结构力学虚功原理最小势能原理解题示例
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
【根据平面假设,梁在受弯曲变形后,其横截面仍保持为平面,它一方面有挠度 ,一方面横截面在梁变形过程中旋转了一个角度 ,由于该转角的存在,使得距离中性轴为y处的x方向的位移为 ,应变 ,弯曲应力为 ,因此,等截面梁的弯曲应变能为: 】p1EanqFDPw
则系统的总势能为:
由最小势能原理可知,当结构处于稳定平衡状态时,有:
图2.1
解:令在外力作用下,节点1在x向的位移为 ,在y向的位移为 。
则有:
杆号
杆长
杆变形
1-2
2.5a
1-3
2.236a
1-4
2.236a
杆应变能的表达式为:
则系统的总势能为:
由最小势能原理可知,当结构处于稳定平衡状态时,有:
即:
解得:
杆的Βιβλιοθήκη Baidu力可由公式: 求得,故各杆的内力为:
例2.2如图2.2所示的梁,其上作用有均布载荷q,试用最小势能原理求其挠度曲线。
图2.2
解:令梁的挠度函数为 ,它必须满足以下几个条件:
1、必须满足几何边界条件,但不一定满足平衡条件和力的边界条件;
2、由于有均布载荷q的作用,故 应为x的4次多项式。
故,考虑到梁左侧为固支,可设:
梁右侧需满足:
且梁右侧没承受弯矩,有:
<力的边界条件)
代入边界条件,有:
等截面梁的弯曲应变能表达式为:
故,考虑到梁左侧为固支,可设:
梁右侧需满足:
且梁右侧没承受弯矩,有:
代入边界条件,有:
等截面梁的弯曲应变能表达式为:
给梁施加一个虚位移:
则其外力虚功为:
虚应变能为:
由虚功原理,有: ,即:
由于虚位移是任意的,故:
所以:
【由此可以看出,虚位移原理和最小势能原理是一致的,都是从能量的角度来阐述超静定结构在平衡状态所需满足的条件,即用能量方程来替代变形协调条件。在做题时,个人觉得最小势能原理具有更好的操作性。】RTCrpUDGiT
则外力虚功为:
虚应变能为:
由虚功原理,有: ,即:
故梁的位移为:
图2.4
【虚功原理的其它例题可参见理论力学<静力学)第四章第7节】
例2.2 若用虚功原理求解,其步骤如下:
解:令梁的挠度函数为 ,它必须满足以下几个条件:
1、必须满足几何边界条件,但不一定满足平衡条件和力的边界条件;
2、由于有均布载荷q的作用,故 应为x的4次多项式。
最小势能原理、虚功原理解题示例
最小势能原理:在给定外载荷的作用下,对于稳定平衡系统,在满足位移边界条件的所有各组位移中,实际位移使弹性系统的总势能最小。
例2.1如图2.1所示桁架结构,各杆的横截面积均为A,弹性模量均为E,在节点1处作用水平集中力P,试用最小势能原理求各杆的内力。b5E2RGbCAP
又:
【 】
由于变分可取任意值,故有:
所以:
虚功原理:当弹性体在外载荷作用下处于平衡状态时,对任意为约束所容许的虚位移,外力虚功等于内力虚功。虚功原理又称为虚位移原理。DXDiTa9E3d
例2.3 试用虚功原理求如图2.3所示梁的位移。
图2.3
解:令在外载荷P作用下,梁的转角为 ,则各杆的变形为:
给梁施加一个虚位移:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
【根据平面假设,梁在受弯曲变形后,其横截面仍保持为平面,它一方面有挠度 ,一方面横截面在梁变形过程中旋转了一个角度 ,由于该转角的存在,使得距离中性轴为y处的x方向的位移为 ,应变 ,弯曲应力为 ,因此,等截面梁的弯曲应变能为: 】p1EanqFDPw
则系统的总势能为:
由最小势能原理可知,当结构处于稳定平衡状态时,有:
图2.1
解:令在外力作用下,节点1在x向的位移为 ,在y向的位移为 。
则有:
杆号
杆长
杆变形
1-2
2.5a
1-3
2.236a
1-4
2.236a
杆应变能的表达式为:
则系统的总势能为:
由最小势能原理可知,当结构处于稳定平衡状态时,有:
即:
解得:
杆的Βιβλιοθήκη Baidu力可由公式: 求得,故各杆的内力为:
例2.2如图2.2所示的梁,其上作用有均布载荷q,试用最小势能原理求其挠度曲线。
图2.2
解:令梁的挠度函数为 ,它必须满足以下几个条件:
1、必须满足几何边界条件,但不一定满足平衡条件和力的边界条件;
2、由于有均布载荷q的作用,故 应为x的4次多项式。
故,考虑到梁左侧为固支,可设:
梁右侧需满足:
且梁右侧没承受弯矩,有:
<力的边界条件)
代入边界条件,有:
等截面梁的弯曲应变能表达式为:
故,考虑到梁左侧为固支,可设:
梁右侧需满足:
且梁右侧没承受弯矩,有:
代入边界条件,有:
等截面梁的弯曲应变能表达式为:
给梁施加一个虚位移:
则其外力虚功为:
虚应变能为:
由虚功原理,有: ,即:
由于虚位移是任意的,故:
所以:
【由此可以看出,虚位移原理和最小势能原理是一致的,都是从能量的角度来阐述超静定结构在平衡状态所需满足的条件,即用能量方程来替代变形协调条件。在做题时,个人觉得最小势能原理具有更好的操作性。】RTCrpUDGiT
则外力虚功为:
虚应变能为:
由虚功原理,有: ,即:
故梁的位移为:
图2.4
【虚功原理的其它例题可参见理论力学<静力学)第四章第7节】
例2.2 若用虚功原理求解,其步骤如下:
解:令梁的挠度函数为 ,它必须满足以下几个条件:
1、必须满足几何边界条件,但不一定满足平衡条件和力的边界条件;
2、由于有均布载荷q的作用,故 应为x的4次多项式。
最小势能原理、虚功原理解题示例
最小势能原理:在给定外载荷的作用下,对于稳定平衡系统,在满足位移边界条件的所有各组位移中,实际位移使弹性系统的总势能最小。
例2.1如图2.1所示桁架结构,各杆的横截面积均为A,弹性模量均为E,在节点1处作用水平集中力P,试用最小势能原理求各杆的内力。b5E2RGbCAP
又:
【 】
由于变分可取任意值,故有:
所以:
虚功原理:当弹性体在外载荷作用下处于平衡状态时,对任意为约束所容许的虚位移,外力虚功等于内力虚功。虚功原理又称为虚位移原理。DXDiTa9E3d
例2.3 试用虚功原理求如图2.3所示梁的位移。
图2.3
解:令在外载荷P作用下,梁的转角为 ,则各杆的变形为:
给梁施加一个虚位移: