人教版七年级数学上册1.3.1有理数的加法(有理数的加法法则)课后练习(含答案)
人教版七年级数学上册 1.3.1 有理数的加法—— 有理数加法的运算规律 同步课时练习题 含答案
第1章 有理数 1.3.1 有理数的加法 有理数加法的运算规律1. 下列变形运用加法的运算律错误的是( )A .3+(-2)=(-2)+3B .4+(-6)+3=4+3+(-6)C .[5+(-2)]+4=[5+(-4)]+2D. 16+(-1)+(+56)=[16+(+56)]+(-1) 2. 计算:(-1.75)+(+7.3)+(-2.25)+(-8.5)+(+1.5)=[(-1.75)+(-2.25)]+[(+1.5)+(-8.5)]+(+7.3)运用了( )A .加法的交换律B .加法的结合律C .加法的交换律和结合律D .以上都不对3. 七(2)班一学期班费收支情况如下(收入为正,支出为负):+250元、-55元、-120元、+7元.这学期结束时,该班班费结余为( )A .82元B .85元C .35元D .92元4. 计算2016+(-99)+(-2016)+(+100)的结果是( )A .-1B .1C .-199D .1995.三个数-12,-2,+7的和加上它们的绝对值的和为( )A .-14B .14C .-28D .286. 某天早晨的气温是-7 ℃,到了中午升高了4 ℃,晚上又降低了3 ℃,到午夜又降低了4 ℃,则午夜时的气温为( )A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃7. 已知上周五(周末不开市)沪市指数以2900点报收,本周内股市涨跌情况如下表(“+”表示比前一天涨,“-”表示比前一天跌):那么本周五的沪市指数报收点为( )A.2910 B.2940 C.2950 D.29608. 在括号内填上适当的数:(-31)+(+19)+(-5)+(+31)=[(-31)+( )]+[( )+( )]9. 在算式每一步后面填上这一步所根据的运算律(+7)+(-22)+(-7)=(-22)+(+7)+(-7)( )=(-22)+[(+7)+(-7)]( )=(-22)+0=-2210. 有5袋苹果,以每袋50千克为基准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):+4,-5,+3,-2,-6.则这5袋苹果的总质量是千克.11. 一只跳蚤从数轴上的原点O开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,……,以此规律跳下去,当它跳100次落下时,落点表示的数是____.12. 计算:(1) (+14)+(-7)+(-5)+(+26)+(-3);(2) (-7.6)+2.5+(-1.4)+(-1.3)+7.5;(3) (-0.5)+214+(+2.75)+(-512).13. 计算:(1) (-8)+(+12)+(-11)+(-1);(2) (-314)+(-35)+(+2)+(-34)+35;(3) (-1)+(+2)+(-3)+(+4)+…+(-2017)+(+2018).14. 阅读(1)小题的方法.(1)-556+(-923)+(-312)+1734. 解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34) =[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]=0+(-54)=-54. 上述这种方法叫拆项法,灵活运用加法的交换律、结合律可使运算简便,仿照上面的方法计算:(-201556)+(-201623)+4032+(-112).15. 某巡警骑摩托车在一条南北大道方向的大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶记录如下:(单位:千米)+10,-8,+6,-13,+7,-12,+3,-2.(1)A在岗亭何方距岗亭多远?(2)该巡警巡逻时离岗亭最远是多少千米?(3)在岗亭北面6千米处有个加油站,该巡警巡逻时经过加油站几次?(4)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?答案;1---7 CCABB BD8. +31 +19 -59. 加法交换律加法结合律10. 24411. -5012. (1) 解:原式=25(2) 解:原式=-0.3(3) 解:原式=-113. (1) 解:原式=-8(2) 解:原式=-2(3) 解:原式=100913. 解:原式=[(-2015)+(-56)]+[(-2016)+(-23)]+4032+ [(-1)+(-12)]=[(-2015)+(-2016)+4032+(-1)]+ [(-56)+(-23)+(-12)]=-2 14. 解:(1)∵(+10)+(-8)+(+6)+(-13)+(+7)+(-12)+(+3)+(-2)=-9,∴A 在岗亭南边9千米处(2)该巡警巡逻时离岗亭最远的是10千米(3)该巡警巡逻时经过加油站4次(4)∵|+10|+|-8|+|+6|+|-13|+|+7|+|-12|+|+3|+|-2|=61,0.05×61=3.05(升)。
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》练习含答案
2021年人教版七年级数学上册《1.3有理数的加减法》练习一.选择题(共12小题)1.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.32.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,则下列结论中正确的是()A.[2)﹣2=0B.若[m)﹣m=0.5,则m=0.5C.[m)﹣m的最大值是1D.[m)﹣m的最小值是03.某地一周内每天的最高气温与最低气温记录如表,其中温差是12℃的共有()星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃﹣1℃﹣4℃﹣5℃﹣5℃A.1天B.2天C.3天D.4天4.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或35.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成1,1=10﹣2;189写成29=200﹣20+9;7683写成13=10000﹣2320+3.按这个方法请计算52﹣31=()A.2408B.1990C.2410D.30246.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.707.若|x|=2,|y|=3,且xy异号,则|x+y|的值为()A.5B.5或1C.1D.1或﹣18.如图,将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a﹣b+c的值为()A.﹣5B.﹣4C.0D.59.运用加法的运算律计算(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)最适当的是()A.[(+6)+(+4)+18]+[(﹣18)+(﹣6.8)+(﹣3.2)]B.[(+6)+(﹣6.8)+(+4)]+[(﹣18)+18+(﹣3.2)]C.[(+6)+(﹣18)]+[(+4)+(﹣6.8)]+[18+(﹣3.2)]D.[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)]10.计算:﹣1﹣3=()A.2B.﹣2C.4D.﹣411.已知|x|=4,|y|=5,且x>y,则x+y的值为()A.﹣1或﹣9B.+1或﹣9C.﹣9D.﹣112.现有a,b,c,d四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等B.有且只有两个数相等C.有且只有三个数相等D.全部相等二.填空题(共9小题)13.如果A、B两地的高度分别为海拔70米、海拔﹣210米,那么A地比B地高米.14.标有1﹣25号的25个座位如图摆放.甲、乙、丙、丁四人玩选座位游戏,甲选2个座位,乙选3个座位,丙选4个座位,丁选5个座位.游戏规则如下:①每人只能选择同一横行或同一竖列的座位;②每人使自己所选的座位号数字之和最小;③座位不能重复选择.如果按“甲、乙、丙、丁”的先后顺序选座位,那么甲选1,2号座位,乙选3,4,5号座位,丙选7,8,9,10号座位,丁选13,14,15,16,17号座位,此时四人所选的座位号数字之和为124.如果按“丁、丙、乙、甲”的先后顺序选座位,那么四人所选的座位号数字之和为.15.2021年1月8日我市气温达到入冬以来的最低气温:﹣9℃~﹣3℃,这天的温差是℃.16.(多选)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,b+c>0,则下列结论一定正确的是.A.b<0;B.|b|<|c|;C.|a|>|b|;D.abc<0.17.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.18.如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为.19.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y=.20.计算:=.21.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5168421.如果自然数m经过7步运算可得到1,则所有符合条件的m的值为.三.解答题(共8小题)22.计算:.23.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).24.“疫情无情人有情”.在抗击新冠病毒疫情期间,一志愿小组某天早晨从A地出发沿南北方向运送抗疫物资,晚上最后到达B地.约定向北为正方向,当天志愿小组行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣6,+13,﹣6,﹣8,﹣27.(1)试问B地在A地的哪个方向,它们相距多少千米?(2)若汽车行驶每千米耗油0.07升,则志愿小组该天共耗油多少升?25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?26.某公司上半年每个月的盈亏情况如下表(盈余为正,单位:万元):月份1月2月3月4月5月6月盈亏(万元)+20+30﹣40﹣20+50+10(1)该公司收入最高的月份比最低的月份多多少万元?(2)该公司上半年是盈还是亏?盈亏是多少?27.根据市场情况,某公司决定用一周时间大量收购小麦.计划收购48000千克,公司将工作人员分为6个收购小组,每组收购任务是8000千克.一周后,6个小组完成的情况分别为:8200千克,7800千克,9000千克,7200千克,8200千克,8000千克.(1)通过计算说明6个小组完成的总数量是否达到计划数量?(2)若每小组一周后均各奖500元,超额完成的每100千克再奖10元,少完成每100千克从奖金中扣8元,本次收购后,该公司要支付多少奖金?28.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.29.【提出问题】两个有理数a,b满足a,b同号,求的值.【解决问题】解:由a,b同号可知a,b有以下两种可能:a,b都是正数;a,b都是负数.①若a,b都是正数,即a>0,b>0,有|a|=a,|b|=b,则=1+1=2;②若a,b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则=(﹣1)+(﹣1)=﹣2.综上,的值为2或﹣2.【探究问题】请根据上面的解题思路解答下面的问题:(1)两个有理数a,b满足a,b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.参考答案与试题解析一.选择题(共12小题)1.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.3【分析】根据有理数减法法则,求出计算(﹣5)﹣(﹣8)的结果等于多少即可.【解答】解:(﹣5)﹣(﹣8)=(﹣5)+8=3.故选:D.【点评】此题主要考查了有理数的减法的运算方法,解答此题的关键是要明确有理数减法法则:减去一个数,等于加上这个数的相反数.2.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,则下列结论中正确的是()A.[2)﹣2=0B.若[m)﹣m=0.5,则m=0.5C.[m)﹣m的最大值是1D.[m)﹣m的最小值是0【分析】根据题意[m)表示大于m的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[2)﹣2=3﹣2=1,故本选项不合题意;B、若[m)﹣m=0.5,则m不一定等于0.5,故本选项不合题意;C、[m)﹣m的最大值是1,故本项符合题意;D、[m)﹣m>0,但是取不到0,故本选项不合题意;故选:C.【点评】此题主要考查了有理数的减法,仔细审题,理解[m)表示大于m的最小整数是解答本题的关键.3.某地一周内每天的最高气温与最低气温记录如表,其中温差是12℃的共有()星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃﹣1℃﹣4℃﹣5℃﹣5℃A.1天B.2天C.3天D.4天【分析】求出一周内每天的温差,找出温差为12℃的个数即可.【解答】解:根据表格得:10﹣2=8;12﹣1=11;11﹣0=11;9﹣(﹣1)=10;7﹣(﹣4)=11;5﹣(﹣5)=10;7﹣(﹣5)=12,则温差是12℃的共有1天.故选:A.【点评】此题考查了有理数的减法,以及正数与负数,熟练掌握减法法则是解本题的关键.4.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或3【分析】先根据绝对值的性质得出m=±5,n=±2,再结合m、n异号知m=5、n=﹣2或m=﹣5、n=2,继而分别代入计算可得答案.【解答】解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.【点评】本题主要考查有理数的减法和绝对值,解题的关键是掌握根据绝对值的性质和有理数的乘方确定m、n的值.5.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成1,1=10﹣2;189写成29=200﹣20+9;7683写成13=10000﹣2320+3.按这个方法请计算52﹣31=()A.2408B.1990C.2410D.3024【分析】根据“加减计数法”的意义,将52﹣31转化为(5200﹣31)﹣(3000﹣240+1)进行计算即可.【解答】解:根据“加减计数法”的意义可得,52﹣31=(5200﹣31)﹣(3000﹣240+1)=5200﹣31﹣3000+240﹣1=2408,故选:A.【点评】本题考查有理数的加减混合运算,理解“加减计数法”的意义是正确计算的关键.6.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.70【分析】首先用35减去10,求出x的值是多少;然后再求出35和x相加得到的和是多少即可.【解答】解:35+(35﹣10)=35+25=60.故选:B.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是求出x 的值是多少.7.若|x|=2,|y|=3,且xy异号,则|x+y|的值为()A.5B.5或1C.1D.1或﹣1【分析】利用绝对值的代数意义求出x与y的值,代入原式计算即可求出值.【解答】解:∵|x|=2,|y|=3.且xy异号,∴x=2,y=﹣3;x=﹣2,y=3,∴x+y=﹣1或1,则|x+y|=1.故选:C.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.如图,将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a﹣b+c的值为()A.﹣5B.﹣4C.0D.5【分析】(1)首先根据第3行和第1列的三个数之和相等,求出c的值是多少;然后根据第1行和第3列的三个数之和相等,求出a的值是多少;最后根据第1行和对角线上的三个数之和相等,求出b的值是多少;再根据有理数加减法的运算方法,求出a﹣b+c 的值是多少即可.(2)先由第二行得三数之和均为﹣1+1+3=3,然后利用减法分别求出a,b,c的值,进而求出a﹣b+c的值为多少即可.【解答】解:(1)解法一:c=4+(﹣1)﹣5=﹣2,a=3+(﹣2)﹣4=﹣3,b=4+(﹣3)+2﹣1﹣2=0,∴a﹣b+c=﹣3﹣0+(﹣2)=﹣5.(2)解法二:三数之和均为:﹣1+1+3=3,∴a=3﹣(4+2)=3﹣6=﹣3,b=3﹣[4+(﹣1)]=3﹣3=0,c=3﹣(2+3)=3﹣5=﹣2,∴a﹣b+c=﹣3﹣0+(﹣2)=﹣5.故选:A.【点评】此题主要考查了有理数的加减法的运算方法,要熟练掌握,解答此题的关键是求出a、b、c的值各是多少.9.运用加法的运算律计算(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)最适当的是()A.[(+6)+(+4)+18]+[(﹣18)+(﹣6.8)+(﹣3.2)]B.[(+6)+(﹣6.8)+(+4)]+[(﹣18)+18+(﹣3.2)]C.[(+6)+(﹣18)]+[(+4)+(﹣6.8)]+[18+(﹣3.2)]D.[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)]【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【解答】解:(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)=[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)];故选:D.【点评】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.10.计算:﹣1﹣3=()A.2B.﹣2C.4D.﹣4【分析】根据有理数的加减法法则计算即可判断.【解答】解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.【点评】本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.11.已知|x|=4,|y|=5,且x>y,则x+y的值为()A.﹣1或﹣9B.+1或﹣9C.﹣9D.﹣1【分析】因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=﹣5或x =﹣4,y=﹣5.然后分两种情况分别计算x+y的值.【解答】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=﹣5或x=﹣4,y=﹣5.4+(﹣5)=﹣1,﹣4+(﹣5)=﹣9,所以x+y=﹣1或﹣9.故选:A.【点评】本题主要考查了绝对值的定义,有理数的加法法则,体现了分类讨论的数学思想,解题时主要分类要不重不漏.12.现有a,b,c,d四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等B.有且只有两个数相等C.有且只有三个数相等D.全部相等【分析】设a≤b≤c≤d,得到a+b=6,c+d=9,分别求得a,b,c,d的值,即可判断求解.【解答】解:∵正整数a,b,c,d具有同等不确定性,∴设a≤b≤c≤d,∴a+b=6,c+d=9,当a=1时,得b=5,∴c,d为5或6不合题意,舍去,∴a≠1;当a=2时,得b=4,∴c,d为4或5,符合题意了,∴a≠2;当a=3时,得b=3,∴c=4,d=5,符合题意了.综上所述,a,b,c,d这四个正整数只能是2,4,4,5和3,3,4,5.故选:B.【点评】本题主要考查了有理数的加法,属于以代数为背景的推理与论证.二.填空题(共9小题)13.如果A、B两地的高度分别为海拔70米、海拔﹣210米,那么A地比B地高280米.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:70﹣(﹣210)=70+210=280,则A地比B地高280米,故答案为:280.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.标有1﹣25号的25个座位如图摆放.甲、乙、丙、丁四人玩选座位游戏,甲选2个座位,乙选3个座位,丙选4个座位,丁选5个座位.游戏规则如下:①每人只能选择同一横行或同一竖列的座位;②每人使自己所选的座位号数字之和最小;③座位不能重复选择.如果按“甲、乙、丙、丁”的先后顺序选座位,那么甲选1,2号座位,乙选3,4,5号座位,丙选7,8,9,10号座位,丁选13,14,15,16,17号座位,此时四人所选的座位号数字之和为124.如果按“丁、丙、乙、甲”的先后顺序选座位,那么四人所选的座位号数字之和为114.【分析】根据游戏规则,按“同一竖列”或“同一横行”,分别得出丁、丙、乙、甲所选的数,再把它们相加即可.【解答】解:①利用选择“同一竖列”的原则,可得丁选择了:28、8、1、4、5、15;丙选择了:9、2、3、14;乙选择了:7、6、5;甲选择了:10、11;故四人所选的座位号数字之和为:28+8+1+4+5+15+9+2+3+14+7+6+5+10+11=118.②利用选择“同一横行”的原则,可得丁选择了:19、6、1、2、11;丙选择了:5、4、3、12;乙选择了:7、8、9;甲选择了:14、13;故四人所选的座位号数字之和为:19+6+1+2+11+5+4+3+12+7+8+9+14+13=114.故答案为:114.【点评】本题主要考查了有理数的加法,理清游戏规则是解答本题的关键.15.2021年1月8日我市气温达到入冬以来的最低气温:﹣9℃~﹣3℃,这天的温差是6℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:由题意可得:﹣3﹣(﹣9),=﹣3+9,=6(℃).故答案为:6.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.16.(多选)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,b+c>0,则下列结论一定正确的是B和C.A.b<0;B.|b|<|c|;C.|a|>|b|;D.abc<0.【分析】根据已知分析a、b、c的符号和绝对值再判断.【解答】解:∵ac<0,∴a、c异号,∵c在a右边,∴a<0,c>0,∵b+a<0,∴若b>0,b+a取a的符号,有|a|>|b|,若b<0,则原点在b右侧,而a在b左侧,有|a|>|b|,∴C正确;∵b+c>0,∴若b>0,则原点在b左侧,而c在b右侧,有|b|<|c|,若b<0,b+c取c得符号则|b|<|c|,∴B正确;而从已知不能得到b<0、abc<0,故答案为:B和C.【点评】本题考查有理数加法法则,关键是要理解掌握和的符号与加数符号的关系.17.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为1344.【分析】根据任意三个相邻格子中所填整数之和都相等,可得出x、y、z所表示的数,进而得出这一列数,再求和即可.【解答】解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.【点评】本题考查有理数的加法,得出这列数据的排列规律是正确解答的关键.18.如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为3.【分析】首先根据题意,可得:4x+(x+7)=x+19;然后根据解一元一次方程的方法,求出x的值为多少即可.【解答】解:根据题意,可得:4x+(x+7)=x+19,去括号,可得:4x+x+7=x+19,移项,可得:4x+x﹣x=19﹣7,合并同类项,可得:4x=12,系数化为1,可得:x=3.故答案为:3.【点评】此题主要考查了有理数的加法,以及解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y=﹣5或﹣1.【分析】根据绝对值的性质和有理数的乘方求出x、y,再根据负数的绝对值等于它的相反数判断出x﹣y<0,然后求解即可.【解答】解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故答案为:﹣5或﹣1.【点评】本题考查了有理数的减法,绝对值的性质,有理数的乘方,熟记运算法则和性质是解题的关键.20.计算:=.【分析】根据有理数的减法法则计算即可.【解答】解:=﹣5=﹣2.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.21.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5168421.如果自然数m经过7步运算可得到1,则所有符合条件的m的值为128或21或20或3.【分析】根据m为奇数和偶数分别进行解答即可.【解答】解:如图,偶数64=3×21+1,16=3×5+1,(1)得数为64之前输入的数为偶数时,则m=64×2=128,得数为64之前输入的数为奇数时,则3m+1=64,即m=21,(2)当得数为16之前输入的数为奇数时,如图,则第一次计算的结果为10,于是,m=10×2=20,或3m+1=10,即m=3,综上所述m的值为128,21,20,3;故答案为:128或21或20或3.【点评】本题考查有理数的运算,掌握运算结果的奇偶性以及每次运算结果的规律性是正确解答的关键.三.解答题(共8小题)22.计算:.【分析】根据有理数的运算顺序计算即可.【解答】解:原式=3.73﹣2+(﹣2.63)﹣=1.1﹣3=﹣1.9.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.23.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).【分析】(1)利用加法的结合律和交换律,把互为相反数结合,正负数分别结合,然后进行计算即可;(2)利用加法的结合律和交换律,把同分母的结合在一起,然后计算即可.【解答】解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.“疫情无情人有情”.在抗击新冠病毒疫情期间,一志愿小组某天早晨从A地出发沿南北方向运送抗疫物资,晚上最后到达B地.约定向北为正方向,当天志愿小组行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣6,+13,﹣6,﹣8,﹣27.(1)试问B地在A地的哪个方向,它们相距多少千米?(2)若汽车行驶每千米耗油0.07升,则志愿小组该天共耗油多少升?【分析】(1)首先根据有理数的加减混合运算,把当天的行驶记录相加;然后根据正、负数的意义,判断出B地在A地的哪个方向,它们相距多少千米即可.(2)首先求出当天行驶记录的绝对值的和,再用汽车汽车行驶的路程乘以行驶每千米耗油量,求出该天共耗油多少升即可.【解答】解:(1)+18﹣9+7﹣14﹣6+13﹣6﹣8﹣27=18+7+13﹣9﹣14﹣6﹣6﹣8﹣27=38﹣70=﹣32,∴B地在A地的南方,它们相距32千米.(2)(|+18|+|﹣9|+|+7|+|﹣14|+|﹣6|+|+13|+|﹣6|+|﹣8|+|﹣27|)×0.07=(18+9+7+14+6+13+6+8+27)×0.07=108×0.07=7.56(升),∴汽车行驶每千米耗油0.07升,则志愿小组该天共耗油7.56升.【点评】本题主要考查有理数的加减混合运算,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?【分析】(1)用最大数减去最小数即可求解;(2)求出这七天的跑步时间,再乘速度即可求解.【解答】解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.【点评】本题主要考查有理数的加减混合运算,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.某公司上半年每个月的盈亏情况如下表(盈余为正,单位:万元):月份1月2月3月4月5月6月盈亏(万元)+20+30﹣40﹣20+50+10(1)该公司收入最高的月份比最低的月份多多少万元?(2)该公司上半年是盈还是亏?盈亏是多少?【分析】(1)用最大的数减去最小的数即可;(2)把6个数相加即可求解.【解答】解:(1)+50﹣(﹣40)=50+40=90(万元),答:该公司收入最高的月份比最低的月份多90万元;(2)+20+(+30)+(﹣40)+(﹣20)+(+50)+(+10)=50(万元),答:该公司上半年盈利50万元.【点评】本题主要考查正数与负数,有理数的加减混合运算,读懂题意是解题的关键.27.根据市场情况,某公司决定用一周时间大量收购小麦.计划收购48000千克,公司将工作人员分为6个收购小组,每组收购任务是8000千克.一周后,6个小组完成的情况分别为:8200千克,7800千克,9000千克,7200千克,8200千克,8000千克.(1)通过计算说明6个小组完成的总数量是否达到计划数量?(2)若每小组一周后均各奖500元,超额完成的每100千克再奖10元,少完成每100千克从奖金中扣8元,本次收购后,该公司要支付多少奖金?【分析】(1)根据以8000kg为标准,超过标准记为正,低于标准记为负,可得每组的完成情况,根据有理数的加法,可得答案;(2)根据超额的奖金单价乘以超额的数量,可得超额奖金,根据有理数的加减法,可得答案.【解答】解:(1)以8000kg为标准,六个小组的完成情况200kg,﹣200kg,1000kg,﹣800kg,200kg,0kg,200+(﹣200)+1000+(﹣800)+200+0=400(kg),答:6个小组完成的总量达到了计划的数量;(2)由题意得500×6+10×(2+10+2)﹣8×(2+8)=3060(元).答:该公司将要支付3060元奖金.【点评】本题考查了正数和负数,利用了有理数的加法运算.28.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.【分析】(1)首先根据a<b<0<c判断出a﹣b,a+b,c﹣a的正负,再去掉绝对值符号,合并同类项即可;(2)根据绝对值的性质可得a=±21,b=±27,然后进一步确定a+b≥0,从而可得①a =﹣21,b=27;②a=21,b=27,再计算即可.【解答】解:(1)∵a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,|a﹣b|+|a+b|﹣|c﹣a|=b﹣a﹣a﹣b﹣c+a=﹣a﹣c;(2)∵|﹣a|=21,|+b|=27,∴a=±21,b=±27,∵|a+b|=a+b,∴a+b≥0,∴①a=﹣21,b=27,则a﹣b=﹣21﹣27=﹣48;②a=21,b=27,则a﹣b=21﹣27=﹣6.故a﹣b的值为﹣48或﹣6.【点评】此题主要考查了绝对值的性质,关键是掌握正数的绝对值等于它本身,负有理数的绝对值是它的相反数.29.【提出问题】两个有理数a,b满足a,b同号,求的值.【解决问题】解:由a,b同号可知a,b有以下两种可能:a,b都是正数;a,b都是负数.①若a,b都是正数,即a>0,b>0,有|a|=a,|b|=b,则=1+1=2;②若a,b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则=(﹣1)+(﹣1)=﹣2.综上,的值为2或﹣2.【探究问题】请根据上面的解题思路解答下面的问题:(1)两个有理数a,b满足a,b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.【分析】(1)直接利用①当a>0,b<0;②当b>0,a<0,进而得出答案;(2)利用绝对值的性质分类讨论得出答案.【解答】解:(1)∵两个有理数a、b满足a,b异号,∴有两种可能,①a是正数,b是负数;②b是正数,a是负数,①当a>0,b<0,则;②当b>0,a<0,则;综上的值为0;(2)∵|a|=3,|b|=7,且a<b,∴a=3 或﹣3,b=7 或﹣7,①当a=﹣3,则b=7,此时a+b=4;②当a=3,则b=7,此时a+b=10;综上可得:a+b的值为4或10.【点评】此题主要考查了绝对值,正确分类讨论是解题关键.21。
人教版七年级上册第一章 有理数 1.3 有理数的加减法 同步练习(含答案)
有理数的加减法同步练习一.选择题1.下列说法正确的是()A.两个数的和一定比这两个数的差大B.零减去一个数,仍得这个数C.两个数的差小于被减数D.正数减去负数,结果是正数2.下列各式中正确的是()A.+5-(-6)=11B.-7-|-7|=0C.-5+(+3)=2 D.(-2)+(-5)=7 3.已知月球表面的最高温度是127℃,最低温度是-183℃,则月球表面的温差是()A.56℃B.65℃C.300℃D.310℃4.已知A地的海拔高度为-53米,而B地比A地低30米,则B地的海拔高度为()A.-83米B.-23米C.30米D.23米5.某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.-5℃C.-3℃D.-9℃6.若|x|=7,|y|=3,且x>y,则y-x等于()A.-4B.-10C.4或10D.-4或-107.已知a>b且a+b=0,则()A.a<0B.b>0C.b≤0D.a>08.计算:1+(-2)+(+3)+(-4)+(+5)+(-6)+…+(+99)+(-100)+(+101)的结果是()A.0B.-1C.-50D.519.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1B.0C.1D.不存在10.已知,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c11.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7B.5C.4D.112.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1、2、-3、4、-5、6、-7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二.填空题13.计算:(-7)-(+5)+(+13)= .14.元旦后大雪纷飞而至,某日安徽有三个城市的最高气温分别是-10℃,1℃,-7℃,计算任意两城市的最高温度之差,其中最大温差(绝对值)是℃.15.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= .16.已知|a|=1,|b|=2,如果a>b,那么a+b= .17.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.三.解答题18.计算:(1)(-21)-(-9)+(-8)-(-12)(2)19.已知|a|=4,|b|=6,若|a+b|=-(a+b),求a-b的值.20.若a<b<0<c<-b,化简:|a-b|+|c+b|21.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?22.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?23.淘宝网是购物综合网站,淘宝网的金币可以抵扣购物、抽奖活动、玩游戏等.获得金币的其中一个途径就是到淘金币网页去签到,规则如下:首日签到领5个金币,连续签到每日再递增5个,每日可领取的金币数量最高为30个,若中断,则下次签到作首日签到,金币个数从5个重新开始领取.(1)按淘金币规则,第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第6天领取个,第7天领取个;连续签到6天,一共领取金币个.(2)从1月1日开始签到,以后连续签到不中断,结果一共领取了255个,问连续签到了几天?(3)张阿姨从1月1日开始坚持每天签到,达到可以每天领取30个金币,后来因故有2天(不定连续)忘记签到,到1月16日签到完成时,发现自己一共领取了215个金币,请直接写出她没有签到日期的所有可能结果.参考答案1-5:DADAB 6-10:DDDAB 11-12:CA13、114、1115、-216、-1或-317、-518、(1)-8;(2)619、:∵|a|=4,|b|=6,|a+b|=-(a+b),∴a=4,b=-6或a=-4,b=-6,当a=4,b=-6时,a-b=4-(-6)=4+6=10,当a=-4,b=-6时,a-b=(-4)-(-6)=(-4)+6=2.20、:∵a<b<0<c<-b,∴a-b<0,c+b<0,|a-b|+|c+b|=-(a-b)-(c+b)=-a+b-c-b=-a-c21、:(1)+5-3+10-8-6+12-10=27-27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是|4-6|=2(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).54×1=54(粒)所以小虫一共得到54粒芝麻.22、:(1)(+6)+(-3)+(+10)+(-8)+(+12)+(-7)+(-10),=6-3+10-8+12-7-10,=28-28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|+6|+|-3|+|+10|+|-8|+|+12|+|-7|+|-10|),=3(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).23、:(1)∵第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第4天领取20个,第5天领取25个,∴第6天领取30个;∵每日可领取的金币数量最高为30个,∴第7天领取30个;连续签到6天,一共领取金币5+10+15+20+25+30=105(个);故答案为:30,30,105;(2)根据题意得:(255-105)÷30=5,5+6=11(天),答:连续签到了11天;(3)根据题意可得,所有可能结果是8号与12号,8号与13号未签。
【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
人教版七年级数学上册1.3.1有理数的加法同步练习含答案
1.3.1 有理数的加法第1课时有理数的加法法则1.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( ) A.-15+(-3)=-18 B.15+(-3)=12C.-15+3=-12 D.15+(+3)=182.下列各式中,计算结果为正的是( )A.(-7)+4 B.2.7+(-3.5) C.-4+9 D.0+(-2)3.计算:(1)(-6)+(-8);(2)(-7)+(+7);(3)(-7)+(+4);(4)(+2.5)+(-1.5);(5)0+(-2).4.在进行两个异号有理数的加法运算时,其计算步骤如下:①将绝对值较大的有理数的符号作为结果的符号并记住;②将记住的符号和绝对值的差一起作为最终的计算结果;③用较大的绝对值减去较小的绝对值;④求两个有理数的绝对值;⑤比较两个绝对值的大小.其中操作顺序正确的是( )A.①②③④⑤ B.④⑤③②① C.①⑤③④② D.④⑤①③②5.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数 B.一正一负,且负数的绝对值大C.一个为零,另一个为负数 D.至少有一个是负数6.两个有理数的和( )A.一定大于其中的一个加数B.一定小于其中的一个加数C.和的大小由两个加数的符号而定D.和的大小由两个加数的符号与绝对值而定7.如果a,b是有理数,那么下列式子成立的是( )A.如果a<0,b<0,那么a+b>0 B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0 D.如果a<0,b>0且|a|>|b|,那么a+b<0 8.如图,数轴上点A,B表示的有理数分别是a,b,则( )A.a+b>0 B.a+b<a C.a+b<0 D.a+b>b9.计算(-3)+(-3)的结果为( )A.-9 B.9 C.-6 D.610.给出下列算式:①(-8)+(-8)=0;②(-120)+(+120)=0.其中( )A.只有①正确 B.只有②正确 C.①②都不正确 D.①②都正确11.下列计算正确的是( )A.(+6)+(+13)=+7 B.(-6)+(+13)=-19C.(+6)+(-13)=-7 D.(-5)+(-3)=812.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》中,就记载了利用算筹实施“正负术”的方法,如图1①表示的是计算3+(-4)的过程.按照这种方法,图②表示的过程应是在计算( )A.(-5)+(-2) B .(-5)+2 C .5+(-2) D .5+2 13.(1)比-2大7的数是________;(2)已知两个数556和-823,这两个数的相反数的和是________.14.规定扑克牌中的黑色数字为正数,红色数字为负数,且J 为11,Q 为12,K 为13,A 为1,如图2,图中牌面字母为J ,K ,K 的均为红色,数字5为黑色,分别计算图①,图②中两张牌面上的数字之和.15.设用符号〈a ,b 〉表示a ,b 两数中较小的数,用符号[a ,b ]表示a ,b 两数中较大的数,试求下列各式的值.(1)〈-5,-0.5〉+[-4,2]; (2)〈1,-3〉+[-5,〈-2,-7〉].16.已知A 地的高度为3.72米,现在通过B ,C 两个中间点,最后测量出远处D 地的高度,每次测量的结果如下表所示(单位:米),则D 地的高度是多少?17.先阅读材料,再根据材料中所提供的方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法:我们设S=1+2+3+…+99+100①,那么S=100+99+98+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101,所以S=100×101÷2=5050.依据上述方法,求下列各式的值:(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.18.如图,方格中,除9和7外其余字母各表示一个数,已知任何三个连续方格中的数之和为19,求A+H+M +O的值.1.C 2.C3.(1)-14 (2)0 (3)-3 (4)1 (5)-2 4.D 5.D 6.D 7.D 8.C 9.C 10.B 11.C 12.C13.(1)5 (2)25614.解:由题意,得图①中(-11)+(-13)=-24,图②中(-13)+(+5)=-8. 15.解: (1)根据题意,得〈-5,-0.5〉+[-4,2]=-5+2=-3. (2)〈1,-3〉+[-5,〈-2,-7〉]=-3-5=-8.16.解:根据题意,得B 地的高度为3.72+(-1.44)=2.28(米),C 地的高度为2.28+(-3.62)=-1.34(米),D 地的高度为(-1.34)+7.16=5.82(米).答:D 地的高度是5.82米.17.解:(1)设S =1+3+5+…+97+99①,那么S =99+97+…+5+3+1②, ①+②,得2S =(1+99)+(3+97)+…+(97+3)+(99+1),共50个100. 2S =100+100+…+100=50×100, 所以S =2500,即1+3+5+…+97+99=2500.(2)设S =5+10+15+…+195+200①,那么S =200+195+…+15+10+5②,①+②,得2S =(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5),共40个205. 2S =205+205+…+205=205×40, 所以S =4100,即5+10+15+…+195+200=4100.18.解:方法一:因为任意三个连续方格中的数之和为19,所以这七个方格中的数的和为19+19+7.又因为后六个方格中的数的和为19+19,所以A =7,所以A +H +M +O 的值为7+19=26.方法二:由题意可得O +X +7=19且M +O +X =19,所以M =7.因为9+H +M =19,M =7,所以H =3.因为A +9+H =19,所以A =7,所以A +H +M +O 的值为7+19=26.第2课时 有理数的加法运算律1.计算341+(-253)+543+(-752)时运算律用得最恰当的是( ) A .[341+(-253)]+[543+(-752)] B .(341+543)+[(-253)+(-752)] C .[341+(-752)]+[543+(-253)] D .[(-253)+543]+[341+(-752)] 2.给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50④.①__________;②__________;③__________________;④__________________. 3.计算:(1)(-3)+40+(-32)+(-8); (2)43+(-77)+27+(-43).4.在数5,-2,7,-6中,任意三个不同的数相加,其中最小的和是( ) A .10 B .6 C .-3 D .-15.下列各式中正确利用了加法运算律的是( ) A .(-21)+(+31)=(-31)+(+21) B .(-1.5)+(+2.5)=(-2.5)+(+1.5) C .(-1)+(-2)+(+3)=(-3)+(+1)+(-2) D .(+5)+(-7)+(-5)=(+5)+(-5)+(-7)6.计算-1+2-3+4-5+6-…-97+98-99+100的结果为( ) A .-50 B .-49 C .49 D .50 7.运用运算律计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)(-103)+(+143)+(-97)+(+100)+(-141);(3)(-381)+(-2.16)+841+381+(-3.84)+(-0.25)+54;(4)(-43)+383+|-0.75|+(-521)+|-285|.8.已知a 是负数,那么-5,-2,8,11,a 这五个数的和不可能是( ) A .-12 B .13 C .0 D.7559.在-20与36之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是________. 10.已知:|x |=3,|y |=5,|z |=7,若x <y <z ,求x +y +z 的值.11.某天早上,一辆巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,若规定向东行驶为正,向西行驶为负,行驶记录如下表(单位:千米),则巡逻车在巡逻过程中,与A地的最远距离是()A.44千米B.36千米C.25千米D.14千米12.如图4,时钟的钟面上标有1,2,3,…,12,共12个数,一条直线把钟面分成两部分.请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则另外两个部分所包含的几个数分别是____________.图413.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重后的记录如图5所示(单位:千克):图5回答下列问题(1)这八筐白菜中最接近标准质量的一筐重____千克.(2)与标准质量相比,8筐白菜总计超过或不足多少千克?(3)若每千克白菜的售价为2.6元,则这8筐白菜总共可以卖多少元?14.先阅读下列解题过程,再解答问题:-561+765=-5+(-61)+7+65=[(-5)+7]+[(-61)+65]=2+64=232. 上述方法叫做拆项法,依照上述方法计算: (1)772+(-783);(2)(-201865)+(-201732)+403632+(-121).1.B2.加法交换律 加法结合律 有理数的加法法则 有理数的加法法则3.(1)-3 (2)-504.C5.D6.D7.解:(1)原式=(0.36+0.3+0.64)+(-7.4-0.6)=1.3-8=-6.7.(2)原式=[(-103)+(-97)]+[(+143)+(-141)]+100=-200+21+100=-9921.(3)原式=-381-2.16+841+381-3.84-41+54=(-381+381)-(2.16+3.84)+(841-41)+54=0-6+8+54=254.(4)原式=-0.75+383+0.75-5.5+285=(-0.75+0.75)+(383+285)-5.5=0+6-5.5=0.5.8.B 9.2410.解:因为|x|=3,|y|=5,|z|=7,所以x =±3,y =±5,z =±7.又因为x <y <z ,则当x =-3,y =5,z =7时,x +y +z =-3+5+7=9;当x =3,y =5,z =7时,x +y +z =3+5+7=15.综上所述,x +y +z 的值为9或15.11.C12.3,4,9,10和5,6,7,813.解:(1)第4筐白菜的质量最接近标准质量,质量为25-0.5=24.5(千克).(2)因为1.5+(-3)+2+(-0.5)+1+(-2)+(-2)+(-2.5)=-5.5(千克),所以与标准质量相比,8筐白菜总计不足5.5千克.(3)8筐白菜的总质量为25×8+(-5.5)=194.5(千克).因为白菜每千克售价2.6元,所以194.5×2.6=505.7(元),所以这8筐白菜总共可以卖505.7元.14.解:(1)772+(-783)=7+72+(-7)+(-83)=[7+(-7)]+[72+(-83)]=0+(-565)=-565.(2)(-201865)+(-201732)+403632+(-121)=(-2018)+(-65)+(-2017)+(-32)+4036+32+(-1)+(-21)=[(-2018)+(-2017)+4036+(-1)]+[(-65)+(-32)+32+(-21)]=0+(-34)=-34.。
人教版初中数学1.3.1有理数的加法 第一套(含解析)
绝密★启用前一、单选题1.某大米包装袋上标注着“净含量10 kg±150 g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( ) A .100 gB .150 gC .300 gD .400 g2.如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->-D .b a b a >>->-3.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m ,在向东行驶lm ,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( )A .(﹣3)﹣(+1)=﹣4B .(﹣3)+(+1)=﹣2C .(+3)+(﹣1)=+2D .(+3)+(+1)=+44.计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了 ( ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律与结合律5.下列交换加数的位置的变形中,正确的是 A .1-4+5-4=1-4+4-5 B .1311131134644436-+--=+--C .1-2+3-4=2-1+4-3D .4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.76.在两个括号内填入同一个数,能使|11.3()||11.3||()|-+=-+成立的是( )A .任意一个数B .任意一个正数C .任意一个非正数D .任意一个非负数7.一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是( ) A .盈利了290元B .亏损了48元C .盈利了242元D .盈利了-242元8.两数相加,其和小于每一个加数,那么( ) A .这两个加数必有一个是0 B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不能确定9.已知|a|=3,|b|=4,并且a >b ,那么a +b 的值为( ) A .+7B .-7C .±1D .-7或-110.下列结论不正确的是( ) A .若0,0a b >>则0a b +> B .若0,0a b <<则0a b +<C .若0,0a b ><且a b >,则0a b +>D .若0,0a b <>且a b >,则0a b +>二、填空题11.所有绝对值不大于2018的整数相加,其和是________. 12.计算:(−2020)+(−12.13)+(+2020)+2.13=_________. 13.用“>”“>”或“=”填空.(1)若0a >,0b >,则+a b ________0;(2)若0a <,0b <,则+a b ________0; (3)若0a >,0b <,且a b >,则+a b ________0;(4)若0a <,0b >,且a b >,则+a b ________0. 14.计算(1)(5)(3)++-=________;(2)(5)(3)-+-=________;(3)(5)(3)-++=________. 15.小华计划在十一长假期间每天做5道数学题,超过的题数记为正数,不足的题数记为负数.七天中的实际做题数记录如下:+3,+5,-4,-2,-1,+7,0.则小华七天共做了________道数学题.16.计算:(+16)+(-25)+(+24)+(-35)=[____+____]+[____+____]=(+40)+(-60)=______.17.当x =__________时,|x +1|+2取得最小值18.甲数是-36,乙数比甲数大24,则乙数是______. 19.如果□+5=0,那么“□”内应填的数是_______.三、解答题20.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,-30,+50,-25,+25,-30,+15,-28,+16,-20.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?21.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.22.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中B→C(,)C→D(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程S.23.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?24.阅读下面文字:对于(556-)+(293-)+1734+(132-),可以按如下方法计算:原式=[(-5)+ (56-)]+[(-9)+(23-)]+(3174+)+[(-3)+(12-)]=[(-5)+(-9)+17+(-3)]+[(56-)+(23-)+34+(12-)]=0+(1 14 -)=-13 4 .上面这种方法叫拆项法.仿照上面的方法,请你计算:(-201856)+(-201723)+(-112)+4036.25.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?参考答案1.D【解析】试题分析:根据“正”和“负”所表示的意义得出每袋大米的最多含量和最小含量,再两者相减即可得出答案.解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg),=300(g),所以这两袋大米相差的克数不可能是400g;故选D.考点:正数和负数.2.A【分析】由于a<0,b>0,a+b<0,则|a|>b,于是有-a>b,-b>a,易得a,b,-a,-b的大小关系.【详解】∵a<0,b>0,a+b<0,∴|a|>b,∴-a>b,-b>a,∴a,b,-a,-b的大小关系为:-a>b>-b>a,故选A.【点睛】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b是解题的关键.3.B【解析】【详解】分析:规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,记作-3m,在向东行驶lm,记作+1m,所以(﹣3)+(+1)=﹣2,即车模再初始位置西边2m处.详解:由题意可得:(﹣3)+(+1)=﹣2.故选B.点睛:本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键. 4.D【解析】试题解析:根据意义得:5-3+7-9+12=(5+7+12)+(-3-9),故用了加法的交换律与结合律.故选D.5.D【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.6.C【解析】【分析】根据有理数的加法法则及绝对值的性质对四个选项进行逐一判断.【详解】A. 错误,例如|−11.3+5|≠|−11.3|+|5|;B. 错误,例如,同A;C. 正确,符合有理数的加法法则及绝对值的性质;D. 错误,例如,同A.故选C【点睛】此题考查绝对值,有理数的加法,解题关键在于利用绝对值的性质进行解答7.C【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【点睛】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法. 8.B【解析】一个数加上另一个数如果其值变小则它所加的那个数为负数故选B.9.D【分析】根据题意,利用绝对值的代数意义确定出a与b的值,即可求出a+b的值.【详解】∵|a|=3,|b|=4,且a>b,∴a=3,b=-4或a=-3,b=-4,则a+b=-1或-7,故选D.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握加法法则是解本题的关键.10.D【解析】【分析】根据有理数的加法法则,举反例,排除错误选项,从而得出正确结果.【详解】∵b=2,a=−3,∴a+b=−1,∴D错误;∴A、B. C正确,D不正确,故选D.本题考查了有理数加法运算,解题的关键是掌握有理数的加法法则.11.0【解析】【分析】由题意得到(-2018)+(-2017)+(-2016)+…+(-1)+0+1+2+…2016+2017+2018,根据加法交换律进行变形,再根据有理数的加法进行计算即可得到答案.【详解】由题意得到:(-2018)+(-2017)+(-2016)+…+(-1)+0+1+2+…2016+2017+2018=[(-2018)+2018]+ [(-2017)+2017]+ [(-2016)+2016]+ …+0=0【点睛】本题考查绝对值、有理数的加法和加法交换律,解题的关键是掌握绝对值、有理数的加法和加法交换律12.-10【解析】【分析】根据有理数的加法法则对(−2020)+(−12.13)+(+2020)+2.13进行计算即可得到答案. 【详解】(−2020)+(−12.13)+(+2020)+2.13=−2020−12.13+2020+2.13=-10.【点睛】本题考查有理数的加法法则,解题的关键是掌握有理数的加法法则.13.><><【解析】【分析】有理数的加法法则是:同号两数相加,取原来的符号,并把绝对值相加,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,(1)根据有理数的加法法则和有理数的大小比较求出即可;(2)根据有理数的加法法则和有理数的大小比较求出即可;(3)根据有理数的加法法则和有理数的大小比较求出即可;(4)根据有理数的加法法则和有理数的大小比较求出即可.【详解】(1)∵a>0,b>0,∴a+b>0,故答案为:>.(2)∵a<0,b<0,∴a+b<0,故答案为:<.(3)∵a>0,b<0,|a|>|b|,∴a+b>0,故答案为:>.(4)∵a<0,b>0,|a|>|b|,∴a+b<0,故答案为:<.【点睛】本题考查有理数的加法法则和有理数的大小比较,解题的关键是掌握有理数的加法法则和有理数的大小比较.14.2 -8 -2【解析】【分析】(1)根据有理数的加法运算法则进行求解,将5和-3的绝对值进行比较,再进行计算,即可得到答案;(2)根据有理数的加法运算法则进行求解,将-5和-3的绝对值进行比较,再进行计算,即可得到答案;(3)根据有理数的加法运算法则进行求解,将-5和3的绝对值进行比较,再进行计算,即可得到答案.【详解】++-=+(5-3)(1)-3的绝对值为3,因为5的绝对值大于-3的绝对值,则取“+”号,(5)(3)=+2.故答案为2;(2)-5的绝对值为5,-3的绝对值为3,因为-5的绝对值大于-3的绝对值,则取“-”号,-+-=-(5+3)=-8.故答案为-8;(5)(3)-++=-(5-3)(3)-5的绝对值为5,因为-5的绝对值大于3的绝对值,则取“-”号,(5)(3)=-2.故答案为-2.【点睛】本题考查有理数的加法,解题的关键是熟悉有理数加法的计算步骤.15.43【解析】【分析】七天中做题记录的数的和加上5的7倍即可求解.【详解】(+3)+(+5)+(-4)+(-2)+(-1)+(+7)+0+5×7=43(道).【点睛】本题考查了正数和负数,正确理解所记录的数的意义,列出代数式是关键.16.(+16) (+24) (-25) (-35) -20【解析】【分析】利用有理数加法交换结合律计算即可.【详解】(+16)+(-25)+(+24)+(-35)=[(+16)+(+24)]+[(-25)+(-35)]=(+40)+(-60)=-20.故答案为:(+16);(+24);(-25) ;(-35) ;-20.【点睛】此题考查了有理数的加法运算,解题关键:正确使用加法的交换和结合律.17.-1【解析】∵|x+1|⩾0,∴当|x+1|=0时,|x+1|+2的值最小;即当x=−1时,|x+1|+2取得最小值,故答案为:-1.18.-12【解析】【分析】根据题意列出算式-36+24,计算出答案.【详解】乙数为-36+24=-12.故答案为-12.【点睛】本题主要考查有理数的加法运算,解题的关键是正确列出算式,转化成数学问题,再计算出结果.19.-5【解析】【分析】根据互为相反数的两个数相加得零可直接求解.【详解】因为只有互为相反数的两个数相加得零,又5的相反数是-5,所以答案为-5.故答案为-5【点睛】本题考查相反数的定义:只有符号相反的两个数互为相反数,其和为0.20.(1)球员最后到达的地方在出发点的正西方向,距出发点13米;(2)在最远处离出发点60m ;(3)279米【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【详解】解:(1)()()()()()()()()()()40305025253015281620++-+++-+++-+++-+++-13=+(米);答:球员最后到达的地方在出发点的正西方向,距出发点13米;(2)每段路程跑完距离出发点为:第一段,40m ,第二段,403010m -=,第三段,105060m +=,第四段,602535m -=,第五段,352560m +=,第六段,603030m -=,第七段,301545m +=,第八段,452817m -=,第九段,171633m +=,第十段,332013m -=,∴在最远处离出发点60m ; (3)40305025253015281620++-+++-+++-+++-+++-279= (米), 答:球员在一组练习过程中,跑了279米.【点睛】本题考查的是有理数加减法的应用.21.(1)见解析;(2)见解析.【分析】(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x 、y 的值.【详解】(1)2+3+4=9,9-6-4=-1,9-6-2=1,9-2-7=0,9-4-0=5,如图1所示:(2)-3+1-4=-6,-6+1-(-3)=-2,-2+1+4=3,如图2所示:x=3-4-(-6)=5,y=3-1-(-6)=8,即当x+y=5+8=13时,它能构成一个三阶幻方.【点睛】本题考查了有理数的加法,根据表格,先求出三个数的和是解题的关键,也是本题的突破口.22.(1)+2,0,+1,﹣2;(2)若甲虫从A到P的行走路线依次为:A→E→F→P,图中P 的即为所求.见解析;(3)甲虫走过的总路程为16.【分析】(1)B→C只向右走3格;C→D先向右走1格,再向下走2格,由此写出即可.(2)由(+3,+2)→(+1,+3)→(+1,﹣2)可知从A处右移3格,上移2格,再右移1格,上移3格,右移1格,下移2格即是甲虫P处的位置;(3)由A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2)知:先向右移动1格,向上移动4格,向右移动2格,再向右移动1格,向下移动2格,最后向左移动4格,向下移动2格,把移动的距离相加即可.【详解】(1)图中B→C(+2.0),C→D(+1,﹣2).故答案为:+2,0,+1,﹣2.(2)若甲虫从A到P的行走路线依次为:A→E→F→P,图中P的即为所求.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),甲虫走过的总路程S=1+4+2+1+2+4+2=16.【点睛】此题考查正负数的意义和有理数的加减混合运算,注意在方格内对于运动方向规定的正负.23.(1)24.5;(2) 不足5.5千克;(3)505.7元.【分析】(1)纪录中绝对值最小的数,就是最接近标准重量的数;(2)先将记录中各数相加,再根据正负数的意义解答;(3)计算出8筐白菜的实际重量,然后乘以每千克售价可得答案.【详解】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25−0.5=24.5千克,故答案为24.5;(2)1.5+(-3)+2+(-0.5)+1+(-2)+(-2)+(-2.5)= -5.5,答:与标准重量比较,8筐白菜总计不足5.5千克;⨯+-=(千克),(3)258( 5.5)194.5⨯=(元),194.5 2.6505.7答:出售这8筐白菜可卖505.7元.【点睛】本题考查了有理数的加法运算在实际中的应用.体现了正负数的意义,解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.-2.【解析】【分析】仿照题示解题过程,将整数部分相加减、分数部分相加减,再计算可得【详解】原式=521 (2018)(2017)(1)4036 632⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-+-+-+-+-+⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=521 [(2018)(2017)(1)4036]632⎡⎤⎛⎫⎛⎫⎛⎫-+-+-++-+-+-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=521 0632⎡⎤⎛⎫⎛⎫⎛⎫+-+-+-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=-2.【点睛】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算律.25.(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.【解析】试题分析:(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.试题解析:(1)7-(-10)=17(辆);(2)实际生产数量:100×7+(-1+3-2+4+7-5-10)=696(辆),计划生产数量:100×7=700(辆),所以比原计划减少了700-696=4(辆)答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了,减少了4辆.。
七年级数学有理数的运算含答案
有理数的运算中考要求重难点1. 理解并掌握加减法法则且能熟练运用法则计算2. 理解并掌握乘除法法则且能熟练运用法则计算3. 能利用有理数的运算法则简化运算4. 能借助数轴比较有理数的大小课前故事古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷了下棋。
为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。
大臣说:“就在这个棋盘上放一些米粒吧。
第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、......一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑。
大臣说:”就怕您的国库里没有这么多米!“后等于:+++210222……+632=642-1 =18446744073709551615粒 约2200多吨例题精讲模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。
人教版七年级上《1.3.1有理数的加法》同步练习题(含答案)
初中数学·人教版·七年级上册——第一章有理数1.3 有理数的加减法1.3.1 有理数的加法测试时间:15分钟一、选择题1.下列运算中,正确的是( )A.(+6)+(-13)=+7B.(+6)+(-13)=-19C.(+9.05)+(-9.05)=18.1D.(-3.75)+79=-23536答案 D A项、B项的结果应为-7,C项的结果应为0.2.计算43+(-77)+27+(-43)的结果是( )A.50B.-104C.-50D.104答案 C 先将互为相反数的两数相加,再依据加法法则进行计算即可. 原式=(-43+43)+(-77+27)=-50.故选C.3.运用加法的运算律计算+613+(-18)++423+(-6.8)+18+(-3.2),最适当的是( )A.+613++423+18+[(-18)+(-6.8)+(-3.2)]B.+613+(-6.8)++423+[(-18)+18+(-3.2)]C.+613+(-18)++423+(-6.8)+[18+(-3.2)]D.+613++423+[(-18)+18]+[(-3.2)+(-6.8)]答案 D 分母相同的两个数相加,互为相反数的两个数相加,和为整数的两个数相加可以减小运算量.4.(2017辽宁抚顺新宾期末)抚顺一天早晨的气温是-21 ℃,中午的气温比早晨上升了14 ℃,中午的气温是( )A.14 ℃B.4 ℃C.-7 ℃D.-14 ℃答案 C 根据中午的气温比早晨上升了14 ℃,可知中午的气温=早晨的气温+14 ℃.所以中午的气温=-21+14=-7 ℃.故选C.二、填空题5.已知a的相反数是2,b的绝对值是5,则a+b的值为.答案3或-7解析由题意得a=-2,b=5或-5,所以a+b=(-2)+5=3或a+b=(-2)+(-5)=-7.6.计算:-357+(+15.5)+-627+-512= .答案0解析原式=-357+-627+(+15.5)+-512=-10+10=0.7.计算:1+(-2)+3+(-4)+5+(-6)+…+2 013+(-2 014)+2 015+(-2 016)+2 017+(-2 018)= .答案-1 009解析原式=[1+(-2)]+[3+(-4)]+[5+(-6)]+…+[2 013+(-2 014)]+[2 015+(-2 016)]+[2 017+ (-2 018)]=-1 009.8.已知|x|=2,|y|=5,且x>y,则x+y= .答案-3或-7解析∵|x|=2,|y|=5,∴x=±2,y=±5.∵x>y,∴x=2,y=-5或x=-2,y=-5.∴x+y=2+(-5)=-3或x+y=-2+(-5)=-7.三、解答题9.计算:(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+(-1.5)+3.6;(3)16+-27+-56++57;(4)-2.5+(-3.26)+5.5+(+7.26).解析(1)原式=[(-23)+(-17)]+(+58)=-40+58=18. (2)原式=[(-2.8)+(-1.5)]+[(-3.6)+3.6]=-4.3+0=-4.3.(3)原式=16+-56+-27++57=-23+37=-521.(4)原式=(-2.5+5.5)+[(+7.26)+(-3.26)]=3+4=7.10.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,那么小虫一共得到多少粒芝麻?解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,所以小虫最后回到出发点A.(2)小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.。
人教版数学七年级上册一课一练1.3.1有理数的加法(2)(含答案)
七年级数学上册1.3.1 有理数的加法(2)基础闯关全练1.(2018福建长泰一中月考)小磊解题时,将式子先变成,再计算结果,则小磊运用了( ) A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断2.若m、n互为相反数,则m+8+n=____;已知a+c=-2019,b+(-d)=2020,则a+b+c+(-d)=____.3.某服装厂上半年各月的盈亏情况如下:盈利1285万元、亏损140万元、亏损955万元、盈利140万元、盈利168万元、盈利122万元,则该服装厂上半年盈利________万元.4.利用加法运算律计算下列各题.(1)(-5)+3+(+5)+(-2);(2);(3).能力提升全练1.计算:___________.2.阅读例题,再计算. 例题:.解:原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-655+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-329+⎪⎭⎫ ⎝⎛+4317+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-213=()()()[]17395+-+-+-+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-43213265=0+⎪⎭⎫⎝⎛-411=411-. 仿照上面的方法计算:.三年模拟全练1.(2019山东青岛五中月考,5,★★☆)计算43+(-77)+27+(-43)的结果是 ( )A .50B .-104C .-50D .104 五年中考全练 一、选择题1.(2017山东滨州中考,1,★☆☆)计算-(-1)+|-1|,结果为( ) A .-2 B .2 C .0 D .-12.(2014广西玉林中考,1,★☆☆)下面的数与-2的和为0的是 ( )A .2B .-2C .21D .21 二、填空题3.(2015山东烟台中考,13,★☆☆)如图,数轴上点A ,B 所表示的两个数的和的绝对值是____.核心素养全练1.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】. 【提出问题】两个有理a 、b 满足a 、b 同号,求的值.【解决问题】解:由a 、b 同号可知a 、b 有两种可能:①a ,b 都是正数;②a ,b 都是负数,①若a 、b 都是正数,即a >0,b >0,有|a| =a ,|b| =b ,则,②若a 、b 都是负数,即a <0,b <0,有|a| =-a ,|b| =-b ,则,所以的值为2或-2.【探究】请根据上面的解题思路解答下面的问题: (1)两个有理数a 、b 满足a 、b 异号,求的值;(2)已知|a| =3,|b| =7,且a<b,求a+b的值.答案1.B将式子先变成,再计算结果,运用了加法交换律和加法结合律,故选B.2.答案8;1解析因为m、n互为相反数,所以m+n=0,所以m+8+n= (m+n)+8=0+8=8,a+b+c+(-d)=(a+c)+[b+(-d)]=(-2 019)+2 020=1.3.答案620解析将盈利记为正,亏损记为负,则该服装厂上半年盈利1285+(-140)+(-955) +140+168+122= (1285+140+168+122)+(-140-955)=1715-1095= 620(万元).4.解析(1)(-5)+3+(+5)+(-2)=[(-5)+(+5)]+3+(-2)=1.(2).(3).能力提升全练 1.答案10 解析 原式==|-5|+5= 5+5=10.2.解析 原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-652019+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-322018+4040+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-211=[(-2019)+(-2018)+(-1)+4040]+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-213265=2+(-2)=0三年模拟全练1.C 43+(-77)+27+(-43)=(- 43+43)+(- 77+27)=-50.故选C . 五年中考全练1.B 根据“负负得正”可知,-(-1)=1;根据“负数的绝对值等于它的相反数”可得|-1|=1,所以原式=1+1=2.2.A 因为互为相反数的两个数的和为0,而-2的相反数是2,所以这个数是2,故选A . 3.答案1解析 由题中数轴知,A 表示的数为-3,B 表示的数为2.|(-3)+2| =1. 核心素养全练2.解析 (1)∵两个有理数a 、b 满足a 、b 异号,∴有两种可能:①a 是正数,b 是负数;②b 是正数,a 是负数, ①当a >0,b <0时,;②当a<0,b>0时,.综上,的值为0.(2)∵|a| =3,|b| =7,且a<b,∴a=3或-3,b=7或-7①当a=-3时,b=7,此时a+b=4;②当a=3时,b=7,此时a+b= 10.综上,a+b的值为4或10.。
人教版七年级上数学:1.3.1《有理数的加法(2)》学案(附模拟试卷含答案)
数学:1.3.1《有理数的加法(2)》学案(人教版七年级上)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=⑵ +(-4)= 8 + +(-4)]=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】课本P20页练习 1、2【要点归纳】:你会用加法交换律、结合律简化运算了吗?【拓展训练】 1.计算:(1)(-7)+ 11 + 3 +(-2); (2)).31()41(65)32(41-+-++-+2.绝对值不大于10的整数有 个,它们的和是 .3、填空:(1)若a >0,b >0,那么a +b 0. (2)若a <0,b <0,那么a +b 0.(3)若a >0,b <0,且│a │>│b │那么a +b 0. (4)若a <0,b >0,且│a │>│b │那么a +b 0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、课本P20实验与探究【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如果∠A 的补角与∠A 的余角互补,那么2∠A 是 A .锐角 B .直角 C .钝角 D .以上三种都可能2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( ) A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.下列各图形是正方体展开图的是( )A.B.C. D.4.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2165.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为( ) A.2B.2-C.1D.1-6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-28.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2k n F n =(其中k 是使得2kn为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( ) A.1B.4C.2019D.201949.下列计算结果中等于3的数是( ) A.74-++B.()()74-++C.74++-D.()()73---10.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离可以表示为( ) A.-3+5B.-3-5C.|-3+5|D.|-3-5|11.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A.b <aB.|b|>|a|C.a+b >0D.a-b >012.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x 天完成,则符合题意的是( )A.151513040x -+= B.151513040x ++= C.1513040x x++= D.1513040x x-+= 二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____ 14.一个角的余角是它的23,则这个角的补角等于____. 15.方程320x -+=的解为________.16.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.17.若1314a =-,2111a a =-,3211a a =-,......,则2019a =________18.如果一个零件的实际长度为a ,测量结果是b ,则称|b ﹣a|为绝对误差,b a a-为相对误差.现有一零件实际长度为5.0cm ,测量结果是4.8cm ,则本次测量的相对误差是_____. 19_____.20.关于x 的一元一次方程ax+3=4x+1的解为正整数,则整数a 的值为__________. 三、解答题21.已知:如图,直线AB 、CD 相交于点O ,OE ⊥OC ,OF 平分∠AOE. (1)若,则∠AOF 的度数为______; (2)若,求∠BOC 的度数。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
2019-2020学年人教版七年级数学上册同步精品课堂1-3 有理数的加减法 (练习)(含答案)
④一个数的倒数一定小于它本身;错误,例如:1的倒数是1等于它本身;
故选:A.
【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是解题的关键。
二、填空题(共5小题)
11.(2018·合肥市金湖中学初一期中)如果|a|=5,|b|=4,且a+b<0,则a-b的值是________.
13.(2018·扬州市梅岭中学初一期末)元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.
【答案】9
【解析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.
【详解】这天的温差为4-(-5)=4+5=9(℃),
故答案为:9
故选:B.
7.(2018·郑东新区实验学校初一期中)如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为( )A.﹣1B来自0C.1D.3【答案】C
【解析】
【详解】分析:先计算出中间数列上三个数的和,再根据每行、每列、每条对角线上的三个数之和相等,得a+5+0=3,3+1+b=3,c﹣3+4=3,求得a、b、c的值,即可得a﹣b+c的值.
【详解】﹣50﹣10=﹣60m,
故答案为:﹣60m.
【点睛】本题考查了有理数的减法,正确列出算式,熟记有理数减法法则是解题的关键.
15.(2018·泉州市北峰中学初一期中)算式8﹣7+3﹣6正确的读法是___________.
七年级数学上册1.3有理数的加减法1.3.1有理数的加法课时练(附模拟试卷含答案)
1.3 有理数的加减(1)有理数的加法1.比-1大1的数是( )A .-2B .-1C .0D .12.若a 为有理数,则-a 与|a|的和( )A. 可能是负数B. 不可能是负数C. 只可能是正数D. 只可能是03.若三个不等的有理数的和为0,则下列结论正确的是( )A .三个加数全是0B .至少有一个加数为负数C .最多有一个加数是负数D .最少有两个加数是正数4.如果一个数等于另一个数的绝对值,那么这两个数的和是( )A .负数B .正数C .非负数D .非正数5.如果a b c +=,且a ,b 都大于c ,那么a ,b 一定是( )A .同为负数B .一个正数一个负数C .同为正数D .一个负数一个是零6.计算:(4)(7)______(4)(7)______-+-=++-=;.7.比-7大5的数是_______.8.已知3,2x y ==,且0xy <,则x y +的值等于_______.9.若0a >,0b >,则____0a b +;若0a <,0b <,则____0a b +;若0a >,0b <,且a b >,则____0a b +.10.某自行车厂本周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆.(1) 用正负数表示每日实际生产量与计划量的增减情况;(2) 该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆?参考答案1.C .2.B .3.B .4.C .5.A .6.113--,. 7.-2.8.1-或1.9.>,<,>.10.(1)把超过计划量的车辆数用正数表示,把低于计划量的车辆数用负数表示可得到573109155+--+--+,,,,,,,(2)本周总增减量为(5)(7)(3)(10)(9)(15)(5)14++-+-+++-+-++=-.⨯+-=辆.因此本周总产量为4007(14)2786÷=(辆).平均每日实暮途穷际生产278673982019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.下列说法中,正确的有( )①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC ,则点B 是线段AC 的中点.A .1个B .2个C .3个D .4个3.如图,OC 是平角∠AOB 的平分线,OD 、OE 分别是∠AOC 和∠BOC 的平分线,图中和∠COD 互补的角有( )个A.1B.2C.3D.0 4.若代数式13k +值比312k +的值小1,则k 的值为( ) A.﹣1 B.27 C.1 D.575.若x=2是关于x 的方程2x+3m-1=0的解,则m 的值为( ) A .-1 B .0 C .1 D .13 6.下列说法正确的是( ) A.3xy 5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式 D.2x x 1--的常数项是17.下列方程变形中,正确的是( )A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程2332t =,未知数系数化为1,得t=1 D.方程110.20.5x x --=化成3x=6 8.现有五种说法:①-a 表示负数;②绝对值最小的有理数是0;③3×102x 2y 是5次单项式;④5x y -是多项式.其中正确的是( )A.①③B.②④C.②③D.①④9.下列运算中,正确的是( )A .2a+3b =5abB .2a 3+3a 2=5a 5C .4a 2b ﹣4ba 2=0D .6a 2﹣4a 2=0 10.在算式526--⊗中的“⊗”所在位置,填入下列哪种运算符号,能使最后计算出来的值最小( ).A.+B.-C.⨯D.÷11.已知a 、b 为有理数,ab≠0,且M=||||a b a b +,当a 、b 取不同的值时,M 的值是( ) A.±2 B.±1或±2 C.0或±1 D.0或±212.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A.a+b >0B.a+b <0C.ab >0D.|a|>|b| 二、填空题13.计算:18.6°+42°24'=______.14.已知一个角的余角比它的补角的13小18°,则这个角_____. 15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.已知方程()325x x +=与()42a x x -=有相同的解,则a 的值是______________.17.如图,在3×3的“九宫格”中填数,要使每行每列及每条对角线上的三数之和都相等.则B 表示的数是________________.18.绝对值大于1而小于5的整数的和是______.19.按图程序计算,若开始输入的值为9,则输出的结果为______.20.已知23a ab +=-,27ab b +=,则222a ab b ++=_____.三、解答题21.已知:如图,ABC ADC ∠=∠,DE 是ADC ∠的平分线,BF 是ABC ∠的平分线,且23∠∠=.求证:13∠=∠.22.某项工作,甲单独做要6天完成,乙单独做要l2天完成,若甲、乙合作完成此项工作,求多少天可以完成?(列一元一次方程求解)23.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:"优勒加!优勒加!(意为发现了)".夫人这回可真着急了,嘴里嘟囔着"真疯了,真疯了",便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了. 小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A ,B 两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm ,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A 型号钢球,水面的高度涨到36mm ;把3个A 型号钢球捞出,再放入2个B 型号钢球,水面的高度恰好也涨到36mm .由此可知A 型号与B 型号钢球的体积比为____________;探究二:小明把之前的钢球全部捞出,然后再放入A 型号与B 型号钢球共10个后,水面高度涨到57mm ,问放入水中的A 型号与B 型号钢球各几个?24.如图,将两块三角板的直角顶点重合.(1)写出以点C 为顶点的相等的角;(2)若∠ACB =150°,求∠DCE 的度数;(3)写出∠ACB 与∠DCE 之间所具有的数量关系.25.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值. 26.化简求值:(-3x 2-4y )-(2x 2-5y+6)+(x 2-5y-1);其中 x=-3 ,y=-127.现从小欣作业中摘抄了下面一道题的解题过程: 计算:24÷(13-18-16); 解:24÷(13-18-16) =24÷13-24÷18-24÷16 =72-192-144=-264;观察以上解答过程,请问是否正确?若不正确,请写出正确的解答.28.计算(1)1125424929⎛⎫-⨯+-⨯ ⎪⎝⎭ (2)()()2108(2)43-+÷---⨯- ()()1573242612⎛⎫+-⨯-⎪⎝⎭ (4)()(321210.5[23)3⎤---⨯⨯--⎦.【参考答案】***一、选择题1.A2.B3.B4.D5.A6.C7.D8.B9.C10.C11.D12.B二、填空题13.61°14.72°15.(a+ SKIPIF 1 < 0 b).解析:(a+54 b).16.517.-401918.19.20.4三、解答题21.见解析;22.4天可以完成.23.探究一:2:3;探究二:A型号钢球3个,B型号钢球7个.24.(1)见解析;(2)30°;(3)∠ACB+∠DCE=180°.25.26.原式=-4x2-4y-7,代入得-39.27.错误,正确的解法见解析.28.(1)﹣115;(2)0;(3)﹣18;(4)﹣656.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民3.如图,两块直角三角板的直顶角O 重合在一起,若∠BOC=15∠AOD ,则∠BOC 的度数为( )A .30° B. 45° C.54° D.60°4.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还多出2个座位.有下列四个等式:①4010432m m +=-;②1024043n n +-=;③1024043n n -+=;④4010432m m -=+.其中正确的是( ).A.①②②B.②④C.①③D.③④ 5.一艘轮船航行在A 、B 两地之间,已知该船在静水中每小时航行12千米,轮船顺水航行需用6小时,逆水航行需用10小时,则水流速度和A 、B 两地间的距离分别为( )A .2千米/小时,50千米B .3千米/小时,30千米C .3千米/小时,90千米D .5千米/小时,100千米6.下列各组的两项不是同类项的是 ( )A.2ax 2 与 3x 2B.-1 和 3C.2x 2y 和-2y xD.8xy 和-8xy 7.多项式2x 3-8x 2+x-1与多项式3x 3+2mx 2-5x+3的和不含二次项,则m 为( )A .2B .-2C .4D .-48.我国宋朝数学家杨辉1261年的著作《详解九章算法》给出了在()(n a b n +为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则2019(1)x +展开式中含2018x 项的系数是( )A.2016B.2017C.2018D.20199.下列方程变形中,正确的是( )A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程2332t =,未知数系数化为1,得t=1 D.方程110.20.5x x --=化成3x=6 10.由四舍五入得到的近似数2.6万,精确到( )A .千位B .万位C .个位D .十分位11.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A .312×104B .0.312×107C .3.12×106D .3.12×10712.1-的绝对值是( )A.1B.0C.1-D.1±二、填空题13.计算:21°17′×5=___________.(结果用度、分、秒表示)14.如图,甲从A 点出发向北偏东60°方向走到点C ,乙从点A 出发向南偏西25°方向走到点B ,则∠BAC 的度数是__________.15.关于x 的方程ax ﹣2x ﹣5=0(a≠2)的解是_____.16.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.17.若单项式5x 4y 和5x n y m是同类项,则m+n 的值是_______.18.如图是用七巧板拼成的老人图形,如果原正方形的边长为20,则图中黑色部分的面积为______.19_____.20.比较大小,4-______3(用“>”,“<”或“=”填空).三、解答题21.填写下面证明过程中的推理依据:已知:如图,AB ∥CD ,BE 平分∠ABC ,CF 平分∠BCD .求证:∠1=∠2证明:∵AB ∥CD (__________)∴∠ABC=∠BCD (__________)∵BE 平分∠ABC ,CF 平分∠BCD (__________)∴∠1=12∠ ______ ,(__________) ∠2=12∠ ______ .(__________) ∴∠1=∠2.(__________)22.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠;(2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系.23.《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.24.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?25.一个四边形的周长是48 cm ,已知第一条边长是a cm ,第二条边比第一条边的2倍还长3 cm ,第三条边长等于第一、第二两条边长的和.(1)用含a 的式子表示第四条边长;(2)当a =7时,还能得到四边形吗?并说明理由.26.小明准备完成题目:化简:(□x 2+6x+8)-(6x+5x 2+2)发现系数“□”印刷不清楚.(1)她把“□”猜成4,请你化简(4x 2+6x+8)-(6x+5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”请通过计算说明原题中“□”是几?27.计算 (1)(-1)2×5+(-2)3÷4; (2)52-83()×24+14÷31-2()+|-22|. (3)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】***一、选择题1.A2.A3.A4.C5.C6.A7.C8.D9.D10.A11.C12.A二、填空题13.106°25′14.145°15. SKIPIF 1 < 0解析:52 a-16.10017.5;18.5019. SKIPIF 1 < 0解析:20.<;三、解答题21.已知;两直线平行,内错角相等;已知;ABC;角平分线的定义;BCD;角平分线的定义;等量代换.22.(1)①见解析,②见解析;(2)65°;(3)12m n=,见解析.23.城中有75户人家.24.生产圆形铁片的有24人,生产长方形铁片的有18人. 25.(1) (42-6a)cm(2)不能26.(1) -x2+6;(2)527.(1)3;(2)19;(3)7a2-2b2+ab.1 2;(2)52.28.(1)﹣2。
人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
人教版七年级数学上册 1.3.1有理数的加法(有理数的加法运算律) 课后练习(含答案)
第1章 有理数 1.3.1有理数的加法(有理数的加法运算律)一、选择题1.小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断2.计算(-3.68)+29+(-5.32),下列简便运算正确的是( )A .[(-3.68)+29]+(-5.32)B .(-3.68)+[29+(-5.32)]C .(-29)+(3.68+5.32)D .[(-3.68)+(-5.32)]+293.下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13; ③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4). A .0个 B .1个 C .2个 D .3个4.计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .35.储蓄所办理了几笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这时储蓄所的存款增加了( )A .12.25万元B .-12.25万元C .12万元D .-12万元二、填空题6.运用加法运算律填空:212+(-313)+612+(-823)=(212+________)+[________+(-823)]. 7.已知a +c =-2019,b +d =2020,则a +d +c +b 的值是________.8.五袋优质大米以每袋50 kg 为基准,超过的记为正,不足的记为负,称重记录(单位:kg)如下:+4.5,-4,+2.3,-3.5,+2.5.那么这五袋大米共超重__________kg ,总质量为__________kg.三、解答题10.用适当的方法计算下列各题:(1)(+7)+(-21)+(-7)+(+21);(2)-4+17+(-36)+73;(3)⎝ ⎛⎭⎪⎫-37+⎝ ⎛⎭⎪⎫+15+⎝ ⎛⎭⎪⎫+27+⎝⎛⎭⎪⎫-115;(4)(-2.125)+⎝⎛⎭⎪⎫+315+⎝ ⎛⎭⎪⎫+518+(-3.2);(5)(+6)+(+14)+(-3.3)+(+3)+(-6)+(+0.3)+(+8)+(+6)+(-16)+(-614).11.小明用32元钱买了8块毛巾,准备以一定价格出售,如果以每块5元的价格为标准,超出的记为正,不足的记为负,记录如下(单位:元):0.5,-1,-1.5,1,-2,-1,2,0.当小明卖完毛巾时,是盈利还是亏损?盈利或亏损多少钱?12.股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内(除星期六、星期日)每日该股票的涨跌情况(上涨记为正,下跌记为负):(1)星期三收盘时,该股票每股多少元?(2)本周内该股票每股最高价为多少元?最低价为多少元?13.(1)请观察下列算式:11×2=1-12,12×3=12-13,13×4=13-14,14×5=14-15,…. 则第10个算式为__________=__________,第n 个算式为__________=____________(n 是正整数);(2)运用以上规律计算:12+16+112+…+190+1110+1132.14.模仿与迁移先阅读例题的计算方法,再根据例题的计算方法计算.例 计算:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝⎛⎭⎪⎫-312. 解:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝⎛⎭⎪⎫-312 =⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56+⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23+ ⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12 =[(-5)+(-9)+17+(-3)]+[(-56)+ (-23)+34+(-12)] =0+⎝ ⎛⎭⎪⎫-54=-54.计算:⎝⎛⎭⎪⎫-201956+⎝ ⎛⎭⎪⎫-202023+404023+⎝ ⎛⎭⎪⎫-112.参考答案1.C2.D3.D 4.A5.A [解析] 记取出为负,存入为正,则(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(+5)+(+12)+(+25)]+[(-9.5)+(-8)+(-10.25)+(-2)]=(+42)+(-29.75)=12.25.6.612 (-313) 7.1 [解析] a +d +c +b =(a +c)+(b +d)=-2019+2020=1.8.1.8 251.8 [解析] (+4.5)+(-4)+(+2.3)+(-3.5)+(+2.5)=[(+4.5)+(+2.3)+(+2.5)]+[(-4)+(-3.5)]=(+9.3)+(-7.5)=1.8(kg).50×5+1.8=251.8(kg).9.0 0 [解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0. 绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.10.解:(1)原式=[(+7)+(-7)]+[(-21)+(+21)]=0.(2)原式=[(-4)+(-36)]+(17+73)=-40+90=50.(3)原式=⎣⎢⎡⎦⎥⎤(-37)+(+27)+⎣⎢⎡(+15)+ ⎦⎥⎤(-115)=-17+(-1)=-87. (4)原式=⎣⎢⎡⎦⎥⎤(-2.125)+(+518)+⎣⎢⎡⎦⎥⎤(+315)+(-3.2)=3+0=3. (5)原式=⎣⎢⎡⎦⎥⎤(+6)+(+14)+(-614)+[(-3.3)+(+3)+(+0.3)]+[(-6)+(+6)]+[(+8)+(-16)]=0+0+0+(-8)=-8.11.解:0.5+(-1)+(-1.5)+1+(-2)+(-1)+2+0=-2(元).总销售额为5×8-2=38(元),成本价为32元,因此共盈利38-32=6(元).故当小明卖完毛巾时,是盈利,盈利6元.12.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,该股票每股74.5元.(2)本周内该股票每股最高价为67+(+4)+(+4.5)=75.5(元);最低价为67+(+4)+(+4.5)+(-1)+(-2.5)+(-6)=66(元).13.解:(1)110×11 110-111 1n (n +1) 1n -1n +1=11×2+12×3+13×4+…+111×12=1-12+12-13+13-14+…+111-112=1-112=1112.14.解:(-201956)+(-202023)+404023+(-112)=[(-2019)+(-56)]+[(-2020)+(-23)]+(4040+23)+[(-1)+(-12)]=[(-2019)+(-2020)+4040+(-1)]+[(-56)+(-23)+23+(-12)]=0+(-43)=-43.。
人教版七年级数学上册 第一章:有理数_1.3.1:有理数的加法 学案(含答案)
初中七年级数学上册第一章:有理数——1.3.1:有理数的加法(解析)一:知识点讲解知识点一:有理数加法法则有理数加法法则:✧同号两数相加,取相同的符号,并把绝对值相加;✧绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
✧一个数同0相加,仍得这个数。
有理数的加法运算遵循“一定二求三加减”的顺序:1)确定和的符号;2)求加数的绝对值;3)依据加法法则确定是把绝对值相加还是相减。
例1:计算:①()()8.25.3++-;②⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31272;解:原式=﹣0.7解:原式=21132-③527435+⎪⎭⎫ ⎝⎛-;④⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-653653;解:原式=20131 解:原式=0⑤()05+-解:原式=﹣5知识点二:有理数的加法运算律加法运算律:✧ 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
a b b a +=+。
✧ 加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
()()c b a c b a ++=++。
在运算时,一定要根据需要灵活运用一下规律,以达到简化运算的目的:✧ 相反数结合法:互为相反数的两个数可先相加; ✧ 同分母结合法:同分母的分数可先相加; ✧ 凑整法:几个数相加得整数时,可先相加; ✧ 同号结合法:符号相同的数可先相加;✧ 同形结合法:带分数可拆成整数和真分数两部分再相加。
例2:计算:1) ()()781312-++-+;解:原式=02) ()6.081523125.1-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+;解:原式=﹣33)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++21746571;解:原式=212-4) ()()⎪⎭⎫ ⎝⎛++-++-+85275.18335.6431。
解:原式=﹣0.5二:知识点复习知识点一:有理数加法法则1. 计算()53+-的结果等于( A )A. 2B. ﹣2C. 8D. ﹣82. 下列计算错误的是( B )A. 15.0211-=+⎪⎭⎫ ⎝⎛-B.()()422=-+-C.()71071-=+-D.()42125.1-=⎪⎭⎫⎝⎛-+-3. 下列说法中,正确的是( D )A. 两个有理数相加,符号不变,绝对值相加B. 两个有理数的和一定大于任意一个加数C.()()25757-=--=-+-D. 两个负数相加,和取负号,并把它们的绝对值相加4. 一个数是15,另一个数比15的相反数大4,则这两个数的和是( D )A. 26B. ﹣4C. ﹣26D. 45.31与绝对值等于32的数的和等于( D ) A.31B. 1C. ﹣1D.31-或1 6. 绝对值不大于414的所有整数的和是 0 。
1.3.1-1有理数的加法法则(含答案解析)
1.3.1-1有理数的加法法则知识点一有理数的加法法则1.下列是运用有理数加法法则计算75-+思考过程的叙述如下:-+是异号两数相加;①结果的符号是取7-的符号为负号;②计算结果为2-;③75④7-的绝对值7较大;⑤结果的绝对值是用75-得到;⑥7-和5的绝对值分别为7和5;⑦5的绝对值5较小.则计算时的先后顺序排序不可以是()A.③⑥④⑦①⑤②B.③⑥①④⑦⑤②C.③⑥④⑦⑤①②D.③⑥⑦④①⑤②【答案】B【解析】【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.依此即可求解.【详解】算−7+5思考过程的叙述:③−7+5是异号两数相加;⑥−7和5的绝对值分别为7和5;④−7的绝对值7较大;⑦5的绝对值5较小;①结果的符号是取−7的符号−−负号;⑤结果的绝对值是用7−5得到;②计算结果为−2;故答案为③⑥④⑦①⑤②,其中④、⑦可以交换,①、⑤可以交换;故选:B .【点睛】本题考查有理数的加法,熟练掌握有理数加法法则为解题关键.2.(+15)+(+13)=+( )=+28(-15)+(-9)=-( )=-24(-5)+(+12)=+( )=+7(+9)+(-20)=-( )=-11(-7)+( ) =0(+5)+0=____(-18)+0=____观察、比较上面几个式子,看能否从这些算式中得到启发,想办法归纳出有理数加法的法则? 有理数加法法则:(1)同号两数相加,取相同的____,并把____相加.(2)异号两数相加____相等时和为0;绝对值不等时,取绝对值___的数的___,并用较大的绝对值___较小的绝对值.(3)一个数同0相加,仍得____【答案】 15+13 15+9 12-5 20-9 +7 +5 -18 符号 绝对值 绝对值 较大 符号 减去 这个数【解析】略三、解答题(共0分)3.计算:(1)()()257-+-;(2)()135-+;(3)()230-+;(4)()4545+-.【答案】(1)32-;(2)8-;(3)23-;(4)0【解析】【分析】根据有理数加法法则计算求解即可.【详解】解:(1)原式32=-(2)原式8=-(3)原式23=-(4)原式=0【点睛】本题考查有理数的加法运算,掌握并熟练运用有理数的加法法则是解题关键.4.计算下列各题:(1)()18010+-;(2)()()101-+-;(3)()55+-;(4)()02+-.【答案】(1)170;(2)-11;(3)0;(4)-2【解析】【分析】根据有理数加法法则进行运算即可.【详解】解:(1)()18010+-(异号两数相加)()18010=+-(取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值)170=;(2)()()101-+-(同号两数相加)()101=-+(取相同的符号,并把绝对值相加)11=-;(3)()55+-(互为相反数的两数相加)0=;(4)()02+-(一个数同0相加)2=-.【点睛】本题考查了有理数加法运算,属于基础题.5.计算:(1)(8)(15)-+-(2)(20)15-+(3)16(25)+-(4)2.7( 3.8)+-(5)12()23+- (6)11()()43-+- 【答案】(1)23- ;(2)5- ;(3)9- ;(4) 1.1- ;(5)16- ;(6)712- 【解析】略6.计算:(1)()()106-++;(2)()()124++-;(3)()()57-+-;(4)()()69++-;(5)()()0.927-+-;(6)2355⎛⎫+- ⎪⎝⎭; (7)1235⎛⎫-+ ⎪⎝⎭; (8)1131412⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)4-;(2)8;(3)12-;(4)3-;(5)27.9-;(6)15-;(7)115;(8)143- 【解析】【分析】有理数的加法原则:同号相加,取相同的符号,并把绝对值相加,异号相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;有理数的减法原则:减去一个数等于加上这个数的相反数,根据原则内容计算即可.【详解】解:(1)()()410=6-++-(2)()()124=8++-(3)()()57=12-+--(4)()()69=3++--(5)()()0.927=27.9--+-(6)231=555⎛⎫+-- ⎪⎝⎭ (7)12561=35151515⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭ (8)()()11111313144124123⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤-+-=-+-+-+-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【点睛】本题考查有理数的加法和减法运算,根据运算原则解题是关键.知识点二 有理数加法中的符号问题7.+4与-9的和取______号,-8与+12的和取______号.(填“正”,“负”)【答案】 负, 正【解析】【分析】利用异号两数相加的法则计算即可得到结果.【详解】解:+4与-9的和取负号;-8与+12的和取正号;故答案为:负;正.【点睛】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.8.计算(8)(3)-++时,先取________号,这是因为两个加数中,________的绝对值较大.然后再用较大的________减去较小的________,得________,最后得到答案是________.计算的过程可以写成________.【答案】 - -8 8 3 5 -5 -(8-3)【解析】【分析】利用有理数的加法法则,异号两数相加和取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.【详解】解:(8)(3)-++和取负号,因为()8- 的绝对值较大,然后用835--+= 所以最后得()835--=-,故答案为﹣,﹣8,8,3,5,﹣5,()83--.【点睛】本题主要考查的是有理数加法法则,熟记有理数加法法则是解题的关键.9.如果0,,a b a b +>>则a 一定是( )A .正数B .非正数C .负数D .非负数【答案】A【解析】【分析】利用有理数的加法法则判断即可.【详解】∵0a b +>,a b >,∵a 一定是正数,故选:A .【点睛】本题考查了有理数的加法,熟练掌握运算法则是解本题的关键.10.下列两个有理数相加:①两个正数;②两个负数;③一正一负,但正数的绝对值较大;④一正一负,但正数的绝对值较小;⑤零与正数;⑥零与负数;那么,(1)和为正数的是(填入代号,下同)_____________;(2)和为负数的是_____________;(3)和的绝对值等于加数绝对值的和的是_____________;(4)和的绝对值等于加数中较大绝对值与较小绝对值的差的是_____________;(5)和等于其中一个加数的是_____________【答案】(1)①、③、⑤;(2)②、④、⑥;(3)①、②、⑤、⑥;(4)③、④、⑤、⑥;(5)⑤、⑥.【解析】【分析】根据有理数加法法则解答即可.【详解】解:(1)∵同号两数相加取相同符号,并把绝对值相加;异号两数相加取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加都为本身.∵两个正数相加和是正数;一正一负相加,正数的绝对值较大,和为正数;零与正数相加,仍得这个正数;所以和为正数的是①、③、⑤;故答案为:①、③、⑤(2)∵同号两数相加取相同符号,并把绝对值相加;异号两数相加取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加都为本身.∵负数相加,和为负数;一正一负相加,正数的绝对值较小,和为负数;零与负数相加,仍得这个负数;所以和为负数的是②、④、⑥;故答案为:②、④、⑥(3)∵同号两数相加取相同符号,并把绝对值相加;任何数与零相加都为本身.∵和的绝对值等于加数绝对值的和的是①、②、⑤、⑥;故答案为:①、②、⑤、⑥(4)∵异号两数相加取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相减都为本身∵和的绝对值等于加数中较大绝对值与较小绝对值的差的是③、④、⑤、⑥;故答案为:③、④、⑤、⑥(5)∵任何数与零相加均为本身∵和等于其中一个加数的是⑤、⑥.故答案为:⑤、⑥.【点睛】本题考查有理数的加法法则,解题关键是熟悉加法法则:同号两数相加取相同符号,并把绝对值相加;异号两数相加取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加都为本身.知识点三有理数加法在生活中的应用11.小军的妈妈买了一种股票,每股15元,下表记录了一周内该股票的涨跌的情况(用正数记股价比前一日的上涨数,用负数记股价比前一日的下跌数),该股票这五天中的最低价是()A.14.9元B.14.8元C.14.85元D.14.7元【答案】C【解析】【分析】根据题意可知,股票比前一日上涨记为正,比前一日下跌记为负,计算出每天的股价就可以比较了.【详解】解:星期一:15+0.2=15.2元;星期二:15.2-0.3=14.9元;星期三:14.9+0.15=15.05元;星期四:15.05-0.2=14.85元;星期五:14.85=0.05=14.9元.该股票这五天中的是最低价是星期四14.85元.故选C.【点睛】本题考查了正数和负数,利用了有理数的加法,有理数的大小比较,关键是根据题意先求出每天的股价.12.小明家冰箱冷冻室的温度为﹣5∵,调高4∵后的温度为()A.4∵B.9∵C.﹣1∵D.﹣9∵【答案】C【解析】【分析】原来的温度为−5∵,调高4∵,实际就是转换成有理数的加法运算.【详解】解:−5+4=−1故选:C.【点睛】本题主要考查从实际问题抽象出有理数的加法运算,解题关键是掌握运算法则.13.在学习“有理数的加法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶5m,再向东行驶2m,这时车模的位置用什么数表示?”用算式表示以上过程和结果的是()A.(﹣5)﹣(+2)=﹣7B.(﹣5)+(+2)=﹣3C.(+5)+(﹣2)=+3D.(+5)+(+2)=+7【答案】B【解析】【分析】直接利用初始位置为0,向东行驶为正,向西行驶为负,进而得出符合题意的答案.【详解】解:由题意可得:(-5)+(+2)=-3,故选:B.【点睛】此题主要考查了有理数的加法运算的应用,正确理解正负数的意义是解题关键.14.某公交车上原有10个人,经过三个站点时乘客上下车情况如下(上车为正,下车为负):(+2,﹣3),(+8,﹣5),(+1,﹣6),则此时车上的人数为_____【答案】7【解析】【分析】根据有理数的加法运算,可得车上人数.【详解】解:10+2-3+8-5+1-6=7(人),故答案为:7.【点睛】本题考查了正数和负数,有理数的加法运算,正确列出式子是解题的关键.15.杨梅开始采摘啦!每筐杨梅以10千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是____________千克.【答案】40.1【解析】【分析】根据题意列出运算式子,计算有理数的加法即可得.【详解】解:0.10.30.20.310440.1--⨯(++)+=(千克),即这4筐杨梅的总质量是40.1千克,故答案为:40.1.【点睛】本题考查了有理数加法的实际应用,正确列出运算式子是解题关键.16.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是______.-米【答案】70【解析】【分析】先根据题意列出运算式子,再根据有理数的加法运算法则即可得.【详解】-+=-(米),解:由题意得:点B的海拔高度为1003070-米.故答案为:70【点睛】本题考查了有理数加法的应用,正确列出运算式子是解题关键.17.某粮仓一周内出、入库的大米吨数记录如下表(“+”表示入库,“﹣”表示出库):(1)星期日出、入库后,仓库里的大米是增多还是减少?(2)如果星期日出、入库后,库里还存30吨大米,那么这一周星期一出、入库前仓库里存有大米多少吨?(3)如果出、入库的大米装卸费都是每吨m 元,求这一周共付多少装卸费?并求当m =200时,这一周付出的装卸费.【答案】(1)减少;(2)44吨;(3)114m 元,22800元.【解析】【分析】(1)将表中数据相加结果为“正”即为增加,结果为“负”即为减少;(2)用(1)所求结果加上剩余30吨,即为这一周星期一出、入库前仓库里面的存量;(3)将表中数据的绝对值相加,再乘以m 即可.将m =200代入前面所求的式子,求值即可.(1)∵()()()()261811169211314++-++-+-+-+=-,∵星期日后仓库里面的大米减少了14吨;(2)301444+=吨.故这一周星期一出、入库前仓库里存有大米44吨.(3)2618111692113114++++++=吨,故这一周共付装卸费为114m 元.当200m =时,11411420022800m =⨯=元.故m =200时,这一周付出的装卸费为22800元.【点睛】本题考查有理数加法的实际应用,列代数式及代数式求值.掌握正负数的实际意义是解题的关键.18.2020年初以来,新冠病毒突发,为了将新鲜蔬菜运送到疫情最为严重的武汉,货车司机分工协作,组成货运车队,每一辆货车负责一条道路沿线的蔬菜投放,若以出发点为原点,向东为正,向西为负,下面是其中一辆车一天的行驶情况(单位:千米):+12,﹣4,+6,﹣10,+9,﹣8,+7,﹣15,+5,﹣9.(1)他送到最后一个投放点时,相对出发的地方,他在什么位置?(2)若大货车耗油量为0.12升/千米.这天,大货车共耗油多少升?【答案】(1)他在西边7千米的位置;(2)10.2升.【解析】【分析】(1)根据正负数的意义和有理数的加法将各个数据相加即可确定出结果.(2)根据绝对值的意义,求出大货车的总路程,再乘以油耗即可.【详解】++-+++-+++-+++-+++-=-,(1)(12)(4)(6)(10)(9)(8)(7)(15)(5)(9)7故他送到最后一个投放点时,相对出发的地方,他在西边7千米的位置.++-+++-+++-+++-+++-=千米,(2)(12)(4)(6)(10)(9)(8)(7)(15)(5)(9)85⨯=升,850.1210.2故这天,大货车共耗油多少10.2升.【点睛】本题考查正负数的意义,有理数的加法的应用,绝对值的应用.结合题意理解正负数的意义是解答本题的关键.。
新人教版七年级上《1.3.1有理数的加法》课时练习含答案
★12.在如图所示的圆圈内填上不同的整数,使得每条线上的 3 个数之和为 0,写出三种不同的 答案.
参考答案 能力提升 1.D 2.A 从数轴上可知:-1<a<0,b>1,即 a,b 异号,且|b|>|a|,故 a+b>0.
9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从 A 地出发,晚上 到达 B 地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10. (1)B 地在 A 地的哪侧?相距多远? (2)若冲锋舟每千米耗油 0.45 L,则这一天共消耗了多少升油?
A.大于 0
B.小于 0
C.小于 a
D.大于 b
3.若 a 与 1 互为相反数,则|a+1|等于( )
A.2
B.-2
C.0
D.-1
4.若三个有理数 a+b+c=0,则( )
.一定有两个数互为相反数
D.一定有一个数等于其余两个数的和的相反数
5.若 x 的相反数是-2,|y|=4,则 x+y 的值为
★10.阅读(1)小题中的方法,计算第(2)小题. (1)-5+17. 解:原式=
=[(-5)+(-9)+(-3)+17]+ =0+=-. (2)上述这种方法叫做拆项法,依照上述方法计算:
+4 034+.
创新应用
★11.用[x]表示不超过 x 的整数中最大的整数,如[2.23]=2,[-3.24]=-4. 请计算:(1)[3.5]+[-3]; (2)[-7.25]+.
.
6.绝对值小于 2 016 的整数有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.下列各式中,计算结果为正的是 ( ) 3.下列各计算题中,结果是零的是 ( ) A .(-3)+|-3|
B .|+3|+| -3| 23
C .( -3)+(-3) D.3+( -2)
4.若两个有理数之和为负数,则 ( )
A .这两个加数都是负数
B .这两个加数一正一负
C .这两个加数中一个为负数,另一个为 0
D .以上都有可能
5.温度由- 4 ℃上升 7 ℃是 ( )
A .3 ℃
B .- 3 ℃
C .11 ℃
D .- 11 ℃
6.某企业今年第一季度盈利 22000元,第二季度亏损 5000 元,若盈利记为
正,亏损记为负, 则该企业今年上半年盈利 (或亏损)的金额(单位:元 )可用算式表示为 ( )
A .( +22000)+(+5000)
B .( -22000)+(+5000)
C .( -22000)+(-5000)
D .( +22000)+(-5000)
二、填空题
7.如图,数轴上点 A , B 分别表示数 a ,b ,则 a +b 0.( 填“>”或
“<” ).
8.比-3大 5的数是 ___ .
9.甲地的海拔为- 300 米,乙地比甲地高 320 米,那么乙地的海拔为 .
10.若一个数的相反数是 8,另一个数是绝对值最小的数,则这两个数的和是
11.如果|a|=7,|b|=4,那么 a +b = __ .
第 1 章 有理数
1.3.1 有理数的加法(有理数的加法法则) 1.计算- 1+2的结果是 ( ) A .-3 B .-1 C . 、选择题 D .3 A .( -50)+( +4)
B .2.7 +(-4.5) 12
C .( -3)
D .0+(-31)
(1)-321+(-3.5);(2)(-7)+三、解答题
(+2);
12.计算:
13.列式并计算:
(1) 1.2 的相反数与- 3.1 的绝对值的和; (3)( +41) +( -21); (4)( -341
) +( +21
3) ; (5)( -5.93) +| -5.93| ; 7
(6)( +8) +
(1)-321+(-3.5);(2)(-7)+
(+2);
21
的和的相反数.
(2) 4
3与-3
14.小明从家里出发骑车到公园去玩,当他意识到骑过头的时候,已经走了 4.5 km ,他又往回
骑了 1.2 km 才到达目的地.
(1) 列算式求出小明家离公园有多远;
(2) 求小明骑车行驶的总路程.链接听P7例2归纳总结
15.(1) 若 a 与 2 互为相反数,求| a+3|的值;
(2) 已知|a| =7,| b| =3,求a+b 的值.
16.已知| x-2|与|y+7| 的值互为相反数,试求-x+y 的值.
17. (1) 比较大小;
① ____________ |-2| +|3| | -2+3|;
② ___________ |4| +|3| |4 +3| ;
1 1 1 1
③ ______________ | -2| +| -3| | -2+( -3)| ;
④ ____________ |-5| +|0| | -5+0|.
(2) 通过(1) 中的大小比较,猜想并归纳出|a| +| b| 与| a+b|的大小关系,并说明a,b满足什么关系时,|a| +| b| =| a+b| 成立?
参考答案
1.C 2.C
3.A
4.D
5.A
6.D
7.<
8.2 [解析]比-3大5的数是-3+5,根据有理数的加法法则即可求解.
9.20米[解析](-300)+320=20(米).
10.-8 [解析]因为一个数的相反数是8,所以这个数是-8.又因为绝对值最小的数是0,所以这两个数的和是-8+0=-8.
11.±11或±3 [解析]因为|a| =7,|b| =4,所以a=±7,b=±4.当a=7,b=4时,a+b =11;当a=7,b=-4时,a+b=3;当a=-7,b=4时,a+b=-3;当a=-7,b=-4时,a +b=-11.
12.[解析]按有理数加法法则,先确定结果的符号,再计算结果的绝对值,题
(1)是符号相同
的两数相加,结果的符号不变,仍为“-”号;题(2)是符号不相同的两数相加,由于| -7| >| +2| ,所以结果的符号为“-”,并用较大的绝对值减去较小的绝对值;其余题目可类似于题(2)来解决.
11
解:(1)(-32)+(-3.5)=-(32+3.5)=-7.
(2)(-7)+(+2)=-(7-2)=-5.
1 1 1 1 1
(3)(+4)+(-2)=-(2-4)=-4.
1 1 1 1 11
(4)(-3
4)+(+2
3
)=-(3
4
-2
3
)=-
12
.
(5)原式=(-5.93)+ 5.93 =0.
7 1 9 7 1
(6)原式=8+(-18)=-(8-8)=-4. 13.解:(1)-1.2 +| -3.1| =1.9.
2 1 1
(2)-[432+(-31)]=-431.
14.[解析]把从家向公园行驶的方向记为正,则小明两次行驶的路程分别为+4.5 km,-1.2 km,它们的和就是小明家与公园的路程,它们的绝对值的和就是小明行驶的总路程.
解:(1) 把从家向公园行驶的方向记为正,由题意,得( +4.5) +( - 1.2) =
3.3(km) .答:小明家离公园 3.3 km.
(2)| +4.5| +| -1.2| =4.5+1.2=5.7(km) .答:小明骑车行驶的总路程是
5.7 km.
15.解:(1) 因为 a 与 2 互为相反数,所以a=-2.
所以|a +3| =| -2+3| = 1.
(2) 因为|a| =7,|b| =3,所以a=±7,b=±3.
①当a=7,b=3 时,a+b=7+3=10;
②当a=7,b=-3 时,a+b=7+(-3)=4;
③当a=-7,b=3 时,a+b=-7+3=-4;
④当a=-7,b=- 3 时,a+b=-7+( -3) =-10.综上,a+b的值为10或
4或-4 或-10. 16.解:因为|x -2|与|y +7|的值互为相反数,
所以|x -2| +|y +7|=0. 由非负数的性质,得x-2=0,y+7=0,所以x=2,y =-7. 所以-x+y=-2+( -7) =-9.
17.解:(1) ①>②=③=④=
(2)|a| +|b| 与|a+b| 的大小关系:|a| +|b| ≥|a+b|,当a,b同号或至少有一个为0时,|a|
+|b| =|a +b|.。