离散数学-耿素云PPT(第5版)5.4
合集下载
离散数学第5讲PPT课件
![离散数学第5讲PPT课件](https://img.taocdn.com/s3/m/8ba0f3f53169a4517623a3db.png)
() A. GH B. HG C. H => G D. G => H 4、设A,B为任意命题公式,C为重言式,若A∧CB∧C,那么A B是_________式(重言式、矛盾式或可满足式)。 5、 命题公式(P→Q)∨P的主合取范式为______,主析取范式为 _______。 6、化简下式:
第1页/共31页
第二章 命题逻辑等值演算
等值演算法求解主析取范式的方法和步骤:
(1)化为析取范式A;
∨ רP (2)对A中的简单合取项补入没有出现的命题变元 ,即合取上(P
)
式,然后应用分配律展开;
(3) 将析取式A中重复出现的合取项和相同的变元合并;
(4)除去析取范式中所有永假的合取项;
第2页/共31页
解:因为主析取范式是由所有的取值为1的极小项析取构成,而 成真赋值所对应的即为极小项的编码,所以主析取范式为:
m0∨m3∨ m6
同理,主合取范式为:M1 ∧ M2 ∧ M4 ∧ M5 ∧ M7
第12页/共31页
第二章 命题逻辑等值演算
2、判断公式的类型: 设公式A中含有n个命题变项,则:
(1)A为重言式 A的主析取范式含全部2n个极小项。 (2)A为矛盾式 A的主析取范式不含任何极小项 ,记A的主析取范式为 0。 (3)A为可满足式 A的主析取范式至少含一个极小项 。
第二章 命题逻辑等值演算
以上六种情况对应公式分别为:
①(רp∧רq) ∧((רp∧רr)∨(p∧r)) ∧(רp∧r) …①
② (רp∧רq) ∧(p∧רr)∧((p∧r)∨(רp∧ רr)) …②
③
((רp∧q)∨(p∧רq))∧(רp∧r)∧(רp∧r)רp∧q
第1页/共31页
第二章 命题逻辑等值演算
等值演算法求解主析取范式的方法和步骤:
(1)化为析取范式A;
∨ רP (2)对A中的简单合取项补入没有出现的命题变元 ,即合取上(P
)
式,然后应用分配律展开;
(3) 将析取式A中重复出现的合取项和相同的变元合并;
(4)除去析取范式中所有永假的合取项;
第2页/共31页
解:因为主析取范式是由所有的取值为1的极小项析取构成,而 成真赋值所对应的即为极小项的编码,所以主析取范式为:
m0∨m3∨ m6
同理,主合取范式为:M1 ∧ M2 ∧ M4 ∧ M5 ∧ M7
第12页/共31页
第二章 命题逻辑等值演算
2、判断公式的类型: 设公式A中含有n个命题变项,则:
(1)A为重言式 A的主析取范式含全部2n个极小项。 (2)A为矛盾式 A的主析取范式不含任何极小项 ,记A的主析取范式为 0。 (3)A为可满足式 A的主析取范式至少含一个极小项 。
第二章 命题逻辑等值演算
以上六种情况对应公式分别为:
①(רp∧רq) ∧((רp∧רr)∨(p∧r)) ∧(רp∧r) …①
② (רp∧רq) ∧(p∧רr)∧((p∧r)∨(רp∧ רr)) …②
③
((רp∧q)∨(p∧רq))∧(רp∧r)∧(רp∧r)רp∧q
离散数学第五版耿素云屈婉玲张立昂编著
![离散数学第五版耿素云屈婉玲张立昂编著](https://img.taocdn.com/s3/m/6ab8ff6cf61fb7360a4c651c.png)
7
9.1二元运算及其性质
例6:设S={1,2},给出P(S)上的运算~和的运算表, 其中全集为S。
P(S)={,{1},{2},{1,2}}
ai
~ai
{1} {2} {1,2}
{1} {2} {1,2}
{1,2} {1} {2}
{1} {2} {1,2} {1} {1} {1,2} {2} {2} {2} {1,2} {1}
设V1=<S1,>,V2=<S2,*>是代数系统, 和*是二元运算。 如果存在映射:S1S2,若x,yS1都有
(xb)=(x)*(y)
则称是V1到V2的同态映射,简称同态。
35
9.2 代数系统
例14: (1)G1=<Z,+>,G2=<Zn,>,令
:ZZn,(x)=(x)modn
则是否为G1到G2的同态?
六、消去律(定义9.7)
设为S上的二元运算,如果对于任意的x,y,zS满足以下 条件:
(1)若xy=xz且x,则y=z。 (2)若yx=zx且x,则y=z。 那么称运算满足消去律,其中(1)称作左消去律,(2)称作 右消去律。
24
9.1二元运算及其性质
例10:设是字母的有穷集,称为字母表,中的有限 个字母组成的序列称为上的串,对任何串,串中字 母的个数叫做串的长度,记作||,长度是0的串叫空 串,记作,对任给的自然数k,令
f:ZZZ
1 )f(x ,y )x y
2 )f( x ,y ) x y
3 )f(x ,y )xy
4 )f( x ,y ) x y
4
9.1二元运算及其性质
例2: f:R*R*R*(其R 中 *是非零 ) 实数
9.1二元运算及其性质
例6:设S={1,2},给出P(S)上的运算~和的运算表, 其中全集为S。
P(S)={,{1},{2},{1,2}}
ai
~ai
{1} {2} {1,2}
{1} {2} {1,2}
{1,2} {1} {2}
{1} {2} {1,2} {1} {1} {1,2} {2} {2} {2} {1,2} {1}
设V1=<S1,>,V2=<S2,*>是代数系统, 和*是二元运算。 如果存在映射:S1S2,若x,yS1都有
(xb)=(x)*(y)
则称是V1到V2的同态映射,简称同态。
35
9.2 代数系统
例14: (1)G1=<Z,+>,G2=<Zn,>,令
:ZZn,(x)=(x)modn
则是否为G1到G2的同态?
六、消去律(定义9.7)
设为S上的二元运算,如果对于任意的x,y,zS满足以下 条件:
(1)若xy=xz且x,则y=z。 (2)若yx=zx且x,则y=z。 那么称运算满足消去律,其中(1)称作左消去律,(2)称作 右消去律。
24
9.1二元运算及其性质
例10:设是字母的有穷集,称为字母表,中的有限 个字母组成的序列称为上的串,对任何串,串中字 母的个数叫做串的长度,记作||,长度是0的串叫空 串,记作,对任给的自然数k,令
f:ZZZ
1 )f(x ,y )x y
2 )f( x ,y ) x y
3 )f(x ,y )xy
4 )f( x ,y ) x y
4
9.1二元运算及其性质
例2: f:R*R*R*(其R 中 *是非零 ) 实数
上课用课件离散—耿素云
![上课用课件离散—耿素云](https://img.taocdn.com/s3/m/231a06503b3567ec102d8a58.png)
1.2 命题公式及其赋值 p q r 例( 1 ) (2)r q p q p
定义5.公式A, 1)若A在所有赋值下的取值均为真,则称A为永真式; 2)若A在所有赋值下的取值均为假,则称A为永假式; 3)若至少有一组赋值使A的值为真,则称A为可满足式。
2.1 命题公式的等值式
例:(p q)与p q p (q r ),( p q) r,( p q) r
基本等值式(A,B,C为任意命题公式)
交换律:A B A B, A B B A 结合律:A B C A B C , A B C A B C 分配律:A B C A B A C A B C A B A C
是自然语言中的“如果 ,则”,“若,则” 的逻辑抽象。
有位父亲对儿子说:“如果我 去书店,就一定给你买电脑 报“。问:在什么情况下,
p F F T T
q F T F T
p q T T F T
父亲算失信呢?
1.1 命题和命题联结词
注意:①“只要p,就q„,’因为p,所以q”,“p仅当q”, ‘只有q,才p“,”除非q才p“,”除非q,否则非p“都可 抽象为p→q。 ②p,q可以没有任何内在联系。 例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
1.2 命题公式及其赋值
定义4.将公式A在其全部赋值下的真值情况列成表, 称为A的真值表。
真值表的构造步骤: ( 1)若公式F 共有( n n 1)个变元,则真值表第一行的n个 变元,公式写在第n 1列。 (2)写出n个变元的所有可能取值(2n 种),按从低到高的 顺序写出公式的各层次。 (3)在不同赋值下求出各层次的真值及F的真值。
离散数学配套课件PPT(第5版)第一部分 数理逻辑联结词全功能集
![离散数学配套课件PPT(第5版)第一部分 数理逻辑联结词全功能集](https://img.taocdn.com/s3/m/ede20848ff00bed5b9f31d8e.png)
3
复合联结词
与非式: pq(pq) 或非式: pq(pq)
和与, ∧,∨有下述关系: p(p∧p)pp p∧q( p∧q)(pq)(pq)(pq) p∨q(p∧q)(p)(q)(pp)(qq)
4
复合联结词(续)
ppp p∧q(pp)(qq) p∨q(pq)(pq)
13
例ቤተ መጻሕፍቲ ባይዱ续)
解 编号
极小项
角码 标记
1 x1∧x2∧x3∧x4 2 x1∧x2∧x3∧x4 3 x1∧x2∧x3∧x4
1110 * 1011 * 0111 *
4 x1∧x2∧x3∧x4 1010 * 5 x1∧x2∧x3∧x4 0101 * 6 x1∧x2∧x3∧x4 0011 *
1.5 联结词全功能集
联结词全功能集 与非联结词,或非联结词
1
联结词的全功能集
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集.
说明:若S是联结词全功能集,则任何命题公式都 可用S中的联结词表示.
设S1, S2是两个联结词集合,且S1 S2. 若S1是全
x y
x∧y x y
x∨y x
x
与门
或门
非门
8
组合电路的例子
(x∨y)∧x的组合电路
x y
x y
第一种画法
x 第二种画法
9
例
例 楼梯的灯由上下2个开关控制, 要求按动任何一个 开关都能打开或关闭灯. 试设计一个这样的线路. 解 x,y:开关的状态, F:灯的状态, 打开为1, 关闭为0. 不妨设当2个开关都为0时灯是打开的.
(5,7) x1∧x3∧x4 001 *
复合联结词
与非式: pq(pq) 或非式: pq(pq)
和与, ∧,∨有下述关系: p(p∧p)pp p∧q( p∧q)(pq)(pq)(pq) p∨q(p∧q)(p)(q)(pp)(qq)
4
复合联结词(续)
ppp p∧q(pp)(qq) p∨q(pq)(pq)
13
例ቤተ መጻሕፍቲ ባይዱ续)
解 编号
极小项
角码 标记
1 x1∧x2∧x3∧x4 2 x1∧x2∧x3∧x4 3 x1∧x2∧x3∧x4
1110 * 1011 * 0111 *
4 x1∧x2∧x3∧x4 1010 * 5 x1∧x2∧x3∧x4 0101 * 6 x1∧x2∧x3∧x4 0011 *
1.5 联结词全功能集
联结词全功能集 与非联结词,或非联结词
1
联结词的全功能集
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集.
说明:若S是联结词全功能集,则任何命题公式都 可用S中的联结词表示.
设S1, S2是两个联结词集合,且S1 S2. 若S1是全
x y
x∧y x y
x∨y x
x
与门
或门
非门
8
组合电路的例子
(x∨y)∧x的组合电路
x y
x y
第一种画法
x 第二种画法
9
例
例 楼梯的灯由上下2个开关控制, 要求按动任何一个 开关都能打开或关闭灯. 试设计一个这样的线路. 解 x,y:开关的状态, F:灯的状态, 打开为1, 关闭为0. 不妨设当2个开关都为0时灯是打开的.
(5,7) x1∧x3∧x4 001 *
离散数学讲解第五章PPT课件
![离散数学讲解第五章PPT课件](https://img.taocdn.com/s3/m/f2184ae3763231126fdb11c4.png)
17
又例如 (a2)3 a6 因为 (a2)3(a (2)1)3(a2)1(a2)1(a2)1
(aa)1(aa)1(aa)1
根据结合(a律 a )(a 1a1)(a1a1)(aa)e 所以 (a a)1 a1a1 因此 (a2) 3 (a1a1)(a1a1)(a1a1)
a 1a 1 a1a1a1a1 (a 1)6 a 6
2021/4/8
7
定理5-2:设h是从代数系统V1= <S;*>到V2= <S;>的 满同态,其中运算*和都是二元运算,则 (1)若V1是半群,则V2也是半群; (2)若V1是独异点,则V2也是独异点。
2021/4/8
8
四、有限独异点的幂等元 设<S;*>是生成元为g的有限循环独异点,考虑无限序列: e,g,g2,g3,.... ,gn-1,gn,gn+1,......
证明:对任意的a∈S,令Sa={ a0,a1,a2,...,an,...} 因为S有限,而SaS,所以Sa也有限。 可以验证<S; * >是一具有生成元a的有限循环独异点。 因此,至少有一幂等元akl,这里的k和l如前定义。 记j=kl,即aj是幂等元。 注:这里j≥1,有可能aj=e
2021/4/8
(1)令FA={f|f:AA},则<FA;>是一个群。 (N)
(2)令EA = {f|f:AA是双射}, 则<EA;>是一个群。 (Y )
(3)EA 定义同上,<EA;>是一个交换群。 (N)
(4)EA 定义同上,<EA;>是一个循环群。 (N )
2021/4/8
25
5.3 群的性质
一、关于相约性 定理5-6 设<G;*>是一个群,则对任意的a,b G, (1)存在唯一的元素xG,使a*x=b; (2)存在唯一的元素yG,使y*a=b。
离散数学第五版第五章(耿素云、屈婉玲、张立昂编著)
![离散数学第五版第五章(耿素云、屈婉玲、张立昂编著)](https://img.taocdn.com/s3/m/3d9a58d15022aaea998f0f32.png)
称+(G),+(G),-(G),-(G)分别为G的最大出度、 最小出度、最大入度和最小入度。
12
5.1 无向图及有向图
五、握手定理(定理5.1-5.2)
设G=<V,E>为任意无向图,V={1,2,……,n},|E|=m,则
n
d ( i ) = 2 m
i =1
设D=<V,E>为任意有向图,V={1,2,……,n},|E|=m,则
20
5.1 无向图及有向图
例5:下列图中那些图具有子图、真子图、生成子图的
关系?
e4 2
1 e5
e1 3
e3 4 e2
(1)
2 e4
1
e5
(2)
e4 1 2
e1 3
e3 4
(3)
1 e1
e3
2
e2 3
1 e1
e3
2
3
1 e1
2
e4
(4)
(5)
(6)
21
5.1 无向图及有向图
23
5.1 无向图及有向图
例3: (1)画出4阶3条边的所有非同构的无向简单图。 (2)画出3阶2条边的所有非同构的有向简单图。
24
5.1 无向图及有向图
例4:下列图中那些图互为同构?
e a
b
d
c
1
4
5
2
3
(1)
(2)
(3)
(4)
(5)
(6)
25
第五章 图的基本概念 5.1 无向图及有向图 5.2 通路、回路、图的连通性 5.3 图的矩阵表示 5.4 最短路径及关键路径
十一、补图的定义(定义5.9)
12
5.1 无向图及有向图
五、握手定理(定理5.1-5.2)
设G=<V,E>为任意无向图,V={1,2,……,n},|E|=m,则
n
d ( i ) = 2 m
i =1
设D=<V,E>为任意有向图,V={1,2,……,n},|E|=m,则
20
5.1 无向图及有向图
例5:下列图中那些图具有子图、真子图、生成子图的
关系?
e4 2
1 e5
e1 3
e3 4 e2
(1)
2 e4
1
e5
(2)
e4 1 2
e1 3
e3 4
(3)
1 e1
e3
2
e2 3
1 e1
e3
2
3
1 e1
2
e4
(4)
(5)
(6)
21
5.1 无向图及有向图
23
5.1 无向图及有向图
例3: (1)画出4阶3条边的所有非同构的无向简单图。 (2)画出3阶2条边的所有非同构的有向简单图。
24
5.1 无向图及有向图
例4:下列图中那些图互为同构?
e a
b
d
c
1
4
5
2
3
(1)
(2)
(3)
(4)
(5)
(6)
25
第五章 图的基本概念 5.1 无向图及有向图 5.2 通路、回路、图的连通性 5.3 图的矩阵表示 5.4 最短路径及关键路径
十一、补图的定义(定义5.9)
离散数学的ppt课件
![离散数学的ppt课件](https://img.taocdn.com/s3/m/8dae68eb294ac850ad02de80d4d8d15abe2300e2.png)
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
离散数学耿素云PPT第版
![离散数学耿素云PPT第版](https://img.taocdn.com/s3/m/a9e8dc9c77a20029bd64783e0912a21614797fe9.png)
3
通路与回路(续)
在两种意义下计算圈的个数 ① 定义意义下 在无向图中, 一个长度为l(l3)的圈看作2l个不同的 圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈. 在有向图中, 一个长度为l(l3)的圈看作l个不同的 圈. ② 同构意义下 所有长度相同的圈都是同构的, 因而是1个圈.
(2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为 初级通路(初级回路).初级通路又称作路径, 初级回路又称 作圈.
(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).
1
通路与回路实例
2
通路与回路(续)
说明: 表示方法
① 用顶点和边的交替序列(定义), 如=v0e1v1e2…elvl ② 用边的序列, 如=e1e2…el ③ 简单图中, 用顶点的序列, 如=v0v1…vl ④ 非简单图中,可用混合表示法,如=v0v1e2v2e5v3v4v5 环是长度为1的圈, 两条平行边构成长度为2的圈. 在无向简单图中, 所有圈的长度3; 在有向简单图 中, 所有圈的长度2.
4
通路与回路(续)
定理 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的通路. 推论 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的初级通路.
定理 在一个n阶图G中,若存在v到自身的回路,则 一定存在v到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在v到自身的简单回 路,则存在v到自身长度小于等于n的初级回路.
6
点割集
记 Gv: 从G中删除v及关联的边 GV : 从G中删除V 中所有的顶点及关联的边 Ge : 从G中删除e GE: 从G中删除E中所有边
通路与回路(续)
在两种意义下计算圈的个数 ① 定义意义下 在无向图中, 一个长度为l(l3)的圈看作2l个不同的 圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈. 在有向图中, 一个长度为l(l3)的圈看作l个不同的 圈. ② 同构意义下 所有长度相同的圈都是同构的, 因而是1个圈.
(2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为 初级通路(初级回路).初级通路又称作路径, 初级回路又称 作圈.
(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).
1
通路与回路实例
2
通路与回路(续)
说明: 表示方法
① 用顶点和边的交替序列(定义), 如=v0e1v1e2…elvl ② 用边的序列, 如=e1e2…el ③ 简单图中, 用顶点的序列, 如=v0v1…vl ④ 非简单图中,可用混合表示法,如=v0v1e2v2e5v3v4v5 环是长度为1的圈, 两条平行边构成长度为2的圈. 在无向简单图中, 所有圈的长度3; 在有向简单图 中, 所有圈的长度2.
4
通路与回路(续)
定理 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的通路. 推论 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的初级通路.
定理 在一个n阶图G中,若存在v到自身的回路,则 一定存在v到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在v到自身的简单回 路,则存在v到自身长度小于等于n的初级回路.
6
点割集
记 Gv: 从G中删除v及关联的边 GV : 从G中删除V 中所有的顶点及关联的边 Ge : 从G中删除e GE: 从G中删除E中所有边
2019离散数学-耿素云PPT(第5版)1.1-2.ppt
![2019离散数学-耿素云PPT(第5版)1.1-2.ppt](https://img.taocdn.com/s3/m/91d0f7598e9951e79b8927d6.png)
p q
p q p q
q p q p p q q p q p
18
注意: pq 与 qp 等值(真值相同)
联结词与复合命题(续)
5. 等价式与等价联结词“” 定义 设p,q为二命题,复合命题 “p当且仅当q”称 作p与q的等价式,记作pq. 称作等价联结词. 并规定pq为真当且仅当p与q同时为真或同时为 假. 说明: (1) pq 的逻辑关系:p与q互为充分必要条件
解令 (1) (2) (3) p:王晓用功,q:王晓聪明,则 p∧ q p∧ q p∧ q.
12
例 (续)
令 r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学,t 是简单命题 . 说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是两个名词,整个句子是 一个简单命题.
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“” 定义 设 p,q 为二命题,复合命题 “如果 p, 则 q”
称作 p 与 q 的蕴涵式,记作 pq ,并称 p 是蕴涵式
的前件, q 为蕴涵式的后件 . 称作蕴涵联结词,
并规定,pq为假当且仅当 p 为真 q 为假.
16
联结词与复合命题(续)
6
命题与真值
命题: 判断结果惟一的陈述句 命题的真值: 判断的结果 真值的取值: 真与假 真命题: 真值为真的命题 假命题: 真值为假的命题 注意: 感叹句、祈使句、疑问句都不是命题 陈述句中的悖论以及判断结果不惟一确定的也不是 命题
7
例 下列句子中那些是命题?
(1)
2 是无理数.
真命题 假命题 真值不确定 疑问句 感叹句
离散数学第五版第四章(耿素云屈婉玲张立昂编著) ppt课件
![离散数学第五版第四章(耿素云屈婉玲张立昂编著) ppt课件](https://img.taocdn.com/s3/m/59251052dd36a32d7275810b.png)
证明:设A=、B={1}、C={2}、D={3}
(AB)×(CD)={<1,2>、<1,3>}
(A×C)(B×D)={<2,1>、<2,3>}
所以:等式不成立 (3)(A-B)×(C-D)=(A×C)-(B×D)
证明:设A={1}、B={1}、C={2}、D={3}
(A-B)×(C-D)=
(xAyB) (xAyC)
<x,y>A×B <x,y>A×C
<x,y>(A×B)(A×C) PPT课件
9
4.1迪卡尔乘积与二元关系
5) 迪卡尔乘积运算对并和交运算满足分配律,即: (4)(BC)×A= (B×A)(C×A)
证明: 对于任意的<x,y>
<x,y>(BC)×A
PPT课件
24
4.1迪卡尔乘积与二元关系
例5:设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A)xy}
解:P(A)={,{a},{b},{a,b}} R={<, >,<,{a}>,<,{b}>,<,{a,b}>, <{a},{a}>,<{a},{a,b}>,<{b},{b}>, <{b},{a,b}>,<{a,b},{a,b}>}
PPT课件
16
4.1迪卡尔乘积与二元关系
例4:设A,B,C,D为任意集合,判断真假。 (1)A×B=A×CB=C 证明:若A=,B={1},C={2} 则A×B=A×C=,而BC。 所以:命题真假不定
PPT课件
17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v5 (+, ) (+, ) (+, ) (+, ) (10,v4) (9,v3)*
4
项目网络图
项目网络图: 表示项目的活动之间前后顺序一致的带 权有向图. 边表示活动, 边的权是活动的完成时间,顶 点表示事项(项目的开始和结束、活动的开始和结束). 要求: (1) 有一个始点(入度为0)和一个终点(出度为0). (2) 任意两点之间只能有一条边.
9
例(续)
事项的最晚完成时间 TL(8)=12 TL(7)=min{12-6}=6 TL(6)=min{12-1}=11 TL(5)=min{11-1}=10 TL(4)=min{10-4}=6 TL(3)=min{6-2,11-4,6-4}=2 TL(2)=min{2-0,10-3,6-4}=2 TL(1)=min{2-1,2-2,6-3}=0
例 L1=v0v1v3v5, w(L1)=10,
L2=v0v1v4v5, w(L2)=12,
L3=v0v2v4v5, w(L3)=11.
2
标号法(E.W.Dijkstra, 1959)
设带权图G=<V,E,w>, 其中eE, w(e)0. 设V={v1,v2,,vn}, 求v1到其余各顶点的最短路径 1. 令 l10, p1, lj+, pj, j=2,3,,n, P={v1}, T=V-{v1}, k1, t1. / 表示空 2. 对所有的vjT且(vk,vj)E 令lmin{lj, lk+wkj}, 若l=lk+wkj, 则令ljl, pjvk. 3. 求li=min{lj| vjTt}. 令PP{vi}, TT-{vi}, ki. 4. 令tt+1, 若t<n, 则转2.
14
例
例3 学生会下设6个委员会, 第一委员会={张, 李, 王}, 第二委 员会={李, 赵, 刘}, 第三委员会={张, 刘, 王}, 第四委员会={赵, 刘, 孙}, 第五委员会={张, 王}, 第六委员会={李, 刘, 王}. 每个 月每个委员会都要开一次会, 为了确保每个人都能参加他所 在的委员会会议, 这6个会议至少要安排在几个不同时间段?
总工期:12天 关键路径: v1v3v7v8
关键活动: B,F,J
11
着色
定义 设无向图G无环, 对G的每个顶点涂一种颜色, 使相邻的顶点涂不同的颜色,称为图G的一种点着 色,简称着色.若能用k种颜色给G的顶点着色, 则 称G是k-可着色的. 图的着色问题: 用尽可能少的颜色给图着色.
例1
2 1 2 1
8
例(续)
事项的最早开始时间 TE(1)=0 TE(2)=max{0+1}=1 TE(3)=max{0+2,1+0}=2 TE(4)=max{0+3,2+2}=4 TE(5)=max{1+3,4+4}=8 TE(6)=max{2+4,8+1}=9 TE(7)=max{1+4,2+4}=6 TE(8)=max{9+1,6+6}=12
1
2
1 2 3 2
1
2 1
1
2 1 2 3 1
2
1 2 3 2
1
4 1 2
2 1
1
2
12
例
例2
1 2 1 2 1 2 1
2
3 2
1 2 2 21Fra bibliotek3 3
1
1 3
2 4 3 1 2
13
应用
有n项工作, 每项工作需要一天的时间完成. 有些工 作由于需要相同的人员或设备不能同时进行, 问至 少需要几天才能完成所有的工作? 计算机有k个寄存器, 现正在编译一个程序, 要给每 一个变量分配一个寄存器. 如果两个变量要在同一 时刻使用, 则不能把它们分配给同一个寄存器.如 何给变量分配寄存器? 无线交换设备的波长分配. 有n台设备和k个发射波 长, 要给每一台设备分配一个波长. 如果两台设备 靠得太近, 则不能给它们分配相同的波长, 以防止 干扰. 如何分配波长?
A B C B A C 引入虚活动
(3) 没有回路. (4) 每一条边始点的编号小于终点的编号.
5
例
活动 紧前活动 时间(天) A B C 1 2 3 D A 4 E F G H I J K L A A,B A,B A,B C,H D,F E,I G,K 3 4 4 2 4 6 1 1
3
Dijkstra标号法实例
例 求v0到v5的最短路径
t v0 v1 v2 v3 v4 1 (0, )* (+, ) (+, ) (+, ) (+, ) 2 (1,v0)* (4,v0) (+, ) (+, ) 3 (3,v1)* (8,v1) (6,v1) 4 (8,v1) (4,v2)* 5 (7,v4)* 6 v0到v5的最短路径: v0v1v2v4v3v5 , d(v0,v5)=9
7
关键路径(续)
(3) 活动<i,j>的最早开始时间ES(i,j): <i,j>最早可能开始时间. (4) 活动<i,j>的最早完成时间EF(i,j): <i,j>最早可能完成时间. (5) 活动<i,j>的最晚开始时间ES(i,j): 在不影响项目工期的条 件下, <i,j>最晚必须开始的时间. (6) 活动<i,j>的最晚完成时间ES(i,j): 在不影响项目工期的条 件下, <i,j>最晚必须完成的时间. (7) 活动<i,j>的缓冲时间SL(i,j): SL(i,j)= LS(i,j)-ES(i,j)=LF(i,j)-EF(i,j) 显然, ES(i,j)= ES(i), EF(i,j)= ES(i)+wij, LF(i,j)=LF(j), LS(i,j)=LF(j)-wij,
10
例(续)
活动 ES EF LS LF SL A 0 1 1 2 1 B C D E F G H I J 0 0 1 1 2 2 2 4 6 2 3 5 4 6 6 4 8 12 0 3 2 7 2 7 4 6 6 2 6 6 10 6 11 6 10 12 0 3 1 6 0 5 2 2 0 K 8 9 10 11 2 L 9 10 11 12 2
v1 1
v2 2 v3 3 4 v6
2
v5
1 v4
至少要4个时段 第1时段:一,四 第2时段:二,五 第3时段:三 第4时段:六
15
5.4 最短路径,关键路径与着色
带权图 最短路径与Dijkstra标号法 项目网络图与关键路径
着色问题
1
最短路径
带权图G=<V,E,w>, 其中w:ER. eE, w(e)称作e的权. e=(vi,vj), 记w(e)=wij . 若vi,vj不 相邻, 记wij =. 通路L的权: L的所有边的权之和, 记作w(L). u和v之间的最短路径: u和v之间权最小的通路.
1 C
A B 2 3
1
2 3
D 4
E 3
F 4
G 4 6 K 1 5
7 L 1
J
6 8
H 2
4
I 4
6
关键路径
关键路径: 项目网络图中从始点到终点的最长路径 关键活动: 关键路径上的活动 设D=<V,E,W>, V={1,2,,n}, 1是始点, n是终点. (1)事项i的最早完成时间ES(vi): i最早可能开始的时间, 即从始点到i的最长路径的长度. ES(1)=0 ES(i)=max{ES(j)+wji|<j,i>E}, i=2,3,,n (2)事项i的最晚完成时间LF(i): 在不影响项目工期的条 件下,事项i最晚必须完成的时间. LF(n)=ES(n) LF(i)=min{LF(j)-wij|<i,j>E}, i=n-1,n-2,,1