6_广义线性回归分析 PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。收缩压和胆固醇的依存关系 。肺活量和体重的关系 。污染物浓度和污染源距离之间的关系
回归分析的原理
分解总体变异: SST = SSX + SSE
Y的总体变异
舒张压
被自变量X 所 解释的部分
胆固醇
残差
方差分析和回归分析的相同点
模型:
因变量 = 自变量 + 残差
方法原理: 因变量:
分解总体变异 SST = SSA + SSE SST = SSX + SSE 连续型数值变量
数据:
解:这是一个完全随机设计资料。令 x 表示治疗前病人身体的癫疯病菌数量, y 表示治疗后病人身体的癫疯病菌数量, drug 表示用药方式,取值为A、D和F,分别 表示使用抗生素A、抗生素D和安慰剂。
首先建立SAS数据集
data eg6_1; do id=1 to 10; do drug='A', 'D', 'F'; input x y @@; output; end; end;
方差相等。
在效应因子的每一个水平上, 因变量y服从正态分布;
方差相等; 在效应因子的每一个水平上,
因变量y和协变量x呈线性关系; 斜率相同。
三、协方差分析的方法步骤
o 检验数据是否满足假设条件: 正态分布性 方差齐性 线性相关性 平行性
o 检验效应因子的显著性 o 估计校正的组均值 o 检验校正的组均值之间的差异
。男性和女性之间收缩压的差异 。试验药和对照药之间的作用差异 。大学生和运动员之间肺活量的差异
方差分析的原理
分解总体变异: SST = SSA + SSE
Y的总体变异 舒张压
被因子A 所 解释的部分
性别
残差
回归分析
分析自变量X对因变量Y的依存关系,即, 分析自变量X改变一个单位时,因变量Y的 改变量大小。
其意义是使得方差分析和回归分析的实用 性和准确性得到进一步提高。
两个典型的广义线性模型分析方法
协方差分析
含有数值型自变量 的方差ห้องสมุดไป่ตู้析
广义线性回归分析
含有分类型自变量 的回归分析
第二节 协方差分析
协方差分析是将方差分析原理和线性回归 分析原理结合起来的一种方差分析方法。 它消除了混杂变量(协变量)对因变量的 影响,使得方差分析结果更加准确。
方差分析和回归分析的不同点
结合?
自变量: 方差分析: 回归分析:
自变量---分类型 自变量---连续型
广义线性模型分析
General Linear Model Analysis
主要内容
什么是广义线性模型分析? 协方差分析 广义线性回归分析
第一节 广义线性模型分析的概念
广义线性模型分析是将方差分析和回归分 析的基本原理结合起来,用来分析连续型 因变量与任意型自变量之间各种关系的一 种统计分析方法。
随机误差
混杂因子 年龄 身高
解决的办法
处理效应Y
效应因子 A,B,C,…
混杂因子 X1,X2,…
消除混杂 因子的影响
选取条件相同的样本
协方差分析
在方差分析模型中加入混杂因子
一、协方差分析的原理
分解总体变异:
SST = SSA + SSX + SSE
Y的总体变异 舒张压
因子A所解释 的部分
性别
混杂因子X 所解释的部分
cards; 11 6 6 0 16 13 …… 3 0 15 9 12 20
run;
(一) 检验协方差分析的4个假设条件是否满足 (1) 检验正态性: proc sort data=eg6_1; by drug;run; proc univariate data=eg6_1 normal;var y;by drug;run; (2) 检验方差齐性: proc discrim data=eg6_1 pool=test;class drug;var y;run; (3) 检验线性相关性: proc reg data=eg6_1; model y=x; by drug;run; (4) 检验平行性: proc glm data=eg6_1;model y=drug x drug*x ;run;
四、协方差分析的应用举例
【例6_1】为了研究两种药物对癫疯病菌的治疗效 果,将30名病人随机分成3组,一组使用抗生素A, 一组使用抗生素D,另一组作为对照组使用安慰剂。 治疗前和治疗后分别对病人身体的癫疯病菌数量进 行了检测,病菌的数量是由每一个病人身体上六个 部位病菌感染的程度而定的,数据列在下表中。试 对该试验研究进行统计分析。
年龄
随机误差 协变量
二、方差分析和协方差分析的区别
区别(1):数据
方差分析
协方差分析
AY 1 y11 1 y12 ∶∶ 1 y1.n1 2 y21 2 y22 ∶∶ 2 y2,n2
AY 1 y11 1 y12 ∶∶ 1 y1,n1 2 y21 2 y22 ∶∶ 2 y2,n2
X x11 x12 ∶ x1,n1 x21 x22 ∶ x2,n2
方差分析存在的问题:结果不够准确
用方差分析结果来对下面问题作结论,合适吗?
。男性和女性之间收缩压的差异 。试验药和对照药之间的作用差异 。大学生和运动员之间肺活量的差异
年龄 用药前水平 身高
方差分析不够准确的原因:
SST = SSA + SSE
Y的总体变异 被因子A 所 残差 解释的部分
肺活量
职业
【SAS 部分输出结果】 (1) 检验正态分布的结果:(H0: y 服从正态分布)
A组:W= 0.928405, P=0.4166 D组:W= 0.871798, P= 0.1002 F组:W= 0.972136, P= 0.9023 -------说明三个组的y 值均近似服从正态分布。 (2) 检验方差齐性的结果:(H0: 方差相等) Chi-Square =1.551005,DF=2,P= 0.4605, --------说明三个组的方差在统计意义上是相等的。
多元统计分析方法
The Methods of Multivariate Statistical Analysis
回忆
主要的统计分析方法
反 分类型 应 变 量 数值型
卡方分析 方差分析 回归分析
异同点?
比较率 比较均值 依存关系
方差分析
分析效应因子A对反应变量Y的影响,即, 分析效应因子A的不同水平对反应变量Y 的作用差异。
区别(2):模型
方差分析模型
μi 是组均值 (group mean) εi j 是随机误差
协方差分析模型
μi 是校正的组均值 (adjusted group mean) εi j 是随机误差 β是协变量x对因变量y的影响
区别(3):假设条件
方差分析
协方差分析
在效应因子的每一 个水平上,因变量y 服从正态分布;
相关文档
最新文档