九年级下册图形的相似PPT课件
合集下载
九年级数学下册272《相似三角形》PPT课件
3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。
新版苏科版九年级下6.3图形的相似课件
AB BC CA k, A' B ' B ' C ' C ' A'
则△ABC与△A'B'C'相似,记作 △ABC∽△A'B'C' ,其中k叫做它们的相似比.
A'
表示对应顶点 的字母要写在对应 的位置上.
A
B
C
B'
C'
①
A
下面每组都有两个三角形相似,请 把它们表示出来,并说出它们的相 似比. ②
EF∥BC, DE ∥ AB, DF ∥ AC.
B D
C
∴四边形AFDE、四边形BDEF、四边形CEFD是平行四边形. ∴∠EDF=∠ A ,∠ DEF= ∠B, ∠ DFE= ∠ C. ∴ △DEF ∽ △ABC.
学而不思则罔 回 头 一 看 , 我 想 说 …
你有哪些 收获呢?请与 大家分享!
(1)
(2)
(3)
(4)
1.对应角相等,对应边成比例的两个多边形, 它们的形状相同,称为相似多边形.
2.相似多边形的性质:
相似多边形的对应角相等,对应 边成比例.
3.相似多边形的表示方法: 四边形 ABCD 与 ABC D 相似, 记作:四边形 ABCD∽四边形ABCD.
A B D
A
D
C
B
C
注意:表示对应顶点的字母一定 要写在对应位置上.
4.相似多边形的对应边的比叫做相似比. 5.根据相似多边形的概念,我们不难 得到:对应角相等,对应边成比例的 两个三角形叫做相似三角形.
6.相似三角形的性质:相似三角形 的对应角相等,对应边成比例.
如图,A A ', B B ', C C ';
则△ABC与△A'B'C'相似,记作 △ABC∽△A'B'C' ,其中k叫做它们的相似比.
A'
表示对应顶点 的字母要写在对应 的位置上.
A
B
C
B'
C'
①
A
下面每组都有两个三角形相似,请 把它们表示出来,并说出它们的相 似比. ②
EF∥BC, DE ∥ AB, DF ∥ AC.
B D
C
∴四边形AFDE、四边形BDEF、四边形CEFD是平行四边形. ∴∠EDF=∠ A ,∠ DEF= ∠B, ∠ DFE= ∠ C. ∴ △DEF ∽ △ABC.
学而不思则罔 回 头 一 看 , 我 想 说 …
你有哪些 收获呢?请与 大家分享!
(1)
(2)
(3)
(4)
1.对应角相等,对应边成比例的两个多边形, 它们的形状相同,称为相似多边形.
2.相似多边形的性质:
相似多边形的对应角相等,对应 边成比例.
3.相似多边形的表示方法: 四边形 ABCD 与 ABC D 相似, 记作:四边形 ABCD∽四边形ABCD.
A B D
A
D
C
B
C
注意:表示对应顶点的字母一定 要写在对应位置上.
4.相似多边形的对应边的比叫做相似比. 5.根据相似多边形的概念,我们不难 得到:对应角相等,对应边成比例的 两个三角形叫做相似三角形.
6.相似三角形的性质:相似三角形 的对应角相等,对应边成比例.
如图,A A ', B B ', C C ';
人教版初中数学九年级下册27.1图形的相似课件(共30张PPT)
解析
由于两个四边形相似,所以对应角相等,
对应边成比例,可得 答案
举一反三
1. 两个相似五边形,一组对应边的长分别为3 cm和4.5 cm,如果它们的面积之和是78 cm2,则较 大的五边形面积是( )cm C 2.( )
A. 44.8
B. 52
C. 54
D. 42
2. 已知如图27-1-6,一张矩形报纸ABCD的长
( D )
A. 图形中线段的长度与角的大小都保持不变
B. 图形中线段的长度与角的大小都会改变
C. 图形中线段的长度保持不变,角的大小可以 改变 D. 图形中线段的长度可以改变,角的大小保持 不变
2. 下列判断正确的是( B
)
A. 所有的直角三角形都相似
B. 所有的等腰直角三角形都相似 C. 所有的菱形都相似 D. 所有的矩形都相似
AB=a cm,宽BC=b cm,E,F分别为AB,CD的中 点.若矩形AEFD与矩形ABCD相似,则a∶b等于( A
)
新知4 例题精讲
两个多边形相似的判别方法
【例2】仔细观察图27-1-7,
看看四边形ABCD与四边形
A′B′C′D′是否相似. 如果 相似,求它们的相似比;如果
不相似,请说明理由.
)
3. 一个五边形的各边长为2,3,4,5,6,另
一个与它相似的五边形的最长边是12,则最短边为( ) A
A. 4
B. 5
C. 6
D. 8
方法规律 1. 两个图形相似,其中一个图形可以看作由另一
个图形放大或缩小得到.判断两个图形是否相似,就是
看这两个图形是不是形状相同,与其他因素无关.
2. 对于四条线段a,b,c,d,如果其中两条线段的
九年级数学《图形的相似》总复习课件-PPT
6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。
人教版九年级下册数学《相似三角形的判定》相似PPT(第3课时)
2、通过动手实践活动,养成创新意识与创造发 明意识。
工具准备
刻度尺、剪刀、小刀、双面胶、硬纸板、马铃薯、红薯 (或萝卜)等
活动实践
活动1 以硬纸板为主要材料,分别做出下面两组视 图所表示的立体模型。
活动2 按照下面给出的两组三视图,用马铃薯 (或萝卜)做出相应的实物模型。
活动3 下面的每一组平面图形都由四个等边三角形 组成。
解:∵ED⊥AB,∴∠EDA=90°. 又∵∠C=90°, ∠A=∠A, ∴△AED∽△ABC.
∴ AE AD , AB AC
∴ AD AC AE 8 5 4. AB 10
追问1:目前我们见到过哪些常见的相似基本图形?
DE ∥ BC
AB ∥ CD
追问2:下列图形相似吗?满足什么条件才相似?
13 12
5
课题拓广
课外活动 设计并制作笔筒 设计你喜欢的笔筒,画出三视图和展开 图,制作笔筒模型,体会设计制作过程中 三视图、展开图、实物(立体模型)之间 的关系。
欣赏一下手工笔筒吧!
课堂小结
这节课你有哪些收获?你觉得依据三视 图制作立体模型时有哪些需注意的问题,与 同伴交流。
课后作业
了解有关生产实际,结合具体例子,写 一篇短文介绍三视图、展开图的应用。
所有判定一般三角形相似的方法,都可以用来判定直角三角形相似. 由于直角三角形是特殊的三角形,所以有其特有的更简洁的判定相似 的方法.
问题2:如果是一条直角边和斜边对应成比例,那么两个直角三角形 相似吗?
它们相似.
问题3:你能归纳出判定两个直角三角形相似的条件吗?
一个锐角相等,或者两边对应成比例.
例1 判断下列说法是否正确,并说明理由.
相似三角形的判定 第3课时
工具准备
刻度尺、剪刀、小刀、双面胶、硬纸板、马铃薯、红薯 (或萝卜)等
活动实践
活动1 以硬纸板为主要材料,分别做出下面两组视 图所表示的立体模型。
活动2 按照下面给出的两组三视图,用马铃薯 (或萝卜)做出相应的实物模型。
活动3 下面的每一组平面图形都由四个等边三角形 组成。
解:∵ED⊥AB,∴∠EDA=90°. 又∵∠C=90°, ∠A=∠A, ∴△AED∽△ABC.
∴ AE AD , AB AC
∴ AD AC AE 8 5 4. AB 10
追问1:目前我们见到过哪些常见的相似基本图形?
DE ∥ BC
AB ∥ CD
追问2:下列图形相似吗?满足什么条件才相似?
13 12
5
课题拓广
课外活动 设计并制作笔筒 设计你喜欢的笔筒,画出三视图和展开 图,制作笔筒模型,体会设计制作过程中 三视图、展开图、实物(立体模型)之间 的关系。
欣赏一下手工笔筒吧!
课堂小结
这节课你有哪些收获?你觉得依据三视 图制作立体模型时有哪些需注意的问题,与 同伴交流。
课后作业
了解有关生产实际,结合具体例子,写 一篇短文介绍三视图、展开图的应用。
所有判定一般三角形相似的方法,都可以用来判定直角三角形相似. 由于直角三角形是特殊的三角形,所以有其特有的更简洁的判定相似 的方法.
问题2:如果是一条直角边和斜边对应成比例,那么两个直角三角形 相似吗?
它们相似.
问题3:你能归纳出判定两个直角三角形相似的条件吗?
一个锐角相等,或者两边对应成比例.
例1 判断下列说法是否正确,并说明理由.
相似三角形的判定 第3课时
新人教版九年级数学下册 第27章 相似 课件
图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 缩小 得到的,实际的建筑物 _________ 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
1、如图,从放大镜里看到的三角尺 和原来的三角尺相似吗?
• 认识形状相同的图形。
• 对相似图形概念的理解。
• 抓住形状相同的图形的特征,认
识其内涵。
回顾旧知
全等图形
A' B
A
B'
C'
C
形状、 大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
四阶魔方和三阶魔方形状相同吗?大小呢?
A
E A E B B
D C C
D
A
D
A
D
B
C
B
C
A
A
C B C
B
你从上述几组图片发现了什么?
它们的大小不一定相等,
形状相同.
知识要点
两个图形的形状 完全相同 ________,但图形 的大小位置 不一定相同 __________,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
不规则四边形
B
A
请分别量出 这两个不规则四 边形各内角的度 数,求出对应边 的长度。
C
缩小 B1
A1
对 应 角 有 什 么 D 关 系?
对应边有什么关系? C1
苏教版九年级数学下册第6章图形的相似课件
1.2m 2.7m
13、皮皮欲测楼房高度,他借助一长5m的标竿,当 楼房顶部、标竿顶端与他的眼睛在一条直线上时, 其他人测出AB=4cm,AC=12m。已知皮皮眼睛离地面 1.6m。请你帮他算出楼房的高度。
F
E D
A
B
C
谢谢
AD CE
∴△ADE∽△ECF
∴∠1+ ∠3=90 ° ∴∠2+ ∠3=90°
∴∠1=∠2
∴ AE⊥EF
画一画
10、在方格纸中,每个小格的顶点叫做格点,以格点 为顶点的三角形叫做格点三角形。在如图4×4的格纸 中,△ABC是一个格点三角形。
(1)在右图中,请你画一个格点三 角形,使它与△ABC类似(类似比 不为1)。
S ADE AE2 25
∴ S EFC = AC2 = 121
∵ S△ADE=25 ∴S △ABC=121
25 E
36
C
7、在平行四边形ABCD中,AE:BE=1:2。
若S△AEF=6cm2 则S△CDF = 54 cm2
S △ADF=_1_8__cm2
D
C
F
A
E
B
8、如图(6), △ABC中,DE⁄⁄FG⁄⁄BC,AD=DF= FB,则S△ADE:S四边形DFGE:S四边形FBCG =_________。
4 位似变换中对应点的坐标变化规律:
在平面直角坐标系中,如果位似变换是以原点 为位似中心,类似比为k,那么位似图形对应点 的坐标的比等于k或-k。
复习题
1、如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,
则需补上哪一个条件?
A
P 2
1
B
C
∠ACP=∠B 或∠APC=∠ACB 或AP:AC=AC:AB
13、皮皮欲测楼房高度,他借助一长5m的标竿,当 楼房顶部、标竿顶端与他的眼睛在一条直线上时, 其他人测出AB=4cm,AC=12m。已知皮皮眼睛离地面 1.6m。请你帮他算出楼房的高度。
F
E D
A
B
C
谢谢
AD CE
∴△ADE∽△ECF
∴∠1+ ∠3=90 ° ∴∠2+ ∠3=90°
∴∠1=∠2
∴ AE⊥EF
画一画
10、在方格纸中,每个小格的顶点叫做格点,以格点 为顶点的三角形叫做格点三角形。在如图4×4的格纸 中,△ABC是一个格点三角形。
(1)在右图中,请你画一个格点三 角形,使它与△ABC类似(类似比 不为1)。
S ADE AE2 25
∴ S EFC = AC2 = 121
∵ S△ADE=25 ∴S △ABC=121
25 E
36
C
7、在平行四边形ABCD中,AE:BE=1:2。
若S△AEF=6cm2 则S△CDF = 54 cm2
S △ADF=_1_8__cm2
D
C
F
A
E
B
8、如图(6), △ABC中,DE⁄⁄FG⁄⁄BC,AD=DF= FB,则S△ADE:S四边形DFGE:S四边形FBCG =_________。
4 位似变换中对应点的坐标变化规律:
在平面直角坐标系中,如果位似变换是以原点 为位似中心,类似比为k,那么位似图形对应点 的坐标的比等于k或-k。
复习题
1、如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,
则需补上哪一个条件?
A
P 2
1
B
C
∠ACP=∠B 或∠APC=∠ACB 或AP:AC=AC:AB
人教版_《相似三角形的判定》PPT经典课件1
AD AE DE AD AE DE 如图,直线 a∥b∥c,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段. A.AC=AB=BC B.AB=AC=BC 可以将 DE 平移到BC 边上去
∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB, 要用相似的定义去证明△ADE∽△ABC ,我们需要证明什么? 12.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,
△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,结论还成立吗?
A
D
E
B
C
通过度量,我发现△ADE∽△ABC,且
只要DE∥BC,这个结论恒成立.
要用相似的定义去证明△ADE∽△ABC ,
理解相似三角形的概念。
我们需要证明什么? 分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?
些成比例线段?
把图中的部分线擦去,得到新的图形,刚刚所说的线段
是否仍然成比例?
A1(B1)
A2
B2
A3
B3
B1 A1
A2(B2)
A3
B3
平行于三角形一边的直线截其他两边(或两边 的延长线),所得的对应线段成比例.
巩固新知
C AB//CD AB//CD//EF
AB//CD//EF
合作探究
新知三 利用平行线判定两个三角形相似的定理
两条直线被一组平行线所截,所得的对应线段成比例. 人教版 · 数学· 九年级(下)
分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?
∵ 四边形DFCE为平行四边形,
7.(2019·贺州)如图,在△ABC中,D,E分别是AB,AC边上的点,
几何语言: 由前面的结论,我们可以得到什么?还需证明什么?
∵DE是⊙O的切线,∴DE=EC,∵EB=ED,∴EC=EB, 要用相似的定义去证明△ADE∽△ABC ,我们需要证明什么? 12.如图,在△ABC中,点D,E分别为AB,AC的中点,连接DE,
△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,结论还成立吗?
A
D
E
B
C
通过度量,我发现△ADE∽△ABC,且
只要DE∥BC,这个结论恒成立.
要用相似的定义去证明△ADE∽△ABC ,
理解相似三角形的概念。
我们需要证明什么? 分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?
些成比例线段?
把图中的部分线擦去,得到新的图形,刚刚所说的线段
是否仍然成比例?
A1(B1)
A2
B2
A3
B3
B1 A1
A2(B2)
A3
B3
平行于三角形一边的直线截其他两边(或两边 的延长线),所得的对应线段成比例.
巩固新知
C AB//CD AB//CD//EF
AB//CD//EF
合作探究
新知三 利用平行线判定两个三角形相似的定理
两条直线被一组平行线所截,所得的对应线段成比例. 人教版 · 数学· 九年级(下)
分别度量△ADE 与△ABC 的边长,它们的边长是否对应成比例?
∵ 四边形DFCE为平行四边形,
7.(2019·贺州)如图,在△ABC中,D,E分别是AB,AC边上的点,
几何语言: 由前面的结论,我们可以得到什么?还需证明什么?
九年级下册27.1图形 相似 课件PPT
放大镜下的角与原 图形中角是什么关 系?
你看到过哈哈镜吗?哈哈镜中的形 象与你本人相似吗?
(A)
(B)
(C)
观察下列图形,哪些是相似形?
?
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ (7)
(8)
(9)
?
(10) (11)
(12)
(13)
(14)
观察下面的图形(a)~(g),其中哪些 是与图形(1)、(2)或(3)相似的?
相似多边形 对应边的比 称为相似比
全等
例题.如图,四边形ABCD和EFGH相似,求∠α、∠ β的大小和EH 的长度x. H
A
18cm
21cm
D
x E
24cm
118°
78
83
G
B
C
解: ∵ 四边形ABCD和EFGH相似 ∴ ∠α=∠C=83 °, ∠A=∠E=118 ° 又 在四边形ABCD中 ∠β= 360°-( 78°+ 83°+ 118° )=81 ° ∵ 四边形ABCD和EFGH相似
ABDF
这两个三角形是否为相似形?
A
D
C
F B
E
图(1)中的△A1B1C1是由正△ABC放大后得到 的,观察这两个图形,它们的对应角有什么关系? 对应边呢?
对于图(2)中的两个相似的正六边形,你是否 也能得到类似的结论?
A1 A B C C1
B1 (1)
(2)
在△ABC和 △A1B1C1中,由正三角形的每个角 都等于600,可得
∴ ∴
Fபைடு நூலகம்
EH EF AD AB
即
x 24 21 18
x=28(cm)
例2:如图,点E、F分别是矩形ABCD的边AD、 BC的中点,若矩形ABCD与矩形EABF相似, AB=1,求矩形ABCD的面积. E A D
九年级下册数学 27.1图形的相似课件(共28张PPT)
图形 B
图形 C
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
放大镜下的角与原图 形中角是什么关系?
你看到过哈哈镜吗?哈哈镜中的形 象与你本人相似吗?Biblioteka (A)(B)(C)
观察下列图形,哪些是相似形?
?
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ (7)
(8)
(9)
?
(10) (11)
(12)
(13)
理犯问基 解点题础 慢错不差 点误懂点 不不不不 要要要要 紧紧紧紧 ,,,, 关关关关 键键键键 要要要要 勤改问追
为高 小 靠 故 顺 路 天无 心 右 却 溜 修 !上 行 注 频 了 好 ,路意发,了 安。避了可, 全生让,交走 责命车走通起 任至辆路事来 ,
同一底片洗出的 不同尺寸的照片
探索二
再看看图中两个相似的五边形,是否 与你观察所得到的结果一样?
1.相似多边形的特征:
形成认识:
对应边成比例,对应角相等.
符号语言(以四边形为例):
∵四边形ABCD∽四边形A′B′C′D′ AB BC CD DA AB BC C D DA A A, B B, C C , D D (相似多边形的对应边成比例,对应角相等)
基础训练
• 口答: • (4)如图,正方形的边长a=10,菱形的 边长b=5,它们相似吗?请说明理由.
基础训练
3 • 练习: • ⑴如图1,则x= ,y 2.5 = ,α= ; 1.5 900 • ⑵如图2,x= .
800
0 125 ╮
6
800
╰ 0 65
5
x y 30 20
图2 图1
α╭ 3 15 x
人教版九年级数学下册 (位似)相似教学课件(第1课时位似图形的概念及画法)
归纳:
两个相似多边形,如果它们对应顶点所在的直线相交 于一点,并且这点与对应顶点所连线段成比例,我们就把 这样的两个图形叫做位似图形,这个交点叫做位似中心.
例1 请指出下列图形那些是位似图形?并指出位似图形图的位似中心?
o
P
方法技巧: 判断两个图形是不是位似图形,需要从两方 面去考察:一是这两个图形是相似的,二是要有特殊的位 置关系,即每组对应点所在的直线都经过同一点.
解:(1)连接AA′,BB′,相交于点O,则点O 为位似中心; (2)作射线CO,DO ; (3)分别过点A′,B′作A′ D′∥AD 交射线DO 于点D′,B′ C′∥ BC 交射线CO 于点C′ ; (4)连接C′D′,四边形A′ B′ C′D′即为所要画的图形(如图 所示).
课堂小结
定义
位似图形的概念
★ 位似图形的画法
例3 如图,已知△ABC,以点O为位似中心画△DEF,使
其与△ABC位似,且位似比为2.
解:画射线OA、OB、OC;
D
在射线OA、OB、OC上分别取点D、E、F,
使OD = 2OA,OE = 2OB,OF = 2OC;
A
顺次连结D、E、F,使△DEF与△ABC位似,
E
相似比为2.
应顶点的连线必经过__位_ 似中____.
例
2.位似图形上某一对对应心点到位似中心的距离分别为5和10, 则它们的位似比为__1:2 _.
1:16
4.已知边长为1的正方形ABCD2且与它位
解似:的画正射方线形O. A、OB、OC、
E
H
OD;在射线OA、OB、OC、
及画法
性质
画法
两个相似多边形,如果它们对应顶点所在的直线相交于 一点,并且这点与对应顶点所连线段成比例,我们就把这 样的两个图形叫做位似图形,这个交点叫做位似中心.
人教版九年级下册数学 27.3 位似图形概念 (共24张PPT)
相似
对应点的连 线相交一点
对应边平行,(或 者在同一条直线上)
1. 判断下列各对图形是不是位似图形. (1)正五边形ABCDE与正五边形A′B′C′D′E′; 是 (2)等边三角形ABC与等边三角形A′B′C′. 是
思考:是否相似图形都是位似图形?
判断下面的正方形是不是位似图形?
A
D
不是
E
F
(1)
下面请欣赏如下图形的变换
下列图形中,每个图中的四边形ABCD和四 边形A′B′C′D′都是相似图形.分别观察这五个图,你 发现每个图中的两个四边形各对应点的连线有什么 特征?
1.位似图形的概念
如果两个图形不仅相似,而且每组对应点所 在的直线都经过同一点,对应边互相平行 (或者在同一条直线上),那么这样的两个 图形叫做位似图形,这个点叫做位似中心.此 时的相似比叫做位似比。
B
C
G
显然,位似图形是相似图形的特殊情形.相似图形不 一定是位似图形,可位似图形一定是相似图形
思考:位似图形有何性质?
2. 位似图形的性质 A〞(-2,-1),B(-2,0)
A〞(-2,-1),B(-2,0)
如何把三角形ABC放大为原来的2倍?
OA
你还有其从他第办法吗(?1试)试,看.(2)图中,我们可以看到,△OAB∽△O
以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍.
A′B′,则OA′
=
A〞(-2,-1),B(-2,0)
OB AB A′( -4 ,-6 ), B′( -4 ,-2 ), C′( -12 ,-4 )
AF AP AE EP FP
如在O何平B把 面′三直角角=形坐标AAB系C′中放,大B△′为A原BC来三.的从个2倍顶第?点的(坐标3)分别图为A中(2,3同),B(样2,1)可,C(6以,2),以看原点到O为AD位似=中心A,C相似=比为A2B画它=的位BC似图=形. DC
人教版九年级数学下册相似三角形全章课件
∴△A′B′C′∽△ABC
B
E C
A A′
B
B′ C
C′
△ABC∽△A′B′C′
如果一个三角形的三条边和另一个三角形的三条边 对应成比例,那么这两个三角形相似. 简单地说:三边对应成比例,两三角形相似.
【例】在△ABC和△A′B′C′中,已知:AB=6cm,BC= 8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′ =30cm.试证明△ABC与△A′B′C′相似.
A C
B
D
P2 P3
P1 P4
E
P5 F
【解析】(1)△ABC和△DEF相似.根据勾股定理,
得
, ,BC=5;
,,
.
∵
,∴ △ABC∽△DEF.
(2) 答案不唯一,下面6个三角形中的任意2个均可.
A C
B
P3 E
D P1 P2
P4
P5 F
△P2P5D,△P4P5F,△P2P4D,
△P4P5D,△P2P4 P5,△P1FD.
4.(成都中考)如图,已知线段AB∥CD,AD与B
C相交于点K,E是线段AD上一动点。 (1)若BK= KC,
求 的值;
(2)连接BE,若BE平分∠ABC,则当AE= AD时,猜想线
段AB、BC、CD三者之间有怎样的等量关系?请写出你的
结论并予以证明.再探究:当AE= AD (n>2),而其余
MN∥AB交BC于N,量得MN=38cm,则AB的长为 152c . m
2.如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形;
△ADG∽△AEH∽△AFI∽△ABC
(2)如果AD=1,DB=3,那么DG:BC=_1_:_4__. A
苏科版九年级下册数学教学课件 第6章 图形的相似 第5课时 三角形相似的判定及三角形的重心
AD=6,GE=3,则AG= 4 ,BE= 9 .
【解析】如图,连接DE,由G为重心,可知
DE为中位线,则DE ∥AB,且 DE 1 AB ,
2
易得△DEG∽△ABG,
可得EG 1 BG, DG 1 AG ,
则
AG
2
2 AD
4
2
,BE=3GE=9.
3
B
A
E G
D
C
CONTENTS4Biblioteka 三角形相似 的判定及三 角形的重心
的外接圆于点E.△ABE与△CDE相似吗?为什么?
解:△ABE和△CDE相似.
A
∵AB=AC, ∴AB = AC, ∴∠AEB=∠AEC. 在△ABE和△CDE中,
O
B
D
C
E
∵∠AEB=∠DEC,∠BAE=∠DCE,
∴△ABE∽△CDE (两角分别相等的两个三角形相似) .
三角形相似的判定
判定两个三角形相似基本思路: (1)若已知一对等角,则可找另一对等角,或说明夹已知等角的两 边成比例. (2)若已知两边成比例,则可说明其夹角相等,或说明第三边也成 比例. (3)若出现平行线,则利用“平行于三角形一边 的直线与其他两边 (或两边的延长线)相交,所构成的三角形与原三角形相似”来判定.
三角形的重心与顶点的距离等于它与对边中 点距离的两倍.
同样可得△G'DE∞△G'AB,
G'E' 1 G'B'. 2
于是,点G'与点G重合,
三角形的三条中线相交于一点.
B
F
E
G'
D
C
三角形的重心
定 义:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A1
F1
AF
B1
E1
B
E
CD
C1
D1
六边形ABCDEF与六边形A1B1C1D1E1F1的
相似比为 k2= 1 : 2,
对应边 AB:A1B1= 1 : 2 。
相似比与叙述的顺序有关。
相似多边形
各对应角相等、各对应边成比例的 多边形叫做相似多边形.
B
A1
A
F
C
F1
B1 C1
ED
E1
D1
两个多边形相似的条件 对应角相等。 对应边成比例。
小练习
在下列图形中,找出相似图形。
多边形
由在同一平面且不在同一直线上 的多条线段首尾顺次连结且不相交所 组成的图形叫做多边形。
相似多边形
这个零 件中,有没
根据相似多边形的特有征相,似的给图 相似多边形下定义。 形?
这两个图案 中,有没有 相似的图形?
对应角有什么关系?对应边有什么关系? A 正三角形 60° 缩小 A1 60°
题型1 判断两个多边形是否相似
例题
3 正方形 4 菱形
3
4
解: ∵ 正方形,菱形的四条边都相等.
∴ 它们的对应边成比例,k = 3 : 4.
∵ 正方形的四个内角均为直角,而菱形的内角有钝角有锐角.
∴ 它们的对应角不相等.
∴ 这一组图形不相似.
例题
3 正方形
6 长方形
3
8
解:∵ 正方形和矩形的四个内角都是直角. ∴ 它们的对应角相等. ∵ 对应边 3 : 6 ≠ 3 : 8. ∴ 它们的对应边不成比例. ∴ 这一组图形不相似.
AB BC CD DE EF FA
=
=
=
=
=
A1B1 B1C1 C1D1 D1E1 E1F1 F1A1
对应边成比例
不规则四边形 B
请分别量出
这两个不规则四
边形各内角的度
数,求出对应边 的长度。
C
缩小
B1 对应边有什么关系?
C1
A A1
对 应 角 有 什 么 D关 系?
D1
知识要点
相似多边形
对应角相等,对应边成比例。
(对应边的比相等)
相似比
相似多边形对应边的比。(k > 0)
若相似比k =1 ,相 似图形有什么关系?
当相似比k =1时, 相似图形即是全等图形。
全等是一种特殊的相似。
A
F
B
E
A1 F1
B1
E1
C
D
C1 D1
六边形ABCDEF与六边形A1B1C1D1E1F1的 相似比为 k1= 2 : 1,
对应边 AB:A1B1= 2 : 1 。
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正八边形 AF
150° B
放大 B1 E
A1 150°
F1 E1
回顾旧知
这一版邮票有什么特点?
全等图形
A
A
B C B
C
形状、
大小完全相 同的图形是 全等图形。
新课导入
多啦A梦的2寸照片和4寸照片,他的形状改变 了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
教学目标
知识与能力
• 感知相似图形在现实中的应用。 • 认识形状相同的图形。 • 了解相似图形的基本内涵。
识其内涵。
探究
你能来归归类吗?
四阶魔方和三阶魔方形状相同吗?大小呢?
知识要点
两个图形的形状 完__全__相__同__,但图形 的大小位置不__一__定__相__同__,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似 图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以看 作由另一个图形放大或缩小得到。
求:(1)相似比等于多少? (2)FG,IJ,BC,AE, ∠F, ∠C
F
A
G
B
J
E
C
D H5 I
A B 2 120°
G
E6
2.2
C3D H
F 4 J
5I
解:(1)相似比=CD : HI=3 : 5 (2)∵五边形ABCDE相似于五边形FGHIJ ∴ ∠F =∠A=120o, ∠C= ∠H=90o, ∴AB : FG = BC : GH = CD : HI = DE : IJ = EA : JF 即2 : FG = BC : 6 = 3/5 = 2.2 : IJ = AE :4 解得FG =10/3 cm, BC =18/5cm,IJ=11/3cm,AE=12/5cm
C
D
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 ∠D =∠D1,∠E =∠E1, ∠F =∠F1
D1 对应角相等
对应边有什么关系? A1 正八边形
AF
B
放大 B1 E
F1 E1
C
D
AB
=
BC
=
CD
=
DE
=
EF
=
C1 FA
,
D1
A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1
EF:AB =150:(150+2×7.5)=10/11.
∴ EH:AD≠EF:AB.
∴ 它们的对应边不成比例.
∴ 矩形ABCD和矩形EFGH不相似.
题型2 求相似多边形的对应角或对应边
例题
五边形ABCDE相似于五边形FGHIJ,且 AB=2cm,CD=3cm,DE=2.2cm,GH=6cm, HI =5cm,FJ=4cm, ∠A=120°,∠H=90°
过程与方法
• 通过观察、操作,了解相似图形的过程。 • 进一步了解相形在实际生活中的应用。 • 掌握简单的画图方法,在动手操作中认识 • 相似图形。
情感态度与价值观
• 注学生能否从图形相似的角度识别现 • 实生活中大量存在的观察和规律。 • 培养合作交流意识。
教学重难点
• 认识形状相同的图形。 • 对相似图形概念的理解。 • 抓住形状相同的图形的特征,认
例题
一块长 3m,宽1.5m的矩形黑板,镶其外
围的木质边宽7.5cm。边框内外边缘所组成的
矩形相似吗?为什么?
A
D
解: ∵ 矩形的每个内角都等于90o.
E
H
∴ ∠A =∠E = 90°,∠B =∠F = 90° F
∠C =∠G = 90°,∠D =∠H = 90°
∴ 它们的对应角相等.
B
G
C
∵ EH:AD=300:(300+2×7.5)=20/21.
相似六边形
相似多边形的对应高
相似多边形的对应角平分线
相似多边形的对应中线
相似多边形的对应对角线
A A1
B
C
B1
C1
相似多边形的对应三角形
相似多边形的性质
相似多边形对应高的比、对应角平分线的比、 对应中线的比、对应周长的比都等于相似比。
(在27.2.3中学习到) 相似多边形对应对角线的比等于相似比。 相似多边形对应三角形相似,且相似比等于相 似多边形的相似比。 相似多边形面积的比等于相似比的平方。 相似多边形对应三角形面积的比等于相似多边 形的相似比的平方。(在27.2.3中学习到)