是物质排列有序的固态结构,其内部的原子排列具有周期性重复的特征。
然而,固体晶体与外界环境之间的接触面即表面以及晶体与其他晶体之间的界面却展现出了特殊的物理性质,这是固体物理学中一个重要而广泛研究的课题。
1. 表面物理学表面是固体晶体与外界环境相接触的区域,它通常由表层原子构成。
与晶体内部相比,表面的原子排列更加松散,结构更不规则。
这导致了表面物理性质与晶体内部的差异。
1.1 表面能和表面形貌表面能是表征表面性质的重要参数。
它反映了表面原子对外界作用力的敏感程度以及表面原子间的相互作用强度。
表面能的大小直接影响着固体的表面现象,如润湿性、吸附性等。
另外,表面形貌也是表面物理学中的一个重要研究内容。
表面的形貌与固体晶体的生长、晶体结构有着密切的关系,对材料的性能和应用也具有重要影响。
1.2 表面电子结构和局域态相比于晶体内部的电子能级结构,表面区域的电子结构发生了较大的变化。
表面态和界面态的存在使得表面与界面成为固体中电子输运的重要通道。
此外,表面和界面常常会导致电子的局域化现象,形成局域态。
研究表面电子结构和局域态对于理解固体物理学中的许多现象至关重要。
2. 界面物理学界面是两个不同材料的接触面,其中至少有一个为固体晶体。
界面的形成和性质对于多个领域都有着重要的影响,如材料科学、纳米科技等。
2.1 界面的结构和性质界面的结构与性质主要受到相邻材料的晶体结构、材料相互作用等因素的影响。
不同材料之间存在界面能的差异,使得界面呈现出独特的物理化学性质。
界面的结构和性质研究为杂质控制、界面反应等提供了重要的理论依据。
2.2 界面电子结构和界面态界面的形成会导致局部晶格的扭曲和变形,进而影响到界面区域的电子结构。
活化能的变化会造成界面电荷重排和界面电子态的形成。
界面电子态的研究对于解析电子在材料界面上的行为以及界面的电子传输机制具有重要意义。
总结:固体物理学基础晶体的表面与界面物理是对固体晶体内部性质之外的重要研究课题。
固体表面的物理化学特征 ppt课件
ppt课件
13
理想表面
理想表面——没有杂质的单晶,作为零级近似 可将表面看作为一个理想表面。从理论上看, 它是结构完整的二维点阵平面。
理想表面的前提条件:
忽略了晶体内部周期性势场在晶体表面中断的影响; 忽略了表面原子的热运动、热扩散和热缺陷等; 忽略了外界对表面的物理化学作用等。
吸附量:达吸附平衡时,单位质量的吸附剂所吸附的 吸附质的数量(标准状况下的体积)。 吸附平衡
ppt课件
32
2.2.1 吸附现象
1.固体表面上气体的吸附
物理吸附 ---仅仅是一种物理作用,没有电子转移, 没有化学键的生成与破坏,也没有原子重 排等。
化学吸附 ---相当与吸附剂表面分子与吸附质分子发 生了化学反应,在红外、紫外-可见光谱 中会出现新的特征吸收带。
ppt课件
47
吸附等温方程:
ppt课件
48
ppt课件
49
Freundlich 吸附等温方程
Freundlich经验公式:
r
x
1
kpn
m
式中,m为吸附剂的质量,常以g或kg表示; x为被吸附的气体量,常以mol、g或标准状况下的体积表示; r为单位质量吸附剂吸附的气体量; p为吸附平常时气体的压力; k和1/n是一个真分数,在0~1之间。
ppt课件
17
表2-3 几种清洁表面的结构和特点
ppt课件
18
ppt课件
19
ppt课件
20
晶体表面的成分和结构都不同于晶体内部,一 般大约要经过4~6个原子层之后才与体内基本 相似,所以晶体表面实际上只有几个原子层范 围。
晶体表面的缺陷:平台、台阶、扭折、表面吸 附、表面空位、位错。
表面物理化学知识点
1热力学基础1.表面物化是以不均匀体系内相与相的界面上发生的物理化学变化规律及体相与表面的柑互影响关系为研究对象;(界面热力学,界面过程动力学,界面结构)2.界面是相与相之间的交界所形成的三维物理区域;3.界而分类:固气,固液,固固,液液,液气:4.习惯上称凝聚态物质相对其纯气相的界面称为表面:5.衣面张力产生的原因:因界面柑内质点哽力不均匀;内压:由于界面相内质点受力不均匀致界面上受指向液体内部且垂直于界面的引力,单位面枳上的这种引力叫内压:6.表面张力:设想在液滴上画一圆周作分界边缘,边缘两侧,沿着表面的切线方向应有垂直于边缘的收缩引力在作用,单位长度上的这种收缩引力叫界面张力;7.表面张力与内压产生的原因相同,形式不同;8.表而Gibbs函是由于增大表面时外界克服衷面张力对体系作功:等温、等压、组成不变条件卞,体系的Gibbs函对表面的积的偏微分等于表面张力;也称表面张力为比表面Gibbs 函;9.G (体柑+表面相整个体系)=(将构成体系的所右质点当作内部质点)+G Y(把内部质点拉向表形成表面相时,外界做的功);10.温度升高表面张力卞降,从分子运动观点看,这是由于温度上升时液体内分子的热动力加剧,分子间距离增人,密度减少,从而减弱了对表面分子的引力;而气相因温度增加,密度反而增人,因此增加了对表面分子的引力,两种效应都使引力差减小,因而表面张力下降,当温度升高到临界温度时,气液两相密度相等,界而消失,表面张力等于0:11.关于压力对表面张力的影响数据很少,只能从偏微分中的固定条件看其影响关系:12.影响表面张力的其它影响:构成体相质点间相互作用力不同是内因,所接触气相本性不同,少量杂质也有很人的影响;物性:13.无厚表面相模型认为表面相体积为0:等温吸附量可正、町负,也可为0 (这于所选的界面位置有关)14.Gibbs吸附公式:15.有厚表面相模羽中等混吸附呂不小于0:16.两种模型的关系:吸附量之间的关系;一致性:rtlG-D方程可推出,表面张力的数值成表面相的位置无头17.弯曲表面的平衡条件:热平衡、力平衡、相间化学势平衡、化学反应平衡;18.热平衡:T«=T Y=TP'19.化学反应平衡(若有):20.力平衡与平面的情况不同的是两相间的压力不相等:弯曲界面两相间的压力差与表面张力仃关;实例:空气中水滴(液相压力比气相大,液滴曲率半径大于0);液体中气泡(气相压力比液相大,液体的曲率半径小于0)21.化学势平衡与平面不同的是:H a=pv, p a( T, P® )=卩0 (T, PP), pa (T, P) nfepp (T, P),22.有不溶物表面力平衡:云母片两侧分别是水膜和有机膜,由于水面表面张力人,且指向水那一侧,故云母片被拉向水那i侧:23.界而品种:两个不同体相构成的界面即为一个界面品种:无论有几个表面相,只要它们同处在构成界面的两个体相不变的一种界面上,称此界面是同品种的。
《固体物理学》读书笔记
《固体物理学》读书笔记认真读完一本名著后,相信大家都增长了不少见闻,何不写一篇读书笔记记录下呢?那么我们如何去写读书笔记呢?下面是作者为大家整理的《固体物理学》读书笔记600字内容,仅供参考,希望能够帮助到大家。
《固体物理学》读书笔记 1罗素认为,哲学是介于神学与科学之间的东西。
人类自脱离动物界以来,一直借以这三种方式探索自然和人类本身的奥秘。
在科学中,物理学是最基础的学科,它与哲学的渊源最深,它研究的是自然界的物质结构以及物质运动的最基本的规律。
固体物理学又是物理学中研究固体材料宏观性质和微观过程的重要分支。
固体材料可分为晶体、非晶体和介于两者之间的准晶体。
在自然界的矿物中,晶态物质占到98%以上。
理想晶体中原子排列十分规则,主要是原子排列具有周期性(或称为长程有序),这种排列的具体形式又称为晶格,按宏观对称性,世界丰富的晶体类型分属于十四种晶格。
但物质并不是理想中的完美,实际的晶体中总是存在着各种缺陷,影响着晶体的性质。
格点是晶体中原子的平衡位置,由于热性质原子会在格点附近做微小振动。
晶格振动的研究对固体材料宏观性质和微观过程的研究有着重要作用,但固体中大量的`粒子之间存在着很强的相互作用,使晶格振动成为一个复杂的多体问题,很难严格求解器运动状态。
具有能量但不具有质量的准粒子——声子的引入,对描述晶格振动起到了简化的作用:可以用声子数来描述简正振动运动的量子态;可以用声子数的变化,来描述简正振动量子态之间的跃迁;可以用声子间的相互碰撞来描述非简谐作用。
非晶体原子排列不具有长程有序,但任具有一定规则,称为短程有序。
准晶体是固体研究的一个新领域。
《固体物理学》读书笔记 2在生活中,爱因斯坦是一个爱思索的人,有一次朋友请爱因斯坦喝茶,他用小勺搅了搅杯里的茶水,水慢慢转起来,茶叶随着水的转动转到了水杯的中心并开始聚拢在一起。
爱因斯坦看到了这个现象,开始思考起来,忘记了朋友,忘记了喝茶。
还有,爱因斯坦初到普林斯顿市,不熟悉那里的街道,在散步的时候又往往专心考虑问题,因此经常迷路,找不到自己的家。
大学《物理化学》11.固体表面
2.若在固体表面发生某气体的单分子层吸附,则 若在固体表面发生某气体的单分子层吸附, 若在固体表面发生某气体的单分子层吸附 随着气的增大 ) (C)恒定不变 ) (B)逐渐减小 ) (D)逐渐趋向饱和 ) )
答案: 答案:D
层吸附量的总和。 层吸附量的总和。
Γ=
Γ CP m P (P − P)[1+ C −1 * ] ( ) P
*
P 1 C −1 P = + ( *) * Γ(P − P) ΓmC ΓmC P
式中 Γm ------ 单层饱和吸附量 ; C -------- 与吸附热有关的常数 ; P *------- 实验温度时 气体的饱和蒸气压。 实验温度时, 气体的饱和蒸气压。
我们把这种气体分子自动聚集在固体表面上的现象 称为气体在固体表面上的吸附作用。 称为气体在固体表面上的吸附作用。 吸附作用 固体 ------- 吸附剂 气体 ------- 吸附质 吸附
固体 + 气体
固体·气体 固体 气体
解吸
在一定条件下,当吸附速率等于解吸速率时, 在一定条件下,当吸附速率等于解吸速率时,吸 附达到平衡, 附达到平衡,气体在固体表面的吸附量有确定的数值 ,定义为: 定义为:
第十一章 固体表面
§11-2 -
气固界面吸附
一.吸附作用
由于固体表面的分子或原子所受的作用力不对称, 由于固体表面的分子或原子所受的作用力不对称, 使表面有剩余力场,当将固体物质置于气体氛围中时, 使表面有剩余力场,当将固体物质置于气体氛围中时, 气体分子将会自动黏附在固体表面上, 气体分子将会自动黏附在固体表面上, 如在精密仪器中放置干燥的硅胶做干燥剂, 如在精密仪器中放置干燥的硅胶做干燥剂,用来吸附 空气中的水蒸气; 空气中的水蒸气; 利用某些分子筛吸附空气中的氮气, 利用某些分子筛吸附空气中的氮气,从而提高空气 中氧气的浓度; 中氧气的浓度; 新烧好的木炭可以用作墓室中的防腐剂和吸湿剂, 新烧好的木炭可以用作墓室中的防腐剂和吸湿剂,等
第2章 表面工程技术的物理、化学基础
2 3
a--原子间距;
EL—台阶生成能
据分析:面心(111)面上台阶的0约为4a. 简单立方(100)台阶(10)的0约为30a 实际中,表面会存在大量缺陷,空位、位错露头、晶界 痕迹等。
四 表面扩散
物质中原子(分子)的迁移现象称为扩散. Fick扩散第一定律和扩散第二定律. 扩散过程中原子扩散平均扩散距离 为 X
3 润湿理论的应用 a 通过改变来调整 ,加入表面活性物质; b 改变铺展系数,如增加粗糙度; c 不粘锅
第二节 材料磨损原理及其耐磨性
磨损是三大失效形式之一。 不像力性是材料的固有特性,受多方 面的影响,如接触条件,工况,环境,介质, 是一系统性质。 始于表面,表面是决定材料耐磨性的关键; 磨损机制不同,对材料的要求相差很大;
一、固体材料的摩擦与磨损
摩擦----相互接触的物体相对运动时产生 的阻力。 磨损----相互接触的物体相对运动时产生 的物体损失或残余变形。 因果关系
腐蚀减小尺寸,不改变力性
2. 可逆物理和物理化学过程
使表面自由能下降,力性发生变化。任何固体都 存在莱氏效应。 例:玻璃、石膏吸附水蒸气后,强度下降; 铜表面覆盖熔融薄膜后,使塑性大大下降。六固体表面的物理 Nhomakorabea附和化学吸附
莱宾杰尔效应具有如下显著特征: 1. 环境介质的影响有很明显的化学特征;
X c Dt Q D D0 exp RT Q 扩散激活能。
__
(2 4)
扩散温度,基体金属,扩散元素, 浓度,合金元素,晶格类型,固 熔体类型,晶格缺陷,磁性状态 等
t 扩散时间;D 扩散系数;C 几何因素决定的常数 (2 5)
表面化学复习资料(个人精简整理)
胶体指的是具有很大比表面的分散体系。
对胶体和界面现象的研究是物理化学基本原理的拓展和应用。
界面现象应用。
主要有:1、吸附如用活性炭脱除有机物;用硅胶或活性氧化铝脱除水蒸汽;用分子筛分离氮气和氧气;泡沫浮选等。
2、催化作用在多相催化中使用固体催化剂以加速反应。
如石油工业的催化裂化和催化加氢、胶束催化等。
3、表面膜如微电子集成电路块中有重要应用的LB膜;在生物学和医学研究中有重要意义的BL膜和人工膜;能延缓湖泊水库水分蒸发的天然糖蛋白膜等。
4、新相生成晶核生成或晶体生长是典型的新相生成,过冷、过热、过饱和等亚稳现象产生的主要原因也是由于新相生成。
5、泡沫乳状液如油品乳化、破乳;泡沫灭火等。
6、润湿作用如喷洒农药、感光乳液配制、电镀工件的润湿及利用润湿作用进行浮选等。
此外,在超细粉末和纳米材料的制备和粉末团聚的研究方面,界面现象都有重要的应用。
在一个非均匀的体系中,至少存在着两个性质不同的相。
两相共存必然有界面。
可见,界面是体系不均匀性的结果。
一般指两相接触的约几个分子厚度的过渡区,若其中一相为气体,这种界面通常称为表面。
(严格讲表面应是液体和固体与其饱和蒸气之间的界面,但习惯上把液体或固体与空气的界面称为液体或固体的表面。
)常见的界面有:气-液界面,气-固界面,液-液界面,液-固界面,固-固界面。
常用于处理界面的模型有两种:1,古根海姆(Guggenheim)模型。
其处理界面的出发点是:界面是一个有一定厚度的过渡区,它在体系中自成一相—界面相。
界面相是一个既占有体积又有物质的不均匀区域。
该模型能较客观地反映实际情况但数学处理较复杂。
2,吉布斯(Gibbs)的相界面模型。
该模型认为界面是几何面而非物理面,它没有厚度,不占有体积,对纯组分也没有物质存在。
该模型可使界面热力学的处理简单化。
比表面通常用来表示物质分散的程度,有两种常用的表示方法:一种是单位质量的固体所具有的表面积;另一种是单位体积固体所具有的表面积。
固体物理重要知识点总结
固体物理重要知识点总结晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。
晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。
(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。
布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区爱因斯坦模型在低温下与实验存在偏差的根源是什么?答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。
固体物理学习笔记
固体物理学习笔记固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态及其相互关系的科学。
它是物理学中内容极丰富、应用极广泛的分支学科。
固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。
固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。
以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。
这类研究统称为凝聚态物理学。
固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。
简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。
新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。
极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。
由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。
同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。
固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。
其经济影响和社会影响是革命性的。
这种影响甚至在日常生活中也处处可见。
表面物理化学总结
第一章1.将分散相粒子的粒径在1~100 nm之间的系统称为胶体。
(1)分散相粒子的半径在1~100nm之间的系统,(2)胶体一般目测是均匀的,但实际是多相不均匀体系。
(3)不少教材认为胶体的范围是1~1000nm 之间。
总之,胶体不是胶,是一个混合物,胶体这个名称是被沿用下来的。
胶体是一个具有巨大相界面的分散体系2.影响胶体性质的重要因素:(1)质点大小(2)质点形状和柔顺性(3)表面性质(包括电学性质)(4)质点-质点之间的相互作用(5)质点-溶剂之间的相互作用。
3.胶体体系分类:(1)溶胶(胶体分散体系)表面自由能很高,在热力学上是不稳定的,也是不可逆的,其组成相一旦发生分离,就不易再恢复原状。
(2)高分子溶液(高分子物质的真溶液-天然的或合成的)在热力学上是稳定的和可逆的,溶质从溶剂中分离后容易恢复原状。
(3)缔合胶体有时称为胶体电解质,在热力学上是稳定的4.分散体系:一种或多种物质以一定的分散度分散在另一种物质中所形成的体系。
分散相(disperse phase):被分散的物质,以颗粒分散状态存在的不连续相,相当于溶液中的溶质;分散介质(disperse medium):有分散相在其中的均匀介质,或称连续相,相当于溶液中的溶剂。
当体系中的质点足够大(1nm~100nm),它与分散介质之间有明确的界面存在时,称为胶体分散体系5,分散体系通常有三种分类方法:按分散相粒子的大小分类:分子分散体系胶体分散体系粗分散体系按分散相和介质的聚集状态分类:液溶胶固溶胶气溶胶按胶体溶液的稳定性分类:憎液溶胶亲液溶胶液溶胶(sol):分散介质为液体,如介质为水则称为水溶胶固溶胶(solid sol):分散介质为固体气溶胶(aerosol):分散介质为气体憎液溶胶: 半径在1 nm~100 nm之间的难溶物固体粒子分散在液体介质中,有很大的相界面,易聚沉,是热力学上的不稳定体系。
一旦将介质蒸发掉,再加入介质就无法再形成溶胶,是一个不可逆体系,如氢氧化铁溶胶、碘化银溶胶等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.Introduction✧表界面的分类:气-液;气-固;液-液;液-固;固-固✧表面浓度✧分散度✧表面形貌非均匀性原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。
✧位错密度✧表面粗糙度:✧原矢✧米勒指数(miller index)✧晶面间距d hkl✧✧✧表面自由能✧减小表面能的方法✧表面原子重排机理1:表面弛豫作用2:表面相转变3:吸附对纯净底物表面结构的影响层间距的变化;重组的表面结构的变化;吸附原子可以诱导表面重组内外表面内表面:多孔或多层材料,孔内或层间的表面比表面积:单位质量材料的表面积;用BET方法测量2.固体表面性质简介固体表面的性质结构特征:不同的位置有不同的性质表面运动:气体分子表面撞击速度蟺;表面扩散系数(爱因斯坦方程):外延生长原子的运动流程:a沉积/吸附在平台上-deposition;b沉积在原子岛上;c平台上扩散-diffusion;d脱附-desorption;e成核-nucleation;f交互扩散-interdifusion;g 粘附在平台上-attachment;h从平台上脱离-detachment;i:粘附在台阶上化学性质:表面浓度依赖于气体分子撞击速度R相界面(Gibbs界面)表面热力学函数其他类推:S,G,G s比表面自由能与温度的关系; ;Van der Waals and Guggenheim Equation:Where: T c为临界温度;为0Kし的表面张力;固体表面能的理论估算金属表面张力估算;偏析作用来自晶体或固溶体中的杂质或溶质在界面聚集的现象表面偏析公式:正规溶液参数扩散扩散:由热运动引起杂质原子、基质原子或缺陷输运的过程原因:原子或离子分布不均匀,存在浓度梯度,产生定向扩散扩散机理:间隙扩散,空位扩散,环形扩散表面扩散靠吸附原子或平台空位的运动实现。
一维随机行走理论:表面原子通过扩散进行迁移,原子运动方向移动,每次跳跃距离等长d,将原子加以标记,温度T下,净距离为x,有Einstein方程吸附的基本过程1:反应物扩散到活性表面;2一个或者多个反应物吸附在表面上;3表面反应;4产品从表面脱附;5产品从表面扩散出去吸附动力学; 其中x为动力学级数;p为分压; E a活化能; ; 胃;S粘着几率;F入射分子流;胃表面覆盖率函数吸附方式物理吸附:Van der Waals Force;电荷密度轻度分布化学吸附:化学键,电子密度重排,完全离子键,完全共价键几种元素的化学吸附氢气(H2):没有与基地原子相互作用的电子;分子-氢过渡金属复合物氢原子(H):氢原子与基地原子独立相互作用卤素(F2, Cl2, Br2, etc):以离解的方式给出卤素原子的吸附;与金属形成强的离子键氧气(O2):在金属表面以分子形式吸附,氧分子作为给体,金属作为受体氧原子(O):占据最高有效配体位置;强的相互作用导致表面的扭曲或者重组!离解氧吸附是不可逆过程;加热可以导致化合物的扩散或者形成氮气(N2):低强度M-N键,ゆ很难破坏的NN三键一氧化碳(CO):①活化表面:解离,分别形成氧化物へ碳氧化合物;②d区金属:弱的M-CO分子键,加热脱附;③过渡金属:对温度へ表面结构敏感氨气(NH3):不饱和碳氢化合物:化学吸附气体的排列规则1:紧密堆积:尽可能形成最小单胞2:转动对称性ゆ基地相同3:类似体相单胞矢量:单层(基地);多层(本体)化学吸附层表面结构分类:1:在顶上化学吸附:停留在表面,不扩散到体相内部2:共吸附表面结构:吸附强度相近的两种气体同时吸附3:重组的表面结构:表面原子重排,し体相的化学反应の前驱4:无定形表面结构:有序结构の形成扩散过程5:三维结构:扩散到体相内部の表面吸附脱附过程1:气相产物或者其他表面物质的分解;2:表面化合物の反应后者扩散;3:脱附到气相中脱附动力学; 其中x为动力学级数(单分子或者原子脱附x=1;联合分子脱附x=2);N为吸附物种表面浓度;k脱附速率常数; 活化能;表面滞留时间平均时间:;表面态表面局部的电子能级表面上附着电荷表明表面上存在着し电子局限于表面的量子态。
表面态有两种:一是固有的,二是外来物类或表面缺陷引起的固有表面态量子力学证明一个固体,即使是纯净的へ完整的晶体,在其表面上仅仅因为体相周期性被破坏,就将导致表面局部能级的出现。
分为Shockley态へTamm态表面空间电荷效应双电层:正负电荷分开平行板电容器簡単さ定律:;Q净表面正电荷密度;:介电常数;真空绝对介电常数空间电荷双电层:Schottky模型(假定靠近表面的空间电荷し不动的,并且在整个空间电荷区ゆ距离无关)强氧化还原物类吸附引起的空间电荷效应积累层:强还原剂吸附在n型半导体上或者强氧化剂吸附在p型半导体上,基体内主要载流子由吸附剂注入使之在表面空间电荷层内累积反型层:强氧化剂吸附在n型半导体上或者强还原剂吸附在p型半导体上,基体内主要载流子注入吸附剂中,在表面空间电荷层出现ゆ基体相反的导电性。
能带弯曲3.现代表面分析技术概况及应用表面检测几何结构的检测:原子重排,吸附位置,键角,键长化学成份的检测:元素及其深度理化性能的检测:氧化态,化学、电子及机械性能测量技术要求1:区分表面和体相,表面灵敏的;2:灵敏度非常高;3测量无污染表面,超真空;4必须有信号载体;5:样品表面可控信号载体的探针包括:电子,离子,光子,中性粒子,热,电场,磁场电子ゆ固体表面的相互作用电子平均自由程()电子ゆ晶体中的原子核产生两次连续碰撞之间所走过的平均路程。
计算式:对于纯元素:; a单原子层厚度,Eい费米能级为零点的电子能量对于无机化合物:对于有机化合物:;mg/m2电子作为探束的表面分析方法低能电子衍射(LEED);反射式高能电子衍射(RHEED);俄歇电子能谱(AES);电子能量损失谱(EELS);投射电子显微镜(TEM);扫描电子显微镜(SEM)离子ゆ固体表面的相互作用的作用过程:散射,注入,溅射,再释,表面损伤,光发射,电子发射,电离与中和,表面化学反应,表面热效应从真空端观察到的各种粒子的发射现象1:散射的初级离子:能量分布和角分布反应表面原子的成分じ排列—离子散射谱2:中性原子、原子团、分子じ正/负离子:进行质谱、能谱分析得到表面成分分析-次级离子质谱3:电子:クィ能量分布给出有关离子轰击、中和、次级离子发射过程じ表面原子电子态信息-离子激发表面电子谱;4:X射线じ光发射:表面化学成分じ化学态信息-离子诱导光谱从靶上观察到的变化1:表面じ进表层的原子、原子团分子い中性粒子或离子的形式溢出:发射区(10A),溢出深度2:初级离子注入じ表层原子的反弹注入;注入区,注入深度(离子入射角),沟道效应3:晶格结构扰动,晶格扰动波及区,产生缺陷ゆ位错4:表面化学反应离子作为探束的表面分析方法离子散射谱(ISS);次级离子质谱(SIMS);卢瑟福背散射谱(RBS);离子激发X射线谱(IEXS);离子中和谱(INS)特点:离子重,动量大:可出于不同的激发态;静电场じ接触电位差位能作用;可以表面发生化学反应;可得到最表层信息,很高检测灵敏度,丰富的表面信息缺点:表面受到损伤,破坏性分析,表面态不断发生变化,定量难,作用过程复杂,识谱难,基体效应(一种成分存在影响另一成分的刺激离子产额)光电效应:当光子能量全部交个一个电子,使其脱离原子而运动康普顿效应:光子ゆ电子产生碰撞,将一部分能量交给电子而散射,碰撞射出的电子成为康普顿电子。
光子ゆ表面作用有:光发射/散射,光吸收,光衍射,光激发产生光电子,光诱导表面分子脱附へ反应光子作为探束的表面分析方法光助场发射;阈值光电子谱;能带结构じ价电子能谱;紫外光子电子谱(UPS);X射线光电子谱(XPS)同步辐射光源的特点1:从红外到硬X射线的连续光谱,可用单色器分光;2:光源稳定而强大:试验时间缩短,信噪比提高;3:主要し偏振光:光跃迁选律じ角分辨光电子能谱;4:高度准直性中心粒子:中心粒子碰撞诱导辐射(SCANIIR);分子束散射(MBS)肖特基效应:外加电场可以减低能垒,有助于电子发射场致电子发射:在强电场(107-108V/cm)作用下,因存在量子力学的隧道效应,在固体不加热的情况下也能出现显著的电子冷发射。
热场致发射:在温度不为零的情况下产生的场致发射电子。
电场作为探束的表面分析方法:场电子显微镜(FEM);场离子显微镜(FIM);原子探针场离子显微镜(APFIM);扫描隧道显微镜(STM)电场探束分析特点:1:为获得强场样品做成针尖形;2点投射显微镜,具有105-107倍方法效应;3结构简单;4分辨率高:FEM25A,FIM原子级。
缺点:样品制备复杂,强场存在,表面强场存在分类按探测粒子或发射粒子分类:电子ぷ,光谱,粒子ぷ,光电子ぷ按用途分类:组分分析,结构分析,电子态分析,原子态分析4.俄歇电子能谱●俄歇过程俄歇电子在低原子(Z<15)的无辐射内部重排发射出来,其步骤为:1:入射电子撞击原子离子化,发射出内部电子离开芯能级;2:高能电子掉入芯能级;3:第二步中产生的能量激发了另一个电子,一般来自于同一壳层●俄歇电子标记●K系列俄歇跃迁:同一空穴可以产生不同俄歇跃迁,当初始空穴在K能级时,就出现K系列跃迁,如KLL,KLM,KMN●俄歇群:同一主壳层标记的次壳层不同的俄歇跃迁,如KL1L1,KL1L2,KL1L3,KL2L3●C-K(Coster-Kronig)跃迁:初始空穴和填充电子处于同一主壳层的不同次壳层,如LLM,MMN,特点:跃迁速度非常快●超C-K跃迁:三个能级处于同一主壳层;如:LLL,MMM●一般:Z<15: KLL; Z: 16~41, LMM; Z>42, MNN●能量分析器:用来测量从样品中发射出来的电子的能量分布,分辨率=柱偏转分析器(127°-CDA);半球形分析器(CHA/SDA);平面镜分析器(PMA);铜镜分析器(CMA)●检测器:通道式电子倍增管;打拿极式倍增管●能量分布涉及4个电子:原始入射电子(P),激发的二次电子(s),跃迁电子(t),俄歇电子●背景分析●Auger电子的特征能量计算能量守恒原理:经验公式:实际计算公式:●电离截面是指原子被入射粒子电离产生空穴的几率。
●平均逃逸深度へ平均自由程●定性分析●定量分析标样法:I=kN灵敏因子分析法:灵敏因子:在给定的试验条件下,各种元素的特征俄歇跃迁在经历了样品内部各过程后,俄歇电子溢出表面的几率在灵敏因子相互独立へ仪器因子相同し:不同元素的相对浓度(原子百分比):●化学位移:俄歇电子能量的位移●AES应用:1:表面成分分析;2:化学环境分析;3:深度剖析;4:界面分析;5:金属薄膜生长模式分析;6:微区成像分析5.光电子能谱◆一些总结电子结合能:; 依次表示电子真空动能,入射光子能量,电子结合能,表面势垒/仪器功函数X光激发内层电子;紫外光激发价层电子;俄歇电子检测的し内层二次电子X射线最主要的缺陷在于它的线宽较宽,达到0.8eV,单色化的Al-K aだ0.4eV数据分析:分析能量位置,峰强度,峰形状◆定性分析由谱图中的光电子芯能级峰的结合能确定。