椭圆离心率高考练习题
高三离心率提速练习题
高三离心率提速练习题一、填空题1. 圆的离心率是______。
2. 椭圆的离心率是______。
3. 双曲线的离心率是______。
二、选择题1. 下列哪个图形的离心率等于0?a. 圆b. 椭圆c. 双曲线2. 当椭圆的离心率为1时,该椭圆是一条:a. 圆b. 抛物线c. 双曲线3. 曲线的离心率越大,表示:a. 曲线越接近圆形b. 曲线越扁平c. 曲线越陡峭三、解答题1. 一椭圆的焦点分别是(-4,0)和(4,0),离心率为2/3。
求此椭圆的方程。
2. 已知一双曲线的离心率为3/2,焦点到直线的距离为2。
求此双曲线的方程。
3. 画出离心率为1/2的椭圆和离心率为2的双曲线。
四、应用题某天,小明骑自行车以恒定的速度沿椭圆形跑道绕行。
已知此椭圆的焦点为A、B,小明起始点C与焦点A、B的距离分别为7m和9m。
小明从C点出发后,经过40秒后又回到C点。
试问小明此次跑道的周长是多少米?五、综合题在太阳系中,行星围绕太阳运动形成的轨道大致是一个椭圆。
已知地球绕太阳运行的平均速度为30km/s,并且地球和太阳的距离(称为半长轴)为1.496×10^8km,离心率为0.0167。
假设地球绕太阳的轨道是一个正椭圆,请回答以下问题:1. 地球离太阳最远时与最近时的距离分别为多少?2. 地球离太阳的距离是否处于任何一个固定的数值范围内?3. 地球绕太阳一周需要多长时间?4. 地球从最近点运动到最远点需要多长时间?5. 地球到最近点和最远点的距离差是多少?六、总结与归纳本练习题以高三离心率提速为题,涵盖了填空题、选择题、解答题、应用题和综合题等多个类型的题目。
通过解答这些题目,我们可以深入理解离心率概念,并应用到实际问题中。
此练习题旨在帮助学生巩固和提高对离心率知识的掌握程度,并培养解决实际问题的能力。
求椭圆及双曲线的离心率的习题
求椭圆的离心率1、已知F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率. e =53.2、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.解析:答案:333、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF=2FD ,则C 的离心率为________.如图,设椭圆的标准方程为22x a +22y b=1(a >b >0)不妨设B为上顶点,F 为右焦点,设D (x ,y ).由BF =2FD ,得(c ,-b )=2(x -c ,y ),即2()2c x c b y =-⎧⎨-=⎩,解得322c x by ⎧=⎪⎪⎨⎪=-⎪⎩,D (32c ,-2b ).由D 在椭圆上得:22223()()22b c a b -+=1, ∴22c a=13,∴e =ca.4、设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.椭圆C 的离心率 ;解:设1122(,),(,)Ax y B x y ,由题意知1y <0,2y>0.直线l 的方程为)y x c =-,其中c =联立2222),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AFFB =,所以122y y -=. 即2= 得离心率 23c e a ==.5.已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于________.6、在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B ,M为线段AB 的中点,若∠MOA =30°,则该椭圆的离心率为________. 答案:637.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A.15B.25C.45D.215,故选B. 8、设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.e =33.9.椭圆22221x y a b+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( B )A B 1 C .4(2- D 10、已知F 是椭圆的左焦点,A ,B 分别是其在x 轴正半轴和y 轴正半轴上的顶点,P 是椭圆上一点,且PF ⊥x 轴,OP ∥AB ,那么该椭圆的离心率为( )A.22B.24C.12D.3211、如图所示,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为________.易知直线B 2A 2的方程为bx +ay -ab =0,直线B 1F 2的方程为bx -cy -bc =0.联立可得P ⎝ ⎛⎭⎪⎫2ac a +c ,b (a -c )a +c .又A 2(a ,0),B 1(0,-b ),所以PB 1→=⎝ ⎛⎭⎪⎫-2ac a +c ,-2ab a +c ,P A 2→=⎝ ⎛⎭⎪⎫a (a -c )a +c ,-b (a -c )a +c . 因为∠B 1P A 2为钝角,所以P A 2→·PB 1→<0, 即-2a 2c (a -c )(a +c )2+2ab 2(a -c )(a +c )2<0.化简得b 2<ac ,即a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0即e 2+e -1>0,. 而0<e <1,所以5-12<e <1求双曲线的离心率1、已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.由三角形相似或平行线分线段成比例定理得26=a c ,∴ca =3,即e =32、已知F 1,F 2分别是双曲线的两个焦点,P 为该双曲线上一点,若△PF 1F 2为等腰直角三角形,则该双曲线的离心率为( )A.3+1B.2+1 C .2 3 D .22 选B 3、设双曲线的焦点在x 轴上,两条渐近线为y =±12x ,则该双曲线的离心率e 等于( )A .5 B.5 C.52 D.54选C 2.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A B C D 【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因此222,4,ABBC a b e =∴=∴= C4、设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是C上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为( )A. 3 B .2 C. 5 D .2 3 如图,设P 为右支上一点,则|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,最小角∠PF 1F 2=30°, 由余弦定理得:(2a )2=(4a )2+(2c )2-2×4a ×2c ·cos 30°, 解得e =ca= 3.5、过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________. 解析:由题意知,a +c =b 2a,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,。
椭圆离心率问题
一、椭恻离心率的1.运川几何图形中线段的几何意义。
基础题目:如图• 0为椭圆的中心,F为焦点• A为顶点,准线L交0A于B. P、Q在椭恻上• PD丄L于D.QFIAD于F,设椭圆的离心率为e.则(!)*晋卞②^罟禺算④*+|吕厂、I F0 I⑤ *1757评:AQP为椭圆上的点•根据椭圆的第一定义得,V I A0 I =a, I OF I =c,・••有⑤:Tl AO I =aU BO I =辛.••有③。
题目1:椭圆务+^l(a>b>0)的两焦点为F, . F2 •以F1F2为边作正三角形.若椭圆恰好平分正三角形的两边.则椭圆的离心率e思路:A点在椭圆外,找a、b、c的关系应借助椭圆,所以取AF2的中点B.连接8F_把已知条件放在椭圆内•构造△RBF2分析三角形的^^^边长及关系。
解:V I F1F2 I =2c I BF1 I =c I BFz I =©C c-K/3c=2a Ae= yjs-l*2 u2变形椭圆农+h=lSb>0)的两儘点为F1、F2 •点P在椭圆上,使△OPF1为正三角形•求椭恻离心解:连接 PF2测 I OF2 I = I OFJ = I OP I ,ZF I PF2 =90^ 图形如上图,y2变形2:椭圆农+^i(a>b>0)的两焦点为F 八Fz . AB 为椭恻的顶点.P 是椭圆上一点•且PF 】丄X 轴.tP•■TP Fl I = — I Fa Fl I =2c I OB I =b I OA I =a "AB •■- I F X' I ■夕 又"b=毎疋•'•a2=5c2 e=¥ 点评:以上题目,构造焦点三角形・通过#边的几何总义及关系,推寻有关a 与C 的方程式,推导离心率。
一、运用正余弦定理解决图形中的三角形y2 \i2题目2:椭圆+^l(a>b>0), A 是左顶点.F 是右焦点.B 是短轴的一个顶点.ZA8F=90" ■求ePF2 〃 AB,求椭圆离心率解: PF2根据和比性质:I FiP I + I PF2 I sinFiFzP+sin PF1F22c ZPFiFa =75 * Z PF2Fi=15「 5in9(r V e* sin75“ +5inl5' " 3点评:在焦点三角形中・使用第一定义和正弦定理可知X2 v2变形 h 椭圆+^l(a>b>O)rrj 两焦点为 Fl (-C. 0)、F2 (c,0), P 是椭圆上一点,且ZFiPF ; =60 .求 e 的取值范ra解 S I AO I =3 I OF I =C I BF I =a I AB I 而 a^b^+a^ =(a+c)2 =$2+2合c+c2 aJ :2・ac=0 两边同除以 aPe^+e-l=0 e=—e - '-护(舍去)变形:椭+^l{a>b>0). e=2号E A 是左顶点,F 是右焦点.B 是短轴的一个顶点,求ZABF 点评: 此题是上一题的条件与结论的互换•解题中分析各边.由余弦定理解决角的问題。
高三离心率练习题
高三离心率练习题离心率是椭圆曲线的一个重要属性,它反映了椭圆形状的扁平程度。
在高三数学的学习中,离心率也是一个重要的知识点。
下面是一些关于高三离心率的练习题,供同学们加深对这一概念的理解。
练习题1:已知一个椭圆的长轴为6,短轴为4,求该椭圆的离心率。
解答:椭圆的离心率e的计算公式是e = √(a^2 - b^2)/a,其中a为长轴的长度,b为短轴的长度。
代入已知条件,可以得到e = √(6^2 -4^2)/6 = √(36-16)/6 = √20/6 ≈ 0.58。
练习题2:已知椭圆的离心率为0.75,长轴的长度是8,求短轴的长度。
解答:同样利用离心率的计算公式,可知0.75 = √(8^2 - b^2)/8。
通过解方程可以得到b ≈ 3.06。
练习题3:已知一个椭圆的长轴为10,离心率为0.6,求短轴的长度。
解答:根据离心率的计算公式,可以得到0.6 = √(10^2 - b^2)/10。
解方程可得b ≈ 6.67。
练习题4:若一个椭圆的长轴和短轴之和为16,离心率为0.8,求长轴和短轴的长度。
解答:设长轴长度为a,短轴长度为b,则离心率e = √(a^2 - b^2)/a,长轴和短轴之和可表示为a + b = 16。
根据这两个方程,可以解方程组得到a ≈ 12.25,b ≈ 3.75。
练习题5:已知一个椭圆的长轴为8,短轴为4,求该椭圆的离心率。
解答:根据离心率的计算公式,可得e = √(8^2 - 4^2)/8 = √(64-16)/8 = √48/8 = √6 ≈ 2.45。
练习题6:已知椭圆的离心率为1.5,短轴的长度为6,求长轴的长度。
解答:根据离心率的计算公式,可得1.5 = √(a^2 - 6^2)/a。
解方程可得a ≈ 17.82。
练习题7:已知一个椭圆的离心率为1,长轴的长度为10,求短轴的长度。
解答:根据离心率的计算公式,可以得到1 = √(10^2 - b^2)/10。
解方程可得b ≈ 0。
离心率练习题(题型全面)(最新整理)
a2 2
3
()
A.2
B. 3
26 C.
3
23 D.
3
9.已知双曲线
x2 a2
y2 b2
1, (a 0, b 0) 的左,右焦点分别为 F1, F2
,点 P 在双曲线的右支上,且
| PF1 | 4 | PF2 | ,则此双曲线的离心率 e 的最大值为
()
4
A.
3
5
B.
3
C. 2
7
D.
3
三、求离心率范围
y
1相交于不同的两点
A,B。求双曲线
C
的离心率的取
值范围。
5.直线 L 过双曲线 双曲线离心率的取值范围。
的右焦点,斜率 k=2。若 L 与双曲线的两个交点分别在左、右两支上,求
6.已知 F1、F2 分别是双曲线
的左、右焦点,过 F1 且垂直于 x 轴的直线与双曲线交于 A、B
两点。若△ABF2 是锐角三角形,求双曲线的离心率的取值范围。
a2 b2
x2 y2
5.椭圆 a2
+ =1(a>b b2
>0)的两焦点为
F1
、F2
,AB
为椭圆的顶点,P
是椭圆上一点,且
PF1
⊥X
轴,PF2
∥AB,
B P
F
F
A
O
1
2
求椭圆离心率?
x2 y2
6.椭圆 a2
+ =1(a>b b2
>0)的两焦点为 F1
、F2
,点 P 在椭圆上,使△OPF1
为正三角形,求椭圆离心率?
离心率练习题(题型全面)
(完整版)椭圆离心率高考练习题
椭圆的离心率专题训练一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C. D.4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B.C. D.5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C.D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B. C.D.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A.B.2﹣C.2(2﹣)D.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A.B. C.D.或10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C.D.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A.B.C.D.13.(2015•高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C. D.一l14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A. B. C.D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A.B.C.D.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A.B.C.D.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A.B.C. D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()A. B. C. D.﹣120.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣623.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A.B.C.D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C.D.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B. C.D.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C. D.参考答案与试题解析一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A .B .C .D .解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e >.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)2.在区间[1,5]和[2,4]分别取一个数,记为a,b ,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A .B .C .D .解解:∵表示焦点在x 轴上且离心率小于,答:∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x 轴上且离心率小于的椭圆的概率为P==,故选B.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A .B .C .D .解解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,答:F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形.根据椭圆的定义:|AF|+|AN|=2a∠ABF=α,则:∠ANF=α.所以:2a=2ccosα+2csinα利用e==所以:则:即:椭圆离心率e的取值范围为[]故选:A4.斜率为的直线l 与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A .B .C .D .解答:解:两个交点横坐标是﹣c,c所以两个交点分别为(﹣c ,﹣c)(c ,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2∵b2=a2﹣c2c2(3a2﹣2c2)=2a^4﹣2a2c22a^4﹣5a2c2+2c^4=0(2a2﹣c2)(a2﹣2c2)=0=2,或∵0<e<1所以e==故选A5.设椭圆C :=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A .B .C .D .解解:设|PF2|=x,答:∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I ,且有(其中λ为实数),椭圆C的离心率e=()A .B .C .D .解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为 G (,),∵,∴IG∥x轴,∴I 的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的内心,∴I 的纵坐标即为内切圆半径,内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形∴=(|PF1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是()A .B .C .D .解答:解:设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,∴≤.综上,≤≤,故选:C.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A .B.2﹣C.2(2﹣)D .解解:如图,答:在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c∴MF2=4c,MF1=2 cMF1+MF2=4c+2c=2a⇒e==2﹣,故选B.9.椭圆C的两个焦点分别是F1,F2,若C上的点P 满足,则椭圆C的离心率e的取值范围是()A .B .C .D .或解答:解:∵椭圆C上的点P 满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e 的取值范围是.故选:C.10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A .B .C .D .解答:解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是 e ∈.故选A.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P ,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C .D .解答:解:设P(asinα,bcosα),A1(﹣a,0),A2(a,0);∴,;∴;∴;∴,a,c>0;∴解得;∴该椭圆的离心率的范围是().故选:C.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A .B .C .D .解答:解:设椭圆(a>b>0),F1(﹣c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,|MF2|+|MF1|=2a,即有2c+4=2a,即a﹣c=2,①取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②由①②解得a=7,c=5,则离心率e==.故选:D.13.椭圆C :+=1(a>b>0)的左焦点为F,若F 关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A .B .C .D .一l解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则解答:,∴m=,n=c,代入椭圆方程可得,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:D.14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A .B .C .D .解答:解:F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,设F 1(﹣c ,0),F 2(c ,0),(c >0),P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|, 可得2c=2,即ac=b 2=a 2﹣c 2.可得e 2+e ﹣1=0. 解得e=.故选:D . 15.已知椭圆(a >b >0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( ) A . B . C . D .解答: 解:由题意作图如右图,l 1,l 2是椭圆的准线,设点Q (x 0,y 0),∵2|PF 1|=3|QF 1|,∴点P (﹣c ﹣x 0,﹣y 0); 又∵|PF 1|=|MP|,|QF 1|=|QA|, ∴2|MP|=3|QA|, 又∵|MP|=﹣c ﹣x 0+,|QA|=x 0+,∴3(x 0+)=2(﹣c ﹣x 0+),解得,x 0=﹣,∵|PF 2|=|F 1F 2|, ∴(c+x 0+)=2c ; 将x 0=﹣代入化简可得,3a 2+5c 2﹣8ac=0, 即5﹣8+3=0;解得,=1(舍去)或=;故选:A.16.已知椭圆C :的左、右焦点分别为F1,F2,O为坐标原点,M为y 轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A .B .C .D .解答:解:如图所示,在Rt△AF1F2中,|F1F2|=2|OA|=2c.又|MF2|=2|OA|,在Rt△OMF2中,∴∠AF2F1=60°,在Rt△AF1F2中,|AF2|=c,|AF1|=c.∴2a=c+c,∴=﹣1.故选:C.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A .B .C .D .解答:解:∵|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cos∠MOF1==,在△OF2M中,|F2O|=c,|M0|=|F2M|=a,则cos∠MOF2==,由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+co s∠MOF2=0,即为+=0,整理得:3c2﹣2a2=0,即=,即e2=,即有e=.故选:D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)解答:解:由已知P (,y),得F1P的中点Q 的坐标为(),∴,∵,∴y2=2b2﹣,∴y2=(a2﹣c2)(3﹣)>0,∴3﹣>0,∵0<e<1,∴<e<1.故选:C.19.点F 为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()A .B .C .D .﹣1解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60°=,∴点P坐标为:(c ,c),代人椭圆的标准方程,得,∴b2c2+3a2c2=4a2b2,∴e=.故选:D.20.已知椭圆C :=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O 的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]解答:解:如图所示,连接OE,OF,OM,∵△MEF为正三角形,∴∠OME=30°,∴OM=2b,则2b≤a,∴,∴椭圆C的离心率e==.又e<1.∴椭圆C 的离心率的取值范围是.故选:C.21.在平面直角坐标系xOy 中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)解答:解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.22.设F1、F2为椭圆C :+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣6解答:解:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4()2a2,即有c2=(9﹣6)a2,即有e2==9﹣6.故选D.23.直线y=kx与椭圆C :+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)解答:解:设F2是椭圆的右焦点.∵•=0,∴BF⊥AF,∵O点为AB的中点,OF=OF2.∴四边形AFBF2是平行四边形,∴四边形AFBF2是矩形.如图所示,设∠ABF=θ,∵BF=2ccosθ,BF2=AF=2csinθ,BF+BF2=2a,∴2ccosθ+2csinθ=2a,∴e=,sinθ+cosθ=,∵θ∈(0,],∴∈,∴∈.∴∈,∴e ∈.故选:D.24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P 满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]解答:解:设P(x0,y0),则2c2==(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=+,化为.又,∴=,∵,∴,∵b2=a2﹣c2,∴,∴.故选:A.25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A .B .C .D .解答:解:设P(x0,y0),则,∴=.∵,∴(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=c2,化为=c2,∴=2c2,化为=,∵,∴0≤≤a2,解得.故选:D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A .B .C .D .解答:解:由题意知c=1,离心率e=,椭圆C以A,B为焦点且经过点P,则c=1,∵P在直线l:y=x+2上移动,∴2a=|PA|+|PB|.过A作直线y=x+2的对称点C,设C(m,n),则由,解得,即有C(﹣2,1),则此时2a=|PA|+|PB|≥|CD|+|DB|=|BC|=,此时a 有最小值,对应的离心率e 有最大值,故选C.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k <,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)解解:如图所示:|AF2|=a+c,|BF2|=,答:∴k=tan∠BAF2=,又∵0<k <,∴0<<,∴0<<,∴<e<1.故选:D.28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B 使得∠BPA=,则椭圆C1的离心率的取值范围是()A .B .C .D .解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠BPA=,∠APO=∠BPO=,在直角三角形OAP 中,∠AOP=,∴cos∠AOP==,∴|OP|==2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即,∴,又0<e<1,∴≤e<1,∴椭圆C的离心率的取值范围是[,1),故选:A.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A .B .C .D .解答:解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.。
高考椭圆试题及答案
高考椭圆试题及答案一、选择题1. 已知椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a和b分别为椭圆的长半轴和短半轴,若椭圆的离心率为\(\frac{\sqrt{3}}{2}\),则下列说法正确的是()A. \(a > b\)B. \(a < b\)C. \(a = b\)D. \(a = 2b\)答案:A2. 椭圆\(\frac{x^2}{9} + \frac{y^2}{4} = 1\)的长轴长度为()A. 3B. 5C. 6D. 9答案:C二、填空题3. 若椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)的焦点坐标为\((\sqrt{5}, 0)\)和\((-\sqrt{5}, 0)\),则a的值为()。
答案:34. 椭圆\(\frac{x^2}{16} + \frac{y^2}{9} = 1\)的短轴长度为()。
答案:6三、解答题5. 已知椭圆\(\frac{x^2}{4} + \frac{y^2}{3} = 1\),求椭圆上一点P(x, y)到焦点F(1, 0)的距离的最小值。
答案:最小值为\(\sqrt{3} - 1\)。
6. 椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)的长轴和短轴分别为2a和2b,且a > b > 0,若椭圆上存在一点P(x, y),使得\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),且\(\frac{x^2}{a^2} = \frac{y^2}{b^2}\),求椭圆的离心率。
答案:离心率为\(\frac{1}{2}\)。
四、计算题7. 已知椭圆\(\frac{x^2}{25} + \frac{y^2}{16} = 1\),求椭圆的离心率和焦距。
答案:离心率\(e = \frac{3}{5}\),焦距\(2c = 6\)。
椭圆离心率高考练习题
椭圆的离心率专题训练一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A.B.C.D.5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C.D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B. C.D.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A.B.2﹣C.2(2﹣)D.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C 的离心率e的取值范围是()A.B. C.D.或10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C.D.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A.B.C.D.13.(2015•高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C.D.一l14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A.B.C.D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A.B.C.D.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A.B.C.D.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A. B.C.D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()A. B. C. D.﹣120.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6 D.9﹣623.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,] B.(0,] C.[,] D.[,1)24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值范围是()A.[,] B.(0,] C.[,1)D.[,]25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A.B.C.D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A.B.C. D.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B.C.D.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.参考答案与试题解析一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e>.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x 轴上且离心率小于的椭圆的概率为()A.B.C.D.解答:解:∵表示焦点在x轴上且离心率小于,∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x轴上且离心率小于的椭圆的概率为P==,故选B.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.解答:解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形.根据椭圆的定义:|AF|+|AN|=2a∠ABF=α,则:∠ANF=α.所以:2a=2ccosα+2csinα利用e==所以:则:即:椭圆离心率e的取值范围为[]故选:A4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A.B.C.D.解答:解:两个交点横坐标是﹣c,c所以两个交点分别为(﹣c,﹣c)(c,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2∵b2=a2﹣c2c2(3a2﹣2c2)=2a^4﹣2a2c22a^4﹣5a2c2+2c^4=0(2a2﹣c2)(a2﹣2c2)=0=2,或∵0<e<1所以e==故选A5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.解答:解:设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C.D.解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为 G(,),∵,∴IG∥x轴,∴I的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的内心,∴I的纵坐标即为内切圆半径,内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形∴=(|PF 1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B.C.D.解答:解:设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,∴≤.综上,≤≤,故选:C.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A.B.2﹣C.2(2﹣)D.解答:解:如图,在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c ∴MF2=4c,MF1=2cMF1+MF2=4c+2c=2a⇒e==2﹣,故选B.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C 的离心率e的取值范围是()A.B. C. D.或解答:解:∵椭圆C上的点P满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e的取值范围是.故选:C.10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.解答:解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是e∈.故选A.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C.D.解答:解:设P(asinα,bcosα),A1(﹣a,0),A2(a,0);∴,;∴;∴;∴,a,c>0;∴解得;∴该椭圆的离心率的范围是().故选:C.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A.B.C.D.解答:解:设椭圆(a>b>0),F1(﹣c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,|MF2|+|MF1|=2a,即有2c+4=2a,即a﹣c=2,①取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②由①②解得a=7,c=5,则离心率e==.故选:D.13.椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A 是椭圆C上的点,则椭圆C的离心率为()A.B.C.D.一l解答:解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则,∴m=,n=c,代入椭圆方程可得,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:D.14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A.B.C.D.解答:解:F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,设F1(﹣c,0),F2(c,0),(c>0),P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,可得2c=2,即ac=b2=a2﹣c2.可得e2+e﹣1=0.解得e=.故选:D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A.B.C.D.解答:解:由题意作图如右图,l1,l2是椭圆的准线,设点Q(x0,y0),∵2|PF1|=3|QF1|,∴点P(﹣c﹣x0,﹣y0);又∵|PF1|=|MP|,|QF1|=|QA|,∴2|MP|=3|QA|,又∵|MP|=﹣c﹣x0+,|QA|=x0+,∴3(x0+)=2(﹣c﹣x0+),解得,x0=﹣,∵|PF2|=|F1F2|,∴(c+x0+)=2c;将x0=﹣代入化简可得,3a2+5c2﹣8ac=0,即5﹣8+3=0;解得,=1(舍去)或=;故选:A.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A.B.C.D.解答:解:如图所示,在Rt△AF1F2中,|F1F2|=2|OA|=2c.又|MF2|=2|OA|,在Rt△OMF2中,∴∠AF2F1=60°,在Rt△AF1F2中,|AF2|=c,|AF1|=c.∴2a=c+c,∴=﹣1.故选:C.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A. B.C.D.解答:解:∵|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cos∠MOF1==,在△OF2M中,|F2O|=c,|M0|=|F2M|=a,则cos∠MOF2==,由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+cos∠MOF2=0,即为+=0,整理得:3c2﹣2a2=0,即=,即e2=,即有e=.故选:D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)解解:由已知P(,y),得F1P的中点Q的坐标为(),答:∴,∵,∴y2=2b2﹣,∴y2=(a2﹣c2)(3﹣)>0,∴3﹣>0,∵0<e<1,∴<e<1.故选:C.19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()A.B.C.D.﹣1解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60°=,∴点P坐标为:(c,c),代人椭圆的标准方程,得,∴b2c2+3a2c2=4a2b2,∴e=.故选:D.20.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]解答:解:如图所示,连接OE,OF,OM,∵△MEF为正三角形,∴∠OME=30°,∴OM=2b,则2b≤a,∴,∴椭圆C的离心率e==.又e<1.∴椭圆C的离心率的取值范围是.故选:C.21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)解:如图所示,解答:设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6 D.9﹣6解答:解:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4()2a2,即有c2=(9﹣6)a2,即有e2==9﹣6.故选D.23.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,] B.(0,] C.[,] D.[,1)解答:解:设F2是椭圆的右焦点.∵•=0,∴BF⊥AF,∵O点为AB的中点,OF=OF2.∴四边形AFBF2是平行四边形,∴四边形AFBF2是矩形.如图所示,设∠ABF=θ,∵BF=2ccosθ,BF2=AF=2csinθ,BF+BF2=2a,∴2ccosθ+2csinθ=2a,∴e=,sinθ+cosθ=,∵θ∈(0,],∴∈,∴∈.∴∈,∴e∈.故选:D.24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值范围是()A.[,] B.(0,] C.[,1)D.[,]解解:设P(x0,y0),则2c2==(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=+,答:化为.又,∴=,∵,∴,∵b2=a2﹣c2,∴,∴.故选:A.25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A.B.C.D.解答:解:设P(x,y0),则,∴=.∵,∴(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=c2,化为=c2,∴=2c2,化为=,∵,∴0≤≤a2,解得.故选:D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A.B.C. D.解解:由题意知c=1,离心率e=,答:椭圆C以A,B为焦点且经过点P,则c=1,∵P在直线l:y=x+2上移动,∴2a=|PA|+|PB|.过A作直线y=x+2的对称点C,设C(m,n),则由,解得,即有C(﹣2,1),则此时2a=|PA|+|PB|≥|CD|+|DB|=|BC|=,此时a有最小值,对应的离心率e有最大值,故选C.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)解答:解:如图所示:|AF|=a+c,|BF2|=,2∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B.C.D.解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠BPA=,∠APO=∠BPO=,在直角三角形OAP中,∠AOP=,∴cos∠AOP==,∴|OP|==2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即,∴,又0<e<1,∴≤e<1,∴椭圆C的离心率的取值范围是[,1),故选:A.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.解解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.答:②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.。
高二数学 椭圆的离心率问题解析 试题
专题:椭圆的离心率问题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、直接求出a c ,或者求出a 与b 的比值,以求解e 。
在椭圆中,a ce =,22222221ab a b a ac a c e -=-===1.椭圆的长轴长是短轴长的22.椭圆两条准线间的间隔 是焦距的2倍,那么其离心率为22 3.假设椭圆经过原点,且焦点为)0,3(),0,1(21F F ,那么椭圆的离心率为21 4.矩形ABCD ,AB =4,BC =3,那么以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为12。
5.假设椭圆)0(,12222>>=+b a by a x 短轴端点为P 满足21PF PF ⊥,那么椭圆的离心率为=e 22。
6..)0.0(121>>=+n m n m 那么当mn 获得最小值时,椭圆12222=+n y m x 的的离心率为237.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,假设12MN F F 2≤,那么该椭圆离心率的取值范围是1⎫⎪⎪⎭8.F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB 〔O 为椭圆中心〕时,椭圆的离心率为=e 22。
9.P 是椭圆22a x +22by =1〔a >b >0〕上一点,21F F 、是椭圆的左右焦点,,2,1221αα=∠=∠F PF F PF,321α=∠PF F 椭圆的离心率为=e 13-10.21F F 、是椭圆的两个焦点,P 是椭圆上一点,假设75,151221=∠=∠F PF F PF , 那么椭圆的离心率为3611.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的间隔 为1,那么该椭圆的离心率为22 12.设椭圆2222by a x +=1〔a >b >0〕的右焦点为F 1,右准线为l 1,假设过F 1且垂直于x 轴的弦的长等于点F 1到l 1的间隔 ,那么椭圆的离心率是21。
椭圆双曲线离心率问题50题
离心率问题50题1.椭圆的一个焦点为,且,则椭圆的离心率为A.B. C. D.2.已知椭圆,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于两点,且AB 的中点为,则椭圆的离心率为A.B.C. D.3.已知直线,为双曲线M :的两条渐近线,若、与圆N :相切,则双曲线M 离心率的值为A.B. C.D.4.已知双曲线的两条渐近线分别与抛物线交于第一、四象限的A ,B 两点,设抛物线焦点为F ,着,则双曲线的离心率为A.B. C. D.5.已知椭圆的右焦点为F ,直线l :,若l 与双曲线的两条渐近线分别交于点A 和点B ,且为原点,则双曲线的离心率为A.B. C.2D.6.双曲线的左右焦点分别为、,过点的直线与圆相切于点A ,与双曲线左支交于点P ,且,则双曲线的离心率为A.B.2C.D.7.如图,是双曲线与椭圆的公共焦点,点A 是,在第一象限内的公共点,若,则的离心率是A. B. C.8.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于A. B. C. D.29.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为A. B. C. D.10.设椭圆C:的左、右焦点分别为、,P是C上的点,,,则椭圆C的离心率为A. B. C. D.11.已知矩形ABCD中,,若椭圆的焦点是AD,BC的中点,且点A,B,C,D在椭圆上,则该椭圆的离心率为A. B. C. D.12.已知,是椭圆C:的两个焦点,以线段为边作正三角形,若边的中点在椭圆C上,则椭圆C的离心率为A. B. C. D.13.已知直线与椭圆C:交于A,B两点,点F是随圆C的左焦点,若,,则椭圆C的离心率A. B. C. D.14.已知椭圆的左右焦点分别为、,P为椭圆上一点,,若坐标原点O到的距离为,则椭圆离心率为A. B. C. D.15.设、分别是双曲线C :的左、右焦点,若双曲线右支上存在一点P ,使为原点,且,则双曲线的离心率为A.B. C.D.16.已知椭圆M :,直线交M 于A ,B 两点,P 为AB的中点,且OP 的斜率为为坐标原点,则椭圆M 的离心率为A.B. C.D.17.双曲线的一个焦点是抛物线的焦点,l 是C 的一条渐近线且与圆相交于两点,若,则双曲线C 的离心率是A.B.C.D.18.已知椭圆C :,,为椭圆的左右焦点,过的直线交椭圆与A 、B 两点,,,则椭圆的离心率为A.B. C.D.19.已知椭圆C :的右焦点为F ,设,直线与椭圆C 在第四象限交于点A ,点A 在x 轴上的射影为B ,若,则椭圆C 的离心率为A.B. C.D.20.已知双曲线的左、右焦点分别为、,圆与双曲线在第一象限和第三象限的交点分别为A ,B ,四边形的周长p 与面积S 满足,则该双曲线的离心率为A.B. C.D.21.已知椭圆的左、右焦点分别为,,点Q 为椭圆上一点.的重心为G ,内心为I ,且,则该椭圆的离心率为22.过椭圆的左焦点F 的直线过C 的上端点B ,且与椭圆相交于点A ,若则C 的离心率为A.B.C.D.23.设、分别是椭圆的焦点,过的直线交椭圆于P 、Q两点,且,,则椭圆的离心率为A.B. C.D.24.已知椭圆的左、右焦点分别为,,P 是C 上一点,且轴,直线与C 的另一个交点为Q ,若,则C 的离心率为A. B. C.D.25.如图,A ,B ,C 分别为椭圆的顶点与焦点,若,则该椭圆的离心率为A.B. C.D.26.已知椭圆的左、右焦点分别为、,且,点A 在椭圆上,,,则椭圆的离心率A.B. C. D.27.已知椭圆C :的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,若,,,则椭圆C 的离心率为A.B. C. D.28.已知椭圆的左焦点、上顶点、右顶点分别为点A 、、C ,若,则该椭圆的离心率为29.F为椭圆的右焦点,过F作x轴的垂线交椭圆于点P,点A,B分别为椭圆的右顶点和上顶点,O为坐标原点,若的面积是面积的倍,则该椭圆的离心率是A.或B.或C.或D.或30.已知椭圆的左、右焦点分别为,且以线段为直径的圆与直线相切,则的离心率为A. B. C. D.31.双曲线的两顶点为,,虚轴两端点为,,两焦点为,,若以为直径的圆内切于菱形,则双曲线的离心率是A. B. C. D.32.设双曲线C:的左焦点为F,直线过点F且在第二象限与C的交点为P,O为原点,若,则C的离心率为A.5 B. C. D.33.已知双曲线的一条渐近线被圆截得弦长为其中c为双曲线的半焦距,则该双曲线的离心率为A. B. C. D.34.已知A,B,C是双曲线上的三个点,AB经过原点O,AC经过右焦点F,若且,则该双曲线的离心率是A. B. C.35.设双曲线C:的左、右焦分别是,,过的直线交双曲线C的左支于M,N两点若,且,则双曲线C 的离心率是36.已知双曲线的左、右顶点为A ,B ,点P 为双曲线上异于A ,B 的任意一点,设直线PA ,PB 的斜率分别为,,若,则双曲线的离心率为A. B.2 C.D.37.如图,直线l 为双曲线C :的一条渐近线,,是双曲线C 的左、右焦点,关于直线l 的对称点为,且是以为圆心,以半焦距c 为半径的圆上的一点,则双曲线C 的离心率为A.B. C.2D.338.已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M ,若,则该双曲线的离心率为A.2B.3C.D.39.已知椭圆,,,过点P 的直线与椭圆交于A ,B ,过点Q 的直线与椭圆交于C ,D ,且满足,设AB 和CD 的中点分别为M ,N ,若四边形PMQN 为矩形.且面积为,则该椭圆的离心率为A.B. C. D.40.点A 、B 为椭圆E :长轴的端点,C 、D 为椭圆E 短轴的端点,动点M 满足,若面积的最大值为8,面积的最小值为1,则椭圆的离心率为A.B.C. D.41.圆与双曲线的两条渐近线相切于A 、B 两点,若,则C 的离心率为A. B. C.2 D.342.若双曲线的一条渐近线被曲线所截得的弦长为则该双曲线的离心率为A. B. C. D.43.已知点是双曲线的左焦点,过F且平行于双曲线渐近线的直线与圆交于点P,且点P在抛物线上,则该双曲线的离心率是A. B. C. D.44.已知,分别是椭圆的左、右焦点,P为椭圆上一点,且为坐标原点,若,则椭圆的离心率为A. B. C. D.45.已知椭圆与直线交于A,B两点焦点,其中c为半焦距,若是直角三角形,则该椭圆的离心率为A. B. C. D.46.如图所示,已知椭圆的左、右焦点分别为、,,P是y轴正半轴上一点,交椭圆于点A,若,且的内切圆半径为,则椭圆的离心率是A. B. C. D.47.已知椭圆,为其两焦点,过的直线l与椭圆交于A,B两点,与y轴交于C点,若,则椭圆的离心率为A. B. C. D.48.已知椭圆C:的左,右焦点分别为,,过的直线交椭圆C于A,B两点,若,且的三边长,,成等差数列,则C的离心率为A. B. C. D.49.已知双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O,A两点,若的面积为,则双曲线的离心率是A. B. C. D.50.双曲线的左、右焦点分别为,,过作倾斜角为的直线与y轴和双曲线的右支分别交于A,B两点,若点A平分线段,则该双曲线的离心率是A. B. C.2 D.答案和解析1.【答案】C【解析】解:椭圆的一个焦点为,可得又,解得,,所以椭圆的离心率为:.故选:C.利用已知条件列出方程组,转化求解椭圆的离心率即可.本题考查椭圆的简单性质的应用,考查计算能力.2.【答案】A【解析】【分析】本题考查了椭圆的几何意义,考查椭圆与直线的位置关系,考查了弦中点问题,属于中档题.根据直线AB的斜率为,中点为,由点差法计算结果.【解答】解:设因为AB的中点为,所以,即,将A,B代入椭圆方程为:,则得:,,,,平方可得,,,故选A.3.【答案】B【解析】【分析】本题考查双曲线的离心率的求法,注意运用渐近线方程和直线和圆相切的条件:,考查运算能力,属于中档题.求出双曲线的渐近线方程,求得圆的圆心为,半径为1,运用直线和圆相切的条件:,化简整理可得,运用a,b,c的关系和离心率公式,计算可得所求值.【解答】解:双曲线的两条渐近线为,即为,由渐近线与圆相切,可得,化为a,由,可得故选B..4.【答案】B【解析】解:双曲线的两条渐近线方程为,由抛物线和,联立可得,,由抛物线的方程可得,设AF的倾斜角为,斜率为,而,解得负的舍去,设,可得,解得,则.故选:B.求得双曲线的渐近线方程,联立抛物线方程,求得A,B的坐标,以及F的坐标,设AF的倾斜角为,由二倍角的余弦公式和同角的基本关系式,以及直线的斜率公式,双曲线的离心率公式,计算可得所求值.本题考查双曲线的方程和性质,考查三角函数的恒等变换,以及化简运算能力,属于中档题.5.【答案】B【解析】解:椭圆的右焦点为F,所以,l与双曲线的两条渐近线分别交于点A和点B,则和,所以,,所以可得,即,所以离心率,故选:B.利用椭圆方程求出,然后求解,推出a,b关系,转化求解双曲线的离心率即可.本题考查椭圆以及双曲线的简单性质的应用,双曲线的离心率的求法,是基础题.6.【答案】D【解析】解:在中,,,由余弦定理可知,,在中,,,化简可得:,.故选:D.由直线和圆相切的性质,设切点为M,可得,且,取的中点为N,连接,余弦定理,结合双曲线的定义,即可得双曲线的离心率.本题考查双曲线的定义、方程和性质,考查中位线定理和直线和圆相切的性质,考查运算能力,属于基础题.7.【答案】C【解析】【分析】本题考查椭圆以及双曲线的简单性质的应用,考查计算能力,属于基础题.利用椭圆以及双曲线的定义,转化求解椭圆的离心率即可.【解答】解:设椭圆的标准方程为:,右焦点为,由题意,是双曲线与椭圆的公共焦点可知,,由双曲线的定义可知:,,由椭圆的定义可知:,所以,的离心率是.故选C.8.【答案】B【解析】【分析】本题考查椭圆的几何性质,考查学生的计算能力,属于基础题.利用椭圆短轴上的两顶点与一焦点的连线互相垂直,可得,结合,可得椭圆的离心率.【解答】解:椭圆短轴上的两顶点与一焦点的连线互相垂直,,,,故选B.9.【答案】B【解析】解:设两个曲线的交点为P,Q,如图所示,由椭圆及抛物线的对称性可得:P,Q关于x轴对称,由题意可得轴,所以,代入抛物线的方程可得,即,又因为椭圆的焦点与抛物线的焦点重合,所以,即,代入椭圆的方程可得,所以,整理可得,即所以可得,故选:B.由椭圆及抛物线的对称性可得:P,Q,三点共线,由焦点相同可得p,c之间的关系,分别代入椭圆,抛物线的方程可得a,c的关系,进而曲线离心率.本题考查椭圆及抛物线的性质,属于中档题.10.【答案】D【解析】解:设,,,,,又,,,,的离心率为.故选:D.设,在直角三角形中,依题意可求得与,利用椭圆的定义和离心率的计算公式,即可求得答案.本题考查椭圆的定义和简单性质,利用三角形边角关系求得与及是关键,考查理解与应用能力.11.【答案】D【解析】解:设AD,BC的中点分别为,,由题意可知:矩形ABCD是以,为焦点的椭圆的内接矩形,设,,,则,丨丨,丨丨,由椭圆的定义可知:丨丨丨丨,由椭圆的离心率,该椭圆的离心率,故选:D.由题意可知:设,,,则,丨丨,由勾股定理可知:丨丨,根据椭圆的定义可知丨丨丨丨,根据离心率公式,即可求得椭圆的离心率.本题考查椭圆的定义,考查椭圆离心率公式的求法,考查数形结合思想,属于中档题.12.【答案】C【解析】【分析】设边的中点为Q,连接,中,算出且,根据椭圆的定义得,由此不难算出该椭圆的离心率.本题给出椭圆与以焦距为边的正三角形交于边的中点,求该椭圆的离心率,着重考查了解三角形、椭圆的标准方程和简单性质等知识,属于中档题.【解答】解:由题意,设边的中点为Q,连接,在中,,,中,椭圆的焦距,,,根据椭圆的定义,得,椭圆的离心率为,故选C.13.【答案】B【解析】解:由对称性可得设右焦点,可得四边形为平行四边形,所以,所以,所以,又,得.所以.故选:B.取椭圆的右焦点可得四边形为平行四边形,再由椭圆可得a,c的值,进而求出椭圆的离心率本题考查椭圆的性质,及向量的运算性质,属于中档题.14.【答案】D【解析】解:设,,作,,由题意可得,,,即有,,由,可得,,可得.故选:D.设,,通过椭圆的定义,以及三角形的解法求出直角三角形的边长关系,利用勾股定理,化简整理,结合离心率公式,可得所求值.本题考查椭圆的定义和性质,考查三角形的解法,考查化简运算能力,属于中档题.15.【答案】D【解析】解:设,则,,则故选:D.依题意可知判断出,设出,则,进而利用双曲线定义可用t表示出a,根据勾股定理求得t和c的关系,最后可求得双曲线的离心率.本题主要考查了双曲线的简单性质.考查了学生对双曲线定义的理解和灵活运用.16.【答案】B【解析】【分析】本题考查椭圆的性质及几何意义,直线与椭圆的位置关系,中点弦问题,属于中档题把点A、B的坐标代入椭圆方程,相减即点差法得到为定值,找到a、b、c 的关系即可.【解答】解:设,是AB的中点,,又的斜率为,,又直线交M于A,B两点,把A、B代入椭圆方程得:,,两式相减可得:,化简得:,又,,.故选B.17.【答案】B【解析】【分析】本题考查抛物线以及双曲线的简单性质,圆的性质的应用,属于中档题.求出抛物线的焦点坐标,得到双曲线a,b的关系,求出渐近线方程,利用渐近线且与圆相交于A,B两点,,求解双曲线的离心率即可.【解答】解:抛物线的焦点,可得,两条渐近线和圆均关于x轴对称,由对称性,不妨设渐近线与圆相交于A,B两点,,圆心到直线的距离为,圆的半径为a,,解得,所以双曲线的离心率为.故选B.18.【答案】B【解析】【分析】本题考查了椭圆的性质及几何意义由向量的关系可得线段的关系,属于中档题.设,则,由椭圆的定义及勾股定理可得x的值,进而求出,的值,进而求出的余弦值,由半角公式求出sin,进而求出离心率.【解答】解:如图所示:因为2,设,,所以,,因为,所以,解得或舍去,则,,a,,所以可得A为短轴的顶点,在中,,所以,则.故选:B.19.【答案】B【解析】【分析】本题考查求椭圆的离心率,涉及直线与椭圆方程的应用,圆锥曲线中的向量数量积运算问题,属于中档题.由,可得,由直线的斜率可得,解得,代入椭圆C的方程可求出离心率.【解答】解:由题意可得轴,可得,所以,又,所以,所以,代入椭圆C的方程得,所以,故法B20.【答案】C【解析】【分析】本题考查了双曲线的定义及几何性质,属中档题.根据双曲线的定义和矩形的面积公式、离心率公式可得.【解答】解:由题知,,四边形是平行四边形,,联立解得,,又线段为圆的直径,所以由双曲线的对称性可知四边形为矩形,所以,因为,所以,即,解得,由,得,即,即.故选C.21.【答案】A【解析】【分析】本题考查椭圆的标准方程和几何意义,涉及到平面向量的几何应用,是中档题在中,设,由三角形重心坐标公式,可得重心G的纵坐标,因为,故内心I的纵坐标与G相同,最后利用三角形F1PF2的面积等于被内心分割的三个小三角形的面积之和建立a、b、c的等式,即可解得离心率.【解答】解:椭圆的左、右焦点分别为,,设,为的重心,点坐标为.,则,的纵坐标为.又,,.又为的内心,即为内切圆的半径,内心I把分为三个底分别为的三边,高为内切圆半径的小三角形,,即,,椭圆的离心率.故选A.22.【答案】D【解析】【分析】本题考查椭圆的方程、性质的应用,考查向量的坐标运算,由,设,可得,根据A在椭圆上,得,解得.【解答】解:过椭圆的左焦点的直线过C的上端点,且与椭圆相交于点A,若,设,则,所以,又A在椭圆上,则,解得,则.23.【答案】B【解析】解:由,可得,所以由题意的定义可得:,所以,,在直角三角形中,,即,整理可得:,解得,故选:B.由题意,可得,再由椭圆的定义可得,求出,然后由题意的定义可得的值,在直角三角形中求出a,c的关系,进而求出离心率.考查椭圆的性质,属于中档题.24.【答案】D【解析】解:由题意,可将点P坐标代入椭圆C方程得,解得.如图所示,过Q点作轴,垂足为点E,设,根据题意及图可知,∽,,,,.又.将点Q坐标代入椭圆方程,得.结合,解得,故选:D.本题根据题意可得,然后过Q点作轴,垂足为点E,设,根据两个直角三角形相似可计算出点Q坐标,再将点Q坐标代入椭圆方程,结合,可解出e的值.本题主要考查椭圆基础知识的计算,直线与椭圆的综合问题,几何计算能力,转化思想的应用.本题属中档题.25.【答案】A【解析】【分析】本题考查椭圆的简单性质,考查计算能力,属于基础题.根据题意,可得,即,即可得解.【解答】解:椭圆的左焦点、上顶点、右顶点分别为点A、B、C,,可得:,即:,可得,解得,或舍去.故选A.26.【答案】C【解析】【分析】本题考查的知识点是平面向量的数量积运算及椭圆的简单性质,属中档题.由,,将两式相减后得到的长度,再根据椭圆的定义,得出a与c之间的数量关系,进而求得结论解:,,即A点的横坐标与左焦点相同,又在椭圆上,,又,,即,,则,故选C.27.【答案】A【解析】【分析】本题考查了椭圆的几何性质,考查了余弦定理,属于基础题.先用余弦定理求,判断为直角三角形且,根据对称性和椭圆的定义q求a和c,即可求e.【解答】解:在中,,因为,所以为直角三角形且,由椭圆的中心对称性可知O为AB中点,所以,由椭圆的对称性可知点A到右焦点的距离,由椭圆的定义可知,所以,所以,28.【答案】A【解析】【分析】本题考查椭圆的简单性质,考查计算能力,属于基础题.根据题意,可得,即,即可得解.【解答】解:椭圆的左焦点、上顶点、右顶点分别为点A、B、C,,可得:,即:,可得,解得,或舍去.故选A.29.【答案】D【解析】【分析】本题考查了椭圆的几何性质,属于中档题.由,可得,由,,解得,由即可求解.【解答】解:设,则,可得,,的面积是面积的倍,,,,或,或.故选D.30.【答案】D【解析】【分析】本题考查椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查推理能力与计算能力,属于中档题.以线段为直径的圆的方程为与直线相切,列出等式即可求出答案.【解答】解:以线段为直径的圆的方程为与直线相切,所以即有,故选D.31.【答案】C【解析】【分析】本题考查双曲线的离心率的求法,注意运用圆内切等积法,考查化简整理的运算能力,属于中档题.由题意可得顶点和虚轴端点坐标及焦点坐标,求得菱形的边长,运用等积法可得,再由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:由题意可得,,,,,,且,菱形的边长为,由以为直径的圆内切于菱形,切点分别为A,B,C,D,由面积相等,可得,即为,即有,由,可得,解得,因为,所以,可得.故选C.32.【答案】A【解析】【分析】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查数形结合思想、化归与转化思想,属于中档题.由题设知是以FN为斜边的直角三角形,,在中,,可得,,由此能求出双曲线的离心率.【解答】解:如图,设双曲线C:的右焦点为N.直线过点F,,在中,,.,,则,,则C的离心率为,故选A.33.【答案】B【解析】【分析】求出双曲线的一条渐近线方程,利用渐近线被圆截得弦长为2b,结合勾股定理,推出a,b,c关系,即可求出双曲线的离心率.【解答】解:双曲线的一条渐近线方程为,圆的圆心到双曲线的渐近线的距离为,渐近线被圆截得的弦长为2b,,,.故选B.34.【答案】B【解析】解:设双曲线的另一个焦点为E,由题意可得在直角三角形ABF中,OF为斜边AB上的中线,即有,令,,,由双曲线的定义有,,在直角三角形EAC中,,代入,化简可得,又得,,在直角三角形EAF中,,即为,可得.故选:B.运用直角三角形斜边上中线等于斜边的一半,即有,令,,,在直角三角形EAC中,,可得,,,在直角三角形EAF中,,即可求解.本题考查双曲线的方程和性质,主要考查双曲线的a,b,c的关系和离心率的求法,注意运用点在双曲线上满足方程,同时注意选择题的解法:代入检验,属于难题.35.【答案】D【解析】解:如图所示,取的中点P,则,,又,则,;在中,,在中,,得,化简得,即,解得或;又,离心率.故选:D.根据题意画出图形,结合图形建立关于c、a的关系式,再求离心率的值.本题考查了双曲线的离心率计算问题,也考查了数形结合与运算能力,是中档题.36.【答案】C【解析】解:由题设知,,,设,则,,,在双曲线上,,则,化简得,,又,,则.故选:C.利用斜率公式以及P在双曲线上,列方程组可解得,从而可得离心率.本题考查了双曲线的性质,属中档题.37.【答案】C【解析】【分析】题.先求出点的坐标,再根据是以为圆心,以半焦距c为半径的圆上的一点,可得,整理化简即可求出.【解答】解:直线l为双曲线C:的一条渐近线,则直线l为,,是双曲线C的左、右焦点,,,关于直线l的对称点为,设为,,,解得,,,是以为圆心,以半焦距c为半径的圆上的一点,,整理可得,即,,故选C.38.【答案】D【解析】【分析】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题.本题首先可以通过题意画出图像并过M点作垂线交于点H,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高MH的长度,MH的长度即M点纵坐标,然后将M点纵坐标带入圆的方程即可得出M点坐标,最后将M点坐标带入双曲线方程即可得出结果.解:根据题意可画出以上图像,过M点作垂线并交于点H,因为,M在双曲线上,所以根据双曲线性质可知,,即,,因为圆的半径为b,OM是圆的半径,所以,因为,,,,所以,三角形是直角三角形,因为,所以,,即M点纵坐标为,将M点纵坐标带入圆的方程中可得,解得,,将M点坐标带入双曲线中可得,化简得,,,,故选D.39.【答案】D【解析】本题主要考查了椭圆的性质,直线与椭圆的位置关系,点差法的运用,属于较难题.连结OM,由题意知,解出,可求出直线AB,OM的斜率,再利用点差法可得,进而得,从而求出椭圆的离心率.【解答】解:如图,不妨设两条直线的斜率大于零,连结OM,由题意知解得,或,则,在中,因为,所以,故此时,.设,则两式相减得,即,即,因此离心率,所以.故选D.40.【答案】D【解析】【分析】本题考查了椭圆离心率,动点轨迹,属于中档题.求得定点M的轨迹方程可得,,解得a,b即可.【解答】解:设,,.动点M满足,则,化简得,面积的最大值为8,M轨迹为圆,M到AB距离最大为;M到CD距离最小,面积的最小值为1,,,解得,,椭圆的离心率为.故选D.41.【答案】A【解析】【分析】本题主要考查直线与圆相交的弦长问题以及双曲线的离心率问题先根据弦长求出,再求离心率即可.【解答】解:如图所示,,所示,故选A42.【答案】B【解析】【分析】本题考查双曲线的简单性质的应用,主要是离心率的求法,考查圆的方程的应用,考查计算能力.通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.【解答】解:双曲线的一条渐近线不妨为:,圆的圆心,半径为,双曲线的一条渐近线被圆所截得的弦长为2,可得圆心到直线的距离为:,,解得:,故选:B.43.【答案】B【解析】解:如图,设抛物线的准线为l,作于Q,设双曲线的右焦点为,.由题意可知为圆的直径,,且,,满足,将代入得,则,即,负值舍去代入,即,再将y代入得,即故选:B.本题考查了双曲线、抛物线与圆的标准方程及其性质,属于较难题.设抛物线的准线为l,作于Q,设双曲线的右焦点为,由题意可知为圆的直径,可得,且,,因此,联立解出可得a,b,c的关系式,由此可解.44.【答案】A【解析】本题考查向量垂直的判断与证明,椭圆的性质及几何意义,离心率的求法,属于中档题.由椭圆的定义及解得,由可得,再根据,即可求解.【解答】解:设焦点坐标,,,,,所以,,由,设线段的中点为M,则则,,则,,可得,解得,则椭圆的离心率为.故选A.45.【答案】A【解析】利用已知条件求出A、B坐标,结合三角形是直角三角形,推出a、b、c关系,然后求解离心率即可.本题考查椭圆的简单性质的应用,是基本知识的考查.【解答】解:椭圆与直线交于A,B两点焦点,其中C为半焦距,若是直角三角形,不妨设,,则,解得,即,即,,故.故选:A.46.【答案】B【解析】【分析】本题考查椭圆的几何性质,考查椭圆的定义,考查学生分析解决问题的能力,属于中档题.由题意,直角三角形的内切圆半径,结合,可得,从而可求,即可求得椭圆的离心率.【解答】解:由题意,直角三角形的内切圆半径,即,,,,,,。
高考数学专题《椭圆》练习
专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.104.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c ,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A .2B .34C .12D .146.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x +=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.22194x y +=2359练基础7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;9.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =. (1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .⎫⎪⎪⎣⎭ D .⎫⎪⎣⎭2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B=,则k =___. 练提升4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.10.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l 的距离为2. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( ) A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦2.(2018·全国高考真题(理))已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为( )A .B .C .D .3.(2019·全国高考真题(文))已知椭圆C 的焦点为,过F 2的直线与C 交于A ,B 两点.若,,则C 的方程为( )A. B. C.D. 4.(2019·全国高考真题(文))设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.1F 2F 22221(0)x y C a b a b+=>>:A C P A 612PF F △12120F F P ∠=︒C 23121314121,01,0F F -(),()222AF F B =││││1AB BF =││││2212x y +=22132x y +=22143x y +=22154x y +=12F F ,22:+13620x y C =M C 12MF F △M 练真题(Ⅰ)求椭圆的方程;(Ⅱ)已知点C满足3OC OF,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点.求直线AB的方程.。
椭圆离心率50道题训练含详解
(2)设椭圆 : , 为椭圆 上一点,过点 的直线交椭圆 于A, 两点,且 为线段 的中点,过 , 两点的直线交椭圆 于 , 两点,如图.当 在椭圆 上移动时,四边形 的面积是否为定值?若是,求出该定值;若不是,请说明理由.
参考答案
1.C
【详解】
由椭圆 ,可得 ,所以 ,
所以椭圆的离心率为 .
15.已知椭圆 : 的离心率为 ,则 的值可能是()
A. B. C. D.
16.椭圆的中心在原点,离心率为 ,则该椭圆的方程可能为()
A. B.
C. D.
17.已知曲线 : ,其中 为非零常数,则下列结论中正确的是()
A.当 时,则曲线 是一个圆
B.当 时,则曲线 是一个椭圆
C.若 时,则曲线 是焦点为 的椭圆
A.椭圆的离心率是 B.线段AB长度的取值范围是
C. 面积的最大值是 D. 的周长存在最大值
22.如图,椭圆Ⅰ与Ⅱ有公共的左顶点和左焦点,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为 和 ,半焦距分别为 和 ,离心率分别为 和 ,则下列结论正确的是()
A. B.
C. D.椭圆Ⅱ比椭圆Ⅰ更扁
34.椭圆 : 的左右焦点分别为 , ,过点 的直线 交椭圆 于 , 两点,已知 , ,则椭圆 的离心率为___________.
35.已知椭圆 的左、右焦点分别为 , ,上顶点为 ,且 ,若第一象限的点 、 在 上, , , ,则直线 的斜率为__________.
36.设 , 分别是椭圆 的左、右焦点,过点 的直线交椭圆 于 两点, ,若 ,则椭圆 的离心率为___________.
四、解答题
44.已知椭圆的焦点为 和 , 是椭圆上的一点,且 是 与 的等差中项.
高考数学一轮复习专题10.6椭圆双曲线抛物线的离心率与渐进线练习(含解析)
第六讲 椭圆双曲线抛物线的离心率与渐进线求离心率的三种方法(1)直接求出a ,c 来求解e .通过已知条件列方程组,解出a ,c 的值.(2)构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.注意:在解关于离心率e 的二次方程时,要注意利用不同曲线的离心率范围进行根的取舍,否则将产生增根.考向一 椭圆的离心率【例1】(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为 。
(2)若将(1)中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“∠PF 2F 1=75°,∠PF 1F 2=45°”,求C 的离心率. (3)若将(1)中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“C 上存在点P ,使∠F 1PF 2为钝角”,求C 的离心率的取值范围.【答案】(1)33 (2)6-22 (3)⎝ ⎛⎭⎪⎫22,1 【解析】解法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.解法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). (2)在△PF 1F 2中,∵∠PF 1F 2=45°,∠PF 2F 1=75°,∴∠F 1PF 2=60°,设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,椭圆的长轴长为2a ,则在△PF 1F 2中,有m sin 75°=n sin 45°=2csin 60°,∴m +nsin 75°+sin 45°=2c sin 60°,∴e =c a =2c 2a =sin 60°sin 75°+sin 45°=6-22.(3)由题意,知c >b ,∴c 2>b 2.又b 2=a 2-c 2,∴c 2>a 2-c 2,即2c 2>a 2.∴e 2=c 2a 2>12,∴e >22.故C 的离心率的取值范围为⎝ ⎛⎭⎪⎫22,1.【举一反三】1. 设F 1,F 2是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF △ 是底角为30︒的等腰三角形,则椭圆E 的离心率为___________; 【答案】34【解析】如图,设直线32ax =交x 轴于D 点,因为21F PF △是底角为30︒的等腰三角形,则有122F F F P =,因为1230PF F ∠=︒,所以260PF D ∠=︒,230DPF ∠=︒,所以22121122DF F P F F ==,即31222a c c c -=⨯=,即322a c =,即34c a =,所以椭圆E 的离心率34c e a ==2. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为___________.【答案】5【解析】设F (c ,0),则222c a b =- 由题意,易得直线A 1B 2,B 1F 的方程分别为1x y a b +=-,1x yc b+=- 将上述两个方程联立,求解可得点T 的坐标为T 2()(,)ac b a c a c a c+--,则M ()(,)2()ac b a c a c a c +-- 又点M 在椭圆上,所以2222()1()4()c a c a c a c ++=--,整理得221030c ac a +-= 两边同时除以2a ,可得21030e e +-=,解得5e =或5e =-(舍去)3.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 。
新教材人教A版高中数学选择性必修第一册专题训练:椭圆离心率题 分层练习题含答案解析
9.椭圆离心率题型归类基础过关练 ....................................................................................................................... 1 能力提升练 ....................................................................................................................... 6 培优拔尖练 (12)基础过关练1.设1F 和2F 为椭圆()222210x ya b a b+=>>的两个焦点,若1F ,2F ,()0,2P b 是等边三角形的三个顶点,则椭圆的离心率为( )A 7B .7C D 【答案】B【分析】由三角形1F 2F P 是等边三角形,得到b 、c 的齐次式,即可求出离心率. 【详解】设椭圆是焦距为2c .因为1F ,2F ,()0,2P b 是等边三角形的三个顶点,所以tan623c b π==()2222344c b a c ==-,则7c e a ==. 2.椭圆222:12x y E a a +=+的左、右焦点分别为F 1,F 2,过点F 1的直线l 与E 交于A ,B 两点,若△ABF 2的周长为12,则E 的离心率为( ) A .23B .13C .19D .49【答案】A【分析】由椭圆的定义,求得3a =,再由222c a b =-,求得c 的值,结合离心率的定义,即可求解.【详解】因为2ABF 的周长为12,根据椭圆的定义可得412a =,解得3a =, 则2224c a a =--=,所以2c =,则椭圆E 的离心率为23c e a ==. 3.已知椭圆的两个焦点为1F ,2F ,若椭圆上存在一点P 满足12120F PF ∠=,则椭圆离心率的最小值为________.【分析】不妨设椭圆的两个焦点在x 轴上,故当点P 为椭圆的上下顶点时12F PF ∠最大 设椭圆的上顶点为0P ,则102120F P F ∠≥,结合02tan cOP F b ∠=≥c e a ==,分析即得解【详解】不妨设椭圆的两个焦点在x 轴上,故当点P 为椭圆的上下顶点时12F PF ∠最大 设椭圆的上顶点为0P ,若椭圆上存在一点P 满足12120F PF ∠=, 则102120F P F ∠≥且02tan tan 603cOP F b ∠=≥=b ≤c e a ==≥=4.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,直线(0)y kx k =>与C 相交于,M N 两点(M 在第一象限).若12,,,M F N F 四点共圆,且直线2NF 的倾斜角为6π,则椭圆C的离心率为()AB 1CD 1【答案】B【分析】依据12,,,M F N F 四点共圆,且直线2NF 的倾斜角为6π,利用椭圆定义可得)1c a =,进而求得椭圆C 的离心率【详解】根据题意四边形12MF NF 为平行四边形,又由12,,,M F N F 四点共圆,可得平行四边形12MF NF 为矩形,即12NF NF ⊥又直线2NF 的倾斜角为6π,则有12π6MF F =∠ 则21212MF F F c ==,121MF F =,则122(1a c MF MF =+=,即)1c a ==则椭圆C 的离心率ce a==1 5.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆上点(,)P x y 到焦点2F 的最大距离为3,最小距离为1,则椭圆的离心率为( ) A .12 BC .23D .2【答案】A【分析】由椭圆上的点到焦点的距离最大值为a c +,最小值为a c -,可求出,a c ,即可计算出离心率【详解】设椭圆的半焦距为c ,由题意可得31a c a c +=⎧⎨-=⎩,解得2a =,1c =,所以椭圆C 的离心率12c e a ==, 6.椭圆2222:1(0)x y C a b a b +=>>的左顶点为A ,点,P Q 均在C 上,且关于原点对称.若直线,AP AQ 的斜率之积为12-,则C 的离心率为( ) AB.2C .12D .13【答案】B【分析】设()()0000,,,P x y Q x y --,再根据直线,AP AQ 的斜率之积为12-列式,结合椭圆的方程化简即可.【详解】设()()0000,,,P x y Q x y --且0x a ≠±,则2000122200012y y y k k x a x a x a =⋅==+---. 又2200221x y a b +=,故()2220202b a x y a-=,故2212b a -=-,所以e ==7.已知椭圆2222:1(0)x y C a b a b+=>>, ,A B 是C 的长轴的两个端点,点M 是C 上的一点,满足30,45MAB MBA ︒︒∠=∠=,设椭圆C 的离心率为e ,则2e =______.【答案】13-【解析】设()00,M x y ,(),0A a - (),0B a ,因为30,45MAB MBA ︒︒∠=∠=,所以可得001,BM y k x a ==-003AM y k x a ==+ ,2200221x y a b += ,三等式联立消去00,x y可得22221,1b e e a ==-=故答案为18..设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.2【分析】求椭圆的离心率,要列出关于,a c 的等量关系式,设1||(0)F B k k =>,根据椭圆的定义以及11||3||AF BF =,可以表示出三角形各边的长度,通过余弦定理得到各边关于k 的表达式,根据几何关系可以列出关于,a c 的等量关系式,从而求出离心率【详解】设1||(0)F B k k =>,则1||3AF k=,||4AB k =,2||23AF a k∴=-,2||2BF a k =-.23cos 5AF B ∠=,在2ABF 中,由余弦定理得,22222222||||||2||||cos AB AF BF AF BF AF B =+-⋅∠,2226(4)(23)(2)(23)(2)5k a k a k a k a k ∴=-+----,化简可得()(3)0a k a k +-=,而0a k +>,故3a k =,21||||3AF AF k ∴==,2||5BF k =,22222||||||BF AF AB ∴=+,12AF AF ∴⊥,∴12AF F △是等腰直角三角形,c ∴=,∴椭圆的离心率2c e a ==. 9.已知1F ,2F 分别为椭圆22221x y a b+=的左、右两个焦点,P 是以12F F 为直径的圆与该椭圆的一个交点,且12212PF F PF F ∠=∠,则这个椭圆的离心率为( )A 1B 1CD 【答案】A【分析】由几何关系得1290F PF ∠=︒,再由椭圆性质求解【详解】由题意12PF F △为直角三角形,1290F PF ∠=︒,而12212PF F P F F ∠=∠,则1260PF F ∠=︒,又122F F c =,∴1PF c =,2PF ,由椭圆的定义知,122PF PF c a +==,∴离心率为1ce a==. 10.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b +=(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,且PF 1=3F 1Q ,若PF 2垂直于x 轴,则椭圆C 的离心率为( )A .13B .12C D 【答案】C【分析】求得椭圆的左右焦点,设(,)P m n ,由题意可得m c =,代入椭圆方程求得n ,再由向量共线的坐标表示可得Q 的坐标,代入椭圆方程,化简整理,由椭圆的离心率公式可得所求值.【详解】解:设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,设(,)P m n ,0n >,由2PF 垂直于x 轴可得m c =,由242222(1)c b n b a a =-=,可得2b n a=,设(,)Q s t ,由113PF F Q =,可得3()c c s c --=+,23b t a -=,解得53s c =-,23b t a=-,将5(3Q c -,2)3b a -代入椭圆方程可得222225199c b a a+=,即2222259c a c a +-=,即有223a c =, 则c e a ==11.以椭圆()2222:10x y C a b a b +=>>的右焦点F 为圆心、c 为半径作圆,O 为坐标原点,若圆F与椭圆C 交于A ,B 两点,点D 是OF 的中点,且AD OF⊥,则椭圆C 的离心率为( ) A2B.3 C1 D 2【答案】C【分析】由几何性质得出A 点坐标,代入椭圆方程求解【详解】不妨令点A 在第一象限,由D 是OF 的中点,且AD OF ⊥,OFAF =。
离心率的常考试题
离心率的一些常考试题1 若m是1和4的等比中项,则圆锥曲线的离心率为()A.B.或3C.或3D.或答案:D。
2 已知双曲线的左、右焦点分别是F1,F2,过右焦点F2且不与x轴垂直的直线交C的右支于A,B两点,若AF1⊥AB,且|AB|=2|AF1|,则C的离心率为()A.B.C.D.答案:C。
3 已知F(c,0)为双曲线的右焦点,过原点O的直线与双曲线交于A,B两点,若AF⊥BF且△ABF的周长为4a+2c,则该双曲线的离心率为()A.B.C.D.答案:D。
4已知双曲线E:=1(a>0,b>0)以正方形ABCD的两个顶点为焦点,且经过该正方形的另两个顶点,若正方形ABCD的边长为2,则双曲线E的离心率为()A.+1B.﹣1C.2+2D.2﹣2答案:A。
5已知双曲线与斜率为1的直线交于A,B两点,若线段AB的中点为(4,1),则C的离心率e=()A.B.C.D.答案:C。
6 双曲线=1(a>0,b>0)的一条有近线方程为y=﹣2x,则其离心率为()A.3B.C.D.5答案:A。
7 已知双曲线C:=1(a>0,b>0)的左、右焦点为F1,F2,过F1且垂直于x轴的直线交C于M,N两点,若MF2⊥NF2,则C的离心率为()A.B.2C.D.答案:A。
8已知双曲线C:的一条渐近线方程为,焦点到渐近线的距离为1,求双曲线C的标准方程与离心率。
答案:双曲线C的方程:,双曲线的离心率。
9已知椭圆的左右焦点为F1,F2,P为其上顶点,△PF1F2正三角形,求椭圆C的离心率。
答案:椭圆的离心率e==。
10设椭圆(a>b>0)的右焦点为F,右顶点为A,上顶点为B,若,求椭圆的离心率。
答案:椭圆的离心率。
11已知椭圆(a>b>0)的左顶点为A1,右焦点为F2,过F2作垂直于x轴的直线交该椭圆于M,N 两点,直线A1M的斜率为.求椭圆的离心率。
答案:椭圆的离心率e==。
12已知双曲线的左,右焦点分别为F1、F2,焦距为2c.若以线段F1F2为直径的圆与直线ax﹣by+2ac=0有交点,则双曲线C的离心率取值范围为()A.(1,2)B.(2,+∞)C.(1,2]D.[2,+∞)答案:D。
高二椭圆练习题及答案
高二椭圆练习题及答案椭圆是高中数学中的一个重要的几何概念,它在解析几何和微积分等数学分支中有着广泛的应用。
为了帮助高二学生巩固和提高对椭圆的理解和应用能力,以下提供一些高二椭圆练习题及其答案。
练习题一:1. 椭圆的离心率等于0的特殊情况是什么?该椭圆的形状如何?2. 某椭圆的焦点坐标为(2,0)和(-2,0),长轴长度为8. 求该椭圆的方程。
3. 某椭圆的长轴长度为10,短轴长度为8. 如果该椭圆的焦点到椭圆上任意点的距离之和为15,求该椭圆的方程。
4. 某椭圆的方程为(x-1)²/25 + y²/16 = 1,求该椭圆的焦点坐标及离心率。
5. 某椭圆的离心率为1/2,焦点为(0,-4)和(0,4)。
求该椭圆的方程。
答案一:1. 当椭圆的离心率等于0时,它的焦点和中心重合,长轴和短轴相等,椭圆变为一个圆。
2. 根据焦点坐标和长轴的长度,我们可以确定椭圆的中心坐标和短轴的长度。
所以该椭圆的方程为(x-2)²/16 + y²/4 = 1。
3. 根据题目信息,我们可以利用椭圆的定义来求解。
假设该椭圆的焦点为(c, 0),根据定义可得2a = 10,2ae = 15。
解方程组得a = 5/2,c = 3/2。
所以该椭圆的方程为(x-3/2)²/25 + y²/16 = 1。
4. 根据方程的形式,我们可以直接确定椭圆的中心坐标和长短轴长度。
所以该椭圆的焦点坐标为(1±√9, 0),离心率为√(1-16/25) = 3/5。
5. 根据焦点坐标和离心率的信息,我们可以利用椭圆的定义来求解。
假设该椭圆的焦点为(c, 0),根据定义可得2a = 2e,a = 4,c = 2。
所以该椭圆的方程为(x-2)²/16 + y²/9 = 1。
练习题二:1. 已知椭圆的离心率为2/3,焦点坐标为(±4,0),求该椭圆的方程。
高三数学高考中的离心率专题
离心率专题1.(2006某某卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值X 围是A.( 1,2)B. (1,2)C.[2,+∞]D.(2,+∞)2.(2006某某卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )C.3D.23.(2006某某卷)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为(A )53 (B )43 (C )54 (D )325.(2006某某卷)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(A)2 (B)22 (C) 21(D)42 6.(2006某某卷)在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为(A)22 (B)2 (C)2 (D)227.(2006某某卷)已知双曲线x 2a 2-y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2338(2005全国卷Ⅰ)已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为()(A )23(B )23(C )26(D )332 9.(2005全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是()(A )2(B )12(C )2D 1 10.(2005某某卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是()A .23+6B .21C .21218+D .2111.(2005某某卷)(11)点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( ) ( A )33 ( B ) 31 ( C ) 22 ( D ) 2112.(2005某某卷)若焦点在轴上的椭圆2212x y m +=的离心率为12,则m=()(B)32(C)83(D)2313.(2005某某卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是()A .324+B .13-C .213+ D .13+14.(2005某某卷)设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率=e . 15.[2004年全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ()A .5B .5C .25D .45 16.[2004年全国高考]已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合,则此椭圆方程为()A .13422=+y xB .16822=+y x C .1222=+y xD .1422=+y x 17. (2004.某某)若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( )(A)2 (B)22 (C) 4 (D)2418.(2004. 某某理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是( )A .3332 B .32C .22D .23 19.(2004. 某某理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7320、(2004. 人教版理科)设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A 、5 B 、5 C 、25 D 、45 21.(某某卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值X 围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞22.(某某卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值X 围是( )A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)23.(某某卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值X 围是( )A .(0,1)B .1(0,]2C .(0,)2 D.,1)2 24.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值X 围是( )A. B. C .(25), D.(225.(某某卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) ABCD.3ABCD-26.(某某卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x=的焦点相同,离心率为12,则此椭圆的方程为( ) (A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 27.(某某卷7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3 (B )5 (C )3 (D )528.(某某卷(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k>0),离心率e ,则双曲线方程为( )(A )22x a -224y a=1 (B)222215x y a a -= (C)222214x y b b -= (D)222215x y b b -=29.(某某卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e =.30.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e =.31.(全国1文理)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=32、(某某理4) 设双曲线22221(0,0)y x a b a b-=>>且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为( )A.2211224y x -=B.2214896y x -=C.222133y x -=D.22136y x -= 33、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的离心率专题训练一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值围是()A. B. C. D.2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A. B. C. D.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值围为()A. B. C. D.4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B. C. D.5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B. C. D.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,心I,且有(其中λ为实数),椭圆C的离心率e=()A. B. C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值围是()A. B.C.D.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A. B.2﹣C.2(2﹣) D.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值围是()A. B.C.D.或10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是()A. B. C. D.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值围是()A.(0,)B.(0,)C. D.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A. B. C. D.13.(2015•高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A. B. C. D.一l14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A. B. C. D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A. B. C. D.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A. B. C. D.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A. B. C. D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值围是()A.(0,)B.(0,)C.(,1)D.(,1)19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()A.B.C.D.﹣120.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值围是()A.[,1)B.[,1)C.[,1)D.(1,]21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值围是()A.(,) B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6 D.9﹣623.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值围是()A.(0,]B.(0,]C.[,]D.[,1)24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值围是()A.[,]B.(0,]C.[,1)D.[,]25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值围为()A. B. C. D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值围是()A.(0,)B.(,1)C.(0,)D.(,1)28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值围是()A. B. C. D.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A. B. C. D.参考答案与试题解析一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值围是()A. B. C. D.解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e>.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P 这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值围是:e∈(,)∪(,1)2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A. B. C. D.解答:解:∵表示焦点在x轴上且离心率小于,∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x轴上且离心率小于的椭圆的概率为P==,故选B.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值围为()A. B. C. D.解答:解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形.根据椭圆的定义:|AF|+|AN|=2a∠ABF=α,则:∠ANF=α.所以:2a=2ccosα+2csinα利用e==所以:则:即:椭圆离心率e的取值围为[]故选:A4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B. C. D.解答:解:两个交点横坐标是﹣c,c所以两个交点分别为(﹣c,﹣c)(c,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2∵b2=a2﹣c2c2(3a2﹣2c2)=2a^4﹣2a2c22a^4﹣5a2c2+2c^4=0(2a2﹣c2)(a2﹣2c2)=0=2,或∵0<e<1所以e==故选A5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B. C. D.解答:解:设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,心I,且有(其中λ为实数),椭圆C的离心率e=()A. B. C. D.解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为G(,),∵,∴IG∥x轴,∴I的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的心,∴I的纵坐标即为切圆半径,心I把△F1PF2分为三个底分别为△F1PF2的三边,高为切圆半径的小三角形∴=(|PF1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值围是()A. B. C. D.解答:解:设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,∴≤.综上,≤≤,故选:C.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A. B.2﹣C.2(2﹣) D.解答:解:如图,在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c∴MF2=4c,MF1=2cMF1+MF2=4c+2c=2a⇒e==2﹣,故选B.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值围是()A. B.C.D.或解答:解:∵椭圆C上的点P满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e的取值围是.故选:C.10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值围是()A. B. C. D.解答:解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取围是e∈.故选A.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值围是()A.(0,)B.(0,)C. D.解答:解:设P(asinα,bcosα),A1(﹣a,0),A2(a,0);∴,;∴;∴;∴,a,c>0;∴解得;∴该椭圆的离心率的围是().故选:C.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A. B. C. D.解答:解:设椭圆(a>b>0),F1(﹣c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,|MF2|+|MF1|=2a,即有2c+4=2a,即a﹣c=2,①取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②由①②解得a=7,c=5,则离心率e==.故选:D.13.椭圆C :+=1(a >b >0)的左焦点为F ,若F 关于直线x+y=0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A .B .C .D .一l解答: 解:设F (﹣c ,0)关于直线x+y=0的对称点A (m ,n ),则,∴m=,n=c ,代入椭圆方程可得,化简可得e 4﹣8e 2+4=0,∴e=﹣1,故选:D .14.已知F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|,则该椭圆的离心率为( )A .B .C .D .解答: 解:F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,设F 1(﹣c ,0),F 2(c ,0),(c >0),P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|,可得2c=2,即ac=b 2=a 2﹣c 2.可得e 2+e ﹣1=0.解得e=.故选:D .15.已知椭圆(a >b >0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( )A .B .C .D .解答: 解:由题意作图如右图,l 1,l 2是椭圆的准线,设点Q (x 0,y 0),∵2|PF 1|=3|QF 1|,∴点P (﹣c ﹣x 0,﹣y 0);又∵|PF 1|=|MP|,|QF 1|=|QA|,∴2|MP|=3|QA|,又∵|MP|=﹣c ﹣x 0+,|QA|=x 0+,∴3(x 0+)=2(﹣c ﹣x 0+),解得,x 0=﹣,∵|PF 2|=|F 1F 2|,∴(c+x 0+)=2c ;将x 0=﹣代入化简可得,3a2+5c2﹣8ac=0,即5﹣8+3=0;解得,=1(舍去)或=;故选:A.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A. B. C. D.解答:解:如图所示,在Rt△AF1F2中,|F1F2|=2|OA|=2c.又|MF2|=2|OA|,在Rt△OMF2中,∴∠AF2F1=60°,在Rt△AF1F2中,|AF2|=c,|AF1|=c.∴2a=c+c,∴=﹣1.故选:C.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A. B. C. D.解答:解:∵|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cos∠MOF1==,在△OF2M中,|F2O|=c,|M0|=|F2M|=a,则cos∠MOF2==,由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+cos∠MOF2=0,即为+=0,整理得:3c2﹣2a2=0,即=,即e2=,即有e=.故选:D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值围是()A.(0,)B.(0,)C.(,1)D.(,1)解答:解:由已知P(,y),得F1P的中点Q的坐标为(),∴,∵,∴y2=2b2﹣,∴y2=(a2﹣c2)(3﹣)>0,∴3﹣>0,∵0<e<1,∴<e<1.故选:C.19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()A. B. C. D.﹣1解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60°=,∴点P坐标为:(c,c),代人椭圆的标准方程,得,∴b2c2+3a2c2=4a2b2,∴e=.故选:D.20.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值围是()A.[,1)B.[,1)C.[,1)D.(1,]解答:解:如图所示,连接OE,OF,OM,∵△MEF为正三角形,∴∠OME=30°,∴OM=2b,则2b≤a,∴,∴椭圆C的离心率e==.又e<1.∴椭圆C的离心率的取值围是.故选:C.21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值围是()A.(,) B.(,1)C.(,1)D.(0,)解答:解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6 D.9﹣6解答:解:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4()2a2,即有c2=(9﹣6)a2,即有e2==9﹣6.故选D.23.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值围是()A.(0,]B.(0,]C.[,]D.[,1)解答:解:设F2是椭圆的右焦点.∵•=0,∴BF⊥AF,∵O点为AB的中点,OF=OF2.∴四边形AFBF2是平行四边形,∴四边形AFBF2是矩形.如图所示,设∠ABF=θ,∵BF=2ccosθ,BF2=AF=2csinθ,BF+BF2=2a,∴2ccosθ+2csinθ=2a,∴e=,sinθ+cosθ=,∵θ∈(0,],∴∈,∴∈.∴∈,∴e∈.故选:D.24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P 满足•=2c2,则此椭圆离心率的取值围是()A.[,]B.(0,]C.[,1)D.[,]解答:解:设P(x0,y0),则2c2==(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=+,化为.又,∴=,∵,∴,∵b2=a2﹣c2,∴,∴.故选:A.25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值围为()A. B. C. D.解答:解:设P(x0,y0),则,∴=.∵,∴(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=c2,化为=c2,∴=2c2,化为=,∵,∴0≤≤a2,解得.故选:D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.解答:解:由题意知c=1,离心率e=,椭圆C以A,B为焦点且经过点P,则c=1,∵P在直线l:y=x+2上移动,∴2a=|PA|+|PB|.过A作直线y=x+2的对称点C,设C(m,n),则由,解得,即有C(﹣2,1),则此时2a=|PA|+|PB|≥|CD|+|DB|=|BC|=,此时a有最小值,对应的离心率e有最大值,故选C.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值围是()A.(0,)B.(,1)C.(0,)D.(,1)解答:解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值围是()A. B. C. D.解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠BPA=,∠APO=∠BPO=,在直角三角形OAP中,∠AOP=,∴cos∠AOP==,∴|OP|==2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即,∴,又0<e<1,∴≤e<1,∴椭圆C的离心率的取值围是[,1),故选:A.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A. B. C. D.解答:解:①当动圆M与圆O1、O2都相切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.。