江西省名校学术联盟2018届高三上学期教学质量检测考试(一)文科数学试卷

合集下载

江西省新余四中、鹰潭一中等重点中学盟校2018届高三第

江西省新余四中、鹰潭一中等重点中学盟校2018届高三第

江西省重点中学盟校2018届高三第一次联考数学(文科)试卷注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3. 全部答案在答题卡上完成,答在本试卷上无效。

4. 考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U={1,2,3,4,5},集合A={1,3,5},集合B={3,4},则(C U A)⋂B=( )A .{3}B .{4}C .{3,4}D .{2,3,4}2.设x R ∈,i 是虚数单位,则“2x =”是“复数2(4)(2)Z x x i =-++为纯虚数”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .即不充分也不必要条件3.若x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤1y 1y x x y ,则2z x y =-的最大值为( )A .5B .3C .﹣1D .21 4.在△ABC 中,若6=a ,b =4,B=2A ,则sinA 的值为( )A .36 B .66 C .632 D .33 5.定义在R 上的偶函数()f x 满足()(2)f x f x =+,且在[]1,0-上单调递减, 设)2(f a =,(2)b f =,(3)c f =, 则a ,b ,c 的大小关系是( )A .b c a <<B .a b c <<C .b a c <<D .a c b << 6.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半 月,除百零五便得知.已知正整数n 被3除余2,被5除余3,被7除余4,求n 的最小值.按此歌诀得算法如图,则输出n 的结果为( )A .53B .54C .158D .2637.在数列{}n a 中,411-=a ,111--=n n a a ),2(*∈≥N n n ,则2018a 的值为( ) A .41-B .5C .54 D .45 8.函数ln x xx xe e y e e ---=+的图象大致为( )A B C D9.如图,在圆心角为直角的扇形OAB 区域中,M 、N 分别为OA 、OB 的中点, 在M 、N 两点处各有一个通信基站,其信号的覆盖范围分别为以OA 、OB 为直径 的圆,在扇形OAB 内随机取一点,则能够同时收到两个基站信号的概率是( )A .π21-B .π121- C .π42-D .π110.设函数⎪⎭⎫⎝⎛+=42sin )(πx x f )89,0(⎥⎦⎤⎢⎣⎡∈πx ,若方程a x f =)(恰好有三个根,分别为321,,x x x )(321x x x <<,则32132x x x ++的值为( )A .πB .43π C .23π D .47π 11.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是 某四棱锥的三视图,则该四棱锥的外接球的表面积为( ) A .451πB .241πC .π41D .π3112.已知双曲线C :12222=-by a x (a >0,b >0)的左右焦点分别为1F ,2F ,P 为双曲线C上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且22PF =,021=⋅QF QF ,则双曲线C 的离心率为( )A .13-B .13+C .213+D .213-第Ⅱ卷二、填空题(每题5分,共20分。

江西省重点中学盟校2018届高三第一次联考数学(文)试题(解析版)

江西省重点中学盟校2018届高三第一次联考数学(文)试题(解析版)

江西省重点中学盟校2018届高三第一次联考数学(文科)试卷一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的1.设全集2,3,4,,集合3,,集合,则A. B. C. D. 3,【答案】B【解析】由题意,因为全集,集合,所以,又因为集合,所以,故选B.2.设,是虚数单位,则“”是“复数为纯虚数”的()A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B【解析】由复数为纯虚数,则,解得,所以是复数为纯虚数的充要条件,故选B.3.若,满足约束条件,则的最大值为()A. 5B. 3C.D.【答案】A【解析】由约束条件不等式组,做出可行域,如图所示,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最小,最大,所以,故选A.4.在中,若,,则的值为()A. B. C. D.【答案】D【解析】因为中,,所以由正弦定理得,因为,所以,化简得,因此,故选D.5.定义在上的偶函数满足,且在上单调递减,设,,,则,,的大小关系是()A. B. C. D.【答案】C【解析】因为偶函数满足,所以函数的周期为,则,,因为,且函数在上单调递减,所以,故选C.6.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数被除余,被除余,被除余,求的最小值.按此歌诀得算法如图,则输出的结果为()A. 53B. 54C. 158D. 263【答案】A【解析】按程序框图知的初值为,代入循环结构,第一次循环,第二次循环,推出循环,的输出值为,故选A.7.在数列中,,,则的值为()A. B. 5 C. D.【答案】B【解析】在数列中,,所以,所以是以为周期的周期数列,因为,故选B.8.函数的图象大致为()A. B.C. D.【答案】C【解析】因为函数,由,可得,所以函数的定义域为,再由,可得,且在上为单调递增函数,故选C.9.如图,在圆心角为直角的扇形区域中,分别为的中点,在两点处各有一个通信基站,其信号的覆盖范围分别为以为直径的圆,在扇形内随机取一点,则能够同时收到两个基站信号的概率是( )A. B. C. D.【答案】B【解析】由的中点为,则,半径为,所以扇形的面积为,半圆的面积为,,两个圆的弧围成的阴影部分的面积为,图中无信号部分的面积为,所以无信号部分的概率为,故选B.点睛:本题主要考查了几何概型及其概率的计算,解答的关键是求出无信号部分的面积,对于不规则图形的面积可以转化为及格不规则的图形的面积的和或差的计算,试题属于中档试题,对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件区域的几何度量,最后计算.10.设函数,若方程恰好有三个根,分别为,则的值为()A. B. C. D.【答案】D【解析】由题意,则,画出函数的大致图象,如图所示,由图可得,当时,方程恰有三个根,由得;由得,由图可知,与点关于直线对称;点和点关于对称,所以,所以,故选D.点睛:本题考查了正弦函数的图象,以及正弦函数的图象及对称性的应用,考查了整体思想和数形结合思想的应用,有关问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定,再根据周期,求出,最后再利用最高点或最低点坐标满足解析式,求出满足条件的值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求或的值或最值或范围等.11.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A. B. C. D.【答案】C【解析】根据三视图得出,该几何体是镶嵌在正方体中的四棱锥,正方体的棱长为,为棱的中点,最大的侧面积为,故选C.12.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.【答案】D【解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13.抛物线的焦点坐标是____________.【答案】【解析】抛物线方程焦点在轴,焦点坐标为14.已知,,,的夹角为,则__________.【答案】【解析】由题设,应填答案。

数学---江西省重点中学盟校2018届高三(上)第一次联考试卷(文)(解析版)

数学---江西省重点中学盟校2018届高三(上)第一次联考试卷(文)(解析版)

江西省重点中学盟校2018届高三(上)第一次联考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)要从已编号(1~70)的70枚最新研制的某型导弹中随机抽取7枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的7枚导弹的编号可能是()A.5,10,15,20,25,30,35 B.3,13,23,33,43,53,63C.1,2,3,4,5,6,7 D.1,8,15,22,29,36,432.(5分)已知R是实数集,M={x|<1},N={y|y=},则(∁R M)∩N=()A.(1,2)B.[1,2] C.[1,2)D.[0,2]3.(5分)已知等比数列{a n}中,a1=4,且a4a6=4a72,则a3=()A.B.1 C.2 D.4.(5分)如下图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积为()A.B.C.D.无法计算5.(5分)已知、的夹角为120°,且||=1,|2|=,则||=()A.3B.2C.4 D.26.(5分)复数2+i与复数在复平面上的对应点分别是A、B,则∠AOB等于()A.B.C.D.7.(5分)双曲线(p>0)的左焦点在抛物线y2=2px的准线上,则该双曲线的离心率为()A.B.C.D.48.(5分)已知函数f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x﹣x,设a= f(﹣),b=f(3),c=f(0),则a、b、c的大小关系为()A.b<a<c B.c<a<b C.b<c<a D.a<b<c9.(5分)已知某几何体的三视图如图所示,三个视图都为直角三角形,其中主视图是以2为直角边的等腰直角三角形,则该几何体的外接球的表面积为()A.16πB.9πC.8πD.4π10.(5分)若函数f(x)=在其定义域上只有一个零点,则实数a的取值范围是()A.a>16 B.a≥16 C.a<16 D.a≤1611.(5分)下列命题中,其中是假命题的为()①若m,n是异面直线,且m⊥α,n⊥β,则α与β不会平行;②函数f(x)=|cos2x﹣1|的最小正周期是π;③命题“∀a∈R,函数f(x)=(x﹣1)a+1恒过定点(1,1)”为真;④“命题p∨q为真”是“命题p∧q为真”的必要不充分条件.A.0个B.1个C.2个D.3个12.(5分)坐标平面上的点集S满足S={(x,y)|log2(x2﹣x+2)=2sin4y+2cos4y,y∈[﹣,],将点集S中的所有点向x轴作投影,所得投影线段的长度为()A.1 B.C.D.2二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)在等差数列{a n}中,已知a5+a7=16,则该数列前11项和S11=.14.(5分)设不等式组所表示的平面区域为D.若圆C落在区域D中,则圆C的半径r的最大值为.15.(5分)已知a、b、c为集合A={1,2,3,4,5}中三个不同的数,通过如图所示算法框图给出的一个算法输出一个整数a,则输出的数a=5的概率是.16.(5分)若f(n)为n2+1(n∈N*)的各位数字之和,如:142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),f3(n)=f(f2(n)),…f k+1(n)=f(f k(n)),k∈N*,则f2015(9)=.三、解答题:本大题共7小题,满分60分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数f(x)=.(1)求f(x)的对称轴方程;(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若,b+c=2,求a的最小值.18.(12分)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于60分到140分之间(满分150分),将统计结果按如下方式分成八组:第一组,如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)估计该校的2000名学生这次考试成绩的平均分(可用中值代替各组数据平均值);(3)若从样本成绩属于第一组和第六组的所有学生中随机抽取2名,求他们的分差小于10分的概率.19.(12分)如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE 是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(I)求证:BC⊥平面ACFE;(II)当EM为何值时,AM∥平面BDF?证明你的结论.20.(12分)已知椭圆E:(a>b>0),F1(﹣c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.(1)求椭圆E的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥,求出该圆的方程.21.(12分)已知函数f(x)=ln x+ax2+bx(其中a,b)为常数且a≠0)在x=1处取得极值.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若f(x)在(0,e]上的最大值为1,求a的值.请考生从第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a.(1)若点A在直线l上,求直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),若直线l与圆C相交的弦长为,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+3|+|x﹣a|(a>0).(1)当a=4时,已知f(x)=7,求x的取值范围;(2)若f(x)≥6的解集为{x|x≤﹣4或x≥2},求a的值.【参考答案】一、选择题1.B【解析】根据系统抽样的定义则编号间距为70÷7=10,则满足条件是3,13,23,33,43,53,63,故选:B2.D【解析】M={x|x<0,或x>2},N={y|y≥0};∴C R M={x|0≤x≤2};∴(C R M)∩N=[0,2].故选D.3.C【解析】设等比数列{a n}的公比为q,则由a4a6=4a72,可得a12q8=4a12q12,∴q2=.∴a3=a1q2=4×=2.故选:C.4.B【解析】正方形中随机撒一粒豆子,它落在阴影区域内的概率,P==,又∵S正方形=4,∴S阴影=;故选:B.5.C【解析】由已知,|2|2=12,所以=12,又、的夹角为120°,且||=1,所以4+4cos120°+=12,解得||=4;故选C.【解析】复数==3﹣i.A(2,1),B(3,﹣1),∵,,k AB=﹣2,三角形AOB是等腰直角三角形,∴∠AOB=.故选:B.7.C【解析】双曲线的左焦点坐标为:,抛物线y2=2px的准线方程为,所以,解得:p=4,故双曲线的离心率为:故选C8.A【解析】∵函数f(x+1)是偶函数,∴函数f(x)的图象关于直线x=1对称,又∵当x∈(1,+∞)时,函数f(x)=sin x﹣x,∴b=f(3),a=f(﹣)=f(),c=f(0)=f(2),又x∈(1,+∞)时,f′(x)=cos x﹣1≤0,∴当x∈(1,+∞)时,函数f(x)=sin x﹣x单调递减,∴b<a<c故选:A9.B【解析】由三视图可知,几何体为三棱锥,且一边垂直于底面,其外接球的直径为=3,所以S=4π×()2=9π,故选:B.【解析】①当x≤0时,f(x)=x+3x.∵函数y=x与y=3x在x≤0时都单调递增,∴函数f(x)=x+3x在区间(﹣∞,0]上也单调递增.又f(﹣1)<0,f(0)=1>0,∴函数f(x)在(﹣1,0)内有一个零点,如图所示.②当x>0时,f(x)=﹣4x+.∴f′(x)=x2﹣4=(x+2)(x﹣2).令f′(x)=0,且x>0,解得x=2.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.∴函数f(x)在区间(0,2)上单调递减;在区间(2,+∞)上单调递增.∴函数f(x)在x=2时求得极小值,也即在x>0时的最小值.∵函数f(x)在其定义域R上有且只有一个零点,且由(1)可知在区间(﹣1,0)内已经有一个零点了,所以在区间(0,+∞)上没有零点,∴必须满足f(2)>0,即,解得a>16.故选:A.11.B【解析】对于①,若α与β平行,则m∥n,与m,n是异面直线相矛盾,所以①对;对于②,函数f(x)=|cos2x﹣1|的图象如图:可知函数f(x)=|cos2x﹣1|的最小正周期是π;所以②对;对于③,“∀a∈R,函数f(x)=(x﹣1)a+1恒过定点(1,1)”a=0时,y=1不过(1,1),所以③错,对于④,“命题p∨q为真”是“命题p∧q为真”后者推出前者,前者不能说明后者,所以“命题p∨q为真”是“命题p∧q为真”的必要不充分条件.④正确,故选:B.12.D【解析】1=(sin2y+cos2y)2=sin4y+cos4y+2sin2y•cos2y,∴2sin4y+2cos4y=2﹣4sin2y•cos2y=2﹣(sin2y)2,∵y∈[﹣,],∴2y∈[﹣,],∴≤sin2y≤1,∴2﹣(sin2y)2∈[1,2]∴log2(x2﹣x+2)∈[1,2],∴2≤x2﹣x+2≤4,∴﹣1≤x≤0,或1≤x≤2故x的投影长度为1+1=2,故选:D二、填空题13.88【解析】因为a5+a7=16,由等差数列的性质可得a1+a11=16,所以S11==88.故答案为:88.14.1【解析】由约束条件作出可行域如图,使圆C的半径r最大,只要圆C和直角三角形相内切,由AB=4,BC=3,可得AC=5,设内切圆半径为r,则,解得r=1.故答案为:1.15.【解析】由算法可知输出的a是a、b、c中最大的一个,若输出的数为5,则这三个数中必须要有5,从集合A={1,2,3,4,5}中选三个不同的数共有10种取法:123、124、125、134、135、145、234、235、245、345,满足条件的6种,所以概率为.故答案为:.16.11【解析】∵92+1=82,∴f1(9)=f(9)=10;∵102+1=101,∴f2(9)=f(f1(9))=f(10)=2;∵22+1=5,∴f3(9)=f(f2(9))=f(2)=5;∵52+1=26,∴f4(9)=f(f3(9))=f(5)=8;∵82+1=65,∴f5(9)=f(f4(9))=f(8)=11;∵112+1=122,∴f6(9)=f(f5(9))=f(11)=5.∴数列{ f n(9)}从第3项开始是以3为周期的循环数列∵2015=2+671×3,∴f2015(9)=f5(9)=11.故答案为:11.三、解答题17.解:函数f(x)=.化简可得:f(x)=cos2x cos+sin2x sin+cos2x+1=cos2x sin2x+cos2x+1=cos(2x)+1,(1)由2x)=kπ,得x=,k∈Z∴f(x)的对称轴方程为x=,k∈Z.(2)由,即=cos(A)+1,∴cos(A)=,由A∈(0,π),可得A=,在△ABC中,由余弦定理,得a2=b2+c2﹣2bc cos=(b+c)2﹣bc,由b+c=2知bc≤2=1,当b=c=1时bc取最大值,此时a取最小值.18.解:(1)由频率分布直方图知第七组的频率f7=1﹣(0.004+0.012+0.016+0.03+0.02+0.006+0.004)×10=0.08.直方图如图.(2)估计该校的2 000名学生这次考试的平均成绩为:65×0.04+75×0.12+85×0.16+95×0.3+105×0.2+1 15×0.06+125×0.08+135×0.04=97(分).(3)第六组有学生3人,分别记作A1,A2,A3,第一组有学生2人,分别记作B1,B2,则从中任取2人的所有基本事件为(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,A2),(A1,A3),(A2,A3),(B1,B2),共10个.分差大于(10分)表示所选2人来自不同组,其基本事件有6个:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),所以从中任意抽取2人,分差小于(10分)的概率P=.19.(Ⅰ)证明:在梯形ABCD中,∵AD=DC=CB=a,∠ABC=60°,∴四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,∴∠ACB=90°,∴AC⊥BC,又∵平面ACF⊥平面ABCD,交线为AC,∴BC⊥平面ACFE.(Ⅱ)当EM=a时,AM∥平面BDF.在梯形ABCD中,设AC∩BD=N,连接FN,则CN:NA=1:2.∵EM=a而EF=AC=a,∴EM:FM=1:2.∴EM∥CN,EM=CN,∴四边形ANFM是平行四边形.∴AM∥NF.又NF⊂平面BDF,AM⊄平面BDF.∴AM∥平面BDF.20.解:(1)由题知2|F1F2|=|MF1|+|MF2|,即2×2c=2a,得a=2c.①又由,得②且a2=b2+c2,综合解得c=1,a=2,b=.∴椭圆E的方程为+=1.(2)假设以原点为圆心,r为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m,则r=,r2=,①消去y,整理得(3+4k2)x2+8kmx+4(m2﹣3)=0,设A(x1,y1),B(x2,y2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴•=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.21.解:(I)因为f(x)=ln x+ax2+bx所以f′(x)=+2ax+b,因为函数f(x)=ln x+ax2+bx在x=1处取得极值f′(1)=1+2a+b=0,当a=1时,b=﹣3,f′(x)=,f′(x),f(x)随x的变化情况如下表:(0,)(,1)所以f(x)的单调递增区间为(0,),(1,+∞),单调递减区间为(,1)(II)因为f′(x)=,令f′(x)=0,x1=1,x2=,因为f(x)在x=1处取得极值,所以x2=≠x1=1,当<0时,f(x)在(0,1)上单调递增,在(1,e]上单调递减,所以f(x)在区间(0,e]上的最大值为f(1),令f(1)=1,解得a=﹣2,当a>0,x2=>0,当<1时,f(x)在(0,)上单调递增,(,1)上单调递减,(1,e)上单调递增,所以最大值1可能在x=或x=e处取得,而f()=ln+a()2﹣(2a+1)=ln﹣<0所以f(e)=lne+a e2﹣(2a+1)e=1,解得a=,当1≤<e时,f(x)在区间(0,1)上单调递增,(1,)上单调递减,(,e)上单调递增,所以最大值1可能在x=1或x=e处取得,而f(1)=ln1+a﹣(2a+1)<0,所以f(e)=lne+a e2﹣(2a+1)e=1,解得a=,与1<x2=<e矛盾,当x2=≥e时,f(X)在区间(0,1)上单调递增,在(1,e)单调递减,所以最大值1可能在x=1处取得,而f(1)=ln1+a﹣(2a+1)<0,矛盾,综上所述,a=或a=﹣2.22.解:(1)由点在直线ρcos(θ﹣)=a上,可得a=,所以直线l的方程可化为ρcosθ+ρsinθ=2,从而直线l的直角坐标方程为x+y﹣2=0.(2)由已知得圆C的直角坐标方程为(x﹣2)2+y2=1,所以圆C的圆心为(2,0),半径r=1,而直线l的直角坐标方程为,若直线l与圆C相交的弦长为,则圆心到直线l的距离为,所以,求得或. 23.解:(1)因为|x+3|+|x﹣4|≥|x+3﹣x+4|=7,当且仅当(x+3)(x﹣4)≤0时等号成立.所以f(x)=7时,﹣3≤x≤4,故x∈[﹣3,4].(2)由题知f(x)=,当a+3≥6时,不等式f(x)≥6的解集为R,不合题意;当a+3<6时,不等式f(x)≥6的解为或,即或.又因为f(x)≥6的解集为{x|x≤﹣4或x≥2},所以a=1.。

江西省2018届高三新课程教学质量监测数学(文)试卷(含答案)

江西省2018届高三新课程教学质量监测数学(文)试卷(含答案)

江西省2018年高中毕业班新课程教学质量监测卷文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{0,1,2,3}A =,{|2,}B x x a a A ==∈,则AB =( )A .{1,2}B .{0,1}C .{0,2}D .{2} 2.复数2211i ii i+---+的虚部为( ) A .3i B .3i - C .3 D .-33.已知命题p :2230x x +->;命题q :01x ax a ->--,且q ⌝的一个必要不充分条件是p ⌝,则a的取值范围是( )A .[3,0]-B .(,3][0,)-∞-+∞C .(3,0)-D .(,3)(0,)-∞-+∞4.若lg 2,lg(21)x+,lg(25)x+成等差数列,则x 的值等于( ) A .1 B .0或18 C .18D .2log 3 5.下边的流程图最后输出n 的值是( )A .6B .5C .4D .36.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是( )A .0.9B .0.75C .0.8D .0.7 7.在ABC ∆中,tan A 是以-2为第三项,6为第七项的等差数列的公差,tan B 是以19为第二项,27为第七项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 8.函数sin ()ln x xg x x=的图象大致是( )A .B .C .D .9.已知向量OA ,OB 满足1OA OB ==,0OA OB ⋅=,OC OA OB λμ=+(,)R λμ∈,若M 为AB 的中点,并且1MC =,则点(,)λμ的轨迹方程是( )A .2211()()122λμ++-= B .221()(1)12λμ-++=C .22(1)(1)1λμ-+-= D .2211()()122λμ-+-=10.实数对(,)x y 满足不等式组2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则目标函数z kx y =-当且仅当3x =,1y =时取最大值,设此时k 的取值范围为I ,则函数2111,0()1()1,02xx x f x x ⎧-<⎪=⎨+≥⎪⎩在I 上的值域是( )A .(1,2]-B .7(0,]4C .[0,2]D .3(1,]2-11.若双曲线22221(0,0)y x a b a b-=>>的渐近线与抛物线21y x =+相切,且被圆22()1x y a +-=截a =( )A12.函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数;②存在[,]a b D ⊆使得()f x 在[,]a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称函数()f x 为“成功函数”.若函数(2)()log x m t m f x +=(其中0m >,且1m ≠)是“成功函数”,则实数t 的取值范围为( )A .(0,)+∞B .1(,]8-∞ C .11[,)84 D .1(0,]8第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知3sin 5α=-,且α是第三象限的角,则tan 2α的值为 .14.设,x y R ∈,向量(,1)a x =,(2,)b y =,(2,2)c =-,且a c ⊥,//b c ,则a b += . 15.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为.16.定义函数(){{}}f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{1.5}2=,{ 2.5}2-=-.当(0,]x n ∈,*n N ∈时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则1210111a a a ++⋅⋅⋅+= . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为ABC ∆的内角A ,B ,C 的对边,2sin ()cos()cos()B C B C B C +=--+. (1)若a c =,求cos A 的值; (2)设90A =,且a =ABC ∆的面积.18.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:已知x 和y 具有线性相关关系.(1)求y 关于x 的线性回归方程y bx a =+;(2)若每吨该农产品的成本为2.2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润z 取到最大值?参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑.19.如图,在直三棱柱111ABC A B C -中,AC BC ⊥,M 为线段1CC 上的一点,且1AC =,12BC CC ==.(1)求证:1AC B M ⊥;(2)若N 为AB 的中点,若//CN 平面1AB M ,求三棱锥1M ACB -的体积.20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.设点(0,)A b ,在12AF F ∆中,1223F AF π∠=. (1)求椭圆C 的方程;(2)设过点(2,1)P -的直线l 不经过点A ,且与椭圆C 相交于M ,N 两点,若直线AM 与AN 的斜率分别为1k ,2k ,求12k k +的值. 21.已知函数()ln f x x =. (1)若函数21()()2g x f x ax x =-+有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()(1)f x m x =+,()m Z ∈有实数解,求整数m 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.选修4-4:坐标系与参数方程 椭圆C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点为极点,x 轴正半轴为极轴的极坐标中,直线l 的方程为102cos sin ρθθ=+.(1)求出直角坐标系中l 的方程和椭圆C 的普通方程;(2)椭圆C 上有一个动点M ,求M 到l 的最小距离及此时M 的坐标.23.选修4-5:不等式选讲已知函数()1f x x x a =+--,其中a 为实数. (1)当1a =时,解不等式()1f x ≥;(2)当[0,)x ∈+∞时,不等式()2f x <恒成立,求a 的取值范围.高三文科数学参考答案一、选择题1-5: CCADB 6-10: BBADA 11、12:BD二、填空题13.24723 16. 2011三、解答题17.解(1)2sin cos()cos()A B C B C =--+,2sin 2sin sin A B C ∴=,由正弦定理得,22a bc =,又a c =,即2a c b ==,由余弦定理得2221cos 24b c a A bc +-==; (2)由(1)知22a bc =,且222b c a +=,a =1b c ==,12ABC S ∆∴=. 18.解析:(1)可计算得3,5x y ==,51=18+26+35+44+52=61i ii x y =⨯⨯⨯⨯⨯∑,5221=5351=75=0i i nx y x nx =⨯⨯-∑,,122161-75==-1.410ni ii nii x y nx yb xnx ==-∴=-∑∑, -5(1.43)9.2a y bx ==--⨯=,∴y 关于x 的线性回归方程是 1.49.2y x =-+. (2)年利润()22.2 1.47z x y x x =-=-+,其对称轴为 2.52.87x ==,故当年产量约为2.5吨时,年利润z 最大. 19.解析:(1)证明:在直三棱柱ABC-A 1B 1C 1中,11,,AC CC AC BC CC BC C ⊥⊥⋂=. 11AC BB C C ∴⊥平面, 1AC B M ∴⊥.(2)当M 为1CC 中点时, 1//CN AB M 平面,理由如下:112CM CC =,11//2CM BB ∴,取1AB 中点E ,连,NE ME ,,N E 分别为1,AB AB 中点,11//2NE BB ∴, //CM NE ∴,∴四边形CMEN 为平行四边形,11//,,CN ME CN AMB ME AB M ∴⊄⊂面面,1//N M C AB ∴面,11111111,.233B MC M ACB A CMB B MC S CM BC V V S AC --=⋅=∴==⋅=20.解析:(1)设两圆的一个交点为P ,则13PF =, 21PF =,由P 在椭圆上可得1224PF PF a +==,则2a =,①由121233F AF F AO ππ∠=⇒∠=,∴2a b ==,② 联立①②,解得2{ 1a b ==,∴椭圆方程为2214x y +=;(2)直线l 的斜率显然存在,设直线l 方程:1(2)y k x +=-,交点()11,M x y , ()22,N x y 由222144y kx k x y =--⎧⎨+=⎩222(14)8(21)4(21)40k x k k x k ⇒+-+++-=. 21212228(21)4(21)4,;1414k k k x x x x k k ++-∴+==++1212121212112222y y kx k kx k k k x x x x ------+=+=+12121212122(22)()(22)()2kx x k x x k x x k x x x x -++++==-2(22)8(21)24(21)4k k k k k +⋅+=-+-2(21)k k =-+1=-.21.解(1)21()ln 2g x x ax x =-+,则21()x ax g x x-+'=,得方程210x ax -+=有两个不等的正实数根,即21212400 210a x x a a x x ⎧∆=->⎪+=>∴>⎨⎪=>⎩,,,, (2)方程ln (1)x m x =+,即ln 1x m x =+,记函数ln ()1xh x x =+,(0)x >,21ln ()(1)x xx h x x +-'=+,令1()ln x x x x ϕ+=-(0)x >,211()0x x xϕ'=--<, ()x ϕ单调递减,22222211()0,()0(1)(1)e h e h e e e e e -''=>=<++, 存在20(,)x e e ∈,使得0()0h x '=,即0001ln x x x +=, 当0(0,)x x ∈,()0h x '>,()h x 递增,0(,),()0x x h x '∈+∞<, ()h x 递减,0max 200ln 111()(,)1x h x x x e e∴==∈+,即max ()m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0. 22、[选修44:坐标系与参数方程]解析:(1):2100,x y +-=22:14x C y +=.(2)设()2cos ,sin , M M θθ到的距离为d ==≥, ∴当sin()1θβ+=时,M 到的距离最小,最小值为5此时sin cos sin θβθβ====M .23.[选修45:不等式选讲]解析:(1)1a =时,()2,1112,112,1x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩,故()112f x x ≥⇒≥,即不等式()1f x ≥的解集是1,2⎡⎫+∞⎪⎢⎣⎭; (2)[)0,x ∈+∞时,()212121f x x x a x x a x a x <⇒+--<⇒+--<⇒->-, 当[)0,1x ∈时, 10x -<,显然满足条件,此时a 为任意值;当1x =时, 1a ≠;当()1,x ∈+∞时,可得1x a x ->-或1a x x ->-,求得1a <; 综上, (),1a ∈-∞.。

江西省高三数学教学质量检测考试试卷(一)文(扫描版)

江西省高三数学教学质量检测考试试卷(一)文(扫描版)

2018届高三年级教学质量检测考试(一)文科数学试卷江西名校学术联盟2018届高三年级教学质量检测考试(一)文科数学(答案)一、选择题:本大题共12小题,每小题5分. 1.B 【解析】A ={|13}x x -≤≤,所以{|03}AB x x =≤≤.2.A 【解析】3(3)(1)24121(1)(1)2i i i i i i i i ++++===+--+,其虚部为2.3.D 【解析】命题p 的否定书写方法为:先变量词,再否结论,对照各选项,只有D 符合.4.C 【解析】双曲线22:143x y C -=-化为标准方程得22134y x -=,所以双曲线C 的焦点在y 轴上,2,b c ==其离心率3c e a ===. 5.C 【解析】当21a -≤≤时,函数f(x)在区间(1,)+∞上为增函数,故所求概率为1(2)32(2)4P --==--.故C 项正确.6.A 【解析】由换底公式得,2211,log 5log a b e==,而222211log 5log 1,01log 5log e e>>∴<<<,即0<a<b<1, 102551,c =>=故a<b<c.7.B 【解析】结合正(主)视图和俯视图可知,该几何体是由一个半圆柱和一个14的球组合而成的,其中半圆柱在左,14个球在右,因此侧(左)视图中14个球对应的轮廓线(半圆)不可视,应画成虚线.对照各选项,只有B 符合. 8.D 【解析】由311231<-<-x 可得⎪⎭⎫⎝⎛∈32,31x ,故选D. 9.B 【解析】执行如图的程序框图,本质是计算数列1(1)n n ⎧⎫⎨⎬+⎩⎭的前n 项和n S 满足1920nS ≥ 的最小的n ,因为111111223(1)11n nS n n n n =+++=-=⨯⨯+++,所以181920181920,,192021S S S ===,故输出的n 值为19.10.B 【解析】由题设得32934312124T ππππ=+==,则22T ππωπ=⇒==,故()()2s i n 2f x x ϕ=+,将12x π=-代入可得2sin 06πϕ⎛⎫-+= ⎪⎝⎭,即,6k k Z πϕπ=+∈,所以6πϕ=.所以226x y x y ϕωπ+--=0 ⇒22221520(1)()24x y x y x y +--=⇔-+-=,故半径r=211.C 【解析】由射影定理可知2CD DE OD =⋅,即2,2DC abDE a b OD==+由,DC DE ≥得2aba b≥+,可知选C. 12.A 【解析】设()23()2x g x x x e =-,则()22313[()]()222x x g x x x e x x e ''=-=+-, 令()0g x '=,得123,12x x =-=,由图象易知()()32139(1),()222g x g e g x g e -==-=-=极小值极大值,又当0x <时,()0g x >,且x →-∞时,()0g x →; 当1x >时,()g x 为增函数,且x →+∞时,()g x →+∞,因此函数()23()2xf x x x e m =--有三个零点时,3239()220g e m --<=<,故选A.二、填空题:本大题共4小题,每小题5分.【解析】由与a b 共线,得1130,3λλ∴-=,=22101.9λ=+=a 14.x=-1(或填x+1=0) 【解析】依题意得2p=4,p=2,故准线方程为12px =-=-.15.4【解析】由A c B a A b cos 2cos cos =+及正弦定理得,cos sin 2cos sin cos sin A C B A A B =+即AC B A cos sin 2)sin(=+,即1AC ACC cossin2sin=得1cos,2A=即A=3π.由正弦定理及sin sinb C a A=,得29.bc a==故1sin2ABCS bc A∆==16.5【解析】连接1BC交1B C于点O,连OE,1111//B CE,,BD BC D OE=1平面平面平面B CE1//BD OE∴,∴OEC∠是异面直线BD1与CE所成的角.设该正方体的棱长为1,则1BD=.又O为BC1的中点,OE∴是11C BD∆的中位线,112OE BD∴==OC=11222B C EC===.在OCE∆中,由余弦定理得222cos25OE EC OCOECOE EC+-∠==⋅.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.)17.解:(1)设等差数列{}n a的公差为d.依题意得),3()1(4122+=-aaa即),33()1(1121++=-+daada结合11=a可化简得0432=--dd,解得d=4(负值舍去).(3分)1(1)14(1)4 3.na a n d n n∴=+-=+-=-(4分)21()(143)2.22nnn a a n nS n n++-===-(6分).(2)当n为偶数时,(15)(913)(7443)nT n n=-++-+++-+-L=42.2nn⨯=(9分)当n为奇数时,n+1为偶数,112(1)(41)21n n nT T c n n n++=-=+-+=-+,(11分)综上所述,2,(2,),21,(21,).N N **⎧=∈⎪=⎨-+=-∈⎪⎩n n n k k T n n k k (12分) 18.(1)证明:如图,取CF 的中点H ,连接EH ,HG.H 是CF 的中点,G 是CD 的中点,∴1//,.2GH FD GH FD =又1//,.2AE FD AE FD =//,.AE GH AE GH ∴=∴四边形AGHE 是平行四边形.//.AG EH ∴(5分)又.AG EH ⊄⊂平面BCFE ,平面BCFE g//AG ∴平面BCFE.(6分)(2),BCFE AEFD ⊥平面平面CF ⊥ ,,EF AEFD EF =平面平面BCFECF ∴⊥平面.AEFD∴111332BC AEFD A BEFC C ADF V V V BE BC AE DF EF CF ---=+=⋅⋅+⨯⋅⋅=1112111211.3323⨯⨯⨯+⨯⨯⨯⨯=(12分) 19.解:(1)由频率分布表可得5151510500.10.30.20.11x y ++++=⎧⎨++++=⎩,解得50.3x y =⎧⎨=⎩ . (2分)估计参加考试的这50名应聘者笔试成绩的平均数为550.1650.3750.3850.2950.174⨯+⨯+⨯+⨯+⨯=.(4分)(2)由(1)可知,后三组中的人数分别为15,10, 5,故这三组中所抽取的人数分别为3,2,1. 记第三组的3人为a,b,c ,第四组的2人为d,e,第5组的1人为f, 则从6人中抽取2人的所有可能结果为:H(a,b ),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15种,其中第四组中至少有1人的结果有:(a,d), (a,e) ,(b,d),(b,e), (c,d),(c,e), (d,e), (d,f),(e,f).共9种.(10分)故第四组中至少有1人被总经理面试的概率为93.155P ==(12分) 20.解:(1)由已知得1,223c c a ==, 2221,3,8.c a b a c ∴===-=∴椭圆C 的方程为22198x y +=.(5分) (2)根据题意可设直线l 的方程为2,y kx =+设1122(,),(,),A x y B x y AB 的中点为00(,).G x y设点E (m,0),使得||||AE BE =,则EG AB ⊥.由222,198y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360,k x kx ++-=12000222361816,,2,989898k k x x x y kx k k k -+=-∴==+=+++(7分) 1,,EG EG AB k k ⊥∴=-即22160198,1898k k k m k -+=---+222,8989k m k k k --∴==++(9分)当0k >时,890;12k m k +≥=∴-≤< 当k<0时,89012k m k +≤-∴<≤ 综上所述,点E的横坐标的取值范围为2[(0,].1212-(12分)21.解:(1)22()(ln )(1ln )(1)()x x xabe x a x be a x be x x f x x x------'==, ()f x 在点x=e 处的切线与x 轴平行, ()0f e '∴=,0b ∴=.(2分)因此2(1ln )()a x f x x -'=, 当0a >时,2(1ln )()a x f x x-'=在区间(0,)e 上为正,在区间(,)e +∞上为负,因此 ()f x 在区间(0,)e 上为增函数,在区间(,)e +∞上为减函数,即函数()f x 在x=e 处取得唯一的极大值,即为最大值;当0a <时,()f x 在(0,)e 上为减函数,在(,)e +∞为增函数,即函数()f x 有最小值,无最大值.因此实数a 的取值范围是(0,)+∞.(6分) (2)当1a b ==时,设()()ln xg x xf x x e ==-,1()x g x e x '=-在区间(0,)+∞上为减函数,又(1)10g e '=-<,1()202g '=>,因此存在唯一实数01(,1)2x ∈,使0001()0x g x e x '=-=,(8分) 由此得到00001,ln x e x x x ==-;(9分) 此时()g x 在区间0(0,)x 上为增函数,在区间0(,)x +∞上为减函数, 由单调性知0max 00000011()()ln ()x g x g x x ex x x x ==-=--=-+, 又01(,1)2x ∈,故0051()22x x -<-+<-, 因此()0xf x m -≤恒成立时2m ≥-,即m 的最小整数值为2-.(12分)请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240,x y x +-=所以圆C 的直角坐标方程为22(2)4x y -+=.(3分) 直线l 的普通方程为10.(x y --=5分)(2)将直线l 的参数方程代入圆C :22(2)4x y -+=,并整理得230,t -=所以12123t t t t +=-.点P (1,0)在直线l 上,且点P 在圆C的内部,所以12||||||PA PB t t -=+=(10分)23.解:(1)依题意得3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩, 于是得111,1,.22332333x x x x x x ⎧⎧≤--<<≥⎧⎪⎪⎨⎨⎨-≤⎩⎪⎪-≤≤⎩⎩或或 解得11x -≤≤.即不等式f(x)3≤的解集为{|11}.x x -≤≤(5分)(2) ()|1|y f x x =++=|21||22||2122|3x x x x -++≥---=,当且仅当(2x-1)(2x+2)0≤时取等号.所以m=3,(8分)11111114()()(2)(2.3333b a a b a b a b a b +=++=++≥+= 当且仅当32a b ==时取等号.(10分)。

2018年高三一模数学试卷及答案(文科)

2018年高三一模数学试卷及答案(文科)

2018年高三数学一模试卷(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}320A x N x =∈->,{}24B x x =≤,则AB =( )A .{}21x x -≤< B .{}2x x ≤ C .{}22x x -≤≤ D .{}0,1 2.设i 是虚数单位,若复数()21ia a R i+∈-是纯虚数,则a =( ) A .1- B .1 C .2- D .23.已知[],0,2x y ∈,则事件“1x y +≤”发生的概率为( ) A .116 B .18 C .1516 D .784.某几何体的三视图如图所示,则该几何体的体积为( )A .122π+ B .12π+ C. 1π+ D .2π+ 5.已知变量x 与y 负相关,且由观测数据算得样本平均数2x =, 1.5y =,则由该观测数据算得的线性回归方程可能是( )A .0.6 1.1y x =+B .3 4.5y x =- C.2 5.5y x =-+D .0.4 3.3y x =-+6.已知2AB =,1CD =,且223AB CD -=AB 和CD 的夹角为( ) A .30 B .60 C.120 D .1507.已知抛物线2:4C y x =的焦点为F ,点(0A ,.若线段FA 与抛物线C 相交于点M ,则MF =( )A .43 B 23D 8.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则目标函数23z x y =-的最小值是( )A .7-B .6- C.5- D .3- 9.已知函数()2sin 24f x x π⎛⎫=-⎪⎝⎭,则函数()f x 的单调递减区间为( ) A .()372,288k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .()32,288k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C.()37,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .()3,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦10.已知双曲线C 的中心在原点O ,焦点()F -,点A 为左支上一点,满足OA OF =,且4AF =,则双曲线C 的方程为( )A .221164x y -= B .2213616x y -= C.221416x y -= D .2211636x y -= 11.在锐角ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足()()()sin sin sin a b A B c b C -+=-,若a =22b c +的取值范围是( )A .(]3,6B .()3,5 C.(]5,6 D .[]5,612.已知函数()x e f x x=,若关于x 的方程()()2223f x a a f x +=有且仅有4个不等实根,则实数a 的取值范围为( )A .0,2e ⎛⎫ ⎪⎝⎭B .,2e e ⎛⎫ ⎪⎝⎭C.()0,e D .()0,+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.sin 47sin17cos30cos17-的值等于.14.执行如图所示的程序框图,若输入1S =,1k =,则输出的S 为.15.若一圆锥的体积与一球的体积相等,且圆锥底面半径与球的半径相等,则圆锥侧面积与球的表面积之比为.16.若1b a >>且3log 6log 11a b b a +=,则321a b +-的最小值为. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 的前n 项和n S 满足()13122n n S a a n N *=-∈,且11a -,22a ,37a +成等差数列.(1)求数列{}n a 的通项公式;(2)令()92log n n b a n N *=∈,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18. 如图,在梯形ABCD 中,90BAD ADC ∠=∠=,2CD =,1AD AB ==,四边形BDEF 为正方形,且平面BDEF ⊥平面ABCD .(1)求证:DF CE ⊥;(2)若AC 与BD 相交于点O ,那么在棱AE 上是否存在点G ,使得平面//OBG 平面EFC ?并说明理由.19. 某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间.现将数据分成五组,第一组[)50,55,第二组[)55,60,…,第五章[]70,75,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为:4:10a.(1)求a 的值,并求这50名同学心率的平均值;(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?说明你的理由.参考数据:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20. 已知直线:l y kx m =+与椭圆()2222:10x y C a b a b+=>>相交于A ,P 两点,与x 轴,y轴分别相交于点N ,M ,且,PM MN =,点Q 是点P 关于x 轴的对称点,QM 的延长线交椭圆于点B ,过点A ,B 分别作x 轴的垂线,垂足分别为1A ,1B .(1)若椭圆C 的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点312D ⎛⎫⎪⎝⎭,在椭圆C 上,求椭圆C 的方程;(2)当12k =时,若点N 平方线段11A B ,求椭圆C 的离心率. 21. 已知函数()xf x xe =.(1)讨论函数()()xg x af x e =+的单调性;(2)若直线2y x =+与曲线()y f x =的交点的横坐标为t ,且[],1t m m ∈+,求整数m 所有可能的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为,sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线lsin 34πθ⎛⎫-= ⎪⎝⎭. (1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)设P 是曲线C 上的任意一点,求点P 到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)求不等式()1f x ≤的解集A ;(2)当,m n A ∈时,证明:1m n mn +≤+.试卷答案一、选择题1-5:CBBDC 6-10:CABDC 11、12:CB 二、填空题 13.1214.57416.1 三、解答题 17.解:(1)由13122n n S a a =-,得123n n S a a =-. 由()11112=3,232,n n n n S a a S a a n ---⎧⎪⎨=-≥⎪⎩作差得()132n n a a n -=≥.又11a -,22a ,37a +成等差数列,所以213417a a a =-++,即11112197a a a =-++,解得13a =.所以数列{}n a 是以3为首项、公比为3的等比数列,即3n n a =. (2)由992log 2log 3n n n b a n ===,得11111n n b b n n +=-+, 于是11111122311n n T n n n =-+-++-=++. 18.(1)证明:连接EB .∵在梯形ABCD 中,90BAD ADC ∠=∠=,2CD =,1AD AB ==, ∴BD =BC =.∴222BD BC CD +=,∴BC BD ⊥. 又∵平面BDEF ⊥平面ABCD ,平面BDEF 平面ABCD BD =,BC ⊂平面ABCD ,∴BC ⊥平面BDEF ,∴BC DF ⊥.又∵正方形BDEF 中,DF EB ⊥且EB ,BC ⊂平面BCE ,EB BC B =,∴DF ⊥平面BCE .又∵CE ⊂平面BCE ,∴DF CE ⊥.(2)解:如图所示,在棱AE 上存在点G ,使得平面//OBG 平面EFC ,且12AG GE =. 证明如下:∵在梯形ABCD 中,90BAD ADC ∠=∠=,2CD =,1AB =,∴//AB DC ,∴12AO AB OC DC ==. 又∵12AG GE =,∴AO AGOC GE=,∴//OG CE .又∵正方形BDEF 中,//EF OB ,且OB ,OG ⊄平面EFC ,EF ,CE ⊂平面EFC , ∴//OB 平面EFC ,//OG 平面EFC , 又∵OBOG O =,且OB ,OG ⊂平面OBG ,∴平面//OBG 平面EFC.19.解(1)因为第二组数据的频率为0.03250.16⨯=,故第二组的频数为0.16508⨯=,由已知得,前三组频数之比为:4:10a ,所以第一组的频数为2a ,第三组的频数为20,第四组的频数为16,第五组的数为4.所以2502016842a =----=,解得1a =. 这50名同学心率的平均值为282016452.557.562.567.572.5=63.75050505050⨯+⨯+⨯+⨯+⨯. (2)由(1)知,第一组和第二组的学生(即心率小于60次/分的学生)共10名,从而体育生有100.8=8⨯名,故列联表补充如下.所以()22508282128.3337.87910402030K ⨯⨯-⨯=≈>⨯⨯⨯,故有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关.20.解:(1)由题意得22222,191,4,b ab a bc ⎧=⎪⎪+=⎨⎪⎪=+⎩∴223,4,b a ⎧=⎪⎨=⎪⎩ ∴椭圆C 的方程为22143x y +=. (2)当12k =时,由12y x m =+,得()0,M m ,()2,0N m -. ∵PM MN =,∴()2,2P m m ,()2,2Q m m -, ∴直线QM 的方程为32y x m =-+. 设()11,A x y ,由22221,21,y x m x y a b ⎧=+⎪⎪⎨⎪+=⎪⎩得()2222222104a b x a mx a m b ⎛⎫+++-= ⎪⎝⎭, ∴2122424a mx m a b -+=+,∴()221222344m a b x a b +=-+;设()22,B x y ,由22223,21,y x m x y a b ⎧=-+⎪⎪⎨⎪+=⎪⎩得()22222229304a b x a mx a m b ⎛⎫+-+-= ⎪⎝⎭, ∴222212294a mx m a b +=+,∴()2222223494m a b x a b +=-+.∵点N 平方线段11A B ,∴124x x m +=-,∴()()222222222342344494m a b m a b m a ba b++--=-++,∴2234a b =,∴13x m =-,112y m =-,代入椭圆方程得22217m b b =<,符合题意. ∵222a b c =+,∴2a c =,∴12c e a ==.21.解:(1)由题意,知()()xxxg x af x e axe e =+=+,∴()()'1xg x ax a e =++.①若0a =时,()'x g x e =,()'0g x >在R 上恒成立,所以函数()g x 在R 上单调递增;②若0a >时,当1a x a+>-时,()'0g x >,函数()g x 单调递增, 当1a x a+<-时,()'0g x <,函数()g x 单调递减; ③若0a <时,当1a x a+>-时,()'0g x <,函数()g x 单调递减;当1a x a+<-时,()'0g x >,函数()g x 单调递增.综上,若0a =时,()g x 在R 上单调递增; 若0a >时,函数()g x 在1,a a +⎛⎫-∞-⎪⎝⎭内单调递减,在区间1,a a +⎛⎫-+∞ ⎪⎝⎭内单调递增; 当0a <时,函数()g x 在区间1,a a +⎛⎫-∞-⎪⎝⎭内单调递增,在区间1,a a +⎛⎫-+∞ ⎪⎝⎭内单调递减. (2)由题可知,原命题等价于方程2xxe x =+在[],1x m m ∈+上有解,由于0x e >,所以0x =不是方程的解,所以原方程等价于210xe x --=,令()21x r x e x=--, 因为()'220xr x e x=+>对于()(),00,x ∈-∞+∞恒成立,所以()r x 在(),0-∞和()0,+∞内单调递增. 又()130r e =-<,()2220r e =->,()311303r e -=-<,()2120r e -=>, 所以直线2y x =+与曲线()y f x =的交点仅有两个, 且两交点的横坐标分别在区间[]1,2和[]3,2--内, 所以整数m 的所有值为3-,1.22.解:(1)因为2222cos sin 1y θθ+=+=,所以曲线C 的普通方程为2213x y +=;sin 34πθ⎛⎫-= ⎪⎝⎭,展开得sin cos 3ρθρθ-=,即3y x -=, 因此直线l 的直角坐标方程为30x y -+=.(2)设),sin P θθ, 则点P 到直线l的距离为2d ==≤ 当且仅当sin 13πθ⎛⎫-=- ⎪⎝⎭,即()1126k k Z πθπ=+∈时等号成立,即31,22P ⎛⎫- ⎪⎝⎭, 因此点P 到直线l23.(1)解:由211x -≤,得1211x -≤-≤,即1x ≤,解得11x -≤≤,所以[]11A =-,.(2)证明:(解法一)()()()222222221111m n mn m n m n m n +-+=+--=---. 因为,m n A ∈,所以11m -≤≤,11n -≤≤,210m -≤,210n -≤,所以()()22110m n ---≤,()221m n mn +≤+. 又10mn +≥,故1m n mn +≤+.(解法二)因为,m n A ∈,故11m -≤≤,11n -≤≤,而()()()1110m n mn m n +-+=--≤()()()1110m n mn m n +--+=++≥⎡⎤⎣⎦,即()11mn m n mn -+≤+≤+,故1m n mn +≤+.。

2018年江西省高考数学试卷及答案解析(文科)

2018年江西省高考数学试卷及答案解析(文科)

2018年江西省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 C.8 D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题:本题共4小题,每小题5分,共20分。

2018届江西省高三联考文科数学试题及答案

2018届江西省高三联考文科数学试题及答案

江西省2018届高三联考 数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 集合{|22},{|123}A x x B x x =-<<=-≤+<,那么 A B = A. {|23}-<<x x B. {|32}-≤<x x C. {|31}-≤<x x D. {|21}-<≤x x2. 复数2(12)i +(其中i 为虚数单位)的虚部为A. 4iB. 4C. -4iD. -4 3. 函数lg(2)y x =-的定义域为A. (-2,0)B. (0,2)C. (-2,2)D. [2,2)- 4. “α是第二象限角”是“sin tan 0αα<”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 5. 设12,e e 为单位向量,其中1222,=+=a e e b e ,且a 在b 上的投影为2,则1e 与2e 的夹角为A. 6πB. 4πC. 3πD. 2π6. 如图是一个空间几何体的三视图,则该几何体的表面积为A. 122+πB. 122-πC. 16+πD. 16-π7. 已知定义域在R 上的函数()f x 图象关于直线2x =-对称,且当2x ≥-时,()34x f x =-,若函数()f x 在区间(1,)k k -上有零点,则符合条件的k 的值是A. -8B. -7C. -6D. -5 8. 阅读如图的程序框图,若运行相应的程序,则输出的S 的值为A. 64B. 66C. 98D. 2589. 如图正方体1111ABCD A BC D -的棱长为1,点E 在线段1BB 和线段11A B 上移动,∠EAB =,(0,)2πθθ∈,过直线AE ,AD 的平面ADFE 将正方体分成两部分,记棱BC 所在部分的体积为()V θ,则函数(),(0,)2V V πθθ=∈的大致图象是10. 已知椭圆C :22221(0)x y a b a b+=>>,12,F F 为左右焦点,点P 在椭圆C 上,△12F PF 的重心为G ,内心为I ,且有12IG F F λ=(λ为实数),则椭圆方程为A. 22186x y +=B. 221164+=x yC. 2251927x y += D. 221105+=x y二、填空题:本大题共5小题,每小题5分,共25分11. 命题:“存在正实数,x y ,使555++=x y x y 成立”的否定形式为________。

人教版江西省2018届高三毕业班新课程教学质量监测数学(文)试题(解析版)

人教版江西省2018届高三毕业班新课程教学质量监测数学(文)试题(解析版)

江西省2018年高中毕业班新课程教学质量监测卷文科数学第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,,则()A. B. C. D.【答案】C【解析】由题意可得:又∴故选:C2.复数的虚部为()A. B. C. 3 D. -3【答案】C【解析】.故该复数的虚部为3故选:C3.已知命题:;命题:,且的一个必要不充分条件是,则的取值范围是()A. B.C. D.【答案】A【解析】x2+2x-3>0,得x<-3或x>1,故p:-3≤x≤1;命题q:,故q:。

由q的一个必要不充分条件是p,可知q是p的充分不必要条件,故得。

故选:A4.若,,成等差数列,则的值等于()A. 1B. 0或C.D.【答案】D【解析】故选:D5.下边的流程图最后输出的值是()A. 6B. 5C. 4D. 3【答案】B【解析】执行程序框图,可得n=1,n=2不满足条件2n>n2,n=3不满足条件2n>n2,n=4不满足条件2n>n2,n=5满足条件2n=32>n2=25,退出循环,输出n的值为5.故选:C.6.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A. 0.9B. 0.75C. 0.8D. 0.7【答案】B【解析】大于或等于60分的共四组,它们是:[59.5,69.5),[69.5,79.5),[79.5,89.5),[89.5,99.5).分别计算出这四组的频率,如[79.5,89.5)这一组的矩形的高为0.025直方图中的各个矩形的面积代表了频率,则[79.5,89.5)这一组的频率=0.025×10=0.25同样可得,60分及以上的频率=(0.015+0.03+0.025+0.005)×10=0.75估计这次数学竞赛竞赛的及格率(大于或等于60分为及格)为75%,故选:B.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.7.在中,是以-2为第三项,6为第七项的等差数列的公差,是以为第二项,27为第七项的等比数列的公比,则这个三角形是()A. 钝角三角形B. 锐角三角形C. 等腰直角三角形D. 以上都不对【答案】B【解析】,都是锐角。

江西省2018届高三新课程教学质量监测数学(文)试卷(含答案)

江西省2018届高三新课程教学质量监测数学(文)试卷(含答案)

江西省2018年高中毕业班新课程教学质量监测卷文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{0,1,2,3}A =,{|2,}B x x a a A ==∈,则AB =( )A .{1,2}B .{0,1}C .{0,2}D .{2} 2.复数2211i ii i+---+的虚部为( ) A .3i B .3i - C .3 D .-33.已知命题p :2230x x +->;命题q :01x ax a ->--,且q ⌝的一个必要不充分条件是p ⌝,则a的取值范围是( )A .[3,0]-B .(,3][0,)-∞-+∞C .(3,0)-D .(,3)(0,)-∞-+∞4.若lg 2,lg(21)x+,lg(25)x+成等差数列,则x 的值等于( ) A .1 B .0或18 C .18D .2log 3 5.下边的流程图最后输出n 的值是( )A .6B .5C .4D .36.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是( )A .0.9B .0.75C .0.8D .0.7 7.在ABC ∆中,tan A 是以-2为第三项,6为第七项的等差数列的公差,tan B 是以19为第二项,27为第七项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 8.函数sin ()ln x xg x x=的图象大致是( )A .B .C .D .9.已知向量OA ,OB 满足1OA OB ==,0OA OB ⋅=,OC OA OB λμ=+(,)R λμ∈,若M 为AB 的中点,并且1MC =,则点(,)λμ的轨迹方程是( )A .2211()()122λμ++-= B .221()(1)12λμ-++=C .22(1)(1)1λμ-+-= D .2211()()122λμ-+-=10.实数对(,)x y 满足不等式组2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则目标函数z kx y =-当且仅当3x =,1y =时取最大值,设此时k 的取值范围为I ,则函数2111,0()1()1,02xx x f x x ⎧-<⎪=⎨+≥⎪⎩在I 上的值域是( )A .(1,2]-B .7(0,]4C .[0,2]D .3(1,]2-11.若双曲线22221(0,0)y x a b a b-=>>的渐近线与抛物线21y x =+相切,且被圆22()1x y a +-=截a =( )A12.函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数;②存在[,]a b D ⊆使得()f x 在[,]a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,则称函数()f x 为“成功函数”.若函数(2)()log x m t m f x +=(其中0m >,且1m ≠)是“成功函数”,则实数t 的取值范围为( )A .(0,)+∞B .1(,]8-∞ C .11[,)84 D .1(0,]8第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知3sin 5α=-,且α是第三象限的角,则tan 2α的值为 .14.设,x y R ∈,向量(,1)a x =,(2,)b y =,(2,2)c =-,且a c ⊥,//b c ,则a b += . 15.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为.16.定义函数(){{}}f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{1.5}2=,{ 2.5}2-=-.当(0,]x n ∈,*n N ∈时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则1210111a a a ++⋅⋅⋅+= . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为ABC ∆的内角A ,B ,C 的对边,2sin ()cos()cos()B C B C B C +=--+. (1)若a c =,求cos A 的值; (2)设90A =,且a =ABC ∆的面积.18.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如下表:已知x 和y 具有线性相关关系.(1)求y 关于x 的线性回归方程y bx a =+;(2)若每吨该农产品的成本为2.2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润z 取到最大值?参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑.19.如图,在直三棱柱111ABC A B C -中,AC BC ⊥,M 为线段1CC 上的一点,且1AC =,12BC CC ==.(1)求证:1AC B M ⊥;(2)若N 为AB 的中点,若//CN 平面1AB M ,求三棱锥1M ACB -的体积.20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.设点(0,)A b ,在12AF F ∆中,1223F AF π∠=. (1)求椭圆C 的方程;(2)设过点(2,1)P -的直线l 不经过点A ,且与椭圆C 相交于M ,N 两点,若直线AM 与AN 的斜率分别为1k ,2k ,求12k k +的值. 21.已知函数()ln f x x =. (1)若函数21()()2g x f x ax x =-+有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()(1)f x m x =+,()m Z ∈有实数解,求整数m 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.选修4-4:坐标系与参数方程 椭圆C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点为极点,x 轴正半轴为极轴的极坐标中,直线l 的方程为102cos sin ρθθ=+.(1)求出直角坐标系中l 的方程和椭圆C 的普通方程;(2)椭圆C 上有一个动点M ,求M 到l 的最小距离及此时M 的坐标.23.选修4-5:不等式选讲已知函数()1f x x x a =+--,其中a 为实数. (1)当1a =时,解不等式()1f x ≥;(2)当[0,)x ∈+∞时,不等式()2f x <恒成立,求a 的取值范围.高三文科数学参考答案一、选择题1-5: CCADB 6-10: BBADA 11、12:BD二、填空题13.24723 16. 2011三、解答题17.解(1)2sin cos()cos()A B C B C =--+,2sin 2sin sin A B C ∴=,由正弦定理得,22a bc =,又a c =,即2a c b ==,由余弦定理得2221cos 24b c a A bc +-==; (2)由(1)知22a bc =,且222b c a +=,a =1b c ==,12ABC S ∆∴=. 18.解析:(1)可计算得3,5x y ==,51=18+26+35+44+52=61i ii x y =⨯⨯⨯⨯⨯∑,5221=5351=75=0i i nx y x nx =⨯⨯-∑,,122161-75==-1.410ni ii nii x y nx yb xnx ==-∴=-∑∑, -5(1.43)9.2a y bx ==--⨯=,∴y 关于x 的线性回归方程是 1.49.2y x =-+. (2)年利润()22.2 1.47z x y x x =-=-+,其对称轴为 2.52.87x ==,故当年产量约为2.5吨时,年利润z 最大. 19.解析:(1)证明:在直三棱柱ABC-A 1B 1C 1中,11,,AC CC AC BC CC BC C ⊥⊥⋂=. 11AC BB C C ∴⊥平面, 1AC B M ∴⊥.(2)当M 为1CC 中点时, 1//CN AB M 平面,理由如下:112CM CC =,11//2CM BB ∴,取1AB 中点E ,连,NE ME ,,N E 分别为1,AB AB 中点,11//2NE BB ∴, //CM NE ∴,∴四边形CMEN 为平行四边形,11//,,CN ME CN AMB ME AB M ∴⊄⊂面面,1//N M C AB ∴面,11111111,.233B MC M ACB A CMB B MC S CM BC V V S AC --=⋅=∴==⋅=20.解析:(1)设两圆的一个交点为P ,则13PF =, 21PF =,由P 在椭圆上可得1224PF PF a +==,则2a =,①由121233F AF F AO ππ∠=⇒∠=,∴2a b ==,② 联立①②,解得2{ 1a b ==,∴椭圆方程为2214x y +=;(2)直线l 的斜率显然存在,设直线l 方程:1(2)y k x +=-,交点()11,M x y , ()22,N x y 由222144y kx k x y =--⎧⎨+=⎩222(14)8(21)4(21)40k x k k x k ⇒+-+++-=. 21212228(21)4(21)4,;1414k k k x x x x k k ++-∴+==++1212121212112222y y kx k kx k k k x x x x ------+=+=+12121212122(22)()(22)()2kx x k x x k x x k x x x x -++++==-2(22)8(21)24(21)4k k k k k +⋅+=-+-2(21)k k =-+1=-.21.解(1)21()ln 2g x x ax x =-+,则21()x ax g x x-+'=,得方程210x ax -+=有两个不等的正实数根,即21212400 210a x x a a x x ⎧∆=->⎪+=>∴>⎨⎪=>⎩,,,, (2)方程ln (1)x m x =+,即ln 1x m x =+,记函数ln ()1xh x x =+,(0)x >,21ln ()(1)x xx h x x +-'=+,令1()ln x x x x ϕ+=-(0)x >,211()0x x xϕ'=--<, ()x ϕ单调递减,22222211()0,()0(1)(1)e h e h e e e e e -''=>=<++, 存在20(,)x e e ∈,使得0()0h x '=,即0001ln x x x +=, 当0(0,)x x ∈,()0h x '>,()h x 递增,0(,),()0x x h x '∈+∞<, ()h x 递减,0max 200ln 111()(,)1x h x x x e e∴==∈+,即max ()m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0. 22、[选修44:坐标系与参数方程]解析:(1):2100,x y +-=22:14x C y +=.(2)设()2cos ,sin , M M θθ到的距离为d ==≥, ∴当sin()1θβ+=时,M 到的距离最小,最小值为5此时sin cos sin θβθβ====M .23.[选修45:不等式选讲]解析:(1)1a =时,()2,1112,112,1x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩,故()112f x x ≥⇒≥,即不等式()1f x ≥的解集是1,2⎡⎫+∞⎪⎢⎣⎭; (2)[)0,x ∈+∞时,()212121f x x x a x x a x a x <⇒+--<⇒+--<⇒->-, 当[)0,1x ∈时, 10x -<,显然满足条件,此时a 为任意值;当1x =时, 1a ≠;当()1,x ∈+∞时,可得1x a x ->-或1a x x ->-,求得1a <; 综上, (),1a ∈-∞.。

江西省名校学术联盟高三上学期教学质量检测考试(一)文

江西省名校学术联盟高三上学期教学质量检测考试(一)文

江西名校学术联盟2018届高三年级教学质量检测考试(一)数 学 (文)卷(命题:江西上进教育研究院 审题:九江一中)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分.考试时间120分钟.答题前,考生务必将自己的姓名、准考证号等信息填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用校皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}032|{2≤--=x x x A ,}40|{≤≤=x x B ,则B A ⋂=A.}21|{≤≤-x xB.}30|{≤≤x xC.}41|{≤≤-x xD.}31|{≤≤-x x 2.已知i 为虚数单位,则复数i1i3-+的虚部为 A.2 B.-2i C.-2 D.2i 3.已知命题3121,0:x x x p >>∀,则命题p 的否定为A.3121,0x x x ≤≤∀B.3121,0x x x ≤>∀ C.312100,0x x x ≤≤∃ D.3102100,0x x x ≤>∃4.已知双曲线134:22-=-y x C ,则其离心率为 A.27 B.332 C.321 D.2145.在区间[-2,2]上随机取一个数a ,则函数xax x f +=)(在区间(∞+ , 1)上为增函数的概率为 A.41 B.21 C.43D.536.设2155,2ln ,2log ===c b a ,则c b a ,,的大小关系为A.c b a <<B.a c b <<C.c a b <<D.a b c << 7.某几何体的正(主)视图和俯视图如下左图所示,则该几何体的侧(左)视图可以为8.已知偶函数)(x f 在区间[)∞+ , 0上单调递增,则满足)31()12(f x f <-的x 的取值范围为 A.⎪⎭⎫ ⎝⎛-32,21 B.⎪⎭⎫ ⎝⎛-32,31 C.⎪⎭⎫ ⎝⎛32,21 D.⎪⎭⎫⎝⎛32,31 9.执行如图的程序框图,则输出的n 值为A.18B.19C.20D.21 10.已知函数)2||,0)(sin(2)(πϕωϕω≤>+=x x f 的部分图象如图所示,则圆x y x ω-+220π6=-y ϕ中最长弦的长度为 A.22 B.5 C.5D.以上均不正确11.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如下图形:AB 是半圆O 的直径,点D 在半圆O 上,AB CD ⊥于点C ,OD CE ⊥于点E ,设a AC =,b BC =,通过比较DE 与DC 的大小可以完 成的无字证明为 A.)0,0(>>>>++m b a abm a m b B.)0,0)((2222>>+≤+b a b a b a C.)0,0(2>>≤+b a ab b a ab D.当0>>b a 时,ba 11< 12.若函数m x x x f x --=e )23()(2有三个零点,则实数m 的取值范围是A.)e 29,0(23 -B.]0 , 2e (- C.),e 29(23 +∞- D.]e 29,2e (23 --第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横线上) 13.已知)1,3(),,1(==b λa ,若向量a 与b 共线,则=2a .14.过抛物线)0(22>=p px y 的焦点作直线l 交抛物线于B A ,两点,若||AB 的最小值为4, 则抛物线的准线方程为 .15.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且满足:=+=B a A b a cos cos ,3A a C b A c sin sin ,cos 2=,则ABC ∆的面积为 . 16.如图,E 是正方体1111D CB A ABCD -的棱11DC 上一点,直线∥1BD 平面CE B 1,则异 面直线1BD 与CE 所成的角的余弦值为 .三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)在正项等差数列}{n a 中,11=a ,且3,1,421+-a a a 成等比数列.(1)求数列}{n a 的通项公式及前n 项和n S ; (2)记n n n a C )1(-=,求数列}{n c 的前n 项和n T .18.(本小题满分12分)如图所示,在多面体AEFD BC -中,矩形BCFE 所在平面与直角梯形AEFD 所在平面垂直,EF AE DF AE ⊥,∥,G 为CD 的中点,且2,1====DF BC BE AE . (1)求证:∥AG 平面BCFE ; (2)求多面体AEFD BC -的体积.19.(本小题满分12分)一企业在某大学举办了一次招聘员工的考试,考试分笔试和面试两部分,其中笔试成绩在70分以上(含70分)的应聘者进入面试环节.现将参加了该次考试的50名应聘大学生的笔试成绩(单位:分)进行分组,得到的频率分布表如下:(1)求频率分布表中y x ,的值,并估计参加考试的这50名应聘者笔试成绩的平均数(同一组中的数据用该组区间的中点值作代表);(2)现利用分层抽样的方法从进入面试环节的应聘者中抽取6人,再从这6人中随机抽取2人接受公司总经理亲自面试,试求第四组中至少有1人被总经理面试的概率.20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率31=e ,焦距为2.(1)求椭圆C 的方程;(2)过点)2,0(Q 作斜率为)0(≠k k 的直线l 与椭圆C 交于B A ,两点,若x 轴上的一点E 满足||||BE AE =,试求出点E 的横坐标的取值范围.21.(本小题满分12分)已知函数)0(e ln )(≠-=a xb x a x f x. (1)若)(x f 在点e =x 处的切线与x 轴平行,且)(x f 在区间),0(+∞上存在最大值,求实数a 的取值范围;(2)当1==b a 时,求不等式0)(≤-m x xf 恒成立时m 的最小整数值.请从下面所给的第22、23两题中选定一题作答,如果多答,则按做的第一题记分. 22.(本小题满分10分)【选修4—4:坐标系与参数方程】已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为θρcos 4=,直线l 与圆C 交于B A ,两点. (1)求圆C 的直角坐标方程及直线l 的普通方程. (2)已知点)0,1(P ,求||||PB PA -的值.23.(本小题满分10分)【选修4—5:不等式证明选讲】 已知函数|1||12|)(++-=x x x f . (1)解不等式3)(≤x f ;(2)记函数|1|)(++=x x f γ的最小值为m ,若正实数b a ,满足m b a =+,求证:3411≥+b a .江西名校学术联盟2018届高三年级教学质量检测考试(一)文科数学(答案)一、选择题:本大题共12小题,每小题5分. 1.B 【解析】A ={|13}x x -≤≤,所以{|03}AB x x =≤≤.2.A 【解析】3(3)(1)24121(1)(1)2i i i i i i i i ++++===+--+,其虚部为2.3.D 【解析】命题p 的否定书写方法为:先变量词,再否结论,对照各选项,只有D 符合.4.C 【解析】双曲线22:143x y C -=-化为标准方程得22134y x -=,所以双曲线C 的焦点在y 轴上,2,b c ==其离心率3c e a ===. 5.C 【解析】当21a -≤≤时,函数f(x)在区间(1,)+∞上为增函数,故所求概率为1(2)32(2)4P --==--.故C 项正确.6.A 【解析】由换底公式得,2211,log 5log a b e==,而222211log 5log 1,01log 5log e e>>∴<<<,即0<a<b<1, 102551,c =>=故a<b<c.7.B 【解析】结合正(主)视图和俯视图可知,该几何体是由一个半圆柱和一个14的球组合而成的,其中半圆柱在左,14个球在右,因此侧(左)视图中14个球对应的轮廓线(半圆)不可视,应画成虚线.对照各选项,只有B 符合. 8.D 【解析】由311231<-<-x 可得⎪⎭⎫⎝⎛∈32,31x ,故选D. 9.B 【解析】执行如图的程序框图,本质是计算数列1(1)n n ⎧⎫⎨⎬+⎩⎭的前n 项和n S 满足1920n S ≥ 的最小的n ,因为111111223(1)11n nS n n n n =+++=-=⨯⨯+++,所以181920181920,,192021S S S ===,故输出的n 值为19. 10.B 【解析】由题设得32934312124T ππππ=+==,则22T ππωπ=⇒==,故()()2s i n 2f x x ϕ=+,将12x π=-代入可得2sin 06πϕ⎛⎫-+= ⎪⎝⎭,即,6k k Z πϕπ=+∈,所以6πϕ=.所以226x y x y ϕωπ+--=0 ⇒22221520(1)()24x y x y x y +--=⇔-+-=,故半径r=2,最长弦即为直径,其长为11.C 【解析】由射影定理可知2CD DE OD =⋅,即2,2DC abDE a bOD ==+由,DC DE ≥得2aba b≥+,可知选C. 12.A 【解析】设()23()2x g x x x e =-,则()22313[()]()222x x g x x x e x x e ''=-=+-, 令()0g x '=,得123,12x x =-=,由图象易知()()32139(1),()222g x g e g x g e -==-=-=极小值极大值,又当0x <时,()0g x >,且x →-∞时,()0g x →; 当1x >时,()g x 为增函数,且x →+∞时,()g x →+∞,因此函数()23()2xf x x x e m =--有三个零点时,3239()220g e m --<=<,故选A.二、填空题:本大题共4小题,每小题5分. 13.109【解析】由与a b 共线,得1130,3λλ∴-=,=22101.9λ=+=a 14.x=-1(或填x+1=0) 【解析】依题意得2p=4,p=2,故准线方程为12px =-=-.15.4【解析】由A c B a A b cos 2cos cos =+及正弦定理得,cos sin 2cos sin cos sin A C B A A B =+即A C B A cos sin 2)sin(=+,即A C C cos sin 2sin =得1cos ,2A = 即A=3π.由正弦定理及s i n s i n b C a A=,得29.bc a ==故1sin 2ABC S bc A ∆==【解析】连接1BC 交1B C 于点O ,连接OE, 1111//B CE,,BD BC D OE =1平面平面平面B CE1//BD OE ∴,∴OEC ∠是异面直线BD 1与CE 所成的角.设该正方体的棱长为1,则1BD =.又O 为BC 1的中点,OE∴是11C BD ∆的中位线,112OE BD ∴==OC =1122B C EC ===.在OCE ∆中,由余弦定理得222cos 2OE EC OC OEC OE EC +-∠==⋅.三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.)17.解:(1)设等差数列{}n a 的公差为d.依题意得),3()1(4122+=-a a a 即),33()1(1121++=-+d a a d a结合11=a 可化简得0432=--d d ,解得d=4(负值舍去).(3分)1(1)14(1)4 3.n a a n d n n ∴=+-=+-=-(4分)21()(143)2.22n n n a a n n S n n ++-===-(6分). (2)当n 为偶数时,(15)(913)(7443)n T n n =-++-+++-+-L =42.2nn ⨯=(9分)当n 为奇数时,n+1为偶数,112(1)(41)21n n n T T c n n n ++=-=+-+=-+,(11分)综上所述,2,(2,),21,(21,).N N **⎧=∈⎪=⎨-+=-∈⎪⎩n n n k k T n n k k (12分) 18.(1)证明:如图,取CF 的中点H ,连接EH ,HG.H 是CF 的中点,G 是CD 的中点,∴1//,.2GH FD GH FD =又1//,.2AE FD AE FD =//,.AE GH AE GH ∴=∴四边形AGHE 是平行四边形.//.AG EH ∴(5分)又.AG EH ⊄⊂平面BCFE ,平面BCFE g//AG ∴平面BCFE.(6分)(2),BCFE AEFD ⊥平面平面CF ⊥ ,,EF AEFD EF =平面平面BCFECF ∴⊥平面.AEFD∴111332BC AEFD A BEFC C ADF V V V BE BC AE DF EF CF ---=+=⋅⋅+⨯⋅⋅ =1112111211.3323⨯⨯⨯+⨯⨯⨯⨯=(12分) 19.解:(1)由频率分布表可得5151510500.10.30.20.11x y ++++=⎧⎨++++=⎩,解得50.3x y =⎧⎨=⎩ . (2分)估计参加考试的这50名应聘者笔试成绩的平均数为550.1650.3750.3850.2950.174⨯+⨯+⨯+⨯+⨯=.(4分)(2)由(1)可知,后三组中的人数分别为15,10, 5,故这三组中所抽取的人数分别为3,2,1. 记第三组的3人为a,b,c ,第四组的2人为d,e,第5组的1人为f,则从6人中抽取2人的所有可能结果为:(a,b ),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15种,其中第四组中至少有1人的结果有:(a,d), (a,e) ,(b,d),(b,e), (c,d),(c,e), (d,e), (d,f),(e,f).共9种.(10分)故第四组中至少有1人被总经理面试的概率为93.155P ==(12分) 20.解:(1)由已知得1,223c c a ==, 2221,3,8.c a b a c ∴===-=∴椭圆C 的方程为22198x y +=.(5分) (2)根据题意可设直线l 的方程为2,y kx =+设1122(,),(,),A x y B x y AB 的中点为00(,).G x y 设点E (m,0),使得||||AE BE =,则EG AB ⊥. 由222,198y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360,k x kx ++-= 12000222361816,,2,989898k k x x x y kx k k k -+=-∴==+=+++(7分) 1,,EG EG AB k k ⊥∴=-即22160198,1898k k k m k -+=---+ 222,8989k m k k k --∴==++(9分) 当0k >时,890;12k m k +≥=∴-≤< 当k<0时,89012k m k +≤-∴<≤ 综上所述,点E的横坐标的取值范围为2[(0,].1212-(12分)21.解:(1)22()(ln )(1ln )(1)()x x x a be x a x be a x be x x f x x x------'==,()f x 在点x=e 处的切线与x 轴平行,()0f e '∴=,0b ∴=.(2分) 因此2(1ln )()a x f x x -'=, 当0a >时,2(1ln )()a x f x x -'=在区间(0,)e 上为正,在区间(,)e +∞上为负,因此 ()f x 在区间(0,)e 上为增函数,在区间(,)e +∞上为减函数,即函数()f x 在x=e 处取得唯一的极大值,即为最大值;当0a <时,()f x 在(0,)e 上为减函数,在(,)e +∞为增函数,即函数()f x 有最小值, 无最大值.因此实数a 的取值范围是(0,)+∞.(6分)(2)当1a b ==时,设()()ln xg x xf x x e ==-, 1()x g x e x'=-在区间(0,)+∞上为减函数,又(1)10g e '=-<,1()202g '=>, 因此存在唯一实数01(,1)2x ∈,使0001()0x g x e x '=-=,(8分) 由此得到00001,ln x e x x x ==-;(9分) 此时()g x 在区间0(0,)x 上为增函数,在区间0(,)x +∞上为减函数, 由单调性知0max 00000011()()ln ()x g x g x x e x x x x ==-=--=-+, 又01(,1)2x ∈,故0051()22x x -<-+<-, 因此()0xf x m -≤恒成立时2m ≥-,即m 的最小整数值为2-.(12分)请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 解:(1)由4cos ρθ=得24cos ρρθ=,所以2240,x y x +-=所以圆C 的直角坐标方程为22(2)4x y -+=.(3分) 直线l 的普通方程为10.(x y --=5分)(2)将直线l 的参数方程代入圆C :22(2)4x y -+=,并整理得230,t -=所以12123t t t t +==-.点P (1,0)在直线l 上,且点P 在圆C的内部,所以12||||||PA PB t t -=+=(10分) 23. 解:(1)依题意得3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩, 于是得111,1,.22332333x x x x x x ⎧⎧≤--<<≥⎧⎪⎪⎨⎨⎨-≤⎩⎪⎪-≤≤⎩⎩或或 解得11x -≤≤.即不等式f(x)3≤的解集为{|11}.x x -≤≤(5分)(2) ()|1|y f x x =++=|21||22||2122|3x x x x -++≥---=,当且仅当(2x-1)(2x+2)0≤时取等号.所以m=3,(8分)11111114()()(2)(2.3333b a a b a b a b a b +=++=++≥+= 当且仅当32a b ==时取等号.(10分)。

江西省2017-2018学年高三上学期第一次联考数学试卷(文科) Word版含解析

江西省2017-2018学年高三上学期第一次联考数学试卷(文科) Word版含解析

2017-2018学年江西省高三(上)第一次联考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={2,3,4},B={1,4},则(∁U A)∪B为()A.{1}B.{1,5}C.{1,4}D.{1,4,5}2.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”3.已知集合A={x∈R|﹣3<x<2},B={x∈R|x2﹣4x+3≥0},则A∩B=()A.(﹣3,1] B.(﹣3,1)C.[1,2)D.(﹣∞,2)∪[3,+∞)4.函数f(x)=+lg(x+2)的定义域为()A.(﹣2,1)B.(﹣2,1] C.[﹣2,1)D.[﹣2,﹣1]5.命题p:∃x∈R,x>1的否定是()A.¬p:∀x∈R,x≤1 B.¬p:∃x∈R,x≤1 C.¬p:∀x∈R,x<1 D.¬p:∃x∈R,x<16.已知函数f(x)=xα的图象经过点,则f(4)的值等于()A.B.C.2 D.167.已知tan(π﹣α)=﹣,且α∈(﹣π,﹣),则的值为()A.B. C.D.8.函数f(x)=满足f()+f(a)=2,则a的所有可能值为()A. B.C.1 D.9.某商店将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为()A.50元B.60元C.70元D.100元10.若a=2,b=ln2,c=log5sin,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a11.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=alnx﹣ax+1,当x∈(﹣2,0)时,函数f(x)的最小值为1,则a=()A.﹣2 B.2 C.±1 D.112.函数y=的大致图象是()A.B.C.D.二、填空题(本小题共4小题,每题5分,满分20分,将答案填在答题纸上)13.在△ABC中,角A,B,C所对的边分别为a,b,c,若∠C=60°,b=2,c=2,则a=.14.若方程x2﹣mx﹣1=0有两根,其中一根大于2,另一根小于2的充要条件是.15.函数f(x)=log a(3﹣ax)在区间(2,6)上递增,则实数a的取值范围是.16.若函数f(x)=3sin(2x﹣)的图象为C,则下列结论中正确的序号是.①图象C关于直线x=对称;②图象C关于点(,0)对称;③函数f(x)在区间(﹣,)内不是单调的函数;④由y=3sin2x的图象向右平移个单位长度可以得到图象C.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知p:﹣x2+7x+8≥0,q:x2﹣2x+1﹣4m2≤0(m>0).(1)若p是q的充分不必要条件,求实数m的取值范围.(2)若“非p”是“非q”的充分不必要条件,求实数m的取值范围.18.若函数f(x)=e x+x2﹣mx,在点(1,f(1))处的斜率为e+1.(1)求实数m的值;(2)求函数f(x)在区间[﹣1,1]上的最大值.19.已知函数f(x)=msin2x﹣cos2x﹣,x∈R,若tanα=2且f(α)=﹣.(1)求实数m的值及函数f(x)的最小正周期;(2)求f(x)在[0,π]上的递增区间.20.已知f(x)=x2+ax+.(1)若b=﹣2,对任意的x∈[﹣2,2],都有f(x)<0成立,求实数a的取值范围;(2)设a≤﹣2,若任意x∈[﹣1,1],使得f(x)≤0成立,求a2+b2﹣8a的最小值,当取得最小值时,求实数a,b的值.21.△ABC的内角A,B,C的对边分别是a,b,c,已知•(cosB+cosA)=1.(1)求角C;(2)若c=,△ABC的周长为5+,求△ABC的面积S.22.设函数f(x)=ln(x+1)+a(x2﹣x)+5,其中a∈R.(1)当a∈[﹣1,1]时,f'(x)≥0恒成立,求x的取值范围;(2)讨论函数f(x)的极值点的个数,并说明理由.2016-2017学年江西省高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={2,3,4},B={1,4},则(∁U A)∪B为()A.{1}B.{1,5}C.{1,4}D.{1,4,5}【考点】交、并、补集的混合运算.【分析】由全集U={1,2,3,4,5},集合A={2,3,4}先求出C U A={1,5},再由B={1,4},能求出(C U A)∪B.【解答】解:∵全集U={1,2,3,4,5},集合A={2,3,4},∴C U A={1,5},∵B={1,4},∴(C U A)∪B={1,4,5}.故选:D.2.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”【考点】四种命题.【分析】将原命题的条件与结论进行交换,得到原命题的逆命题.【解答】解:因为一个命题的逆命题是将原命题的条件与结论进行交换,因此逆命题为“若一个数的平方是正数,则它是负数”.故选B.3.已知集合A={x∈R|﹣3<x<2},B={x∈R|x2﹣4x+3≥0},则A∩B=()A.(﹣3,1] B.(﹣3,1)C.[1,2)D.(﹣∞,2)∪[3,+∞)【考点】交集及其运算.【分析】求解一元二次不等式化简集合B,然后直接利用交集运算求解.【解答】解:由x2﹣4x+3≥0,得:x≤1或x≥3.所以B={x∈R|x2﹣4x+3≥0}={x∈R|x≤1或x≥3},又A={x∈R|﹣3<x<2},所以A∩B={x∈R|﹣3<x<2}∩{x∈R|x≤1或x≥3}={x|﹣3<x≤1}.故选A.4.函数f(x)=+lg(x+2)的定义域为()A.(﹣2,1)B.(﹣2,1] C.[﹣2,1)D.[﹣2,﹣1]【考点】函数的定义域及其求法;对数函数的定义域.【分析】根据题意可得,解不等式可得定义域.【解答】解:根据题意可得解得﹣2<x≤1所以函数的定义域为(﹣2,1]故选B5.命题p:∃x∈R,x>1的否定是()A.¬p:∀x∈R,x≤1 B.¬p:∃x∈R,x≤1 C.¬p:∀x∈R,x<1 D.¬p:∃x∈R,x<1【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:命题是特称命题,则命题的否定是:∀x∈R,x≤1,故选:A6.已知函数f(x)=xα的图象经过点,则f(4)的值等于()A.B.C.2 D.16【考点】幂函数的概念、解析式、定义域、值域.【分析】由题意可得2α=,求出α=﹣,由此求出f(4)=运算求得结果.【解答】解:函数f(x)=xα的图象经过点,故有2α=,∴α=﹣.∴f(4)===,故选B.7.已知tan(π﹣α)=﹣,且α∈(﹣π,﹣),则的值为()A.B. C.D.【考点】运用诱导公式化简求值.【分析】由已知利用诱导公式,同角三角函数基本关系式化简即可得解.【解答】解:∵α∈(﹣π,﹣),tan(π﹣α)=﹣tanα=﹣,可得:tanα=,∴====﹣.故选:A.8.函数f(x)=满足f()+f(a)=2,则a的所有可能值为()A. B.C.1 D.【考点】根的存在性及根的个数判断.【分析】利用函数的解析式,通过讨论a的范围,列出方程求解即可.【解答】解:函数f(x)=满足f()+f(a)=2,当a∈(﹣1,0)时,可得: +2cosaπ=2,可得cosa,解得a=.当a>0时,f()+f(a)=2,化为: +e2a﹣1=2,即e2a﹣1=1,解得a=.则a的所有可能值为:.故选:D.9.某商店将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为()A.50元B.60元C.70元D.100元【考点】函数模型的选择与应用.【分析】设售价,利用销售额减去成本等于利润,构建函数,利用配方法,即可求得结论.【解答】解:设销售定价为a元,那么就是提高了(a﹣50)元,则销售件数减少10(a﹣50)个,所以一个月能卖出的个数是[500﹣10(a﹣50)],每单位商品的利润的是(a﹣40)元,则一个月的利润y=(a﹣40)[500﹣10(a﹣50)]=﹣10a2+1400a﹣40000=﹣10(a﹣70)2+9000,∴当a=70时,y取得最大值9000,∴当定价为70时,能获得最大的利润9000元,故选:C.10.若a=2,b=ln2,c=log5sin,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【考点】对数值大小的比较.【分析】根据指数函数和对数函数的性质,比较和0,1的大小关系即可.【解答】解:a=2>1,0<b=ln2<1,c=log5sin<0,∴a>b>c,故选:A11.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=alnx﹣ax+1,当x∈(﹣2,0)时,函数f(x)的最小值为1,则a=()A.﹣2 B.2 C.±1 D.1【考点】函数的最值及其几何意义.【分析】由奇函数f(x)的图象关于原点对称,由题意可得当x∈(0,2)时,f(x)的最大值为﹣1,求得当x∈(0,2)时,f(x)的导数和单调区间,确定a>0,f(1)取得最大值﹣1.解方程可得a的值.【解答】解:y=f(x)是奇函数,可得f(x)的图象关于原点对称,由当x∈(﹣2,0)时,函数f(x)的最小值为1,可得当x∈(0,2)时,f(x)的最大值为﹣1,由f(x)=alnx﹣ax+1的导数为f′(x)=﹣a=,由最大值可得a>0,f(x)在(1,2)递减,在(0,1)递增.最大值为f(1)=1﹣a=﹣1,解得a=2.故选:B.12.函数y=的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据函数在x=0时,解析式无意义,可得函数图象与y轴无交点,利用排除法,可得答案.【解答】解:当x=0时,解析式的分母为0,解析式无意义,故函数图象与y轴无交点,故排除A,B,D,故选:C二、填空题(本小题共4小题,每题5分,满分20分,将答案填在答题纸上)13.在△ABC中,角A,B,C所对的边分别为a,b,c,若∠C=60°,b=2,c=2,则a= 4.【考点】余弦定理.【分析】由已知及余弦定理可得:a2﹣2a﹣8=0,即可解得a的值.【解答】解:∵∠C=60°,b=2,c=2,∴由余弦定理c2=a2+b2﹣2abcosC,可得:12=a2+4﹣2a,整理可得:a2﹣2a﹣8=0,∴解得:a=4或﹣2(舍去),故答案为:4.14.若方程x2﹣mx﹣1=0有两根,其中一根大于2,另一根小于2的充要条件是(,+∞).【考点】必要条件、充分条件与充要条件的判断.【分析】设f(x)=x2﹣mx﹣1,则由题意可得f(2)=3﹣2m<0,由此求得m的范围.【解答】解:设f(x)=x2﹣mx﹣1,则由方程x2﹣mx﹣1=0的两根,一根大于2,另一根小于2,可得f(2)=4﹣2m﹣1<0,求得m>,故答案为:(,+∞).15.函数f(x)=log a(3﹣ax)在区间(2,6)上递增,则实数a的取值范围是.【考点】复合函数的单调性.【分析】由题意可知内函数为减函数,则外函数对数函数为减函数,求出a的范围,再由内函数在区间(2,6)上恒大于0求出a的范围,取交集得答案.【解答】解:∵a>0且a≠1,∴内函数g(x)=3﹣ax为定义域内的减函数,要使函数f(x)=log a(3﹣ax)在区间(2,6)上递增,则外函数y=log a g(x)为定义域内的减函数,则0<a<1;又g(x)=3﹣ax在区间(2,6)上递减,∴g(x)≥g(6)=3﹣6a≥0,即a≤.∴实数a的取值范围是.故答案为:.16.若函数f(x)=3sin(2x﹣)的图象为C,则下列结论中正确的序号是①②.①图象C关于直线x=对称;②图象C关于点(,0)对称;③函数f(x)在区间(﹣,)内不是单调的函数;④由y=3sin2x的图象向右平移个单位长度可以得到图象C.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数y=Asin(ωx+φ)图象“对称中心为零点,对称轴处取最值”的结论,验算可得①正确,②是真命题.由正弦函数的单调性,得函数f(x)的一个增区间是[﹣,],得③是假命题;根据函数图象平移的公式,可得④中的平移得到的函数为y=3sin(2x﹣),故④不正确.【解答】解:因为当x=时,f(x)=3sin(2×﹣)=3sin,所以直线x=是图象的对称轴,故①正确;因为当x=时,f(x)=3sin(2×﹣)=0,所以函数图象关于点(,0)对称,故②正确;令﹣≤2x﹣≤,解得x∈[﹣,],所以函数的一个增区间是[﹣,],因此f(x)在区间[0,]上是增函数,故③不正确;由y=3sin2x的图象向右平移个单位,得到的图象对应的函数表达式为y=3sin2(x﹣)=3sin(2x﹣),所以所得图象不是函数f(x)=3sin(2x﹣)的图象C,故④不正确故答案为:①②.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知p:﹣x2+7x+8≥0,q:x2﹣2x+1﹣4m2≤0(m>0).(1)若p是q的充分不必要条件,求实数m的取值范围.(2)若“非p”是“非q”的充分不必要条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】先化简p,q,(1)p是q的充分不必要条件得到,解得即可;(2)非p”是“非q”的充分不必要条件,得到q是p的充分不必要条件,得到,解得即可.【解答】解:p:﹣x2+7x+8≥0,即x2﹣7x﹣8≤0,解得﹣1≤x≤8,q:x2﹣2x+1﹣4m2≤0,得到1﹣2m≤x≤1+2m(1)∵p是q的充分不必要条件,∴[﹣1,8]是[1﹣2m,1+2m]的真子集.∴∴m≥.∴实数m的取值范围为m≥.(2)∵“非p”是“非q”的充分不必要条件,∴q是p的充分不必要条件.∴,∴1≤m≤.∴实数m的取值范围为1≤m≤.18.若函数f(x)=e x+x2﹣mx,在点(1,f(1))处的斜率为e+1.(1)求实数m的值;(2)求函数f(x)在区间[﹣1,1]上的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,利用切线的斜率,求解即可.(2)求出导函数,求出极值点,判断函数的单调性,然后求解函数的最值即可.【解答】解:(1)f'(x)=e x+2x﹣m,∴f'(1)=e+2﹣m,即e+2﹣m=e+1,解得m=1;实数m的值为1;…(2)f'(x)=e x+2x﹣1为递增函数,∴f'(1)=e+1>0,f'(﹣1)=e﹣1﹣3<0,存在x0∈[﹣1,1],使得f'(x0)=0,所以f(x)max=max{f(﹣1),f(1)},f(﹣1)=e﹣1+2,f(1)=e,∴f(x)max=f(1)=e…19.已知函数f(x)=msin2x﹣cos2x﹣,x∈R,若tanα=2且f(α)=﹣.(1)求实数m的值及函数f(x)的最小正周期;(2)求f(x)在[0,π]上的递增区间.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)利用同角三角函数关系和已知条件f(α)=﹣求得,由此得到m的值;则易得函数f(x)=sin(2x﹣)﹣1,根据正弦函数的性质来求最小正周期;(2)利用(1)中得到的函数解析式和正弦函数的单调增区间解答.【解答】解:(1),又∵,∴,即;故,∴函数f(x)的最小正周期;(2)f(x)的递增区间是,∴,所以在[0,π]上的递增区间是[0,]∪[,π].20.已知f(x)=x2+ax+.(1)若b=﹣2,对任意的x∈[﹣2,2],都有f(x)<0成立,求实数a的取值范围;(2)设a≤﹣2,若任意x∈[﹣1,1],使得f(x)≤0成立,求a2+b2﹣8a的最小值,当取得最小值时,求实数a,b的值.【考点】函数的最值及其几何意义.【分析】(1)由题意可得,解得即可,(2)由题意可得f(x)max=f(﹣1)≤0,再根据基本不等式即可求出a2+b2﹣8a的最小值.【解答】解:(1),对于x∈[﹣2,2]恒有f(x)<0成立,∴,解得,…(2)若任意x∈[﹣1,1],使得f(x)≤0成立,又a≤﹣2,f(x)的对称轴为,在此条件下x∈[﹣1,1]时,f(x)max=f(﹣1)≤0,∴,及a≤﹣2得a+b﹣1≥0,⇒b≥1﹣a>0⇒b2≥(1﹣a)2,于是,当且仅当a=﹣2,b=3时,a2+b2﹣8a取得最小值为29.21.△ABC的内角A,B,C的对边分别是a,b,c,已知•(cosB+cosA)=1.(1)求角C;(2)若c=,△ABC的周长为5+,求△ABC的面积S.【考点】余弦定理.【分析】(1)由题意和正、余弦定理化简已知的式子,由两角和的正弦公式、诱导公式化简后,由内角的范围和特殊角的三角函数值求出角C;(2)由题意求出a+b的值,由余弦定理化简后求出ab的值,代入三角形的面积公式求出△ABC的面积.【解答】解:(1)∵,∴由正、余弦定理得:2cosC(sinAcosB+sinBcosA)=sinC,则2cosCsin(A+B)=sinC,即2sinCcosC=sinC,∵sinC≠0,∴,由0<C<π得,;…(2)由条件得,,且,∴a+b=5,由余弦定理得:a2+b2﹣2abcosC=7,则(a+b)2﹣3ab=7,解得ab=6,∴△ABC的面积…22.设函数f(x)=ln(x+1)+a(x2﹣x)+5,其中a∈R.(1)当a∈[﹣1,1]时,f'(x)≥0恒成立,求x的取值范围;(2)讨论函数f(x)的极值点的个数,并说明理由.【考点】导数在最大值、最小值问题中的应用;函数的零点与方程根的关系;利用导数研究函数的极值.【分析】(1)求出函数的导数,令h(a)=2(x2+x﹣1)a+1,要使f′(x)≥0,则使h(a)≥0即可,而h(a)是关于a的一次函数,列出不等式求解即可.(2)令g(x)=2ax2+ax﹣a+1,x∈(﹣1,+∞),当a=0时,当a>0时,①当时,②当时,当a<0时,求解函数的极值以及判断函数的单调性.【解答】解:(1)f′(x)=+a(2x﹣1)=,x∈(﹣1,+∞),(1)令h(a)=2(x2+x﹣1)a+1,要使f′(x)≥0,则使h(a)≥0即可,而h(a)是关于a的一次函数,∴,解得或,所以x的取值范围是…(2)令g(x)=2ax2+ax﹣a+1,x∈(﹣1,+∞),当a=0时,g(x)=1,此时f(x)>0,函数f(x)在(﹣1,+∞)上递增,无极值点;当a>0时,△=a(9a﹣8),①当时,△≤0,g(x)≥0⇒f(x)≥0,函数f(x)在(﹣1,+∞)上递增,无极值点;②当时,△>0,设方程2ax2+ax﹣a+1=0的两个根为x1,x2(不妨设x1<x2),因为,所以,由g(﹣1)=1>0,∴,所以当x∈(﹣1,x1),g(x)>0⇒f(x)>0,函数f(x)递增;当x∈(x1,x2),g(x)<0⇒f(x)<0,函数f(x)递减;当x∈(x2,+∞),g(x)>0⇒f(x)>0,函数f(x)递增;因此函数有两个极值点,当a<0时,△>0,由g(﹣1)=1>0,可得x1<﹣1,所以当x∈(﹣1,x2),g(x)>0⇒f(x)>0,函数f(x)递增;当x∈(x2,+∞),g(x)<0⇒f(x)<0,函数f(x)递减;因此函数有一个极值点,综上,当a<0时,函数有一个极值点;当时,函数无极值点;当时,函数有两个极值点…2016年12月29日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西名校学术联盟2018届高三年级教学质量检测考试(一)数 学 (文)卷(命题:江西上进教育研究院 审题:九江一中)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分.考试时间120分钟.答题前,考生务必将自己的姓名、准考证号等信息填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用校皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}032|{2≤--=x x x A ,}40|{≤≤=x x B ,则B A ⋂=A.}21|{≤≤-x xB.}30|{≤≤x xC.}41|{≤≤-x xD.}31|{≤≤-x x 2.已知i 为虚数单位,则复数i1i3-+的虚部为 A.2 B.-2i C.-2 D.2i 3.已知命题3121,0:x x x p >>∀,则命题p 的否定为A.3121,0x x x ≤≤∀B.3121,0x x x ≤>∀ C.3102100,0x x x ≤≤∃ D.3102100,0x x x ≤>∃4.已知双曲线134:22-=-y x C ,则其离心率为 A.27 B.332 C.321 D.2145.在区间[-2,2]上随机取一个数a ,则函数xax x f +=)(在区间(∞+ , 1)上为增函数的概率为 A.41 B.21 C.43 D.536.设2155,2ln ,2log ===c b a ,则c b a ,,的大小关系为A.c b a <<B.a c b <<C.c a b <<D.a b c << 7.某几何体的正(主)视图和俯视图如下左图所示,则该几何体的侧(左)视图可以为8.已知偶函数)(x f 在区间[)∞+ , 0上单调递增,则满足)31()12(f x f <-的x 的取值范围为 A.⎪⎭⎫ ⎝⎛-32,21 B.⎪⎭⎫ ⎝⎛-32,31 C.⎪⎭⎫ ⎝⎛32,21 D.⎪⎭⎫⎝⎛32,31 9.执行如图的程序框图,则输出的n 值为A.18B.19C.20D.21 10.已知函数)2||,0)(sin(2)(πϕωϕω≤>+=x x f 的部分图象如图所示,则圆x y x ω-+220π6=-y ϕ中最长弦的长度为 A.22 B.5 C.5D.以上均不正确11.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如下图形:AB 是半圆O 的直径,点D 在半圆O 上,AB CD ⊥于点C ,OD CE ⊥于点E ,设a AC =,b BC =,通过比较DE 与DC 的大小可以完 成的无字证明为 A.)0,0(>>>>++m b a a b m a m b B.)0,0)((2222>>+≤+b a b a b a C.)0,0(2>>≤+b a ab b a ab D.当0>>b a 时,ba 11< 12.若函数m x x x f x--=e )23()(2有三个零点,则实数m 的取值范围是A.)e 29,0(23 -B.]0 , 2e(- C.),e 29(23 +∞- D.]e 29,2e (23--第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横线上)13.已知)1,3(),,1(==b λa ,若向量a 与b 共线,则=2a .14.过抛物线)0(22>=p px y 的焦点作直线l 交抛物线于B A ,两点,若||AB 的最小值为4, 则抛物线的准线方程为 .15.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且满足:=+=B a A b a cos cos ,3A a C b A c sin sin ,cos 2=,则ABC ∆的面积为 . 16.如图,E 是正方体1111D CB A ABCD -的棱11DC 上一点,直线∥1BD 平面CE B 1,则异 面直线1BD 与CE 所成的角的余弦值为 .三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)在正项等差数列}{n a 中,11=a ,且3,1,421+-a a a 成等比数列.(1)求数列}{n a 的通项公式及前n 项和n S ; (2)记n n n a C )1(-=,求数列}{n c 的前n 项和n T .18.(本小题满分12分)如图所示,在多面体AEFD BC -中,矩形BCFE 所在平面与直角梯形AEFD 所在平面垂直,EF AE DF AE ⊥,∥,G 为CD 的中点,且2,1====DF BC BE AE . (1)求证:∥AG 平面BCFE ; (2)求多面体AEFD BC -的体积.19.(本小题满分12分)一企业在某大学举办了一次招聘员工的考试,考试分笔试和面试两部分,其中笔试成绩在70分以上(含70分)的应聘者进入面试环节.现将参加了该次考试的50名应聘大学生的笔试成绩(单位:分)进行分组,得到的频率分布表如下:(1)求频率分布表中y x ,的值,并估计参加考试的这50名应聘者笔试成绩的平均数(同一组中的数据用该组区间的中点值作代表);(2)现利用分层抽样的方法从进入面试环节的应聘者中抽取6人,再从这6人中随机抽取2人接受公司总经理亲自面试,试求第四组中至少有1人被总经理面试的概率.20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率31=e ,焦距为2.(1)求椭圆C 的方程;(2)过点)2,0(Q 作斜率为)0(≠k k 的直线l 与椭圆C 交于B A ,两点,若x 轴上的一点E 满足||||BE AE =,试求出点E 的横坐标的取值范围.21.(本小题满分12分)已知函数)0(e ln )(≠-=a xb x a x f x. (1)若)(x f 在点e =x 处的切线与x 轴平行,且)(x f 在区间),0(+∞上存在最大值,求实数a 的取值范围;(2)当1==b a 时,求不等式0)(≤-m x xf 恒成立时m 的最小整数值.请从下面所给的第22、23两题中选定一题作答,如果多答,则按做的第一题记分. 22.(本小题满分10分)【选修4—4:坐标系与参数方程】已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为θρcos 4=,直线l 与圆C 交于B A ,两点. (1)求圆C 的直角坐标方程及直线l 的普通方程. (2)已知点)0,1(P ,求||||PB PA -的值.23.(本小题满分10分)【选修4—5:不等式证明选讲】 已知函数|1||12|)(++-=x x x f . (1)解不等式3)(≤x f ;(2)记函数|1|)(++=x x f γ的最小值为m ,若正实数b a ,满足m b a =+,求证:3411≥+b a .江西名校学术联盟2018届高三年级教学质量检测考试(一)文科数学(答案)一、选择题:本大题共12小题,每小题5分.1.B 【解析】A ={|13}x x -≤≤,所以{|03}A B x x =≤≤ .2.A 【解析】3(3)(1)24121(1)(1)2i i i i i i i i ++++===+--+,其虚部为2.3.D 【解析】命题p 的否定书写方法为:先变量词,再否结论,对照各选项,只有D 符合.4.C 【解析】双曲线22:143x y C -=-化为标准方程得22134y x -=,所以双曲线C 的焦点在y 轴上,2,b c ==其离心率3c e a ===. 5.C 【解析】当21a -≤≤时,函数f(x)在区间(1,)+∞上为增函数,故所求概率为1(2)32(2)4P --==--.故C 项正确.6.A 【解析】由换底公式得,2211,log 5log a b e==,而222211log 5log 1,01log 5log e e>>∴<<<,即0<a<b<1, 102551,c =>=故a<b<c.7.B 【解析】结合正(主)视图和俯视图可知,该几何体是由一个半圆柱和一个14的球组合而成的,其中半圆柱在左,14个球在右,因此侧(左)视图中14个球对应的轮廓线(半圆)不可视,应画成虚线.对照各选项,只有B 符合. 8.D 【解析】由311231<-<-x 可得⎪⎭⎫⎝⎛∈32,31x ,故选D. 9.B 【解析】执行如图的程序框图,本质是计算数列1(1)n n ⎧⎫⎨⎬+⎩⎭的前n 项和n S 满足1920n S ≥ 的最小的n ,因为111111223(1)11n nS n n n n =+++=-=⨯⨯+++ ,所以181920181920,,192021S S S ===,故输出的n 值为19. 10.B 【解析】由题设得32934312124T ππππ=+==,则22T ππωπ=⇒==,故()()2s i n 2f x x ϕ=+,将12x π=-代入可得2sin 06πϕ⎛⎫-+= ⎪⎝⎭,即,6k k Z πϕπ=+∈,所以6πϕ=.所以226x y x y ϕωπ+--=0 ⇒22221520(1)()24x y x y x y +--=⇔-+-=,故半径11.C 【解析】由射影定理可知2CD DE OD =⋅,即2,2DC abDE a bOD ==+由,DC DE ≥得2aba b≥+,可知选C. 12.A 【解析】设()23()2x g x x x e =-,则()22313[()]()222x x g x x x e x x e ''=-=+-, 令()0g x '=,得123,12x x =-=,由图象易知()()32139(1),()222g x g e g x g e -==-=-=极小值极大值,又当0x <时,()0g x >,且x →-∞时,()0g x →; 当1x >时,()g x 为增函数,且x →+∞时,()g x →+∞,因此函数()23()2xf x x x e m =--有三个零点时,3239()220g e m --<=<,故选A.二、填空题:本大题共4小题,每小题5分. 13.109【解析】由与a b 共线,得1130,3λλ∴-=,=22101.9λ=+=a 14.x=-1(或填x+1=0) 【解析】依题意得2p=4,p=2,故准线方程为12px =-=-.15.【解析】由A c B a A b cos 2cos cos =+及正弦定理得,cos sin 2cos sin cos sin A C B A A B =+即A C B A cos sin 2)sin(=+,即A C C cos sin 2sin =得1cos ,2A =即A=3π.由正弦定理及s i n s i n b C a A =,得29.bc a ==故1sin 2ABC S bc A ∆==16.5【解析】连接1BC 交1B C 于点O ,连接OE, 1111//B CE,,BD BC D OE = 1平面平面平面B CE 1//BD OE ∴,∴OEC ∠是异面直线BD 1与CE 所成的角.设该正方体的棱长为1,则1BD =.又O 为BC 1的中点,OE∴是11C BD ∆的中位线,112OE BD ∴==OC =112B C EC ===在OCE ∆中,由余弦定理得222cos 25OE EC OC OEC OE EC +-∠==⋅. 三、解答题:(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤.)17.解:(1)设等差数列{}n a 的公差为d.依题意得),3()1(4122+=-a a a 即),33()1(1121++=-+d a a d a结合11=a 可化简得0432=--d d ,解得d=4(负值舍去).(3分)1(1)14(1)4 3.n a a n d n n ∴=+-=+-=-(4分)21()(143)2.22n n n a a n n S n n ++-===-(6分). (2)当n 为偶数时,(15)(913)(7443)n T n n =-++-+++-+-L =42.2nn ⨯=(9分)当n 为奇数时,n+1为偶数,112(1)(41)21n n n T T c n n n ++=-=+-+=-+,(11分)综上所述,2,(2,),21,(21,).N N **⎧=∈⎪=⎨-+=-∈⎪⎩n n n k k T n n k k (12分) 18.(1)证明:如图,取CF 的中点H ,连接EH ,HG.H 是CF 的中点,G 是CD 的中点,∴1//,.2GH FD GH FD =又1//,.2AE FD AE FD =//,.AE GH AE GH ∴=∴四边形AGHE 是平行四边形.//.AG EH ∴(5分) 又.AG EH ⊄⊂ 平面BCFE ,平面BCFE g//AG ∴平面BCFE.(6分)(2) ,BCFE AEFD ⊥ 平面平面CF ⊥ ,,EF AEFD EF = 平面平面BCFECF ∴⊥平面.AEFD∴111332BC AEFD A BEFC C ADF V V V BE BC AE DF EF CF ---=+=⋅⋅+⨯⋅⋅=1112111211.3323⨯⨯⨯+⨯⨯⨯⨯=(12分) 19.解:(1)由频率分布表可得5151510500.10.30.20.11x y ++++=⎧⎨++++=⎩,解得50.3x y =⎧⎨=⎩ . (2分)估计参加考试的这50名应聘者笔试成绩的平均数为550.1650.3750.3850.2950.174⨯+⨯+⨯+⨯+⨯=.(4分)(2)由(1)可知,后三组中的人数分别为15,10, 5,故这三组中所抽取的人数分别为3,2,1. 记第三组的3人为a,b,c ,第四组的2人为d,e,第5组的1人为f,则从6人中抽取2人的所有可能结果为:(a,b ),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15种,其中第四组中至少有1人的结果有:(a,d), (a,e) ,(b,d),(b,e), (c,d),(c,e), (d,e), (d,f),(e,f).共9种.(10分)故第四组中至少有1人被总经理面试的概率为93.155P ==(12分) 20.解:(1)由已知得1,223c c a ==, 2221,3,8.c a b a c ∴===-=∴椭圆C 的方程为22198x y +=.(5分) (2)根据题意可设直线l 的方程为2,y kx =+设1122(,),(,),A x y B x y AB 的中点为00(,).G x y 设点E (m,0),使得||||AE BE =,则EG AB ⊥. 由222,198y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360,k x kx ++-= 12000222361816,,2,989898k k x x x y kx k k k -+=-∴==+=+++(7分) 1,,EG EG AB k k ⊥∴=- 即22160198,1898k k k m k -+=---+ 222,8989k m k k k --∴==++(9分) 当0k >时,890;12k m k +≥∴-≤< 当k<0时,890k m k +≤-∴<≤ 综上所述,点E的横坐标的取值范围为[ (12分)21.解:(1)22()(ln )(1ln )(1)()x x x a be x a x be a x be x x f x x x------'==, ()f x 在点x=e 处的切线与x 轴平行,()0f e '∴=,0b ∴=.(2分) 因此2(1ln )()a x f x x -'=, 当0a >时,2(1ln )()a x f x x -'=在区间(0,)e 上为正,在区间(,)e +∞上为负,因此 ()f x 在区间(0,)e 上为增函数,在区间(,)e +∞上为减函数,即函数()f x 在x=e 处取得唯一的极大值,即为最大值;当0a <时,()f x 在(0,)e 上为减函数,在(,)e +∞为增函数,即函数()f x 有最小值, 无最大值.因此实数a 的取值范围是(0,)+∞.(6分)(2)当1a b ==时,设()()ln x g x xf x x e ==-,1()x g x e x'=-在区间(0,)+∞上为减函数,又(1)10g e '=-<,1()202g '=>, 因此存在唯一实数01(,1)2x ∈,使0001()0x g x e x '=-=,(8分) 由此得到00001,ln x e x x x ==-;(9分) 此时()g x 在区间0(0,)x 上为增函数,在区间0(,)x +∞上为减函数, 由单调性知0max 00000011()()ln ()x g x g x x e x x x x ==-=--=-+, 又01(,1)2x ∈,故0051()22x x -<-+<-, 因此()0xf x m -≤恒成立时2m ≥-,即m 的最小整数值为2-.(12分)请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 解:(1)由4cos ρθ=得24cos ρρθ=,所以2240,x y x +-=所以圆C 的直角坐标方程为22(2)4x y -+=.(3分) 直线l 的普通方程为10.(x y --=5分)(2)将直线l 的参数方程代入圆C :22(2)4x y -+=,并整理得230,t -=所以12123t t t t +=-.点P (1,0)在直线l 上,且点P 在圆C的内部,所以12||||||PA PB t t -=+=(10分) 23. 解:(1)依题意得3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩, 于是得111,1,.22332333x x x x x x ⎧⎧≤--<<≥⎧⎪⎪⎨⎨⎨-≤⎩⎪⎪-≤≤⎩⎩或或解得11x -≤≤.即不等式f(x)3≤的解集为{|11}.x x -≤≤(5分)(2) ()|1|y f x x =++=|21||22||2122|3x x x x -++≥---=,当且仅当(2x-1)(2x+2)0≤时取等号.所以m=3,(8分)11111114()()(2)(2.3333b a a b a b a b a b +=++=++≥+= 当且仅当32a b ==时取等号.(10分)。

相关文档
最新文档