2017-2018高考三角函数大题(可编辑修改word版)
2017年高考三角函数试题
2017年高考三角函数试题D5:答案:25解析:∵f (x )=sin x -2cos x 5x -φ),其中sin φ=55,cos φ=55.当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z). ∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=55-.6:(2014·全国新课标卷Ⅰ,文7)在函数①y =cos|2x |,②y =|cosx |,③y =cos ⎝⎛⎭⎪⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③答案.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎪⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝⎛⎭⎪⎪⎫2x -π4的最小正周期为π2,④不正确. 7:(16年新课标3,文7)若tanθ=31,则cos2θ=( D ) (A )45-(B )15-(C )15(D )458:(2013课标全国Ⅱ,文16)函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.8:答案:5π6解析:y =cos(2x +φ)向右平移π2个单位得,πcos 22y x ϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦=cos(2x -π+φ)=ππsin 2π++=sin 222x x ϕϕ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭,而它与函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像重合,令2x +φ-π2=2x +π3+2k π,k ∈Z , 得5π+2π6k ϕ=,k ∈Z. 又-π≤φ<π,∴5π6ϕ=.9:(16年新课标3,文科14)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移___3π___个单位长度得到. 9:答案:5π610:(16年新课标2,文科3)函数的部分图像如图所示,则 ( A )=sin()y A x ωϕ+(A )(B ) (C ) (D ) 11:(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).11: 答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.2sin(2)6y x π=-2sin(2)3y x π=-2sin(2+)6y x π=2sin(2+)3y x π=令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 12:(16年新课标1:文科6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( B ) (A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) 两角和与差的正弦、余弦、正切1:(2014·新课标2,文科14)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.[解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.2:(2014·全国新课标卷Ⅰ,文科2) 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos2α>0答案:C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 3:(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ).A .16B .13C .12D .23答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===.4:(16年新课标3,文科11)函数的最大值为( B )(A )4 (B )5 (C )6 (D )75:(16年新课标1,文科14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. 5: 答案:54-解三角形17.(2012课标全国1,文17) 中,内角A .B .C 成等差数列,其对边满足,求.【命题意图】: 本试题主要考查了解三角形的运用。
2017年三角函数高考真题
8【. 2017年新课标Ⅲ卷,17】ABC 的内角A,B,C的对边分别为a,b,c,已知 sin A a 2 7 ,b2.
(1)求c; (2)设 D 为 BC 边上一点,且 AD AC ,求 △ABD 的面积.
3 cos A 0 ,
A. f (x) 的一个周期为 2π
B. y f (x) 的图像关于直线 x 8π 对称 3
C.
f
(x
)
的一个零点为
x
π 6
D.
f
(x)
在
(π 2
,
π)
单调递减
3.【2017 年新课标Ⅱ卷,14】函数 f x sin2 x
3
cos
x
3 4
(
x
0,
2
)的最大值
是
.
4. 【2017 年新课标Ⅱ卷,文 13】函数 f (x) 2 cos x sin x 的最大值为
.
5. (【 2017 年 新 课 标 Ⅱ 卷 , 文 16 】 △ABC 的 内 角 A, B, C 的 对 边 分 别 为 a, b, c , 若 2bcosB=acosC+ccosA,则 B= 6.【2017 年新课标Ⅰ卷,17】△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC
2017 年 高考真题(三角)
2π
1.【2017 年新课标Ⅰ卷,9】已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结正确的
3
是( )
π A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6
2018高考文科数学三角函数专项100题(WORD版含答案)
2018高考文科数学三角函数专项100题(WORD版含答案)一、选择题(本题共45道小题)1.设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称2.已知x1,x2是函数 f(x)=2sinx+cosx﹣m在[0,π]内的两个零点,则sin(x1+x2)=()A.B.C.D.3.已知函数f(x)=3sin(2x﹣),则下列结论正确的是()A.若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z)B.函数f(x)的图象关于(﹣,0)对称C.函数f(x)的图象与g(x)=3cos(2x+)的图象相同D.函数f(x)在[﹣π,π]上递增4.为了得到函数y=sin(2x+1)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个长度单位B.向右平行移动个长度单位C.向左平行移动1个长度单位D.向右平行移动1个长度单位5.设函数y=2sin(x+)cos(x+)的图象各点的横坐标缩短为原来的,再向左平移个单位,得到函数的图象的对称中心可以是()A .(,0)B .(,0)C .(,0)D .(,0)6.已知函数2()2sin ()()1cos()424x f x x g x ππ=+=++,的图象在区间()22m m ππ-+, 上有且只有9个交点,记为()(129)i i x y i =,,,,,则91()iii x y =+=∑A. 92πB. 8C.982π+ D.992π+ 7.cos37537522︒+︒的值为A. 2B.12C. 2-D. 12-8.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若A 为锐角,2a b =,sin B .则( ).A .π3A =B .π6A =C .sin AD .2sin 3A =9.已知函数()sin()f x x ωϕ=+,x ∈R (其中0ω>,ππω-<<)的部分图象,如图所示,那么()f x 的解析式为( ).A .π()sin 2f x x ⎛⎫=+ ⎪⎝⎭B .π()sin 2f x x ⎛⎫=- ⎪⎝⎭C .π()sin 22f x x ⎛⎫=+ ⎪⎝⎭D .π()sin 22f x x ⎛⎫=- ⎪⎝⎭10.将函数y=sin (2x ﹣)图象向左平移个单位,所得函数图象的一条对称轴的方程是( )A .x=B .x=C .x=D .x ﹣=11.函数y=cos 2(x ﹣6π)的一条对称轴为( ) A .x=﹣6π B .x=125π C . x=3π D .x=﹣3π 12.函数f (x )=2sin (ωx+φ)(ω>0,﹣2π<φ<2π)的部分图象如图所示,则ω,φ的值分别是( )A .2,﹣3πB .2,﹣6π C .4,﹣6π D . 4,3π 13.已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边在直线x+3y=0上,则cos2α的值为( )A .B .﹣C .D .﹣14.把函数y=f (x )(x ∈R )的图象上所有点向右平行移动6π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的y=sinx 图象,则函数y=f (x )的解析式是( ) A .y=sin (2x ﹣3π),x ∈R B .y=sin (2x +6π),x ∈R C .y=sin (2x+32π),x ∈R D .y=sin (2x+3π),x ∈R 15.已知sin (6π+α)=31,则cos (32π﹣2α)=( )A .924B .98C .﹣97D .9716.在钝角△ABC 中,c=,b=1,B=,则△ABC 的面积等于( )A .B .C .或D .或17.已知3sin α﹣cos α=0,7sin β+cos β=0,且0<α<<β<π,则2α﹣β的值为( )A .B .﹣C .D .﹣π18.已知函数f (x )=sin (ωx+φ)(ω>0,π<|φ|<,2π)的部分图象如图所示,则φ的值为( )A .B .C .﹣D .﹣19.将函数y=cosx+sinx (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .20.已知函数,则f (x )的值域是( )A .[﹣1,1]B .C .D .21.为了得到函数y=sin3x ﹣cos3x 的图象( )A .只要将函数y=2sin3x 的图象向右平移个单位B .只要将函数y=sin3x 的图象向右平移个单位C.只要将函数y=2sin3x的图象向右平移个单位D.只要将函数y=sin3x的图象向右平移个单位22.已知cos(+α)=,则α∈(,),则sin2α=()A.﹣B.﹣C. D.23.已知函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,则函数f (x)的解析式为()A.B.C.D.24.在△ABC中,已知a=8,∠B=60°,∠C=75°,则b等于()A.4B.4C.4D.25.已知角α的终边经过点P(﹣1,2)),则的值是()A.3 B.﹣3 C.D.﹣26.在△ABC中,AB=5,BC=7,AC=8,则的值为()A.79 B.69 C.5 D.﹣527.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位28.sin(﹣)的值是()A.B.﹣C.D.﹣29.若函数y=f(x)的最小正周期是π,且图象关于点对称,则f(x)的解析式可以()A.B.C.y=2sin2x﹣1 D.30.化简=()A.1 B.2 C.D.﹣131.将函数f(x)=sin2x﹣cos2x的图象向左平移φ(0<φ<)个单位长度后得到函数y=g(x)的图象,若g(x)≤|g()|对x∈R恒成立,则函数y=g(x)的单调递减区间是()A.[kπ+,kπ+](k∈Z)B.[kπ﹣,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ﹣,kπ+](k∈Z)32.已知函数f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是π,将函数f(x)图象向左平移个单位长度后所得的函数过点,则函数f(x)=sin (ωx+ϕ)()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增33.在平面直角坐标系xOy中,已知△ABC的顶点A(0,4),C(0,﹣4),顶点B在椭圆上,则=()A.B.C.D.34.若,若,则的值为( )A .B .C .D .35.设α为锐角,若,则的值为( )A .B .C .D .36. 把函数的图象上个点的横坐标缩短到原来的(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为( ) A . B .C .D .37.若f (x )=Asin (ωx+ϕ)(其中A >0,|φ|)的图象如图,为了得到的图象,则需将f (x )的图象( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位38.在△ABC 中,若,b=4,B=2A ,则sinA 的值为( )A .B .C .D .39.函数2cos(2)6y x π=+的部分图像是( )A .B .C. D .40. 已知(,0)2x π∈-,3sin 5x =-,则tan 2x =( ) A .247 B .247- C. 724 D .724- 41.顶点为坐标原点,始边在x 轴的非负半轴上,终边在y 轴上的角α的集合是( ) A .2k ,k Z 2禳p 镲a a =p +?睚镲铪 B .2k ,k Z 2禳p 镲a a =p -?睚镲铪 C.k ,k Z 2禳p 镲a a =p +?睚镲铪 D .k ,k Z 2禳p 镲a a =?睚镲铪42.设函数f(x)=4cos(x ﹣6π)sinx ﹣2cos(2x +π),则函数f (x )的最大值和最小值分别为( )A .13和﹣11B .8和﹣6C .1和﹣3D .3和﹣143.已知函数f (x )=sin (ωx+φ)(ω>0,|φ|<)的最小正周期为π,且其图象向左平移个单位后得到函数g (x )=cos ωx 的图象,则函数f (x )的图象( )A .关于直线x=对称B .关于直线x=对称C .关于点(,0)对称D .关于点(,0)对称44.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A.B. C. D.45.将函数f(x)=cos(πx)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位长度,得到函数g(x)的图象,则函数g(x)的单调区间是()A.[4k+1,4k+3](k∈Z)B.[2k+1,2k+3](k∈Z)C.[2k+1,2k+2](k∈Z)D.[2k﹣1,2k+2](k∈Z)二、填空题(本题共20道小题)46.已知函数f (x )=2sinxcosx ﹣2sin 2x ,x ∈R ,则函数f (x )的单调递增区间是 .47.△ABC 中,内角A 、B 、C 所对的边的长分别为a ,b ,c ,且a 2=b (b+c),则= . 48.已知ABC ∆中,2A π=,角A 、B 、C 所对的边分别为a 、b 、c ,点D 在边BC 上,AD=l ,且BD=2DC ,∠BAD=2∠DAC ,则sin sin BC=__________. 49.已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象如图所示,则ω=__________.50.ABC △中,角A 、B 、C 所对应的边分别是a 、b 、c ,若3a =,2b =,1cos()3A B +=,则边c =__________. 51.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=3,b=2,cos (A+B )=31,则边c=. 52. 若=﹣,则sin2α= .53.已知α∈(,π),sin α=,则tan= .54.若=2,则sin2x﹣sin2x= .55.有下列命题:①的图象关于直线x=对称;②y=的图象关于点(﹣1,1)对称;③关于x的方程ax2﹣2ax﹣1=0有且仅有一个实根,则a=﹣1;④满足条件AC=,∠B=60°,AB=1的三角形△ABC有两个.其中真命题的序号是.56.将函数的图象上所有点的横坐标向平移个单位,可得函数y=sin2x的图象.57.三角形的两边分别为5和3,它们夹角的余弦是方程5x2﹣7x﹣6=0的根,则三角形的另一边长为.58.已知tanα=2,则= .59.在△ABC中,a,b,c分别为角A,B,C的对边,,则a= .60.在△ABC中,角A,B,C所对的边分别为a,b,c,且2bcosC﹣3ccosB=a,则tan(B﹣C)的最大值为.61.如图是函数f(x)=cos(πx+φ)(0<φ<)的部分图象,则f(3x0)=62.已知△ABC中,角C为直角,D是BC边上一点,M是AD上一点,且|CD|=1,∠DBM=∠DMB=∠CAB,则|MA|= .63.给出以下四个结论:①函数的对称中心是(﹣1,2);②若关于x的方程没有实数根,则k的取值范围是k≥2;③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的充分不必要条件;④若的图象向右平移φ(φ>0)个单位后为奇函数,则φ最小值是.其中正确的结论是.64.在△ABC中,三个内角A,B,C的对边分别为a,b,c,若1bcosA sin B2=,且a=b c6+=,则△ABC的面积为.65.在△ABC中, = .三、解答题(本题共35道小题)66.在△ABC中,角A,B,C的对边分别为a,b,c,bcos2+acos2=c.(1)求证:a,c,b成等差数列;(2)若C=,△ABC的面积为2,求c.67.已知,(1)若,且,求x的值;(2)设,求f(x)的周期及单调减区间.68.在△ABC中,角A、B、C所对的边分别为a、b、c.已知a=2acosAcosB﹣2bsin2A.(1)求C;(2)若△ABC的面积为,周长为 15,求c.69.已知函数f (x )=sin 2x+sin2x .(1)求函数f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ()=,△ABC 的面积为3,求a 的最小值.70.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 满足a ≠b ,2sin (A ﹣B )=asinA ﹣bsinB (Ⅰ)求边c(Ⅱ)若△ABC 的面积为1,且tanC=2,求a+b 的值. 71.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=. (Ⅰ)判断ABC △的形状.(Ⅱ)若()sin cos f x x x =+,求()f A 的最大值. 72.已知函数ππ()2sin cos cos 2cos 266f x x x x x ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭,x ∈R .(Ⅰ)求π12f ⎛⎫⎪⎝⎭的值.(Ⅱ)求函数()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上的最大值和最小值,及相应的x 的值.(Ⅲ)求函数()f x 在区间π,π2⎡⎤⎢⎥⎣⎦的单调区间.73.已知函数2(cos cos f x x x x +. (Ⅰ)求()f x 的最小正周期.(Ⅱ)求()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.74.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且a b c >>2sin 0b C -=. (I )求角B 的大小.(II )若b =1c =,求a 和ABC △的面积. 75.已知函数π()2sin sin 22f x x x x ⎛⎫=-⋅+ ⎪⎝⎭.(I )求()f x 的最小正周期.(II )求()f x 在ππ,126⎡⎤-⎢⎥⎣⎦上的最大值和最小值.76.已知向量,(x ∈R ),设函数.(1)求函数f (x )的值域;(2)已知锐角△ABC 的三个内角分别为A ,B ,C ,若,,求f (C )的值. 77.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足c(3sinB+cosB)=a+b . (Ⅰ)求角C 的值;(Ⅱ)若a=5,△ABC 的面积为53,求sinB 的值. 78.已知:函数f (x )=23sin 2x+sin2x . (Ⅰ)求f (x )的最小正周期; (Ⅱ)求f (x )的单调递增区间;(Ⅲ)把函数y=f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数y=g (x )的图象,求g(6π)的值. 79.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知asin2B=3bsinA . (1)求B ; (2)已知cosA=31,求sinC 的值. 80.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c , sinB ﹣cosB=1,a=2.(1)求角B 的大小;(2)若b 2=ac ,求△ABC 的面积. 81.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2bcosC=2a ﹣c . ( I )求B ;( II )若b=7,c=2,求△ABC 的面积. 82.已知函数f (x )=2sin (ωx+φ),x ∈R (其中A >0,ω>0,0<φ<2π)在一个周期内,图象经过M (6π,2),N (32π,﹣2).(Ⅰ)求f (x )的解析式; (Ⅱ)当x ∈[0,3π],求f (x )的最值. 83.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由茎叶图知甲组送出钥匙扣的平均数为16,从而乙组送出钥匙扣的平均数为17,由此能求出x .(2)乙组送出的钥匙扣的个数分别为8,12,18,19,22,23,若从乙组中任取两名志愿者送出钥匙扣的数字,基本事件总数n=C=15,甲组送出的钥匙扣的平均数为16个,利用列举法求出符合条件的基本事件个数,由此能求出结果. 【解答】解:(1)由茎叶图知甲组送出钥匙扣的平均数为:,则乙组送出钥匙扣的平均数为17,∴,解得x=9.(2)乙组送出的钥匙扣的个数分别为8,12,18,19,22,23,若从乙组中任取两名志愿者送出钥匙扣的数字,基本事件总数n=C =15,甲组送出的钥匙扣的平均数为16个,符合条件的基本事件有:(18,19),(18,22),(18,23),(19,22),(19,23),(22,23),共有6个基本事件,故所求概率为p==.84.已知函数f (x )=cos (2x ﹣)﹣cos2x (x ∈R ).(I )求函数f (x )的单调递增区间;(II )△ABC 内角A 、B 、C 的对边长分别为a ,b .,c ,若f ()=﹣,b=1,c=且a>b,求B和C.85.已知=(sinωx+cosωx, cosωx),=(cosωx﹣sinωx,2sinωx)(ω>0),函数f(x)=•,若f(x)相邻两对称轴间的距离不小于.(1)求ω的取值范围;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=2,当ω最大时,f(A)=1,求△ABC面积的最大值.86.在△ABC中,角A、B、C的对边分别为a、b、c,且=.(1)求cosB的值;(2)若△ABC的面积为,且a=c+2,求b的大小.87.在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量,向量,且.(Ⅰ)求角B的大小;(Ⅱ)若sinAsinC=sin2B,求a﹣c的值.88.已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)若将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.89.根据下列条件,解三角形.(Ⅰ)已知 b=4,c=8,B=30°,求C,A,a;(Ⅱ)在△ABC中,B=45°,C=75°,b=2,求a,c,A.90.已知,求下列各式的值:(1);(2)sin2α﹣3sinαcosα+4cos2α.91.已知向量=(sinx,cosx),=(cos(x+)+sinx,cosx),函数f(x)=•.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若α∈(0,)且cos(α+)=,求f(α).92.五点法作函数的图象时,所填的部分数据如下:x﹣0 πωx+φ﹣y ﹣1 1 3 1 ﹣1(1)根据表格提供数据求函数f(x)的解析式;(2)当时,方程f(x)=m恰有两个不同的解,求实数m的取值范围.93.已知向量,函数f(x)=.(1)求函数f(x)的最小正周期及在上的值域;(2)在△ABC中,若f(A)=4,b=4,△ABC的面积为,求a的值.94.设函数.(1)试说明y=f(x)的图象由函数的图象经过怎样的变化得到?并求f (x)的单调区间;(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,当x∈[0,1]时,求函数y=g (x)的最值.95.已知函数.(1)求f(x)单调递增区间;(2)△ABC中,角A,B,C的对边a,b,c满足,求f(A)的取值范围.96.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos sin 0b A a B -=. (1)求角A 的大小;(2)已知b =ABC ∆的面积为1,求边a .97.(13分)在△ABC 中,若a=2,b+c=7,cosB=﹣41. (1)求b 的值; (2)求△ABC 的面积. 98.已知向量,函数.(1)求函数f (x )的对称中心;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且,且a>b ,求a ,b 的值. 99.设f (x )=2sin (π﹣x )sinx ﹣(sinx ﹣cosx )2.(Ⅰ)求f (x )的单调递增区间;(Ⅱ)把y=f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g (x )的图象,求g ()的值.100.已知,(I )若x ∈[0,2],求的单调递增区间;(Ⅱ)设y=f (x )的图象在y 轴右侧的第一个最高点的坐标为P ,第一个最低点的坐标为Q ,坐标原点为O ,求∠POQ 的余弦值.试卷答案1.D【考点】正弦函数的对称性;正弦函数的单调性.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.2.C【考点】三角函数的化简求值.【分析】由题意可得 m=2sinx1+cosx1=2sinx2+cosx2,即 2sinx1﹣2sinx2=cosx2﹣cosx1,运用和差化积公式和同角的基本关系式,计算即可得到所求.【解答】解:∵x1,x2是函数 f(x)=2sinx+cosx﹣m在[0,π]内的两个零点,即 x1,x2是方程2sinx+cosx=m在[0,π]内的两个解,∴m=2sinx1+cosx1=2sinx2+cosx2,∴2sinx1﹣2sinx2=cosx2﹣cosx1,∴2×2×cos sin=﹣2sin sin,∴2cos=sin,∴tan=2,∴sin(x1+x2)==,故选:C.3.D【考点】正弦函数的图象.【分析】根据f(x1)=f(x2)=0时,x1﹣x2=kπ,判断A错误;根据f(﹣)≠0,判断B错误;化g(x)为正弦型函数,判断C错误;根据x∈[﹣,]时f(x)是单调增函数判断D正确.【解答】解:对于A,f(x1)=f(x2)=0时,x1﹣x2=kπ,k∈Z,∴A错误;对于B,f(﹣)=3sin(2×(﹣)﹣)=﹣3≠0,∴f(x)的图象不关于(﹣,0)对称,B错误;对于C,g(x)=3cos(2x+)=3sin[﹣(2x+)]=﹣3sin(2x﹣),与f(x)=3sin(2x﹣)的图象不相同,C错误;对于D,x∈[﹣,]时,2x﹣∈[﹣,],∴f(x)=3sin(2x﹣)是单调增函数,D正确.故选:D.4.A【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数解析式之间的关系即可得到结论.【解答】解:∵y=sin(2x+1)=sin2(x+),∴将函数y=sin2x图象向左平移单位,即可,故选:A.5.B【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的对称性.【分析】由倍角公式可求函数解析式,利用函数y=Asin(ωx+φ)的图象变换规律可求y=cos4x,由4x=kπ+,k∈Z,即可解得函数的对称中心.【解答】解:∵y=2sin (x+)cos (x+)=sin[2(x+)]=sin (2x+),∴图象各点的横坐标缩短为原来的,可得函数y=sin (4x+),再向左平移个单位,得到函数y=sin[4(x+)+]=cos4x ,∴由4x=k π+,k ∈Z ,解得:x=+,k ∈Z ,∴当k=0时,可得函数的图象的对称中心为:(,0).故选:B .【点评】本题主要考查了二倍角的正弦函数公式,函数y=Asin (ωx+φ)的图象变换规律,正弦函数的图象和性质的综合应用,考查了转化思想,是基础题. 6.D由()1012g π=+=,可知()g x 的图象关于点(1)2π,对称,由2()2sin ()1cos(2)1sin 242f x x x x ππ=+=-+=+,可得()1012f π=+=,所以()f x 的图象关于点(1)2π,对称,所以999111()i i i i i i i x y x y ===+=+∑∑∑94242119222πππ=⨯⨯++⨯⨯+=+,故选D. 7.Acos375375cos 45cos375sin 45sin 37522︒+︒=︒︒+︒︒cos(37545)cos330cos30=︒-︒=︒=︒=A. 8.A∵2a b =,sin B , sin sin 2A Ba b =,∴sin sin a B A b ==, ∴π3A =. 故选A .9.A 周期2ππ42π2T ω==⨯=, ∴1ω=,()sin(4)f x x =+, ∵(0)sin 1f ϕ==,π2ϕ=, ∴π()sin 2f x x ⎛⎫=+ ⎪⎝⎭.故选A . 10.C【考点】函数y=Asin (ωx+φ)的图象变换.【分析】由条件利用y=Asin (ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.【解答】解:将函数y=sin (2x ﹣)图象向左平移个单位,所得函数图象对应的函数的解析式为y=sin[2(x+)﹣]=sin (2x+),当x=时,函数取得最大值,可得所得函数图象的一条对称轴的方程是x=,故选:C . 11.D【考点】弧长公式;二倍角的余弦.【分析】利用倍角公式可得函数y=cos (2x ﹣)+,由2x ﹣=kπ,k ∈Z ,解得对称轴方程,k 取值为﹣1即可得出.【解答】解:∵==cos (2x ﹣)+,∴令2x ﹣=kπ,k ∈Z ,解得对称轴方程为:x=+,k ∈Z ,∴当k=﹣1时,一条对称轴为x=﹣.故选:D . 12.A【考点】y=Asin (ωx+φ)中参数的物理意义.【分析】根据函数在同一周期内的最大值、最小值对应的x 值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k ∈Z ),取k=0得到φ=﹣.由此即可得到本题的答案.【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T 满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f (x )=2sin (2x+φ) 又∵当x=时取得最大值2,∴2sin (2•+φ)=2,可得+φ=+2kπ(k ∈Z )∵,∴取k=0,得φ=﹣故选:A . 13.C【考点】二倍角的余弦;任意角的三角函数的定义.【分析】根据直线的斜率等于倾斜角的正切值,得到tan α的值,然后根据同角三角函数间的基本关系和二倍角的余弦,将cos2α化为关于tan α的式子,代入求值.【解答】解:由题意知:直线的斜率k=tan α=﹣,∴cos2α=cos 2α﹣sin 2α====.故选:C . 14. D【考点】函数y=Asin (ωx+φ)的图象变换.【分析】直接采用逆向思维,对函数的关系式进行平移和伸缩变换求出结果. 【解答】解:采用逆向思维的方法:首先把函数y=sinx,图象上所有点的横坐标缩短为原来的倍,得到y=sin2x的图象,再把图象上所有点的横标向左平移个单位,得到y=sin[2(x+)]=sin(2x+)的图象.故选:D15.C【考点】三角函数的化简求值.【分析】利用诱导公式,求得cos(﹣α)的值,再利用二倍角的余弦公式,求得cos (﹣2α)的值.【解答】解:∵sin(+α)==cos(﹣α),则cos(﹣2α)=2﹣1=﹣1=﹣,故选:C.16.B【考点】正弦定理.【分析】由已知利用正弦定理可求sinC,结合C范围,可求C的值,进而利用三角形面积公式即可计算得解.【解答】解:∵c=,b=1,B=,∴sinC===,又∵C∈(0,π),∴C=或,又∵△ABC为钝角三角形,∴S△ABC=bcsinA=.故选:B.17.D【考点】三角函数的化简求值.【分析】由3sinα﹣cosα=0,求出tanα的值,再由二倍角的正切公式求出tan2α的值,由7sinβ+cosβ=0,求出tanβ的值,根据角的范围得到2α﹣β∈(﹣π,0),再由两角和与差的正切函数公式化简代值得答案.【解答】解:∵3sinα﹣cosα=0,∴..∵7sinβ+cosβ=0,∴.∵0<α<<β<π,∴2α∈(0,π),2α﹣β∈(﹣π,0),=.则2α﹣β的值为:.故选:D.18.A【考点】正弦函数的图象.【分析】由周期求出ω,由特殊点的坐标求出φ的值【解答】解:据图分析得﹣=,∴T=π,又∵T=,∴ω==2,∴函数f(x)=sin(2x+φ),∵sin(2×π+φ)=1,π<|φ|<2π∴φ=,故选:A19.B【考点】两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B【点评】此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.20.D【考点】正弦函数的定义域和值域.【分析】去绝对值号,将函数变为分段函数,分段求值域,在化为分段函数时应求出每一段的定义域,由三角函数的性质求之.【解答】解:由题=,当时,f(x)∈[﹣1,]当时,f(x)∈(﹣1,)故可求得其值域为.故选:D.21.C【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的化简求值.【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x﹣cos3x=2(sin3x﹣cos3x)=2sin(3x﹣)=2sin[3(x﹣)],故只需将函数y=2sin3x的图象向右平移个单位,即可得到y=sin3x﹣cos3x的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,属于基本知识的考查.22.C【考点】三角函数的化简求值.【分析】利用三角函数的诱导公式求出sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用二倍角的正弦函数公式化简后,将sinα和cosα的值代入即可求出答案.【解答】解:由cos(+α)=﹣sinα=,得到sinα=﹣,又α∈(,),∴cosα=,则sin2α=2sinαcosα=2×(﹣)×=.故选:C.【点评】本题考查了三角函数的化简求值,考查了二倍角的正弦函数公式及同角三角函数间的基本关系的应用,是一道基础题.23.C【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图象的顶点坐标求出A,由周期求出ω,通过图象经过(),求出φ,从而得到f(x)的解析式.【解答】解:由函数的图象可得A=1,T=4×()=π,T=解得ω=2.图象经过(),0=sin(2×+φ),,φ=,故f(x)的解析式为.故选C.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,注意函数的周期的求法,考查计算能力.24.A【考点】正弦定理.【分析】先根据已知求得∠A的值,从而由正弦定理即可求值.【解答】解:∵在△ABC中,∠B=60°,∠C=75°,∴∠A=180°﹣60°﹣75°=45°∴由正弦定理可得:b===4.故选:A.【点评】本题主要考查了特殊角的三角函数值和正弦定理在解三角形中的应用,属于基础题.25. D【考点】两角和与差的正切函数.【分析】先根据题意求得tanα的值,进而利用正切的两角和公式求得答案.【解答】解:由题意知tanα=﹣2,∴===﹣,故选:D.【点评】本题主要考查了两角和与差的正切函数公式的应用.属于基础题.26.D【考点】余弦定理;平面向量数量积的含义与物理意义.【分析】由三角形的三边,利用余弦定理求出cosB的值,然后利用平面向量的数量积的运算法则表示出所求向量的数量积,利用诱导公式化简后,将各自的值代入即可求出值.【解答】解:由AB=5,BC=7,AC=8,根据余弦定理得:cosB==,又||=5,||=7,则=||•||cos(π﹣B)=﹣||•||cosB=﹣5×7×=﹣5.故选D【点评】此题考查了余弦定理,以及平面向量数量积的运算.注意与的夹角是π﹣B,而不是B,学生做题时容易出错.27.B【考点】函数y=Asin(ωx+φ)的图象变换.【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.28.A【考点】运用诱导公式化简求值.【分析】原式中的角度变形【解答】解:sin(﹣)=﹣sin=﹣sin(3π+)=﹣sin(π+)=sin=.故选:A.【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.29.D【考点】正弦函数的图象.【分析】根据周期公式求解出ω,将点坐标带入即可得到满足要求的f(x)的解析式.【解答】解:函数y=f(x)的最小正周期是π,即T=,解得:ω=2,排除A.将点坐标代入,即当x=时,y的值应该为0,B,C,D选项中只有D满足.故f(x)的解析式可以是D,故选:D.30.B【考点】二倍角的余弦;三角函数中的恒等变换应用.【分析】用倍角公式化简后,再用诱导公式即可化简求值.【解答】解: ===2.故选:B.31.C【考点】三角函数的化简求值;函数y=Asin(ωx+φ)的图象变换.【分析】首先通过三角函数的恒等变换,变换成正弦型函数,进一步利用平移变换,最后根据正弦型函数的单调性求得结果.【解答】解:f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x+2φ﹣).∵g(x)≤|g()|对x∈R恒成立,∴g()=±1,即2sin(2×+2φ﹣)=±1,∴φ=kπ+,(k∈Z)∵0<φ<,∴φ=,∴g(x)=2sin(2x+).令2x+∈[2kπ+,2kπ+π],(k∈Z)则x∈[kπ+,kπ+](k∈Z)故选:C.32.D【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用正弦函数的周期性求得ω,根据函数y=Asin(ωx+φ)的图象变换规律求得所得函数的解析式,利用正弦函数的单调性得出结论.【解答】解:∵函数f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是=π,∴ω=2.将函数f(x)图象向左平移个单位长度后所得的函数的解析式为 y=sin[2(x+)+ϕ=sin(2x++ϕ),根据所得图象过点,∴sin(﹣++ϕ)=1,∴ +ϕ=,即ϕ=.则函数f(x)=sin(ωx+ϕ)=sin(2x+).在区间上,2x+∈[﹣,],函数f(x)=sin(2x+)在区间上没有单调性,故排除A、B;在区间上,2x+∈[﹣,],函数f(x)=sin(2x+)在在区间上单调递增,故排除C,故选:D.【点评】本题主要考查正弦函数的周期性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.33.C【考点】椭圆的简单性质.【分析】首先根据所给的椭圆的方程写出椭圆的长轴的长,两个焦点之间的距离,根据正弦定理得到角的正弦值之比就等于边长之比,把边长代入,得到比值【解答】解:∵△ABC的顶点A(0,4),C(0,﹣4),顶点B在椭圆上∴a=2,即AB+CB=2a,AC=2c∵由正弦定理知,∴则=.故选:C.【点评】本题考查椭圆的性质和正弦定理的应用,解题的关键是把角的正弦值之比写成边长之比,进而和椭圆的参数结合起来.34.B【考点】三角函数的化简求值.【分析】由题意求得sin(α+)的值,再利用二倍角的正弦公式求得的值.【解答】解:∵,若,则α+为锐角,∴sin(α+)==,则=2sin(α+)cos(α+)=2••=,故选:B.【点评】本题主要考查同角三角函数的基本关系,二倍角公式的,以及三角函数在各个象限中的符号,属于基础题.35.B【考点】GI:三角函数的化简求值.【专题】11 :计算题;35 :转化思想;49 :综合法;56 :三角函数的求值.【分析】先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.【解答】解:∵α为锐角,若,设β=α+,∴sinβ=,sin2β=2sinβcosβ=﹣,cos2β=2cos2β﹣1=﹣,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=(﹣)×﹣(﹣)×=.故选:B.36.D【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】35 :转化思想;4R:转化法;57 :三角函数的图像与性质.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,可得平移后的函数,结合三角函数的性质对称中心.【解答】解:函数的图象上个点的横坐标缩短到原来的(纵坐标不变),可得y=sin(2x),再将图象向右平移个单位,可得:y=sin[2(x﹣)]=sin(2x)=﹣cos2x.令2x=,可得:x=,k∈Z.当k=0时,可得对称中点为(,0).故选:D.37.B【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:根据f(x)=Asin(ωx+ϕ)(其中A>0,|φ|)的图象,可得A=1,=﹣,∴ω=2.再根据五点法作图可得2•+φ=π,∴φ=,∴f(x)=sin(2x+).故把f(x)=sin(2x+)的图象向右平移个单位,可得y=sin[2(x﹣)+]=sin (2x ﹣)=g (x )的图象,故选:B . 38.D【考点】正弦定理.【分析】根据正弦定理的式子,结合二倍角的正弦公式和题中数据算出cosA ,再由同角三角函数的基本关系即可算出sinA 的值.【解答】解:∵△ABC 中,,b=4,∴由正弦定理得,∵B=2A ,∴==,化简得cosA=>0,因此,sinA==. 故选:D . 39. A由2cos(2)6y x π=+可知,函数最大值为2,故排除D ;又因为函数过点(6π,0),故排除B ;过点(12-π,2),故排除C ;故选A.40. B因为(,0)2x π∈-,sin x =53-⇒cos x =54所以tan x =43-⇒tan2x =xtan 1x tan 22-=724-,应选答案D 。
2017_2018学年高考数学大题精做03三角函数与解三角形的综合问题含解析文新人教A版
精做03 三角函数与解三角形的综合问题1.在△ΑΒC 中,角A 、B 、C 所对的边分别为a 、b 、.已知3cos()16cos cos --=B C B C .(1)求cos A ;(2)若3=a ,△ΑΒC 的面积为22,求、. 【答案】(1)13;(2)2,3==b c 或3,2==b c .由面积公式得1sin 222=bc A ,则6=bc ①. 由余弦定理得2222291cos 2123+-+-===b c a b c A bc ,则2213+=b c ②. 联立①②,可得2,3==b c 或3,2==b c .2.设△ΑΒC 的内角C B A ,,所对的边分别为c b a ,,,且12cos =+bcC b a . (1)求角A 的大小;(2)若1=a ,求△ΑΒC 的周长的取值范围. 【答案】(1)π3;(2)(23],.【解析】(1)由已知得1cos 2a C c b +=,即1sin cos sin sin 2A C CB +=, 又sin sin()sin cos cos sin B AC A C A C =+=+,1sin cos sin 2C A C =∴. 1sin 0cos 2C A ≠=∵,∴.又(0π)A ∈∵,,π3A =∴. (2)由正弦定理得sin 22sin sin sin 33a Bb Bc C A ===,,π1sin 162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦∴,.故△ΑΒC 的周长的取值范围是(23],.3.在ABC △中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =. (1)求角C 的大小;(2π3cos()4A B -+的最大值,并求取得最大值时角,A B 的大小. 【答案】(1)π4;(2)最大值为2,此时π5π,.312A B ==【解析】(1)由正弦定理得sin sin sin cos .C A A C = 因为0π,A <<所以sin 0.A >从而sin cos .C C =又cos 0,C ≠所以tan 1,C =则π4C =. (2)由(1)知3π.4B A =- 于是π3sin cos()3sin cos(π)4A B A A -+=--π3sin cos 2sin().6A A A =+=+3π0,4A <<ππ11π,6612A ∴<+< 从而当ππ,62A +=即π3A =时,π2sin()6A +取最大值2.综上所述,π3sin cos()4A B -+的最大值为2,此时π5π,.312A B ==4.已知c b a ,,分别是△ΑΒC 的三个内角C B A ,,所对的边,且满足A c C a b cos cos )2(⋅=⋅-.(1)求角C 的大小;(2)设)sin(22sin342B C Ay -+-=,求y 的最大值并判断当y 取得最大值时△ΑΒC 的形状. 【答案】(1)3π;(2)最大值为322-,此时△ΑΒC 为直角三角形..(2))sin(22sin342B C Ay -+-= 23(1cos )2sin()3π=--+-A AA A A cos 3sin )cos 1(32-+--= 32cos 3sin -+=A A2sin 233()π=+-A ,由2(0,)3π∈A 得,当6π=A 时,y 取得最大值322-,此时△ΑΒC 为直角三角形. 5.在ABC △中,,,分别是角A ,B ,C 的对边,且()3cos cos tan tan 11A C A C ⋅⋅⋅-=. (1)求5πsin 26B ⎛⎫-⎪⎝⎭的值; (2)若332a c +=,3b =,求ABC △的面积. 【答案】(1)746- ;(2)152.(2)由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-⋅=+--⋅,∵332a c +=,3b =, ∴27132243ac ac =--⨯,即4532ac =,6,函数()f x的图象关于直线=πx对称.(1)求函数()f x的最小正周期;(2)在△ΑΒC中,角,,A B C的对边分别为,,a b c,求△ΑΒC面积的最大值.【答案】(1(2【解析】(1(2)()15sin ,236f x x π⎛⎫=- ⎪⎝⎭311sin ,5264f A A π⎛⎫⎛⎫∴=-= ⎪ ⎪⎝⎭⎝⎭即1sin 62A π⎛⎫-= ⎪⎝⎭,50,,666A A πππ<<π∴-<-<,,663A A ∴-== 221,12a b c bc bc bc bc =∴=+-≥-=,即1,bc ≤当且仅当b c 时等号成立.133sin 244ABC S bc A bc ∴==≤△, △∴ABC 面积的最大值为34.7.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,已知21sin sin sin 24B C B C -+=. (1)求角A 的大小;(2)若7a =,ABC △的面积为32,求b c +的值. 【答案】(1)2π3A =;(2)3. 【解析】(1)由已知得()1cos 1sin sin 24B C B C --+=,所以b +c =3.8.在△ΑΒC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 22=c 2.(1)求C ; (2)设cos A cos B 322cos()cos()2cos A B ααα++=tan α的值. 【答案】(1)3π4;(2)1或4. 【解析】(1)因为a 2+b 22=c 2,所以由余弦定理有cos C =222222a b c ab ab +--==, 故3π4C =.因为3π4C =, 所以A +B =π4,所以sin(A +B )=2. 因为cos(A +B )=cos A cos B −sin A sin B ,即325-sin A sin B =22, 则sin A sin B =32225210-=. 代入①得tan 2α−5tan α+4=0,解得tan α=1或tan α=4. 9.设()2sin cos cos 4π⎛⎫=-+⎪⎝⎭f x x x x . (1)求()f x 的单调区间;(2)在锐角△ABC 中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求△ABC 面积的最大值. 【答案】(1)(),44ππ⎡⎤-+π+π∈⎢⎥⎣⎦k k k Z (2)234+.【解析】(1)由题意知()1cos2sin2222π⎛⎫++⎪⎝⎭=-xxf xsin21sin21sin2222x xx-=-=-.由222,22ππ-+π≤≤+π∈k x k k Z,可得,44ππ-+π≤≤+π∈k x k k Z;由3222,22ππ+π≤≤+π∈k x k k Z,可得3,44ππ+π≤≤+π∈k x k k Z.所以函数()f x的单调递增区间是(),44ππ⎡⎤-+π+π∈⎢⎥⎣⎦k k k Z;所以△ABC23+10.在△ΑΒC中,内角A B C,,的对边分别为a b c,,,已知()()3sin cos3sin cosB BC C--=4cos cosB C.(1)求角A的大小;(2)若sin sin B p C =,且△ΑΒC 是锐角三角形,求实数p 的取值范围. 【答案】(1)3π;(2)1(,2)2.∴实数p 的取值范围是1(,2)2.11.在△ΑΒC 中,角,,A B C 所对的边分别为,,a b c ,且满足cos cos a B b A =.(1)判断△ΑΒC 的形状; (2)求sin cos 6π⎛⎫++⎪⎝⎭B A 的取值范围. 【答案】(1)等腰三角形;(2)1,12⎛⎤⎥⎝⎦. 【解析】(1)由cos cos a B b A =及正弦定理,得sin cos sin cos A B B A =,即()sin 0A B -=.在△ΑΒC 中,有-π<-<πA B , 所以0A B -=,即A B =. 所以△ΑΒC 是等腰三角形. (2)由(1)知A B =, 则3113sin cos sin cos sin sin cos sin 622223⎛⎫ππ⎛⎫⎛⎫++=+-=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B A A A A A A A ,因为A B =, 所以02π<<A ,则5336πππ<+<A , 所以1sin 123π⎛⎫<+≤ ⎪⎝⎭A , 于是sin cos 6π⎛⎫++ ⎪⎝⎭B A 的取值范围是1,12⎛⎤ ⎥⎝⎦. 12.已知函数()3sin 2cos2f x x x ωω=-的图象关于直线π3x =对称,其中ω∈15()22-,. (1)求函数f (x )的解析式;(2)在ABC △中,a ,b ,c 分别为三个内角A ,B ,C 的对边,锐角B 满足π25()212B f +=,b =2,求ABC △面积的最大值.【答案】(1)f (x )=2sin π(2)6x -;(2)5.(2)由(1)知π25()2sin 2123B f B +==,所以sin B =53, 因为B 为锐角,所以0<B <π2, 所以2cos 3B =, 因为222cos 2a c b B ac+-=,所以222223a c b ac +-=, 所以2242223ac a c ac =+-≥-,所以ac ≤3,当且仅当a =c =3时,ac 取到最大值3, 所以ABC △面积的最大值为12ac sin B =12×3×53=52.13.(2017·天津卷文)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(1)求cos A 的值;(2)求sin(2)B A -的值.【答案】(1)55-;(2)255-.于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=, 故4532525sin(2)sin 2cos cos 2sin (55B A B A B A -=-=⨯-=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.14.(2016·浙江卷文)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 【答案】(1)证明详见解析;(2)22cos 27C =.故1cos 9A =-,45sin 9A = 22cos cos()cos cos sin sin 27C AB A B A B =-+=-+=. 【思路点睛】(1)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有Α,Β的式子,根据角的范围可证2ΑΒ=;(2)先用同角三角函数的基本关系及二倍角公式可得cos 2Β,进而可得cos Α和sin Α,再用两角和的余弦公式可得cos C .15.(2016·天津卷文)在ABC △中,内角C B A ,,所对的边分别为a ,b ,c ,已知sin 23sin a B b A =.(1)求B ;(2)若1cos 3A =,求sin C 的值.【答案】(1)π6B =;(2. 【解析】(1)在ABC △中,由B b A a sin sin =,可得A b B a sin sin =, 又由A b B a sin 32sin =,得B a A b B B a sin 3sin 3cos sin 2==, 所以23cos =B ,得π6B =; (2)由31cos =A ,可得322sin =A , 则sin sin[()]sin()C A B A B =π-+=+πsin()6A =+6162cos 21sin 23+=+=A A . 【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数基本关系、两角和与差的公式、二倍角公式、配角公式等,选用恰当的公式是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.。
最新-高考三角函数大题
2017-2018高考三角函数大题一.解答题(共14小题)2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.3.(2018•北京)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.6.(2018•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.7.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.8.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.9.(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.10.(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.11.(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.2017-2018高考三角函数大题参考答案与试题解析一.解答题(共14小题)1.(2018•新课标Ⅰ)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.3.(2018•北京)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣6.(2018•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.7.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.8.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.9.(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.【解答】解:(1)∵sinA+cosA=0,∴tanA=,∵0<A<π,∴A=,由余弦定理可得a2=b2+c2﹣2bccosA,即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,故c=4.(2)∵c2=b2+a2﹣2abcosC,∴16=28+4﹣2×2×2×cosC,∴cosC=,∴CD===∴CD=BC∵S△ABC=AB•AC•sin∠BAC=×4×2×=2,∴S△ABD =S△ABC=10.(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.11.(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.。
三角函数高考题及练习题(含答案)
三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3=(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3.(2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1.列表如下: Z ] Z 由此可见,g(t)在区间⎝⎭⎫-1,-12和⎝⎭12,1上单调增,在区间⎝⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。
2017年高考数学—三角函数(解答+答案)
2017年高考数学—三角函数(解答+答案)1.(17全国1理17.(12分))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3B C a ==,求△ABC 的周长.2.(17全国2理17.(12分))ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知2sin()8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .3.(17全国3理17.(12分))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin 0,2A A a b +===(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.4.(17北京理(15)(本小题13分))在ABC ∆中,360,7A c a ∠==o(Ⅰ)求sin C 的值;(Ⅱ)若7a =,求ABC ∆的面积.已知函数())2sin cos 3f x x x x π=--(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当[,]44x ππ∈-时,1()2f x ≥-6.(17山东理16)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.7.(17山东文(17)(本小题满分12分))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,6AB AC =-u u r u u u rg ,3ABC S ∆=,求A 和a 。
8.(17天津理15.(本小题满分13分))在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.10.(17浙江18.(本题满分14分))已知函数22()sin cos 23sin cos ()f x x x x x x R =--∈(Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.11.(17江苏16. (本小题满分14分))已知向量(cos ,sin ),(3,3),[0,]a x x b x π==-∈. (1)若//a b ,求x 的值; (2)记,求()f x 的最大值和最小值以及对应x 的值参考答案:1.解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =故2sin sin 3B C =。
2018年全国各地高考数学分类汇编word版含答案4-三角函数
2018年全国各地高考数学分类汇编4-三角函数一、选择题(共13小题;共65分)1. 若sinα=13,则cos2α= A. 89B. 79C. −79D. −892. 在△ABC中,cos C2=55,BC=1,AC=5,则AB= A. 4B. 30C. 29D. 23. △ABC的内角A,B,C的对边分别为a,b,c,若△ABC的面积为a2+b2−c24,则C= A. π2B. π3C. π4D. π64. 在平面直角坐标系中,AB,CD,EF,GH是圆x2+y2=1上的四段弧(如图),点P在其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是 A. ABB. CDC. EFD. GH5. 将函数y=sin2x+π5的图象向右平移π10个单位长度,所得图象对应的函数 A. 在区间 −π4,π4上单调递增 B. 在区间π4,0上单调递减C. 在区间π4,π2上单调递增 D. 在区间π2,π 上单调递减6. 将函数y=sin2x+π5的图象向右平移π10个单位长度,所得图象对应的函数 A. 在区间3π4,5π4上单调递增 B. 在区间3π4,π 上单调递减C. 在区间5π4,3π2上单调递增 D. 在区间3π2,2π 上单调递减7. 若f x=cos x−sin x在0,a是减函数,则a的最大值是 A. π4B. π2C. 3π4D. π8. 函数f x=tan x1+tan x的最小正周期为 A. π4B. π2C. πD. 2π9. 已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A1,a,B2,b,且cos2α=23,则 a−b = A. 15B. 55C. 255D. 110. 已知函数f x=2cos2x−sin2x+2,则 A. f x的最小正周期为π,最大值为3B. f x的最小正周期为π,最大值为4C. f x的最小正周期为2π,最大值为3D. f x的最小正周期为2π,最大值为411. 函数y=2 x sin2x的图象可能是 A. B.C. D.12. 设F1,F2是双曲线C:x2a2−y2b2=1a>0,b>0的左、右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若PF1=6 OP ,则C的离心率为 A. 5B. 2C. 3D. 213. 已知F1,F2是椭圆C:x2a +y2b=1a>b>0的左,右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,△PF1F2为等腰三角形,∠F1F2P=120∘,则C的离心率为 A. 23B. 12C. 13D. 14二、填空题(共11小题;共55分)14. 函数f x=cos3x+π6在0,π的零点个数为.15. 能说明“若f x>f0对任意的x∈0,2都成立,则f x在0,2上是增函数”为假命题的一个函数是.16. 在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b=2,A=60∘,则sin B=,c=.17. △ABC的内角A,B,C的对边分别为a,b,c,已知b sin C+c sin B=4a sin B sin C,b2+c2−a2=8,则△ABC的面积为.18. 若△ABC的面积为34a2+c2−b2,且∠C为钝角,则∠B=;ca的取值范围是.19. 已知sinα+cosβ=1,cosα+sinβ=0,则sinα+β=.20. 已知tan α−5π4=15,则tanα=.21. 已知函数y=sin2x+φ −π2<φ<π2的图象关于直线x=π3对称,则φ的值为.22. 设函数f x=cos ωx−π6ω>0.若f x≤fπ4对任意的实数x都成立,则ω的最小值为.23. 在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120∘,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.24. 函数f x满足f x+4=f x x∈R,且在区间−2,2上,f x=cosπx2,0<x≤2x+12,−2<x≤0,则f f15的值为.三、解答题(共7小题;共91分)25. 设常数a∈R,函数f x=a sin2x+2cos2x.(1)若f x为偶函数,求a的值;(2)若fπ4=3+1,求方程f x=1−2在区间−π,π上的解.26. 在△ABC中,a=7,b=8,cos B=−17.(1)求∠A;(2)求AC边上的高.27. 在平面四边形ABCD中,∠ADC=90∘,∠A=45∘,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=22,求BC.28. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos B−π6.(1)求角B的大小;(2)设a=2,c=3,求b和sin2A−B的值.29. 已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P −35,−45.(1)求sinα+π的值;(2)若角β满足sinα+β=513,求cosβ的值.30. 已知α,β为锐角,tanα=43,cosα+β=−55.(1)求cos2α的值;(2)求tanα−β的值.31. 已知函数f x=sin2x+3sin x cos x.(1)求f x的最小正周期;(2)若f x在区间 −π3,m 上的最大值为32,求m的最小值.答案第一部分1. B2. A3. C4. C5. A6. A7. C8. C9. B10. B11. D12. C13. D第二部分14. 315. f x=sin x(答案不唯一)16. 217,317. 23318. π3,2,+∞19. −1220. 3221. −π622. 2323. 924. 22第三部分25. (1)由f x是偶函数,所以f−x=f x,即a sin2−x+2cos2−x=a sin2x+2cos2x,即−a sin2x=a sin2x,即a=0.(2)由fπ4=a sinπ2+2cos2π4=3+1,即a=3,所以f x=3sin2x+2cos2x,解方程3sin2x+2cos2x=1−2,即sin2x+π6=−22,所以2x+π6=2kπ−π4或2kπ−34πk∈Z,即x=kπ−524π或kπ−1124πk∈Z,因为x∈−π,π,所以x=−1124π或−524π或1324π或1924π,所以f x=1−在−π,π上的解为 −1124π,−524π,1324π,1924π .26. (1)在△ABC中,因为cos B=−17,所以B为钝角,所以sin B=1−cos2B=437.根据正弦定理asin A =bsin B,即7sin A=437,得到sin A=32,所以A=π3.(2)过B作BD⊥AC于D.在△ABC中,sin C=sin A+B=sin A cos B+cos A sin B=32× −17+12×437=33 14,所以BD=a⋅sin C=7×3314=332,所以AC边上的高为332.27. (1)在△ABD中,由正弦定理得BDsin∠A =ABsin∠ADB.由题设知,5sin45=2sin∠ADB,所以sin∠ADB=25.由题设知,∠ADB<90∘,所以cos∠ADB=1−225=235.(2)由题设及(1)知,cos∠BDC=sin∠ADB=25.在△BCD中,由余弦定理得BC2=BD2+DC2−2⋅BD⋅DC⋅cos∠BDC=25+8−2×5×22×2 5=25.所以BC=5.28. (1)在△ABC中,由正弦定理asin A =bsin B,可得b sin A=a sin B,又由b sin A=a cos B−π6,得a sin B=a cos B−π6,即sin B=cos B−π6,可得tan B=3.又因为B∈0,π,可得B=π3.(2)在△ABC中,由余弦定理及a=2,c=3,B=π3,有b2=a2+c2−2ac cos B=7,故b=7.由b sin A=a cos B−π6,可得sin A=37.因为a<c,故cos A=7.因此sin2A=2sin A cos A=437,cos2A=2cos2A−1=17.所以,sin2A−B=sin2A cos B−cos2A sin B=437×12−17×32=3314.29. (1)由角α的终边过点P −35,−45得sinα=−45,所以sinα+π=−sinα=45.(2)由角α的终边过点P −35,−45得cosα=−35,由sinα+β=513得cosα+β=±1213.由β=α+β−α得cosβ=cosα+βcosα+sinα+βsinα,所以cosβ=−5665或cosβ=−1665.30. (1)因为tanα=43,tanα=sinαcosα,所以sinα=43cosα.因为sin2α+cos2α=1,所以cos2α=925,因此,cos2α=2cos2α−1=−725.(2)因为α,β为锐角,所以α+β∈0,π.又因为cosα+β=−55,所以sinα+β=1−cos2α+β=255,因此tanα+β=−2.因为tanα=43,所以tan2α=2tanα1−tan2α=−247,因此,tanα−β=tan2α−α+β=tan2α−tanα+β1+tan2αtanα+β=−211.31. (1)f x=sin2x+3sin x cos x=1−cos2x2+32sin2x=12+sin2x−π6.所以f x的最小正周期为T=2π2=π.(2)f x在区间 −π3,m 上最大值为32,故sin2x−π6在 −π3,m 上最大值为1,x∈ −π3,m 时,2x−π6∈ −56π,2m−π6,令t=2x−π6,所以sin t在t∈ −56π,2m−π6上最大值为1,所以2m−π6≥π2,m≥π3,所以m的最小值为π3.。
三角函数历年高考题
三角函数历年高考题(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除三角函数题型分类总结一. 三角函数的求值、化简、证明问题常用的方法技巧有:a) 常数代换法:如:αα22cos sin 1+=b) 配角方法:ββαα-+=)(,()βαβαα-++=)(2,22βαβαα-++=,22βαβαβ--+=1、sin330︒= tan690° = o 585sin =2、(1)(10全国Ⅰ) α是第四象限角,12cos 13α=,则sin α=__________ (2)(11北京文)若4sin ,tan 05θθ=->,则cos θ= .(3) α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3、(1) (09陕西)已知sin ,5α=则44sin cos αα-= . (2)(12全国文)设(0,)2πα∈,若3sin 5α=)4πα+= .(3)(08福建)已知3(,),sin ,25παπα∈=则tan()4πα+=4. (1)(10福建) sin15cos75cos15sin105+= (2)(11陕西)cos 43cos77sin 43cos167o o o o += 。
(3)sin163sin 223sin 253sin313+= 。
5.(1) 若sin θ+cos θ=15,则sin 2θ=(2)已知3sin()45x π-=,则sin 2x 的值为(3) 若2tan =α ,则ααααcos sin cos sin -+=6. (10北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 7.(09浙江)已知cos()22πϕ+=,且||2πϕ<,则tan ϕ=8.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+= 9.(09重庆文)下列关系式中正确的是 ( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<<10.已知53)2cos(=-πα,则αα22cos sin -的值为 ( ) A .257 B .2516- C .259 D .257-11.已知sin θ=-1312,θ∈(-2π,0),则cos (θ-4π)的值为 ( )A .-2627 B .2627 C .-26217 D .26217 12.已知f (cosx )=cos3x ,则f (sin30°)的值是 ( )A .1B .23C .0D .-113.已知sin x -sin y = -32,cos x -cos y = 32,且x ,y 为锐角,则tan(x -y )的值是 ( ) A .5142 B . -5142 C .±5142 D .28145±14.已知tan160o =a ,则sin2000o 的值是 ( )A.a 1+a 2B.-a 1+a 2C.11+a 2D.-11+a 215.若02,sin 3cos απαα≤≤>,则α的取值范围是: ( )(A),32ππ⎛⎫ ⎪⎝⎭ (B),3ππ⎛⎫⎪⎝⎭(C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭16.已知cos (α-6π)+sin α=的值是则)67sin(,354πα+ ( ) (A )-532 (B )532 (C)-54 (D) 5417.若,5sin 2cos -=+a a 则a tan = ( )(A )21 (B )2 (C )21- (D )2-二.最值1.(09福建)函数()sin cos f x x x =最小值是= 。
2017-2018学年高考数学 大题精做05 三角函数与其他知识的综合(含解析)文 新人教A版
精做05 三角函数与其他知识的综合1.已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1);(2)f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.(1)f (x )的最小正周期为2π2ππ2T ω===, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2, ∴ππ5π2666x -≤-≤.由正弦函数的性质,得 当ππ262x -=,即π3x =时,f (x )取得最大值1.当ππ266x -=-,即x =0时,f (x )取得最小值,为f (0)=12-. 因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.2(1)求()f x的单调递增区间;(2成立,求实数m的取值范围. 【答案】(1(2)()14-,.∴()[]12f x ∈,,得()33m f x m -<<+,∴3132m m -<⎧⎨+>⎩,,∴14m -<<,即实数m 的取值范围是()14-,.3.在ABC △中,角A 的对边长等于2,向量2=(2,2cos 1)2B C +-m ,=(sin ,1)2A-n . (1)求⋅m n 取得最大值时的角A 的大小; (2)在(1)的条件下,求ABC △的面积的最大值.【答案】(1)3π;(2【解析】(1)由题意得2=2sin (2cos 1)2sin cos()222A B C A B C +⋅--=-+m n . 因为A B C ++=π, 所以B C A +=π-, 于是2213=2sin cos 2sin 2sin 12(sin )222222A A A A A ⋅+=-++=--+m n . 因为(0,)22A π∈, 所以当且仅当1sin 22A =,即3A π=时,⋅m n 取得最大值32.故⋅m n 取得最大值时的角3A π=.4.在中,角的对边分别为,且cos ,cos ,cos b C a A c B 成等差数列.(1)求角的大小; (2)若,,求+AB AC 的值. 【答案】(1)π3;(2).【解析】(1)由cos ,cos ,cos b C a A c B 成等差数列,可得cos cos 2cos b C c B a A +=, 故sin cos sin cos 2sin cos B C C B A A +=,所以()sin 2sin cos B C A A +=, 又A B C ++=π, 所以()sin sin B C A +=,所以()222222++2||2cos AB AC AB ACAB AC AB AC AB AC AB AC A ==++⋅=++⋅()22230c b bc b c bc =++=+-=,故+30AB AC =.【名师点睛】利用正、余弦定理解三角形问题,注意使用“边转角、角转变”,注意减元,求角时注意角的范围.利用余弦定理时注意到22,,b c bc b c ++三者的联系,本考点属于高考高频考点,务必引起高度的注意.5.已知函数()21cos cos (0)2f x x x x =-+>ωωωω,与图象的对称轴3x π=相邻的的零点为12x π=. (1)讨论函数在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上的单调性;(2)设ABC △的内角,,的对应边分别为,,,且,,若向量()1,sin A =m 与向量()2,sin B =n 共线,求,的值.【答案】(1)在区间,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间5,312ππ⎡⎤⎢⎥⎣⎦上单调递减.(2),.【解析】(1)()1cos 21222x f x x +=-+ωω12cos 22x x =-ωω sin 26x π⎛⎫=- ⎪⎝⎭ω.由与()f x 图象的对称轴π3x =相邻的零点为π12x =,得12ππππ423124ω⋅=-=, 所以,即()sin 26f x x π⎛⎫=-⎪⎝⎭.所以当5,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间ππ,123⎡⎤-⎢⎥⎣⎦上单调递增,在区间π5π,312⎡⎤⎢⎥⎣⎦上单调递减.(2)()sin 2106f C C π⎛⎫=--= ⎪⎝⎭,则sin 216C π⎛⎫-= ⎪⎝⎭,因为0πC <<,所以112666C πππ-<-<, 从而262C ππ-=,解得3C π=.因为向量()1,sin A =m 与向量()2,sin B =n 共线, 所以sin 2sin B A =, 由正弦定理得,2b a =, ① 由余弦定理得,2222cos 3c a b ab π=+-,即223a b ab +-=, ② 由①②解得1,2a b ==.6.ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知点(),a b 在直线()s i n s i n s i n s i n x A B y B c C -+=上. (1)求角C 的大小;(2)若ABC △为锐角三角形且满足,求实数m 的最小值.【答案】(1(2)实数m 的最小值为2.(2当且仅当a b =即ABC △为正三角形时,实数m 的最小值为2. 7.已知向量()3sin ,cos αα=a ,()2sin ,5sin 4cos ααα=-b ,3π 2π2⎛⎫∈ ⎪⎝⎭,α,且⊥a b . (1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值.【答案】(1)43-;(2).【解析】(1)∵⊥a b , ∴0⋅=a b .(2)∵3π 2π2⎛⎫∈⎪⎝⎭,α, ∴3ππ24∈(,)α. 由4tan 3=-α,求得1tan 22=-α,或tan 22=α(舍去).∴sincos 22==αα,则cos 23απ⎛⎫+=⎪⎝⎭ππcos cos sin sin 2323-=αα12=.8.在ABC △中,内角A 、B 、C 所对的边分别是a 、b 、c ,对一切实数x 恒成立. (1)求cos C 的取值范围;(2)当C 取最大值,且ABC △的周长为9时,求ABC △面积的最大值,并指出面积取最大值时ABC △的形状.【答案】(1(2,ABC △为等边三角形. 【解析】(1)当c o s 0C =时,sin 1C =,对一切实数x 不恒成立,当cos 0C ≠时,应有2cos 04sin 6cos 0C C C >⎧⎨=-≤⎩∆, ∴2cos 02cos 3cos 20C C C >⎧⎨+-≥⎩,解得或cos 2C ≤-(舍去), ∵0πC <<,即cos C 的取值范围是9.已知函数()()sin (0,0,0f x A x b A ωϕωϕ=++>><<π,)b 为常数的一段图象如图所示:(1)求函数()f x 的解析式;(2)函数()f x 在y 轴右侧的极小值点的横坐标组成数列{}n a ,设右侧的第一个极小值点的横坐标为首项1a ,试求数列的前n 项和n S .【答案】(1(2)21964n n ⋅π+. 【解析】(1)由图可知()51523,22A b +-=-===,所以2ω=,所以函数()f x 的解析式为113n ++--10.(2017·江苏卷)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b(1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =;(2)0x =时,取得最大值3;5π6x =时,取得最小值-【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又, 所以5π6x =.11.(2015·广东卷理)在平面直角坐标系xOy 中,已知向量()π,sin ,cos ,0,2()x x x ==∈m n . (1)若⊥m n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 【答案】(1)1;(2)5π12. 【解析】(1)∵⊥m n ,∴0⋅=m n .0x x =, ∴tan 1x =.(2)∵m 与n 的夹角为π3,∴sin 122cos ,112x x -⋅<>===⋅⨯m n m n m n , 故π1sin 42()x -=. 又2()π0,x ∈, ∴πππ,4()44x -∈-,ππ46x -=,即5π12x =, 故x 的值为5π12. 12.(2014·山东卷理)已知向量(,cos 2)m x =a ,(sin 2,)x n =b ,函数()f x =⋅a b ,且()y f x =的图象过点(12π和点2(,2)3π-. (1)求,m n 的值;(2)将()y f x =的图象向左平移ϕ(0ϕ<<π)个单位后得到函数()y g x =的图象.若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【答案】(1)1m n ==;(2)[,],2k k k ππ-π∈Z .由题意知()()2sin(22)6g x f x x ϕϕπ=+=++,设()y g x =的图象上符合题意的最高点为0(,2)x , 由题意知2011x +=,所以00x =,即到点0,3()的距离为1的最高点为0,2(). 将其代入()y g x =得sin(2)16ϕπ+=,因为0ϕ<<π, 所以6ϕπ=, 因此()2sin(2)2cos 22g x x x π=+=,由222,k x k k π-π≤≤π∈Z ,得,2k x k k ππ-≤≤π∈Z ,所以,函数()y g x =的单调递增区间为[,],2k k k ππ-π∈Z .。
2017-2018高考真题数列和三角函数分类汇编(文科)
2017-2018高考真题数列和三角函数分类汇编(文科) 2017年新课标1卷8..函数sin21cos x y x=-的部分图像大致为答案:C11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12B .π6C .π4D .π3答案:B15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2017年新课标2卷3.函数()f x =πsin (2x+)3的最小正周期为A.4πB.2πC. πD.2π 13.函数()cos sin =2+fx x x 的最大值为△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 16.17.(12分)已知等差数列{a n }的前n 项和为Sn ,等比数列{b n }的前n 项和为Tn ,a 1=-1,b1=1,a3+b2=2.(1) 若a3+b2=5,求{b n }的通项公式;(2) 若T=21,求S 117.解:设的公差为d ,的公比为q ,则,.由得d+q=3. ①(1) 由得② 联立①和②解得(舍去),因此的通项公式(2) 由得. 解得当时,由①得,则. 当时,由①得,则.2017年新课标3卷4.已知4sin cos 3αα-=,则sin 2α=A .79-B .29-C . 29D .79答案:A6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为 A .65 B .1 C .35 D .15 答案:A15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。
(完整word版)三角函数高考题及答案
1.(上海,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A 。
(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C 。
(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=02.(北京,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( ) A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x3。
(全国,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A 。
sin x B 。
cos x C.sin2x D.cos2x4.(全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( ) A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π)D 。
(4π,2π)∪(43π,π) 5.(全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π〈x 〈2k π+4π,k ∈Z }B 。
{x |2k π+4π<x 〈2k π+45π,k ∈Z } C.{x |k π-4π<x 〈k π+4π,k ∈Z } D.{x |k π+4π<x 〈k π+43π,k ∈Z } 6.(全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A 。
6πB 。
2π C.32πD 。
3π7。
(全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A 。
322 B.-322 C 。
32D.-32 8。
(全国,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( ) A.2B.-2C 。
三角函数高考试题精选(含详细答案解析)
三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin 2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx 的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC 的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos (﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin (3x﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin 2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t 2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 4 .【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7 .【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx 的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC 的最小值是8 .【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x ﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
(word完整版)2017三角函数高考真题
2017三角函数1.(2017北京理科)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若1sin3α=,则cos()αβ-=___________.79-2.(2017北京文科)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=13,则sinβ=_________.133.(2017江苏).若tan1-=46πα⎛⎫⎪⎝⎭,则tanα= .754.(2017全国卷1理科)已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是()DA.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C25.(2017全国卷1文科)函数sin21cosxyx=-的部分图像大致为 C6.(2017全国卷1文科)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
310107.(2017全国卷2理科)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .1 8.函数()fx =πsin (2x+)3的最小正周期为 CA.4πB.2πC. πD.2π9.函数()cos sin =2+fx x x 的最大值为10.(2017全国卷3理科)设函数f (x )=cos(x +3π),则(百度搜索“童老师高中数学”,快速提分课程)下列结论错误的是 D A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 11.(2017全国卷3文科)已知4sin cos 3αα-=,则sin 2α= A A .79-B .29-C .29D .7912.(2017全国卷3文科)函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为 AA .65B .1C .35D .1513.(2017山东理科)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为(百度搜索“童老师高中数学”,快速提分课程)原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.解:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=--3cos 2x x ωω=-13(sin cos )22x x ωω=-)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-. 因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-.14.(2017山东文科)已知3cos 4x =,则cos2x = (A)14- (B)14 (C)18- (D)1815.(2017山东文科)函数2cos 2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π16.(2017天津文、理科)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 A (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==17.(2017浙江)已知函数()()22sin cos cos =--∈f x x x x x x R (I )求23π⎛⎫⎪⎝⎭f 的值 (II )求()f x 的最小正周期及单调递增区间.(I )由221sin,cos 332ππ==-, 22211322f π⎛⎫⎛⎫⎛⎫=---⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得223f π⎛⎫= ⎪⎝⎭ (II )由22cos 2cos sin =-x x x 与sin 22sin cos =x x x 得()2cos 22sin 26f π⎛⎫=--+⎪⎝⎭x x x =-x所以()f x 的最小正周期是π 由正弦函数的性质得 3+22+2,262πππππ≤+≤∈k x k k Z 解得2++,63ππππ≤≤∈k x k k Z 所以()f x 的单调递增区间是2+,+63ππππ⎡⎤∈⎢⎥⎣⎦k k k Z。
2018年各地高考真题分类汇编(文)-三角函数---教师版(可编辑修改word版)
2 3 330 三角函数和解三角形1.(2018 年全国 1 文科·8)已知函数 f ( x ) = 2 cos 2 x - sin 2x + 2 ,则 BA. f ( x ) 的最小正周期为 π,最大值为 3B. f ( x ) 的最小正周期为 π,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为 3D. f (x ) 的最小正周期为2π ,最大值为 42.(2018 年全国 1 文科·11)已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) , B (2 ,b ) ,且cos 2= 2,则 a - b = B 3A.15 B. 5C. 25 5D .13.( 2018 年全国 1 文科· 16) △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c , 已知b s in C +c sin B = 4a sin B sin C , b 2 + c 2 - a 2 = 8 ,则△ABC 的面积为 .4. (2018 年全国 2 文科·7).在△ABC 中, cos C = 5 , BC = 1 , AC = 5 ,则 AB = AA. 4 2 5B. C . D .25.(2018 年全国 2 文科·10)若 f (x ) = cos x - sin x 在[0, a ] 是减函数,则 a 的最大值是 CA.π4B.π 2C. 3π4D. π6.(2018 年全国 2 文科·15)已知 tan(α -5π) = 1,则tan α = 3.4 527.(2018 年全国 3 文科·4)若sin= 1,则cos 2= B3A.89B.79C. - 79 D. - 89229 58.(2018 年全国 3 文科·6)函数 f (x) =tan x1+ tan2x的最小正周期为CA.πB.πC.πD.2π 4 29.(2018 年全国3 文科·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a2 +b2 -c2△ABC 的面积为4,则C =CππA.B.2 3ππ C.D.4 610.(2018 年北京文科·7)在平面直角坐标系中, AB, C D, E F , G H 是圆x2+y2= 1上的四段弧(如图),点P 在其中一段上,角以O为始边,OP 为终边,若tan< cos< sin,则P 所在的圆弧是C(A) AB (B)C D(C)E F (D)G H11.(2018 年北京文科·14)若△ABC 的面积为cB=60°;的取值范围是(2,+∞).a3(a2 +c2 -b2 ) ,且∠C 为钝角,则412.(2018 年天津文科·6)将函数y = sin(2x +图象对应的函数A ππ) 的图象向右平移个单位长度,所得5 107 (A )在区间[- π π, ] 上单调递增(B )在区间[- 4 4 π , 0] 上单调递减4π ππ(C )在区间[ , ] 上单调递增(D )在区间[ , π] 上单调递减4 2213.(2018 年江苏·7).已知函数 y = sin(2x +)(- π << π) 的图象关于直线 x = π对称,则的值是.2 2 314. (2018 年江苏·13)在△ABC 中,角 A , B , C 所对的边分别为 a , b , c , ∠ABC = 120︒ ,∠ABC 的平分线交 AC 于点 D ,且 BD = 1,则4a + c 的最小值为 9 .15.(2018 年浙江·13)在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c .若 a = ,b =2,A =60°,则 sin B =217 ,c = 3 .16.(2018 年北京文科·16)(本小题 13 分)已知函数 f (x ) = sin 2 x + 3 sin x cos x .(Ⅰ)求 f (x ) 的最小正周期;(Ⅱ)若 f (x ) 在区间[- π , m ] 上的最大值为 3,求m 的最小值.3216.(共 13 分)解:(Ⅰ)f (x ) = 1- cos 2x +3 sin 2x = 3 sin 2x - 1 cos 2x + 1 = sin(2x - π) + 1 ,2 2 2 2 2 6 2所以 f (x ) 的最小正周期为T =2π = π .2(Ⅱ)由(Ⅰ)知 f (x ) = sin(2x - π) + 1.6 2π π 5π π因为 x ∈[- , m ],所以2x - ∈[- , 2m - ] .3 6 6 67 π π 要使得 f (x ) 在[- π , m ] 上的最大值为 3 ,即sin(2x - π) 在[- π, m ] 上的最大值为 1.所以2m - ≥ 6 2 3 ,即 m ≥π 2 6 3π .学科&网 3所以m 的最小值为 .317.(2018 年天津文科·16)(本小题满分 13 分)在△ABC 中,内角 A ,B ,C 所对的边分别为 a ,b ,c .已知 b sin A =a cos(B – π).6(Ⅰ)求角 B 的大小;(Ⅱ)设 a =2,c =3,求 b 和 sin(2A –B )的值.(16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分 13 分.( Ⅰ ) 解: 在△ ABC 中, 由正弦定理 a = sin A bsin B, 可得 b sin A = a sin B , 又由 b sin A = a cos(B - π) ,得 a sin B = a cos(B - π) ,即sin B = cos(B - π) ,可得tan B = 6 6 6.又因为 B ∈(0 ,π) ,可得 B = π.3(Ⅱ)解:在△ABC 中,由余弦定理及 a =2,c =3,B = π,有b 2 = a 2 + c 2 - 2ac cos B = 7 ,3故 b = .由 b s in A = a cos(B - π) , 可 得 6sin A =. 因 为 a <c , 故cos A =. 因 此sin 2 A = 2sin A cos A =4 3 , cos 2 A = 2 cos 2 A - 1 = 177所以, sin(2 A - B ) = sin 2 A cos B - cos 2 A sin B =4 3 ⨯ 1 - 1⨯ 3 = 3 3 7 2 7 2 1418.(2018 年江苏·16)(本小题满分 14 分)33 727已知,为锐角,tan=4,cos(+) =-5.3 5(1)求cos 2的值;(2)求tan(-)的值.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14 分.解:(1)因为tan=4 ,tan=sin,所以sin=4 cos.3 cos 3因为sin2+c os2=1,所以cos2=9,25因此,cos 2= 2 cos2- 1 =-7 .25(2)因为,为锐角,所以+∈(0,π).又因为cos(+)=-5,所以sin(+)=5=2 5,5因此tan(+)=-2.因为tan=4,所以tan 2=32 tan1 -tan2=-24,7因此,tan(-) = tan[2- (+)] =tan 2- tan(+)=-2.1+ t an 2tan(+) 1119.(2018 年浙江·18)(本题满分14 分)已知角α 的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(-3,-4).5 5(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β 满足sin(α+β)= 5,求cosβ 的值.1318.本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。
高考真题——三角函数及解三角形真题(加答案)
全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。
(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档
2017年高考数学理试题分类汇编:三角函数一.填空选择题1. (2017年天津卷文)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则(A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由||πϕ<得12ϕπ=,故选A .2. (2017年天津卷理)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .3. ( 2017年全国Ⅲ卷文)ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A ________15【解析】 根据正弦定理有:Bsin 660sin 30=22sin =∴B 又b c >Θ045=∴B 075=∴A4. (2017年新课标Ⅰ) 9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D5. ( 2017年新课标Ⅱ卷理) 14.函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【答案】1【解析】()22311cos cos 44f x x x x x =-+-=-++ 2cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,那么[]cos 0,1x ∈,当cos x =时,函数取得最大值1. 6. (2017年浙江卷) 14.已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,1cos ,sin 44DBC DBC ∴∠=-∠==,BC 1sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△又21cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin BDC DBF ∴∠=∠=,综上可得,△BCD cos BDC ∠=.7. ( 2017年新课标Ⅱ文). 13函数()cos sin =2+fx x x.8. ( 2017年新课标Ⅱ文) 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=3π9. ( 2017年新课标Ⅱ文) 3.函数()fx =πsin (2x+)3的最小正周期为 (C)A.4πB.2πC. πD.2π10. (2017年浙江卷) 11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位学.科.网,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .【解析】将正六边形分割为6个等边三角形,则233)60sin 1121(66=⨯⨯⨯⨯=οS11. (2017年北京卷理) (12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,cos()αβ-=___________. 【答案】79- 【解析】2227sin sin ,cos cos cos()cos cos sin sin cos sin 2sin 19βαβααβαβαβααα==-∴-=+=-+=-=-Q12. (2017年新课标Ⅰ文)已知π(0)2a ∈,,tan α=2,则πcos ()4α-____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018 高考三角函数大题一.解答题(共14 小题)2.(2018•新课标Ⅰ)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.3.(2018•北京)在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC 边上的高.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m 的最小值.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.6.(2018•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求 b 和sin(2A﹣B)的值.7.(2017•新课标Ⅰ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC 的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC 的周长.8.(2017•新课标Ⅱ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC 的面积为2,求b.9.(2017•新课标Ⅲ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D 为BC 边上一点,且AD⊥AC,求△ABD 的面积.10.(2017•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB= .(Ⅰ)求 b 和sinA 的值;(Ⅱ)求sin(2A+ )的值.11.(2017•北京)在△ABC 中,∠A=60°,c=a.(1)求sinC 的值;(2)若a=7,求△ABC 的面积.12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x 的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x 的值.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a=,角B 所对边b=5,若f(A)=0,求△ABC 的面积.2017-2018 高考三角函数大题参考答案与试题解析一.解答题(共14 小题)1.(2018•新课标Ⅰ)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+ =﹣,设g(x)=x2﹣ax+1,当a≤0 时,g(x)>0 恒成立,即f′(x)<0 恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0 时,判别式△=a2﹣4,①当0<a≤2 时,△≤0,即g(x)>0,即f′(x)<0 恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2 时,x,f′(x),f(x)的变化如下表:x (0,)(,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)递减递增递减综上当a≤2 时,f(x)在(0,+∞)上是减函数,当a>2 时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+ ,则问题转为证明<1 即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2 成立.2.(2018•新课标Ⅰ)在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB= =,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB= =.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB= ,∵DC=2 ,∴BC===5.3.(2018•北京)在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即 A 是锐角,∵cosB=﹣,∴sinB= ==,由正弦定理得= 得sinA= == ,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3 或c=﹣5(舍),则AC 边上的高h=csinA=3×=.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m 的最小值.【解答】解:(I)函数f(x)=sin2x+ sinxcosx= +sin2x =sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m 的最小值为.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求 a 的值;(2)若f()= +1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()= +1,∴asin +2cos2()=a+1= +1,∴a=,∴f(x)= sin2x+2cos2x= sin2x+cos2x+1=2sin(2x+ )+1,∵f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴2x+ =﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x= 或x=或x=﹣或x=﹣6.(2018•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求 b 和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC 中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB= ,又B∈(0,π),∴B=.(Ⅱ)在△ABC 中,a=2,c=3,B=,由余弦定理得b= = ,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA= ,∴sin2A=2sinAcosA= ,cos2A=2cos2A﹣1= ,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB= =.7.(2017•新课标Ⅰ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC 的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC 的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB= ,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC= ;(2)∵6cosBcosC=1,∴cosBcosC= ,∴cosBcosC﹣sinBsinC==﹣,﹣∴cos(B+C)=﹣,∴cosA= ,∵0<A<π,∴A= ,∵===2R= =2 ,∴sinBsinC= •===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.8.(2017•新课标Ⅱ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC 的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB= ;(2)由(1)可知sinB=,= ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.9.(2017•新课标Ⅲ)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D 为BC 边上一点,且AD⊥AC,求△ABD 的面积.【解答】解:(1)∵sinA+cosA=0,∴tanA= ,∵0<A<π,∴A= ,由余弦定理可得a2=b2+c2﹣2bccosA,即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,故c=4.(2)∵c2=b2+a2﹣2abcosC,∴16=28+4﹣2×2 ×2×cosC,∴cosC= ,∴CD= = =∴CD= BC∵S= AB•AC•sin∠BAC= ×4×2×=2 ,△ABC∴S△ABD= S△ABC=10.(2017•天津)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB= .(Ⅰ)求 b 和sinA 的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC 中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b= .由正弦定理,得sinA=.∴b= ,sinA= ;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA= ,cos2A=1﹣2sin2A=﹣.故sin(2A+)= =.11.(2017•北京)在△ABC 中,∠A=60°,c=a.(1)求sinC 的值;(2)若a=7,求△ABC 的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA= ×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC= ×+×=,= acsinB= ×7×3×=6 .∴S△ABC12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x 的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x 的值.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x= ,(2)f(x)= =3cosx﹣sinx=2 (cosx﹣sinx)=2 cos(x+),∵x∈[0,π],∴x+ ∈[ ,],∴﹣1≤cos(x+ )≤,当x=0 时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2 .13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2 sinx cosx=﹣sin2x﹣cos2x=2sin(2x+ )(Ⅰ)f()=2sin(2×+)=2sin =2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z 得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+ ,kπ+ ],k∈Z.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a=,角B 所对边b=5,若f(A)=0,求△ABC 的面积.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1 时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC 为锐角三角形,角A 所对边a=,角B 所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2 或3,若c=2,则cosB=<0,即有B 为钝角,c=2 不成立,则c=3,△ABC 的面积为S= bcsinA= ×5×3×= .。