核辐射物理与探测学复习
核辐射物理及探测学
ph c p
作用截面与吸收物质原子序数的关系
光电效应 康普顿散射 电子对效应
ph Z 5 c Z
p Z2
总体来说,吸收物质原子序数越大,各 相互作用截面越大,其中光电效应随吸 收物质原子序数变化最大,康普顿散射 变化最小。
而且, 2 m
m较大时,m与有限次测量的平均值 N 和任一次测量值 N 相差不大。
m N N N为单次测量值
计数测量结果的表示:
N N N N
表示一个置信区间,该区间包含真平均值的 概率为68.3%(置信度)。
标准偏差 随计数N增大而增大,因此用 相对标准偏差来表示测量值的离散程度:
• 坪特性 ——计数率与工作电压的关系
• 探测效率:记下脉冲数/入射到灵敏体积内的 粒子数
• 时间特性:
– 分辨时间:能分辨开两个相继入射粒子的最小时 间间隔
– 时滞:粒子入射与输出信号的时间差 – 时间分辨本领:确定入射粒子入射时刻的精度
累计电离室的主要性能
• 饱和特性——输出电流信号与工作电压的关系
p ln hv
(5m0c2 hv 50m0c2 )
电子对效应截
随入射光子能 开始基本为常数,面随入射光子
量增加而减小,随入射光子能量 能量增加而增
开始时变化剧 增加而减小,减 加,只有光子
烈,后基本成 小比光电效应缓 能量大于
反比。
慢。
1.022MeV才能
发生。
次电子能量
光电效应: 光电子 Ee hv i
v2 x1
核辐射探测复习资料B.
核技术 核探测复习材料 一、简答题:1.γ射线与物质发生相互作用有哪几种方式?( 5分)答:γ射线与物质发生相互作用(1)光电效应 (2)康普顿效应(得2分)(3)电子对效应(得2分) 2.典型的气体探测器有哪几种?各自输出的最大脉冲幅度有何特点,试用公式表示。
(5分) 答:典型的气体探测器有(1)电离室(得1分)(2)正比计数管(得1分)(3)G-M 计数管(得1分)脉冲幅度:(1)电离室:C e w E v =(得1分)(2)正比计数管:Cew E M v ∙= (得0.5分)(3)G-M 计数管 最大脉冲幅度一样(得0.5分)3.简述闪烁体探测器探测γ射线的基本原理。
(5分)答:γ射线的基本原理通过光电效应 、 康普顿效应和电子对效应产生次级电子(得1分),次级电子是使闪烁体激发(得1分),闪烁体退激发出荧光(得1分),荧光光子达到光电倍增管光阴极通过光电效应产生光电子(得1分),光电子通过光电倍增管各倍增极倍增最后全部被阳极收集到(得1分),这就是烁体探测器探测γ射线的基本原理。
注:按步骤给分。
4.常用半导体探测器分为哪几类?半导体探测器典型优点是什么?(5分)答:常用半导体探测器分为(1) P-N 结型半导体探测器(1分)(2) 锂漂移型半导体探测器;(1分)(3) 高纯锗半导体探测器;(1分)半导体探测器典型优点是(1) 能量分辨率最佳;(1分)(2)射线探测效率较高,可与闪烁探测器相比。
(1分)5.屏蔽β射线时为什么不宜选用重材料?(5分)答:β射线与物质相互作用损失能量除了要考虑电离损失,还要考虑辐射损失(1分),辐射能量损失率222NZm E z dx dE S radrad∝⎪⎭⎫ ⎝⎛-= 与物质的原子Z 2成正比(2分),选用重材料后,辐射能量损失率必然变大,产生更加难以防护的x 射线(2分)。
故不宜选用重材料。
注:按步骤给分。
6.中子按能量可分为哪几类?中子与物质发生相互作用有哪几种方式。
核辐射物理与探测学
定义 反应能Q 为: Q Tb TB Ta TA
Mmaa
mA c2
MA c2
mb
Mb
mB
MB
c2
c 2
a A b B
Q > 0 为放能反应; Bb BB Ba BA
Q < 0 为吸能反应。
4.2 核反应能和Q方程
当出射粒子为 射线时,称这类核反应为辐射俘获。
197Au( p, )198Hg 59Co(n, )60Co
2) 按入射粒子分类
(a) 中子反应 由中子入射引起的核反应。
中子反应的特点: 中子不带电,与核作用时,不存在库仑位 垒,能量很低的中子就能引起核反应。
4.1 核反应概述
根据出射粒子的不同,中子反应有: (n, n),(n, n),(n, ),(n, p),(n, ),(n,2n)......
即: 1l f 1 l f 只能取偶数。
综合考虑角动量守恒和宇称守恒:l f 可取值为 2 或 4 。
4.2 核反应能和Q方程
第四章 原子核反应
1、核反应能 Q 对核反应: a A B b
静止质量: ma mA mB mb
由能量守恒:
相应动能: Ta TA
TB Tb
(ma mA )c2 (Ta TA ) (mB mb )c2 (Tb TB )
线为电子; 提出了原子的核式 模型;首次实现人工核反应;培 养了10位诺贝尔奖获得者.
第四章 原子核反应
4.1 核反应概述
核反应的一般表达式: A a, b1, b2 , b3,... B 或:a A B b1 b2 A 为靶核; a 为入射粒子; B 为剩余核;b1,b2…为出射粒子。 对于出射粒子为一个的情况:
核辐射探测复习资料(卢秉祯版)
核辐射探测第一章 核辐射及其探测原理1.1核辐射基本特性辐射和X 辐射都是电磁辐射。
辐射是核跃迁或粒子湮灭过程中发出的电磁辐射。
X 辐射是核外电子从高能级跃迁过程中产生的电磁辐射。
1.2探测带电粒子的物理性质探测原理:利用带电粒子在物质中对物质原子产生的电离或激发效应或快速轻带电粒子穿过物质时的电磁辐射效应。
带电粒子与物质的作用方式:带电粒子与核外电子的非弹性碰撞——电离与激发;带电粒子与原子核的非弹性碰撞——轫致辐射(带电粒子的速度和运动方向改变产生的电磁辐射)或切连科夫辐射(特定条件下物质产生定向极化而随之发出的电磁辐射);带电粒子与原子核的弹性碰撞——弹性散射。
带电粒子的能量损失方式:电离损失和辐射损失。
EZ dx dE ion 2)(∝- 辐射长度om x 是电子在物质中由于辐射损失而使其能量减少到原来能量的1/e 时的物质度。
电子的电离损失率和辐射损失率之比:800.1600)()()(22Z E c m z c m E dx dE dx dE ee C ion rad =+≈-- 当电子电离损失率与辐射损失率一样时Z c E 800= 带电粒子与物质作用后不再作为自由粒子而存在的现象叫吸收,其中带电粒子从进入物质到被吸收,沿入射方向所穿过的最大距离叫射程。
对正电子的探测一般是通过探测湮没γ光子间接进行的。
1.3 X 和γ射线的探测原理:利用他们在物质中的光电效应,康普顿散射,电子对产生等产生的次级电子引起物质的电离和激发探测。
光电效应:光子被原子吸收后发射轨道电子的现象。
内层电子(K )容易些,低能高Z康普顿散射:γ光子与轨道电子相互作用使得γ光子只改变方向而不损失能量。
2c m h e≈ν 外层电子发生概率大。
中能中Z 电子对效应:γ光子与原子核发生电磁相互作用,γ光子消失而产生一个电子和一个正电子(电子对)的现象。
22c m hv e≥且要原子核参加。
高能高Z 1.4中子探测方法两步:1.中子和核的某种相互作用产生带电粒子或γ光子;2.利用这些带电粒子或γ光子的次级带电粒子引起的电离或激发进行探测。
核辐射物理及探测学答案
核辐射物理及探测学答案核辐射物理及探测学是研究核辐射的性质、产生机制、相互作用规律以及辐射测量和探测技术的学科。
下面是核辐射物理及探测学的答案参考:1. 什么是核辐射?核辐射是指核物质发生放射性衰变时释放出的高能粒子或电磁波的过程。
常见的核辐射有α粒子、β粒子和γ射线。
2. 核辐射的产生机制是什么?核辐射的产生机制主要包括原子核的自发衰变和核反应两种形式。
自发衰变是核物质内部没有外界原因的情况下自动发生的衰变过程,而核反应是核物质与其他物质相互作用时发生的核变化过程。
3. 核辐射与物质的相互作用规律有哪些?核辐射与物质的相互作用规律包括电离作用、激发作用和相互作用距离的特性。
电离作用是指核辐射通过与物质内部原子或分子的相互作用,将其电子从原子或分子中脱离的过程;激发作用是指核辐射使物质原子或分子的能级发生变化,但并没有电离的过程;相互作用距离的特性指的是不同类型的核辐射在物质中的相互作用长度和穿透深度的区别。
4. 核辐射的测量与探测技术有哪些?核辐射的测量与探测技术主要包括电离室、半导体探测器、闪烁体探测器、核废液谱仪等。
电离室是一种通过测量核辐射在气体中电离产物的形成量来确定辐射强度的装置;半导体探测器利用半导体材料特殊的电子结构对核辐射进行测量;闪烁体探测器则是利用某些材料在受到核辐射后会产生可见光信号的特性进行测量;核废液谱仪是一种用于测量放射性废弃物中放射性核素种类和浓度的仪器。
5. 核辐射的应用有哪些?核辐射的应用涉及核能、医学、工业等领域。
在核能方面,核辐射被用于核电站的能源生产;在医学方面,核辐射被用于放射治疗、核医学诊断等;在工业方面,核辐射被用于材料检测、气候变化研究等。
此外,核辐射还被用于食品辐照处理、碳测年等。
核辐射物理与探测学课后习题
核辐射物理与探测学课后习题第一章原子核的基本性质1-1 当电子的速度为18105.2-?ms 时,它的动能和总能量各为多少?1-2 将α粒子的速度加速至光速的0.95时,α粒子的质量为多少? 1-5 已知()()92,23847.309,92,23950.574MeV MeV ?=?= ()()92,23540.921,92,23642.446MeV MeV ?=?=试计算239U ,236U 最后一个中子的结合能。
1-8 利用结合能半经验公式,计算U U 239236,最后一个中子的结合能,并与1-5式的结果进行比较。
第二章原子核的放射性2.1经多少半衰期以后,放射性核素的活度可以减少至原来的3%,1%,0.5%,0.01%?2.7 人体内含%18的C 和%2.0%的K 。
已知天然条件下C C 1214与的原子数之比为12102.1,C 14的573021=T 年;K 40的天然丰度为%0118.0,其半衰期a T 911026.1?=。
求体重为Kg 75的人体内的总放射性活度。
2-8 已知Sr 90按下式衰变:Zr Y Sr h a 9064,901.28,90??→→?--ββ(稳定) 试计算纯Sr 90放置多常时间,其放射性活度刚好与Y 90的相等。
2-11 31000cm 海水含有g 4.0K 和g 6108.1-?U 。
假定后者与其子体达平衡,试计算31000cm 海水的放射性活度。
第三章原子核的衰变3.1 实验测得Ra 226的α能谱精细结构由()%95785.41MeV T =α和()%5602.42MeV T =α两种α粒子组成,试计算如下内容并作出Ra 226衰变网图(简图)(1)子体Rn 222核的反冲能;(2)Ra 226的衰变能;(3)激发态Rn 222发射的γ光子的能量。
3.2 比较下列核衰变过程的衰变能和库仑位垒高度:Th He U 2304234+→;Rn C U 22212234+→;Po O U 21816234+→。
辐射探测学复习要点
辐射探测学复习要点第一章辐射与物质的相互作用〔含中子探测一章〕1.什么是射线?由各种放射性核素发射出的、具有特定能量的粒子或光子束流。
2.射线与物质作用的分类有哪些?重带电粒子、快电子、电磁辐射〔γ射线与*射线〕、中子与物质的相互作用3.电离损失、辐射损失、能量损失率、能量歧离、射程与射程歧离、阻止时间、反散射、正电子湮没、γ光子与物质的三种作用电离损失:对重带电粒子,辐射能量损失率相比小的多,因此重带电粒子的能量损失率就约等于其电离能量损失率。
辐射损失:快电子除电离损失外,辐射损失不可忽略;辐射损失率与带电粒子静止质量m 的平方成反比。
所以仅对电子才重点考虑辐射能量损失率:单位路径上,由于轫致辐射而损失的能量。
能量损失率:指单位路径上引起的能量损失,又称为比能损失或阻止本领。
按能量损失作用的不同,能量损失率可分为"电离能量损失率〞和"辐射能量损失率〞能量歧离(Energy Straggling):单能粒子穿过一定厚度的物质后,将不再是单能的〔对一组粒子而言〕,而发生了能量的离散。
电子的射程比路程小得多。
射程:带电粒子在物质中不断的损失能量,待能量耗尽就停留在物质中,它沿初始运动方向所行径的最大距离称作射程,R。
实际轨迹叫做路程P。
射程歧离(Range Straggling):由于带电粒子与物质相互作用是一个随机过程,因而与能量歧离一样,单能粒子的射程也是涨落的,这叫做能量歧离。
能量的损失过程是随机的。
阻止时间:将带电粒子阻止在吸收体所需要的时间可由射程与平均速度来估算。
与射程成正比,与平均速度成反比。
反散射:由于电子质量小,散射的角度可以很大,屡次散射,最后偏离原来的运动方向,电子沿其入射方向发生大角度偏转,称为反散射。
正电子湮没放出光子的过程称为湮没辐射γ光子与物质的三种作用:光电效应〔吸收〕、康普顿效应〔散射〕、电子对效应〔产生〕电离损失、辐射损失:P1384.中子与物质的相互作用,中子探测的特点、根本方法和根本原理中子本身不带电,主要是与原子核发生作用,与γ射线一样,在物质中也不能直接引起电离,主要靠和原子核反响中产生的次级电离粒子而使物质电离。
核辐射物理及探测学
核辐射物理及探测学概述核辐射物理及探测学是研究核辐射现象的一门学科,主要涉及核辐射的性质、产生机制、相互作用以及探测技术等方面的内容。
核辐射是指从原子核中放射出的高能粒子或电磁波。
了解和研究核辐射物理及探测学对于核能安全、医学影像学、环境监测等领域都具有重要意义。
核辐射的种类和性质核辐射主要分为三种类型:α粒子、β粒子和γ射线。
α粒子由两个质子和两个中子组成,具有正电荷,解离能力强,穿透能力弱;β粒子可分为β-粒子和β+粒子,分别由电子和正电子组成,具有中等穿透能力;γ射线是一种高能电磁波,没有电荷,穿透能力最强。
核辐射还具有放射性衰变的特点,即原子核在放射过程中会改变自身的组成。
放射性衰变可以分为α衰变、β衰变和γ衰变三种形式,每种衰变形式对应不同的核辐射类型。
核辐射的产生机制核辐射的产生主要有两种方式:放射性衰变和核聚变/核裂变。
放射性衰变是指某些核素原子在放射过程中发出核辐射,以减少其相对不稳定的核子比例,达到更加稳定的状态。
放射性衰变的速率由半衰期决定,半衰期越短,衰变速率越快。
核聚变和核裂变是通过外界的能量输入使得原子核发生变化的过程。
核聚变是指两个轻核聚合成一个更重的核,核裂变是指一个大的核分裂成两个或多个较小的核。
聚变和裂变释放出大量的能量和核辐射。
核辐射与物质的相互作用核辐射与物质之间的相互作用是核辐射物理及探测学中的一个重要研究内容。
核辐射与物质的相互作用方式主要有电离作用和激发作用。
电离作用是指核辐射与物质中的原子或分子作用,使其失去或获取电子,形成带电粒子。
这种作用导致原子或分子的离子化,产生电离辐射。
激发作用是指核辐射能量被传递给物质中的原子或分子,使其电子处于激发状态。
激发态的电子会经过一系列的跃迁过程,放出电磁辐射。
核辐射的电离作用和激发作用对人类和环境都有一定的危害,因此需要开展核辐射监测和防护工作。
核辐射探测技术核辐射探测技术是用于测量和检测核辐射的一系列技术方法和装置。
核辐射探测复习题第二章练习题答案
复合 区饱合 区正比区有限 正比 区G | M 区工作电压(V)离子对收集数v0连续放电区1. 电离室、正比计数管和盖革—弥勒(G —M)计数管;电离室。
2. δ电子。
3. 辐射光子、发射俄歇电子、亚稳原子。
4. 利用收集核辐射在气体中产生的电离电荷来探测核辐射。
5.6. 电流电离室、脉冲电离室、累计电离室。
7. 第一步,假设回路中没有负载电阻,求出极板a 、b 间的电荷量Q ;第二步,根据高斯定律,即正电荷靠哪个极板近,哪个极板上产生的感应电荷多;第三步,得出正离子漂移所引起的负感应电荷在回路中流过的电荷量-q;第四步,外回路电流结束后,流过外回路的总电荷量为? 8. 正比,Cew E C e N V ⋅-=-=009.λR λCLR C '1C)(0t I )(t V 0C)(0t IR )(t V10. 脉冲幅度谱峰值一半处所对应的全宽度称为半高宽,用FWHM表示,V V FW HM σ355.2=∆=;能量分辨率定义为探测器微分脉冲幅度分布谱中的特征峰半高宽与峰值所对应的脉冲幅度之比,用η表示,EEV V ∆=∆=ηη或 11. 入射带电粒子进入正比计数管灵敏体积后,使气体分子或原子电离,生成N0个离子对(初电离)。
初电离电子在电场作用下向中心阳极漂移过程中,不断和气体分子或原子碰撞而损失能量,又不断地从电场获得能量,离中心收集极越近,电场越强,在r=r0处,电场强度足够大,可以使初电离电子获得更大冲量而使气体分子或原子电离(次电离),次电离电子又会产生新的次电离。
于是电子不断地增殖,增殖的结果将产生大量的电子和正电子,这就是气体放大的过程。
12. 非自持放电、同轴圆柱型。
13. 坪特性。
14. 【优点】:制造简单,价格便宜,易于操作,输出脉冲幅度大,对电子学线路要求简单;【缺点】:死时间长,不能用于高计数率场合。
15. 10≈νM16. ①G-M 计数管的电荷增殖主要是由光电子引起的雪崩决定的,而正比计数管主要是由电离电子引起;②正比计数管每次雪崩在管内都是对应于入射辐射产生初始自由电子的那一侧,即气体放大只是在管内局部区域发生,而对于G-M 技术管,光子是各个方向发射的,所以雪崩放大是在整个管子范围内,不管初始电离发生在管内何处,雪崩放电都会逐渐包围整个阳极丝。
核辐射探测复习知识点
第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。
同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。
核辐射物理与探测学复习资料
核辐射物理与探测学复习一、关于载流子1) 无论是气体探测器,还是闪烁、半导体探测器,其探测射线的本质都是将射线沉积在探测器灵敏体积内的能量转换为载流子。
这三种探测器具有不同的载流子,分别是:气体(),闪烁体(),半导体();答:气体:电子-离子对;闪烁体:第一个打拿极收集到的光电子;半导体:电子-空穴对;2) 在这个转换过程中,每产生一个载流子都要消耗一定的能量,称之为(),对于三种探测器来说,这个能量是不同的,分别大概是多少?气体(),闪烁体(),半导体()。
这个能量是大些好,还是小些好?为什么?答:平均电离能;30eV,300eV,3eV;这个能量越小越好,因为平均电离能越小,产生的载流子就越多,而载流子的数目服从法诺分布,载流子越多则其数目的相对涨落越小,这会导致更好的能量分辨率;3) 在这个转换过程中,射线沉积在探测器中的能量是一个()变量,而载流子的数目是一个()变量,载流子的数目是不确定的,它服从()分布,该分布的因子越是大些好,还是小些好?为什么?答:连续型变量;离散型变量;法诺分布;法诺因子越小越好,小的法诺因子意味着小的统计涨落,导致好的能量分辨率;二、关于探测效率1) 对于不带电的粒子(如γ、中子),在探测器将射线沉积在其灵敏体积中的能量转换为载流子之前,还需要经历一个过程,如果没有该过程,则探测器无法感知射线。
以γ射线为例,这个过程都包含哪些反应()?这个过程的产物是什么()?对于 1 个1MeV 的入射γ射线,请随便给出一个可能的该产物能量()?答:对于γ射线,这些反应包括光电效应、康普顿散射以及电子对效应(如果γ射线的能量>1.022MeV);这些反应的产物都是次级电子;对于 1 个1MeV的γ射线,次级电子的能量可以是几十keV~几百keV,也可以是接近1MeV;2) 这个过程发生将主要地决定探测器的探测效率,那么影响探测效率(本征)的因素都有哪些()?在选择探测器的时候,为了得到高的探测效率(本征),应该做什么考虑()?答:影响本征探测效率的因素有:探测器的原子序数、密度、体积、形状,以及γ射线的能量,甚至还包括射线射入探测器的位置、角度;在选择探测器时,为了得到高的本征探测效率,应该选择那些原子序数高、密度大的探测器,探测器的体积要大并且探测器的形状合理(例如正圆柱形);3) 绝对探测效率和本征探测效率的区别是什么?答:绝对探测效率考虑的是对每一个源发射出的粒子,探测器测量到的计数值;本征探测效率考虑的是对每一个射入探测器的粒子,探测器测量到的计数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核辐射物理与探测学复习注:本提纲中的问题覆盖范围并不完备,因此不能完全替代书本复习,仅作参考之用!一、关于载流子1) 无论是气体探测器,还是闪烁、半导体探测器,其探测射线的本质都是将射线沉积在探测器灵敏体积内的能量转换为载流子。
这三种探测器具有不同的载流子,分别是:气体(),闪烁体(),半导体();答:➢气体:电子-离子对;➢闪烁体:第一个打拿极收集到的光电子;➢半导体:电子-空穴对;2) 在这个转换过程中,每产生一个载流子都要消耗一定的能量,称之为(),对于三种探测器来说,这个能量是不同的,分别大概是多少?气体(),闪烁体(),半导体()。
这个能量是大些好,还是小些好?为什么?答:➢平均电离能;30eV,300eV,3eV;➢这个能量越小越好,因为平均电离能越小,产生的载流子就越多,而载流子的数目服从法诺分布,载流子越多则其数目的相对涨落越小,这会导致更好的能量分辨率;3) 在这个转换过程中,射线沉积在探测器中的能量是一个()变量,而载流子的数目是一个()变量,载流子的数目是不确定的,它服从()分布,该分布的因子越是大些好,还是小些好?为什么?答:连续型变量;离散型变量;法诺分布;法诺因子越小越好,小的法诺因子意味着小的统计涨落,导致好的能量分辨率;二、关于探测效率1) 对于不带电的粒子(如γ、中子),在探测器将射线沉积在其灵敏体积中的能量转换为载流子之前,还需要经历一个过程,如果没有该过程,则探测器无法感知射线。
以γ射线为例,这个过程都包含哪些反应()?这个过程的产物是什么()?对于1个1MeV的入射γ射线,请随便给出一个可能的该产物能量()?答:➢对于γ射线,这些反应包括光电效应、康普顿散射以及电子对效应(如果γ射线的能量>1.022MeV);➢这些反应的产物都是次级电子;➢对于1个1MeV的γ射线,次级电子的能量可以是几十keV~几百keV,也可以是接近1MeV;2) 这个过程发生将主要地决定探测器的探测效率,那么影响探测效率(本征)的因素都有哪些()?在选择探测器的时候,为了得到高的探测效率(本征),应该做什么考虑()?答:➢影响本征探测效率的因素有:探测器的原子序数、密度、体积、形状,以及γ射线的能量,甚至还包括射线射入探测器的位置、角度;➢在选择探测器时,为了得到高的本征探测效率,应该选择那些原子序数高、密度大的探测器,探测器的体积要大并且探测器的形状合理(例如正圆柱形);3) 绝对探测效率和本征探测效率的区别是什么?答:➢绝对探测效率考虑的是对每一个源发射出的粒子,探测器测量到的计数值;➢本征探测效率考虑的是对每一个射入探测器的粒子,探测器测量到的计数值。
➢绝对探测效率是整个探测系统中所有环节的综合表现;而本征探测效率则主要反映了探测器的特性;三、关于能量分辨率1) 能量分辨率是探测器的一项重要指标,但能量分辨率并不是一个特定的量,当我们说某个探测器的能量分辨率是多少的时候,需要指定条件,这个(些)条件是()。
答:➢需要指定这是对哪个能量说的。
比如,当我们说某个NaI(Tl)探测器的能量是7%的时候,指的是对662keV的γ射线能量,如果是对于1.33MeV的γ射线,就不再是7%了,而是要小一些;2) 能量分辨率是个绝对的概念还是相对的概念()?答:➢是个相对的概念,能量分辨率的分子是全能峰的半宽度,分母是全能峰能量的期望值;3) 对于某个确定的探测器,能量分辨率与灵敏体积内沉积能量的关系是什么()?答:➢如果仅仅考虑载流子的统计性问题,则能量分辨率与灵敏体积内沉积能量的关系是反比于E的1/2次方;4) 虽然我们希望能量分辨率越小越好,但实际上它总是受统计涨落限制的,不可能无限小。
请从载流子的角度描述,这个限制是什么?答:➢一个确定的射线能量经过带电粒子在探测器内的电离过程,变成了数目不等的载流子,载流子的的数目服从法诺分布;当载流子数目的期望值N较大时,它将表现为一个期望值为N,sigma为sqrt(FN)的高斯分布,由此决定的能量分辨率为2.355×sqrt(F/N);➢这个分辨率是无法再被改善的,是分辨率的极限,实际中还要考虑其它因素对能量分辨率的影响,因此能量分辨率还要更差。
四、射线与物质相互作用1) 带电粒子在射入某个物质时,可以与物质发生四种类型的作用,分别是()?虽然从微观上看,带电粒子与物质发生的每次相互作用的效果是()的,但是从宏观上看,我们可以认为带电粒子在进入介质中之后,一定和介质发生了相互作用。
答:➢带电粒子使原子核外电子电离或激发;带电粒子受到原子核库仑力时发生的轫致辐射;带电粒子与原子核发生的弹性碰撞;带电粒子与原子核外电子发生的弹性碰撞(实际相当与整个原子);➢带电粒子与物质发生的每次相互作用都是随机的(例如,碰撞参数不同,导致其传递给电子的能量就是不同的);2) 重带电粒子与介质发生相互作用的主要类型是();假设你是一个α(~5MeV)粒子,当你进入某一个介质并被其阻止时,你是否会知道该介质的原子序数是多少,为什么?随着进入该介质的深度不断增加,你的能量将会不断(),对于某个确定的深度,你的能量也是确定的吗,为什么?你是否可以准确预测你将在哪里停下来,为什么?你在介质中损失能量的同时,也在介质中造成了影响(“乒乒乓乓,有的电子被电离,有的电子被激发……”),那么随着你的不断深入,你在路上观察到的自由电子是越来越密集,还是越来越稀疏,为什么(不考虑你快要停下来时候的情形)?你的行进道路是曲折的,还是直来直去的,为什么?曾经有一些电子,距离你的路径是那样的近,当你从它们身边掠过的时候,它们被你强劲地拉动了,形成了()?它们在停止之前又做了些什么?答:➢重带电粒子与介质发生相互作用的主要类型是电离(激发);➢如果我是一个α粒子,我无法判断介质的原子序数,因为尽管电离能量损失率是与原子序数Z成正比的,但是同时也是与原子密度N成正比的;仅仅通过电离能量损失一项无法判断Z的大小;➢随着进入介质深度的增加,能量将会不断下降;➢在某个确定的深度,α粒子的能量不是确定的。
原因是α粒子的能量损失过程是一个随机过程,其能量会随着射程的延伸而表现出能量歧离;不过α粒子能量的期望值是确定的;➢不能确定地预测α粒子将在哪里停下来,同样是因为能量损失过程的随机性导致的射程歧离;➢随着射程的延伸,α粒子的能量逐渐降低,在单位路径上交给电子的能量越来越多,因此看到的自由电子越来越密集(未考虑最终阶段)。
➢α粒子的径迹基本是直线,因为α粒子质量远远超过电子的质量,α粒子的方向很难被改变;➢那些碰撞参数很小的电子形成了delta电子,这些电子的能量足够高,还能接着去电离;3) 快电子与物质发生相互作用的主要类型包括()和(),二者都可以使快电子的能量损失,其比例关系是()。
如果你是个快电子,射入了某一个介质,你有无可能告诉我们该介质的原子序数是高还是低,为什么?为什么你看起来像个醉汉,东歪西扭地走路?是什么原因,使你突然发生了接近180度的偏转?对于α粒子,知道了起始位置和入射方向,其终点位置就差不多确定了,那么对于快电子呢?答:➢快电子与物质相互作用的主要类型为电离(激发)和轫致辐射;二者的比例关系为EZ/700(轫致辐射能量损失率vs电离(激发)能量损失率);➢如果是个快电子,进入介质之后,有可能根据两种能量的损失关系来判断原子序数的高低;➢与入射电子发生碰撞的可能是电子,二者质量相同,因此入射电子的方向可能发生很大的变化;与入射电子发生碰撞的也可能是原子核,高原子序数的原子核提供的强大库仑力可能会使入射电子发生大角度的反散射;因此电子的径迹是曲曲折折的;高原子序数原子核对电子的吸引使得电子180度的反散射成为可能;➢对于α粒子来说,入射方向和入射位置确定,基本终点就可以确定了,但是对电子是不可能的;4) 假如一个α粒子和一个电子同时从坐标(0,0,0)(单位:cm)的位置出发,并也碰巧都停在了某个介质中的(10,0,0)位置处。
问它们各自走了多少路程,α粒子答曰:“10.01cm左右吧!”电子答曰:“屈指算来,与α粒子相仿也是10cm左右”。
它们的回答是否正确,为什么?答:➢对于α粒子来说,是正确的,因为其射程与路程长度相当;➢对于电子来说,不对,它的路程长度远远超过射程;5) 在一个半径为1cm的NaI晶体球的球心处,有一个能量为3MeV的电子想要“跑出去”,很不幸,它没有成功,为什么?如果有10000个这样的电子被“抓住”了,那么能否说NaI晶体球内沉积的能量增加了30GeV呢,为什么?答:➢因为3MeV电子的在NaI中的射程仅为~4mm,不足以射出1cm的NaI球;➢由于电子能量可能以轫致辐射的方式损失,而轫致辐射产生的X射线可能穿透NaI 球出去,因此NaI晶体球沉积的能量小于30GeV;6) β射线与单能快电子的区别是什么?当一束β射线射入某种介质时,随着入射深度的不断延伸,我们能够观测到的电子数目会越来越少,其减少规律近似地服从一种规律,是什么()?答:➢β射线的电子能量是连续的,不是单一的;➢这个规律是“指数”衰减规律;7) 对于不带电的粒子,我们通常关心的是γ射线和中子。
它们是间接致电离粒子,需要先通过某些反应变成带电粒子才可以电离。
对于γ射线来说,它能不能和射入的介质发生相互作用是一个()事件。
在射入某个介质之后,它可能和介质中的原子发生三种反应(虽然不局限于此三种,但我们只感兴趣这三种),分别是什么?这三种反应的截面与原子序数和能量关系很重要,这个关系是什么?请说出这三种反应的产物及其可能存在的后续反应的产物都是什么?答:➢随机事件;➢光电效应、康普顿散射、电子对效应(γ射线能量超过1.022MeV);➢这三种反应的截面与原子序数的关系是Z的5次方、1次方和2次方;与能量的关系总的来讲:随着能量提高,光电效应和康普顿散射反应的截面下降,而电子对效应的截面提高(有阈值1.022MeV);➢光电效应的产物:光电子,内层电子空位导致的后续X射线或俄歇电子;➢康普顿散射:反冲电子,散射光子;这个散射光子还能继续发生反应(光电、康普顿、电子对等);➢电子对效应:其动能分享了γ射线能量与1.022MeV之差的正负电子,正电子迅速减速湮没(固体:ps时间)放出两个背向出射的511keVγ光子;γ光子还能继续发生光电效应或康普顿散射;8) 对于中子来说,通常有核反应法、核反冲法、裂变法和活化法来将其转换为带电粒子。
这些带电粒子可能是()?核反应法常常用于测量低能的慢中子,此时中子的反应截面与中子的能量之间存在一个关系,是什么关系?在慢中子能区,当中子的能量减小为原来的1/4时,其反应截面将变为原来的()?答:➢α粒子,质子,裂变碎片,反应生成的子核,电子;➢1/v关系,2倍;9) 如果不考虑积累因子,γ和中子穿透某种介质的概率服从什么规律?决定衰减系数的因素有哪些?为什么要提出质量衰减系数这个概念?水和水蒸气的衰减系数是否相同,质量衰减系数呢?积累因子的来源又是什么呢?答:➢指数衰减规律;➢决定线性衰减系数的是反应截面和原子的空间密度;◆对于γ射线:反应截面由原子序数和入射的γ射线能量决定;◆对于中子:反应截面由原子核和入射的中子能量决定;➢提出质量衰减系数概念的原因是为了描述同种物质在不同物理状态下对射线的衰减;➢水的衰减系数比水蒸汽的答,但是质量衰减系数二者是相同的;➢积累因子的主要来源是康普对散射(电子对效应亦有可能)。